

Edinburgh Research Explorer

A Computational Framework for Practical Social Reasoning

Citation for published version:
Wallace, I & Rovatsos, M 2015, 'A Computational Framework for Practical Social Reasoning' Computational
Intelligence, vol. 31, no. 1, pp. 69-105. DOI: 10.1111/coin.v31.1

Digital Object Identifier (DOI):
10.1111/coin.v31.1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Computational Intelligence

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43714566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1111/coin.v31.1
https://www.research.ed.ac.uk/portal/en/publications/a-computational-framework-for-practical-social-reasoning(f118cd05-6947-449b-a649-d878b322350d).html

Computational Intelligence, Volume ??, Number 000, 2012

A Computational Framework for Practical Social Reasoning

IAIN WALLACE

School of Mathematics and Computer Science, Heriot-Watt University, Scotland

MICHAEL ROVATSOS

School of Informatics, University of Edinburgh, Scotland

This paper describes a framework for practical social reasoning designed to be used for analysis, specification

and implementation of the social layer of agent reasoning in multiagent systems. Our framework, called the

Expectation-Strategy-Behaviour (ESB) framework, is based on (i) using sets of update rules for social beliefs tied

to observations (so-called expectations), (ii) bounding the amount of reasoning to be performed over these rules by

defining a reasoning strategy, and (iii) influencing the agent’s decision making logic by means of behaviours condi-

tioned on the truth status of current and future social beliefs. We introduce the foundations of ESB conceptually and

present a formal framework, and an actual implementation of a reasoning engine which is specifically combined

with a general (BDI-based) practical reasoning programming system. We illustrate the generality of ESB through

select case studies which show that it is able to represent and implement different typical styles of social reasoning.

The broad coverage of existing social reasoning methods, the modularity that derives from its declarative nature,

and its focus on practical implementation make ESB a useful tool for building advanced socially reasoning agents.

Key words: Agent-Oriented Software Engineering, Multiagent Systems, Practical Reasoning Systems,

Social Reasoning

Address correspondence to Michael Rovatsos, School of Informatics, The University of Edinburgh, Informatics

Forum, 10 Crichton Street, Edinburgh EH8 9AB, United Kingdom, Tel.: +44-131-651-3263, Fax: +44-131-650-6899,

Michael.Rovatsos@ed.ac.uk

iC 2012 The Authors. Journal Compilation iC 2012 Wiley Periodicals, Inc.

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 1

1. INTRODUCTION

Social reasoning, which we define as reasoning about the interactions between

agents in a multiagent system, is a central concern of multiagent systems research,

as the nature of such systems emphasises the aspect of interaction in collectives of

intelligent agents. Unsurprisingly, the range of methods applied to social reasoning is

therefore very broad, and includes (Shoham and Leyton-Brown, 2009; Wooldridge,

2009):

• methods for offline design of interaction mechanisms based on a principled anal-

ysis of the interaction problem in hand (as in game-theoretic approaches, mecha-

nism design, and agent communication languages),

• methods that restrict the range of behaviours of agents to ensure certain global

system properties are maintained (as in plan coordination and teamwork-based

approaches, norms and social laws), and

• methods for online reasoning about other agents while interaction is unfolding (as

in adversarial search, planning and learning, opponent modelling, and trust and

reputation mechanisms).

Quite naturally, this means that different social reasoning approaches focus on differ-

ent techniques, e.g. logic-based specification and (manual or automated) verification

of formal properties, game-theoretic analysis, adaptation of algorithms from such

areas as search, planning, and machine learning to social reasoning problems, and

the design of novel, “bespoke” formalisms and algorithms.

2 COMPUTATIONAL INTELLIGENCE

This has resulted in a great deal of fragmentation in the area, making different

methods from different areas hard to compare, combine, and reuse in a context differ-

ent from the original setting they were developed for. From an engineering point of

view, this limits the possibilities of using existing approaches for new multiagent

systems. Moreover, many of these areas do not provide a means for using their

theoretical models directly in the implementation of agent-based systems. Instead,

they restrict themselves to specifying and analysing properties of systems, and leave

the translation of these properties to actual implementations to the human expert.

In this paper, we present a framework for describing social reasoning mecha-

nisms in a uniform way which allows agents to reason about specifications of these

reasoning mechanisms at run-time. This framework, called the Expectation-Strategy-

Behaviour (ESB) framework, attempts to capture what we view as the “greatest

common denominator” between many existing methods:

(i) The ability to maintain a set of evolving beliefs about properties regarding the

“social state” of the system,

(ii) a facility to trigger behaviours based on the state of these beliefs and predictions

about their evolution, and

(iii) provisions to limit this analysis in a rational way depending on available compu-

tational resources.

ESB presents the opportunity to analyse, formalise, specify and implement social

reasoning methods on several levels. Firstly, as a conceptual tool that provides a

unifying method for looking at different types of social reasoners. Secondly, as a

formal specification language which allows designers to capture and analyse social

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 3

reasoning mechanisms in a precise way. Thirdly, as a computational mechanism for

generating behaviour according to such specifications in implemented agents in a

modular, extensible, and reusable way.

This paper presents a combination and extension of different aspects of ESB that

have been presented before in Wallace and Rovatsos (2009, 2011). We tie together

the existing work presenting a more uniform formal presentation, expanding on the

general context of the work, provide further details of the implemented reasoning

system and present a more complex example on norm reasoning.

The remainder of this paper is structured as follows: We start by discussing

desiderata for a general practical social reasoning system in Section 2. This is fol-

lowed by an introduction of the ESB framework at a conceptual level in Section 3.

We deliberately keep sections 2 and 3 informal, explaining the general ESB princi-

ples. Section 4 provides the formal definition of the ESB model. The ESB reasoning

engine implemented is described in Section 5, followed by an evaluation based on

several case studies in Section 6. Sections 7 and 8 close with an overview of related

work and concluding remarks.

2. DESIDERATA

The purpose of ESB is to aid the implementation of practical social reasoning

agents that can make inferences about the social state of affairs and act accordingly

at run-time. In other words, we emphasise the requirement of being able to use

a framework for social reasoning from the agent’s point of view in actual agent

programming, rather than only for the human expert to reason “externally” about

4 COMPUTATIONAL INTELLIGENCE

specifications of social reasoning methods. We call it “practical” in this sense, as it

is directed toward action (as opposed to theoretical reasoning about a system). To

achieve this at a relatively generic level, it is necessary to provide:

• a template for social reasoning that fits the requirements of many existing social

reasoning methods,

• a description of the computational mechanism that is needed to process specifica-

tions of these methods in the suggested “meta-model”, and

• a means to adapt the amount of run-time social reasoning to the computational

resources that are available in a concrete system.

This is precisely what we set out to achieve with the research described in this paper:

To capture various different styles of social reasoning, we develop the abstract ESB

framework, a generic meta-model/template for concrete social reasoning methods.

To be a useful and flexible technique in agent development, we want to be able to

program ESB agents. We develop the formal model for the ESB framework with a

clear syntax and semantics, which is suitable for boundedly rational run-time pro-

cessing. This allows us to build an ESB interpreter, a reasoning engine for processing

ESB specifications. The interpreter can be integrated with a BDI interpreter to (i)

show how practical social reasoning and general practical reasoning interact and can

be meaningfully combined and (ii) to be able to present example implementations of

existing social reasoning methods for evaluation purposes.

In the development of ESB, we follow the example of BDI in many ways. Firstly,

just as the BDI architecture acts as a meta-model for general practical reasoning (i.e.

reasoning about goals and actions), ESB can be used as a conceptual template for

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 5

social practical reasoning. Secondly, following the example of BDI logics, the for-

mal ESB framework allows us to construct formal specifications of concrete social

reasoning mechanisms and to verify those automatically. Thirdly, the ESB reasoning

engine allows these formal specifications to be used directly for agent implementa-

tion much in the same way as BDI-based programming languages provide similar

functionality.

3. CONCEPTUAL FRAMEWORK

3.1. High-level overview

Before moving on to a more detailed introduction of the framework, it is worth

describing the main ideas behind it along very general lines to provide some intuition

and to motivate our approach.

Generally speaking, multiagent systems involve distributed representations of

the global state of affairs, where the local views agents have of parts of this state are

modelled as beliefs. The intuition underlying the design of ESB is that any “hidden”

property of the system that concerns other agents and/or interactions with them that

cannot be observed directly could be viewed as a social belief. While there is no

precise definition of what a social belief is, the most common examples include the

mental states of other agents (their beliefs, intentions, preferences, capabilities etc.),

the execution state of a protocol-based or plan-based interaction, social laws, norms

and commitments, etc.

We define expectations as rules that govern how social beliefs are updated under

different circumstances based on different observations. Strategies are then “expec-

6 COMPUTATIONAL INTELLIGENCE

tation expansion” functions that specify how an agent “maps out” the evolution

of expectations over time to make decisions, determining how the agent’s social

reasoning is bounded. Finally, we introduce behaviours as rules that determine how

social beliefs affect other beliefs or the agents’ actual behaviour in the system.

To develop a practical mechanism that can be used by agents at run-time, our

computational tools for ESB provide the following features:

• A specification language that can be used by the designer to specify the properties

of a social reasoning mechanism using expectations, strategies and behaviours.

• An algorithm that automatically generates a state transition model that behaves in

compliance with these properties. Adding this model to the agent’s specification

will ensure that the resulting agent design satisfies the properties of the social

reasoning mechanism in question.

• A method for verifying the guards of behavioural rules that specify how different

states of social beliefs impact on real behaviour, and to modify behaviour accord-

ing to those rules that fire in a given situation.

Put simply, the work described in this paper enables agent designers to specify an

update mechanism for social beliefs and rules for how different states of social belief

affect behaviour. Then, the generic ESB machinery allows such specifications to

be directly executed in an implementation. We introduce a simple example in the

following section that illustrates this further.

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 7

3.2. A Simple Example

Consider the following very simple example of a trust mechanism in a mul-

tiagent system: Assume a reasoning agent maintains trust values for other agents

and updates them based on its own interaction experience and reports from other

agents. For the sake of simplicity, we assume a discrete range of trust “levels”

{++,+,0,−,−−} and use operators like < for comparisons between them.

The non-observable social belief here is the actual trustworthiness of another

agent A which we denote by tA, as estimated by the reasoning agent R. Here he

semantics of “trustworthiness” is only important as far as it affects R’s behaviour,

though how it is modelled may of course be based on some underlying theory of

trust.

In this trust mechanism, expectations can be used to describe update rules be-

tween different states of tA. For example, R may want his trust mechanism to satisfy

the following constraints:

E1 “When interacting with A for the first time, let tA = 0. If the interaction has a

positive outcome, increment tA, else decrement tA by two levels.”

E2 “If B is a witness with tB > 0 and B reports a negative experience with A,

decrement tA by one level.”

Even in this simple mechanism, we can observe a few simple properties that will

be discussed at a more general level later. Firstly, as the clauses suggest, social

beliefs are often contingent statements that depend on the context, i.e. they rely on

some condition. Secondly, as the belief they concern (trust) cannot be verified itself

through observation, an explicit test has to be specified, i.e. an observable event that

8 COMPUTATIONAL INTELLIGENCE

triggers belief change (a positive/negative interaction experience, or B’s report in

the above example). Finally, to capture the belief change mechanism, a response

to different outcomes of a test has to be defined, that modifies some belief (here,

changes to the value of tA).

In isolation, these update rules, which we call expectations in our framework,

are of course not very useful for practical decision making. Rather, in a sensible

agent design, different states, or projections about future states of their values would

trigger behaviours, for example:

B1 “If tA < 0, don’t send A any sensitive information.”

B2 “If tA =−−, don’t interact with A.”

B3 “If tA = −− and tA cannot ever increase again, discard A as an interaction

partner.”

B4 “If tA > tB, prefer A over B.”

B5 “If tA > tB always in the future, discard B.”

Some of these rules refer only to the current situation, simply conditioning certain

behaviours on the belief state. More complex rules however depend on the evolution

of beliefs, effectively representing meta-reasoning that considers the dynamics of R’s

own belief update mechanism. B3 and B5 illustrate this. Given that the expectations

allow third party witness reports only to decrease trust values in the example, rule

B2 effectively means that once tA has dropped to −−, it will not increase again, as

that agent will not be interacted with. So one could apply rule B3 to stop considering

A as an interaction partner (“discard” them) and save time. Similarly, if rule B4 is

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 9

applied, as tB won’t increase again, rule B5 will also become true – B can be safely

ignored.

This kind of meta-reasoning requires inference over the entire set of expecta-

tion rules, and, if temporal dynamics with cycles are present, can cause unbounded

reasoning complexity. To enable rational, bounded decision making and generate

responsive behaviour in real-world applications, one has to restrict the scope of

possible future changes to expectations. Example strategies of how to do this might

be the following:

S1 “Only consider trust value changes up to the next ten interactions or twenty

witness reports.”

S2 “Ignore positive interactions or positive witness reports when making predictions

about future trust values.”

S3 “Only make predictions about high-value interactions, ignoring low-value inter-

actions.”

These are just examples for how to limit the projection space, either by imposing

a depth limit (S1), taking a pessimistic “worst-case” point of view in evaluating

future developments (S2), or pruning the search space based on domain-dependent

criteria (S3). Effectively, they restrict the “horizon” over which temporal operators

like “never again” or “always in the future” will be evaluated, thus bounding the set

of future states that have to be considered in the guards of behaviour rules like B3 and

B5 above. Depending on the time and space available to an agent when making deci-

sions, different levels of reasoning accuracy are possible, and they reflect the amount

of effort that goes into social reasoning activities in actual agent implementations.

10 COMPUTATIONAL INTELLIGENCE

At an informal level, this example suggests that ESB is appropriate for capturing

trust and reputation mechanisms. In Section 6, we will show that ESB achieves broad

coverage of existing social reasoning methods by presenting concrete case studies

where we apply it to reasoning about intentions in communication, reasoning about

norms, and opponent modelling in games.

3.3. Expectations, strategies, and behaviours

We now present a mostly informal overview of the ESB framework, which al-

ready uses some of the notation which will be formally introduced in Section 4 in

full detail. To begin with, we introduce our notion of expectation: An expectation

(Exp N A C Φ T ρ
+

ρ
−)

is a rule specifying the way in which A will update a belief regarding statement Φ.

The rule has identifier N, and specifies that Φ would be believed only under condition

C. It also specifies how the expectation set might change after performing test T , by

specifying a response ρ+ if the test is successful (i.e. confirms the expectation), and

an alternative response ρ− if the test fails.

Going back to the examples on p.7, we could encode E1 as

(
Exp E1︸︷︷︸

N

R︸︷︷︸
A

first interaction(A)︸ ︷︷ ︸
C

trust(A,0)︸ ︷︷ ︸
Φ

“positive interaction”︸ ︷︷ ︸
T

“replace E1 with E3”︸ ︷︷ ︸
ρ+

“replace E1 with E4”︸ ︷︷ ︸
ρ−

)
where the responses ρ replace the expectation with E3 and E4, which are similar

expectations with the appropriately adjusted trust values (one level up and two levels

lower, respectively). An expectation for E2 would be conditioned on another agent

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 11

B being trusted, expect that B would make for an appropriate witness, and the tests

would involve B informing R of the untrustworthiness of A. The positive response

would be to replace E1 with an expectation corresponding to the respective lower

trust level. The negative response is void in this example, so nothing would be

required here. We deliberately only present one illustrative expectation here, rather

than the complete system, as this is a simple example to introduce the ideas. Further

details of expectations systems can be found throughout later sections of the paper.

Expectations allow us to express context-dependent rules for how to update so-

cial belief, and under which circumstances the update will have what consequences.

Thereby, we assume that the test T is something that can be observed in the environ-

ment, and the response ρ is a modification to the set of all expectations held by the

agent.

We should emphasise that introducing the notion of “expected belief” contained

in an expectation as something different from beliefs (in the ordinary sense of the

word) is important for several reasons. Methodologically, it allows us to single out

“social” beliefs from other beliefs used by the general (practical) reasoning mecha-

nism of the agent, so that any influence on non-social beliefs has to be made explicit

via some behaviour rule (as we shall see below). Also, it encourages the designer to

think about the context, triggering test and update rules associated with an expected

belief when mentioning it in an expectation. Computationally, as we describe below,

labelling beliefs as “expectation-related” serves as a mechanism for including them

in the model generation phase of the ESB reasoning engine.

12 COMPUTATIONAL INTELLIGENCE

3.4. Reasoning about expectations

The overall ESB reasoning process is relatively easy to describe at a high level,

since an agent’s social reasoning state is simply defined by the agent’s active set of

expectations (defined formally below). Each processing cycle consists of two phases:

Expectation update Based on observed events and/or belief changes outside the

ESB reasoning mechanism (e.g. at BDI level), expectations in the active set are

made current (or not, according to their conditions), which leads to a new set of

expected beliefs – those directly used for behaviour generation.

Behaviour generation The guards of behaviour rules are verified against the model

of dynamic expectation changes derived from current expectations. Those be-

haviour rules that “fire” effect a change to the agent’s non-ESB reasoner. Usually

this will be a belief change, but in theory it could directly lead to physical action,

the adoption of some intention, etc.

For update, the agent looks at the active expectations that are currently present. For

those active expectations whose conditions C apply (called current expectations), the

presence of test condition (or event) T will trigger the response ρ+, if ¬T is believed

then the negative response ρ− is triggered.

As far as behaviour generation is concerned, it is easiest to imagine the reason-

ing model as a graph among possible sets of expectations whose edges represent

transitions caused by expectation updates (similar to state-transition models used in

temporal/dynamic logics). Behaviour rules of the format “if φ then ψ” will cause

the ESB engine to verify whether property φ holds in this state-transition model. If

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 13

the verification of φ succeeds, the ESB engine will attempt to make ψ true, e.g. by

revising the agent’s (non-ESB) belief. A behaviour rule like

B5 “If tA > tB always in the future, discard B”,

for example, will traverse the expectation graph checking whether tB can ever exceed

tA in all future states. If this check fails, it will remove a fact that B is a potential

interaction partner from the agent’s belief base. If a strategy like

S2 “Ignore positive interactions or positive witness reports when making predictions

about future trust values.”

is used during this verification of tA > tB, only edges in the graph would be followed

that are caused by negative witness reports or negative interactions, i.e. the agent

would only take negative information into account.

It is important to highlight here that this reasoning cycle does not describe any

particular “style” of social reasoning, and this is intentional. By sticking to a general

structure which translates any set of rules that could describe an update mechanism

for social beliefs into a model within which arbitrary behaviour-triggering properties

can be proven, ESB provides a framework for social reasoning that is as generic as

possible, within the limitations of a propositional formalism. Moreover, the notion

of strategies allows any potential limitation on reasoning resources to be taken into

account in a concrete ESB implementation.

14 COMPUTATIONAL INTELLIGENCE

4. FORMAL FRAMEWORK

4.1. Expectations

To define the syntax of expectations, assume a set of agent names A = {A,A′, . . .},

a set of expectation names N = {N,N′, . . .}, and a propositional logical language

L (with atoms {p,q, . . .}, constants> and⊥, and the usual connectives). An expec-

tation is a structure

(Exp N A C Φ T ρ
+

ρ
−)

where N ∈N , A ∈A , C ∈L , φ ∈L , T ∈L and ρ+,ρ− ∈℘(N)×℘(N). The

intended meaning of such an expectation held by agent A is as follows:

“If N is an active expectation, whenever condition C holds, adopt belief Φ. When verification of T occurs,

respond according to ρ+ if T is true, and according to ρ− otherwise.”

Essentially, this means that expectations are event-condition-action rules, with the

only difference that the actions taken refer to the rulebase itself: although the agent

could “respond” in many different ways in theory, in ESB this is restricted to acti-

vating and deactivating other (or the same) expectation(s). To express this, we define

ρ = (A,D) for both responses ρ ∈ {ρ+,ρ−}, such that add(ρ) = A/del(ρ) = D are

the sets of expectations that are added to/removed from the set of active expectations

after update.

To keep the framework for reasoning about expectations simple, we deliber-

ately do not introduce a novel logic of expectations. Instead, we use expectations

as atomic rules that affect non-social beliefs, and resort to a BDI logic for capturing

the semantics of expectations. Specifically, we use L ORA (Wooldridge, 2000), a

multi-modal propositional BDI logic which combines modalities for belief, desire

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 15

and intention with aspects of dynamic logic and CTL temporal logic (note that in the

concrete implementation presented below, we introduce additional “syntactic sugar”

to allow first-order-like specifications of finite sets of expectations using variables,

see Section 5.2). Additionally, to represent dynamically changing expectation sets,

we introduce special propositions {αE |E ⊆fin N } that are distinct from all other

atoms in L and are used to reify what subset of all possible expectations is active.

We take these to be finite subsets of N and to be mutually exclusive, such that αE

is only true for the maximal (with respect to set inclusion) set of active expectations

at any given point in time. This allows us to introduce expectation syntax simply as

shorthand notation for L ORA formulas in the following way:

Assume agent A is reasoning about a set of (potential) expectations EXP =

{e1, . . . ,em}, where ei = (Exp Ni A Ci Φi Ti ρ
+
i ρ

−
i) 1 6 i 6 m. The semantics of

this set EXP is defined by rewriting it as a set of L ORA statements:

αE ⇔
∧

i∈{1,...,m}
A�(currenti W updatei)

where

current =(Bel A Ci)⇒ (Bel A Φi)

update =
(
(Bel A Ti)∧A©αEXP\del(ρ+

i)∪add(ρ+
i)

)
∨(

(Bel A ¬Ti)∧A©αEXP\del(ρ−i)∪add(ρ−i)

)
This reformulation of expectation sets in L ORA requires some explanation. To

start with, we should describe some of the more complex L ORA notation used:

© ϕ (� ϕ) means ϕ will be true in the next state (in all future states) along a

temporal path; ϕ W ψ is a weak “until” operator, denoting that until ψ becomes true

16 COMPUTATIONAL INTELLIGENCE

(which might never happen), ϕ will hold true; A ϕ is universal path quantification

used for the branching-time side of L ORA , denoting that ϕ will be true on all

paths from the current state; finally, (Bel A ϕ) is a normal KD45 belief modality for

agent A.

Given this, each of the rules defines when exactly each αE holds true, i.e. when

the agent has set E as its current set of active expectations. This is defined as a

conjunction over all e ∈ E, where the formula for each e corresponds to

“belief in the condition C(e) will lead to adopting the expected belief Φ(e) (“current”) until (“update”) the

agent either comes to believe T (e) and modifies e according to ρ+, disbelieves C(e), or comes to believe ¬T (e)

and modifies E according to ρ−.”

We use the notation X(e) to refer to component X of expectation e in a set of

expectations (e.g. C(e) refers to the condition of e, etc).

What is referred to as “modification” of the set of active expectations here is what

necessitates introduction of the αE propositions, as we have to be able to express a

dynamic relationship between different such sets. The L ORA -level definition of

expectation sets effectively means that these create a number of logical constraints

on the belief dynamics of the agent at the meta-level, using BDI-level belief as an

“object language”. This has several implications: On the positive side, it allows us

to seamlessly integrate ESB specifications with the BDI-level reasoner, and to avoid

introduction of yet another logical language and proof theory. On the negative side,

we cannot reason compositionally about the contents of C(e), Φ(e) and T (e) across

different expectations, as capturing the dynamics of how sets of expectations are

updated requires the reification performed above, at least to be able to do efficient,

resource-bounded reasoning over them. Below, we will return to the issue of expo-

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 17

nential blowup in specification length that results from the power set construction

over expectations above.

To summarise, this defines a relatively straightforward (though restricted) way

for managing expectations. In what follows, for convenience we will often write

EXPA for the set of active expectations, i.e. the subset of expectations for which

αE is true, and EXPC for current expectations e ∈ EXPA for which C(e) is true i.e.

active expectations for which the agent will adopt the expected belief Φ(e) (obvi-

ously, EXPC ⊆ EXPA ⊆ EXP). Note that, in our examples below, the annotation of

expectations with the identifier of the agent who holds them is not needed. However

we maintain it in the expectation notation throughout the paper as it is necessary

to maintain the mapping to the L ORA semantics, which require beliefs to be

ascribed to the agent that holds the respective expectation.

4.2. Strategies

As explained above informally, strategies are used to bound reasoning over ex-

pectations by constraining the way in which future expectation updates are consid-

ered. To define them formally, it is easiest to think of the different potential values

of EXPA as nodes in an expectation graph, and of the connections between different

such sets that are triggered by the expectations contained in EXPA as edges among

them. Then, a strategy simply becomes a restriction on the paths considered in this

graph when verifying a given behaviour.

More formally, let G = (V ,E) an expectation graph, where V =℘(EXP). To

18 COMPUTATIONAL INTELLIGENCE

define the set of edges E ⊆ V ×V , we first introduce the notation

update(E,E+,E−) := E ∪
(⋃

e∈E+

add(ρ+(e))
)
\
(⋃

e∈E+

del(ρ+(e))
)

∪
(⋃

e∈E−
add(ρ−(e))

)
\
(⋃

e∈E−
del(ρ−(e))

)
where

E+ = {e|e ∈ EXPA,(Bel A T (e))}

E− = {e|e ∈ EXPA,(Bel A ¬T (e))}

This allows us to determine the set of active expectations update(E,E+,E−) that

results from applications of the responses of an arbitrary combination of updates

following from positive test outcomes for some expectations E+ and negative out-

comes for the tests of expectations E−. That is, update(E,E+,E−) is one potential

successor state of E brought about by one particular combination of test outcomes.

With this, we can define the edges of the expectation graph as

E =
{
(E,E ′) | E ′ = update(E,E+,E−),E+∪E− ⊆ E,E+∩E− = /0

}
This means that all pairs of active expectation sets (E,E ′) will be connected if E ′ is a

potential successor state of E for some active expectation tests succeeding and others

failing. Note that this does not require a complete specification of all test outcomes

in E; due to the condition E+∪E− ⊆ E all transitions are included for any subset of

tests T (e) for e ∈ E. This enables us to track transitions when only some outcomes

of T (e) become known.

With this structure in mind, a strategy is a way to restrict this graph in some

way, either according to some particular style of reasoning (e.g. “optimistic”, i.e.

only considering positive test outcomes), or so as to respect limitations regarding

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 19

reasoning resources (e.g. restricted to some depth limit regarding future expectation

states). This is useful as behaviours rely on checking conditions on the accessible

portion of the graph as we shall see below.

A strategy STR⊆ E ∗ is therefore formally just a subset of the paths that can be

generated from E . How the set of paths considered following a particular strategy

is restricted is deliberately not specified. This is a concern for specific ESB imple-

mentations, but could be in terms of forbidden states, sequences of states, transitions

etc. In principle any graph operation could be used that restricts the set of paths

considered.

It should be remarked that this graph-theoretic description of the expectation

update system is closely related to the constructions of the previous section, in

particular to the reification of expectations as atomic objects which allows us to

reason about their dynamics without being concerned with their content. As shown

in the following section, behaviours bring the two layers together again and explain

how meta-level reasoning about expectations affects actual agent belief.

4.3. Behaviours

Conceptually, behaviours in ESB are rules that express how the agent’s overall

reasoning and actions are affected by its social reasoning. These rules depend on the

system of expectations an agent holds, which reflect the agent’s reasoning dynamics

about social “facts”. In our formal framework, more specifically, behaviours are

condition-action rules mapping conditions on the expectations to actions external

to the social reasoner, where actions take the form of adding or removing beliefs to

20 COMPUTATIONAL INTELLIGENCE

influence (say) a BDI practical reasoner (e.g. by restricting the set of plans from the

plan library that can currently be used).

The set of expectations does not only describe the current social reasoning state,

as represented by active expectations, but also possible future belief states. These

belief dynamics are encoded in the expectation graph structure and behaviours may

include conditions such as “Φ will always be expected” and “it is possible to expect

Φ” in the future.

To enable this, we assume that the preconditions of behaviour rules ϕ are ex-

pressed in CTL (Gabbay et al., 2000) using the usual syntax

ϕ ::=> | ⊥ | p | ¬ϕ | ϕ ∧ϕ | ϕ ∨ϕ | ϕ → ϕ |

A©ϕ | E©ϕ | A � ϕ | E � ϕ | A [ϕ U ϕ] | E [ϕ U ϕ]

where p is an atom in L , Eϕ denotes existential path quantification, and ϕ U ψ is

a “strong” until operator (which requires that ψ eventually become true). We write

ϕ ∈LCTL for formulae that are in this superset of L (and subset of L ORA).

As regards postconditions, as stated above, at the conceptual level it would be

possible for ESB to impact the agent’s behaviour in different ways depending on

which behaviours are currently satisfied. To keep things simple, however, we choose

to restrict the effects of ESB behaviours to belief revision operations, as this provides

a clean interface to other (non-social) reasoning and does not interfere with the

procedural nature of such activities as deliberation and means-ends reasoning. Thus,

we only consider

add belief (ϕ) and del belief (ϕ)

as possible actions of a behaviour rule, where ϕ ∈ L . Note that while behaviour

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 21

conditions allow temporal expressions over future expectation states to be taken into

consideration, actions only affect the current beliefs of the agent, i.e. any impact

of ESB reasoning on the agent’s overall state is instantaneous. Also, we are not

concerned with providing a semantics for these belief revision operations at the non-

ESB level, but simply assume that any sufficiently expressive reasoning framework

will have basic facilities for adding and removing beliefs whose semantics will be

well-defined (however, in a L ORA context, what we specify does satisfy the

normal constraints on agent beliefs postulated by the logic).

With this, we can define the behaviours of an ESB reasoner as a set

BEH⊆
{
(φ ,a)|φ ∈LCTL,a ∈ {add belief (ψ),del belief (χ)},ψ,χ ∈L

}
of such condition-action pairs (φ ,a), and write φ B a when referring to such rules

to distinguish them from other types of rules.

The semantics of such behaviours, given an expectation set EXP and a strategy

STR is defined as follows, given a set of active expectations EXPA. If G = (V ,E)

is the expectation graph obtained from the set of all expectations EXP available in

principle, we define a slightly modified semantics for CTL entailment with respect

to E X P =℘(EXP) as state set and E as described by the expectation graph as

transition function (i.e. for all E,E ′ ∈℘(EXP) we write E → E ′ iff (E,E ′) ∈ E).

Defining M = (E X P,→) as a model in the CTL sense, the modification that has

to be performed is with regard to any rule that involves path operators or temporal

operators, e.g.

M ,E |= A�φ iff (∀E→ E1→ ·· · → En ∈ STR ∀i)M ,Ei |= φ

where the “∈ STR” restricts the set of paths to those specified by the strategy and

22 COMPUTATIONAL INTELLIGENCE

is the only difference between this entailment rule and the standard corresponding

CTL rule. For the base case, we define:

M ,Ei |= φ iff φ = Φ(e) for some e ∈ Ei,φ ∈L

i.e. a formula φ ∈L is entailed in a particular expectation state Ei if it is equivalent

to one of the expected beliefs of that set. Adapting the other semantic rules for modal

operators is done by performing the same modification to each of the standard CTL

semantic rules that involves a statement about paths on the right-hand side.

Finally, we say that a behaviour φ B a is satisfied, if its precondition is entailed

by the current expectation state in the model M , i.e. iff

M ,EXPC |= φ

where, as before, EXPC are those elements e ∈ EXPA whose condition C(e) is sat-

isfied. Note that this implies a difference between how the current expectation state

is treated, as opposed to future potential expectation states: Since the applicability

of conditions C(e′) for future states cannot be anticipated in the present state (they

don’t depend on expectation updates defined in EXP but on ESB-external events),

the validity of expectations in a (potentially temporal) formula φ must be interpreted

as “contingent” on the conditions. For example, if M ,{e,e′} |= E©Φ(e′′) holds,

this would mean that, given that {e,e′} are the current expectations whose conditions

C(e) and C(e′) are satisfied, then there exists at least one immediate successor (ex-

pectation) state, in which e′′ would be active. Whether or not e′′ would then become

a current expectation, however, would depend on the value of C(e′′) at the time.

As stated above, the connection to the non-ESB part of the reasoner is made

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 23

through fairly high-level constraints on the beliefs of the agent: Let

BEHC = {(φ1,a1), . . . ,(φn,an)}

be the current behaviours, i.e. all behaviours satisfied in the above sense, then the

belief base of the agent (at the non-ESB level) will satisfy

(Bel A ψ1∧·· ·∧ψn)

and

¬(Bel A χ1∨·· ·∨χn)

where ai = (add belief (ψi),del belief (χi)).

4.4. Putting it all together

With these definitions, we can define an ESB reasoner as a tuple

R = 〈EXP,STR,BEH,B,E0〉

where given some set of current beliefs B⊆L (which we assume to be deductively

closed) and a set of initial expectations E0⊆EXP we can view the operations defined

above as the specification of a belief revision function

(B,EXPA)
R−→ (B′,EXP′A)

that is based on conducting the following steps to determine the current expectation

given beliefs B and active expectations EXPA:

(1) Calculate the set of current expectations based on existing beliefs:

EXPC ={e ∈ EXPA | B |=L C(e)}

(2) Determine which behaviours are satisfied given current expectations:

BEHC ={(φ ,a) |M ,EXPC |=STR φ}

24 COMPUTATIONAL INTELLIGENCE

(3) Compute new beliefs based on current beliefs and satisfied behaviours:

B′ = {ϕ | (φ ,a) ∈ BEHC,a = (add belief (ψ),del belief (χ)),

B\{χ}∪{ψ} |=L ϕ}

(4) Update set of active expectations:

EXP′A = update(EXPA,E+,E−) where

E+ = {e ∈ EXPA|B′ |=L T(e)} and

E− = {e ∈ EXPA|B′ 6|=L T(e)}

For clarity, in this description we use subscripts |=L and |=STR to distinguish be-

tween propositional entailment in the language of ordinary beliefs L and CTL

entailment subject to the model restriction induced by STR, respectively. Steps (1)

and (2) result from checking expectation conditions and behaviour conditions. In

step 3., we re-build the (L−)deductive closure of the (non-ESB) belief base B based

on executing belief additions/deletions caused by those behaviours that fire. Finally,

in step 4., we use the update function as defined when we introduced the semantics

of expectations and calculate the sets of active expectations E+/E− whose tests have

succeeded/failed according to the contents of B.

At this level of specification, the above gives an abstract account of the overall

ESB reasoning cycle, which leaves a few details underspecified. Firstly, it is clear

that in any real implementation of ESB, the procedure for updating beliefs will not

be implemented as described in step 3. In most knowledge-based agent architectures,

deductive inferences are made on demand, and no explicit update of a deductively

closed set of formulae is ever performed. Any concrete implementation of ESB (such

as our ESB-RS system presented in the following section) will have to provide spe-

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 25

cific implementation-level methods for dealing with these issues. Also, the definition

does not deal with the problem of potentially creating a conflicting knowledge base

which is a problem inherent to any design of any belief revision mechanism and ESB

does not claim to preempt.

Secondly, this model of ESB reasoning lacks a notion of time, in particular with

regard to the ways in which test outcomes are determined in practice. If we followed

step 4. exactly as described, an arbitrary number of consecutive ESB updates could

be performed without waiting for any opportunity for real belief updates from the

non-ESB part of the agent. In practice, implementations should perform a single such

step, and then hand control over to non-ESB reasoning components of the agent until

one or more new test outcomes become available, and thereby effectively suspend

the verification of B |=L T (e) statements for some period of time between each ESB

update. In the next section, we present a concrete implementation of a system that

realises exactly this functionality, the ESB reasoning system ESB-RS.

5. AN ESB REASONING ENGINE

Previously, we have claimed that the main benefit of ESB lies in its ability to

capture social reasoning mechanisms in such a way that they can be directly used by

agents for reasoning at run-time. To show how expectations, strategies and behaviour

rules can be used directly as executable specifications in a concrete agent design, we

now present the ESB Reasoning System ESB-RS.

ESB-RS is a fully implemented prototypical ESB interpreter based on algorithms

for model generation (to construct expectation graphs) and the NuSMV (Cimatti

26 COMPUTATIONAL INTELLIGENCE

et al., 1999) model checking system (to check the preconditions of behaviours). As

ESB is not a standalone agent architecture, ESB-RS is designed for integration with

a specific BDI reasoning engine, in our case Jason (Bordini et al., 2007). Figure 1

illustrates the overall setup of an integrated ESB-RS+Jason agent, highlighting the

interactions between the ESB and BDI components of the system. These occur via

the BDI-level belief revision function (BRF), since expectations are updated based

on the agent’s perceptions and beliefs, and, conversely, the control of BDI-level

behaviour through ESB is exerted through beliefs which act as guards on plans to

carry out actions.

[Figure 1 about here.]

At a high level, ESB-RS execution can be described as follows:

Initialisation The expectation graph is generated from the expectation and strategy

specifications. This is only done once, as after this initial step the agent can simply

track the current expectation state in the graph during execution.

Reasoning cycle In each reasoning step, the beliefs from the BDI component, the

expectation graph and the strategy specification are used to create the reduced

strategy graph (i.e. the sub-graph accessible from the current state). The strategy

graph is then used by the behaviour condition checker to select the applicable

behaviour actions, which are used to update the agent’s BDI-level beliefs accord-

ingly.

In the following sections we describe ESB-RS at a more implementation-specific

level, detailing how the general principles of the formal model translate into a con-

crete computational design.

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 27

5.1. Model generation

We have already described above how an expectation graph is built and how

it can be restricted based on a strategy specification. To be able to make use of

modern model checking technology, we need to map these operations to a concrete

“model generation” procedure. This procedure builds a finite-state machine (FSM)

representation of the expectation graph, which will then be used as a model (in the

model-checking sense) to verify behaviour’s preconditions. Importantly, we want to

construct the FSM model in the simplest possible way so as to obtain an executable

process model that satisfies the constraints set out by the ESB specification on which

it is based. With this regard, since ESB operates at the meta-reasoning level, it is suf-

ficient to encode the different “fields” (condition, test, responses) of an expectation

as variables controlled by state transitions in the FSM. More specifically, for every

expectation:

e.Condition ∈ {True,False,DC} : If e 6∈ EXPA, the value of its condition is DC

(“don’t care”). Else, e ∈ EXPC iff e.Condition= True.

e.Phi ∈ {True,False} : If e.Condition 6=DCwe have e.Phi= e.Condition,

else e.Phi= False (Φ(e) is not believed for non-active expectations).

e.Test ∈ {Tp,Tn,NA} – The outcome of a test is either positive (Tp) or negative

(Tn) or “not applicable” (NA). It is not-applicable whenever e.Condition= DC.

e.Tp.add, e.Tp.del and e.Tn.add, e.Tn.del: The add- and delete-sets for each

response of expectations are used to define the transition relation of the FSM, and

contain names of other expectation objects.

28 COMPUTATIONAL INTELLIGENCE

The full model generation algorithm, originally described in (Wallace and Rovat-

sos, 2011), basically consists of pairwise checking of all expectations to determine

whether they are connected in the expectation graph G and in principle yields an

FSM structure that is isomorphic to G. However, the use of the model-checking

level of modelling here brings major advantages: Firstly, we don’t have to con-

sider all subsets of expectations and explicitly construct the powerset of EXP. It

is sufficient to capture the dynamics of how the state of an expectation could be

altered by any other expectation (e.g. “if e ∈ e′.Tn.del and e′.Test = Tn then

e.Condition = DC”) and how different elements of an expectation affect each

other (e.g. “if e.Condition 6= DC then e.Test ∈ {Tp,Tn}”). These impose con-

straints on possible system states (like e.Test ∈ {Tp,Tn}) which will automati-

cally be converted into multiple possible states whenever necessary by the model

checker. Secondly, given an initial state, the model checking system will automati-

cally only generate accessible portions of the expectation graph, so that the designer

does not have to care about mutually exclusive combinations of test outcomes or

contradictory responses of different expectations in the current expectation state.

5.2. ESB specifications in ESB-RS

To alleviate some of the practical issues surrounding writing purely propositional

expectation rules (such as potentially large sets of rules) ESB-RS provides some

additional syntactic sugar. By supporting variables in the various terms it allows

for writing more general expectations “templates”, covering a wide set of more

specific circumstances as instances of these templates. While not a full first-order

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 29

extension, this still proves effective in greatly speeding up the task of writing sets of

expectations.

For implementation, supporting this is simple: it is done by grounding all pos-

sible variables when the condition C is checked and applying the resulting matches

to the same variables when Φ is added to the belief base, or the tests carried out.

As variables effectively represent shorthand for sets of expectations, there may be

multiple instantiations. If there is more than one valid variable binding for C, then Φ

is added to the belief base once for each binding. The tests are also considered for

each binding, exactly as if there were instead a set of ground expectations.

As an example, consider an agent that has an active expectation

(Exp N A trust(X) tradeWith(X) T ρ
+

ρ
−)

with beliefs (Bel A trust(alice)),(Bel A trust(bob)), the rule above means the expec-

tations include:

(Exp N A trust(alice) tradeWith(alice) T ρ
+

ρ
−)

(Exp N A trust(bob) tradeWith(bob) T ρ
+

ρ
−)

There is one instance of the expectation for each value of X .

5.3. Strategies

Strategies are implemented as a set of constraints on the transition relation, which

can be conditioned on either the edges (the tests that trigger transitions) or the states

(the expectations that define these). Each constraint is a Boolean next-expression

in NuSMV syntax which must be satisfied in all states in the strategy graph, so

that the expectation graph is reduced to those states satisfying these constraints. For

30 COMPUTATIONAL INTELLIGENCE

constraints, we use the following syntax:

Constraint ::= expr→ next(expr) | next(expr)

expr ::= c = a | c ! = a | expr|expr | expr & expr | !expr

c ::= name | condition | phi | test | Tp.add | Tp.del | Tn.add | Tn.del

a ::= expectation | True | False | DC | Tp | Tn | NA

where

next(expr) refers to the value of expr in the next state.

expectation refers to the name given to an expectation tuple.

This means the transitions from a given state are constrained to those where the

next state meets all the strategy constraints (which may not just be constraints on

the current state, but also on the relation between the current and next state). The

atoms in the constraints are the conditions and tests of each expectation. These allow

restrictions on the states and transitions respectively, and can be combined using the

standard propositional logical operators.

For implementation, the specification of the FSM used for model checking be-

haviour conditions is split into a global main module and one sub-module per ex-

pectation. The main module controls the update for each sub-module and handles

carrying out the tests and thus effectively controls the changing sets of active expec-

tations. For example, a main-module constraint could be written as

next(Test != Tn)

to remove negative response transitions from the strategy graph, by requiring that

the Test of no successor state can return a negative test result. Note that for ease of

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 31

implementation it is possible to specify that all tests must follow a certain form, or

to refer to specific expectations.

An example expectation sub-module constraint to ignore a particular expectation

(i.e. force the state to “don’t care”) could look as follows:

(name = Exp3) -> next(ExpC = DC)

This example states that if the name of an expectation is Exp3 then in successor

states the condition must be “don’t care” – the expectation is not active. This is

only one possible way the transition relation in the state transition model the model

checker uses could be specified by the strategies and was chosen for ease of imple-

mentation and to be minimally constraining.

The difference between main-module-level and sub-module specifications con-

straints used to specify a strategy is that the former concern test results (and thus

responses), whereas the latter modify the state of the condition of an expectation.

5.4. Behaviours

The language of behaviour conditions imposes limits on the power of an ESB

agent. The more complex the conditions that can be checked, the more complex the

forms of reasoning that can be captured. With this in mind, we aim to provide the

most general language for conditions within the constraints of the model checking

infrastructure used, to ensure fast, tractable reasoning while achieving maximum

expressiveness. Recalling that a behaviour is specified in terms of a condition and an

action, in ESB-RS, the action is simply a set of beliefs to add (or remove if present)

to the agent’s belief base. This can then be used however the designer sees fit by

practical reasoner plans. For example, it could act as the guard on a plan to request

32 COMPUTATIONAL INTELLIGENCE

a joint action (this is exactly the case in one of the case studies presented in the next

section).

For implementation purposes the conditions are split into two parts: The CTL

component, which is a NuSMV syntax CTL condition to check, and a Jason condi-

tion, which is a Jason-syntax expression evaluated on the agent’s belief base. This

allows for behaviours to account for future reasoning (through the CTL condition)

and the current state of the agent’s belief base. So in the abstract case, for implemen-

tation a behaviour is split up as:

belief formula ∧ CTL formula B belief

This addition of a condition on the belief base to the condition on the expecta-

tions previously described serves principally to ease implementation and efficiency:

Instead of adding an action belief and then checking it in the practical reasoner,

the condition can include this check within it so that this (cheap) check can be

done before a (more expensive) model checking operation is performed. This does

not modify the general ESB functionality, but allows for more efficient runtime

behaviour.

6. CASE STUDIES

To evaluate the practical usefulness of the ESB framework, we have conducted

several case studies which deliberately focus on very different types of social rea-

soning: joint intentions in communication, reasoning about norms, and opponent

modelling. On the one hand, these methods are representative of classic coordination

mechanisms in multiagent systems research. On the other hand, they emphasise

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 33

different aspects, such as hard-coded, simple and relatively static social conven-

tions (joint intentions), belief revision and choice over possible social behaviours

(norm-autonomous agents), and reasoning about others’ mental states in strategic or

adversarial domains (opponent modelling). Also, indirectly, our abstract trust and

reputation example above illustrates the application of ESB to a fourth category of

social reasoning, namely methods based on long-term observation of behaviour and

testimonies received from third parties (though this has not been taken to the level of

full implementation). This evaluation suggests coverage of a broad range of social

reasoning methods in which the ESB framework can be successfully applied. In the

following sections, we look at each of these case studies individually.

6.1. Joint intentions in communication

Joint Intentions (JI) (Cohen and Levesque, 1991) are one of the oldest coordi-

nation frameworks in multiagent systems research, and are based on extending the

notion of “intention” (as choice with commitment) to teams of collaborating agents.

Roughly speaking, the foundation of JI is the notion of a joint persistent goal (JPG)

– a joint mental state which requires that every agent is trying to achieve a joint goal,

and commits to notifying every other agent in the team when the goal either becomes

unachievable or has been achieved.

To re-implement JI-based reasoning and communication using ESB, we use the

description of the Request Conversation Protocol (RCP) for establishing a JPG by

Kumar et al Kumar et al. (2002), as shown in Figure 2 (with edges as communication

acts and nodes capturing the “social state”). Once agent X requests an action of Y , X

holds a so-called persistent weak achievement goal (PWAG) toward Y . The statement

34 COMPUTATIONAL INTELLIGENCE

pwag(X ,Y,A,Q) denotes that agent X has a persistent goal to achieve A, if “relevance

condition” Q holds, and will have a persistent goal to notify Y that A is achieved, or

becomes impossible or irrelevant (i.e. ¬Q holds). If Y agrees, Y now also holds a

PWAG toward X to achieve the goal, which creates a JI (a JPG all participants are

aware of). X has a goal for Y to do some action, and Y has a goal to do this action

relative to X’s goal (we omit the case where X cancels the request).

[Figure 2 about here.]

[Table 1 about here.]

Translating this to ESB, four expectations are needed to form and act on JIs in

the RCP from an agent’s point of view as shown in Table 1:

ExpJI If X holds a PWAG and Y holds a similar PWAG relative to it, the JI regarding

A is established. If A becomes true, or Q ceases to be present, or failure occurs

(indicated by a “fail” fact here), an ExpNotify expectation is raised which will

trigger notification of the other agent.

ExpReq If Y receives request(X ,Y,A,Q) from X , Y expects that X holds

pwag(X ,Y,A,Q).

ExpAgree If X receives agree(Y,X ,A,Q) from Y , X will also expect that Y expects

pwag(Y,X ,A, [Q∧ pwag(X ,Y,A,Q)]), given that this is a response to a previous

request message (for clarity, ExpReq captures an agent receiving a request).

This relevancy condition for Y ’s PWAG also includes that X still has the commit-

ment toward the goal, since it makes no sense for an agent to perform a requested

action if the requester is no longer committed to it.

ExpNotify Given that a JI exists this expectation will cause a belief must-Notify(X ,Y)

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 35

to become true, which is supposed to block all plans at the BDI level except those

that cause a notification message to be sent to Y (this can be done by placing

guards on the respective plans).

This is an example of a very simple type of social reasoning, effectively based on

a conjunction of separate pwag(. . .) facts depending on the sequence of messages

exchanged. As can be seen from the expectations, hardly any tests and responses

are required, as the only dynamic belief concerns determining when notification of

the other agent is necessary. In fact, this ESB implementation of JI is particularly

“condition-heavy” in the sense that it makes very little use of tests (only T (ExpJI) is

non-trivial), and expected beliefs are simply switched “on” and “off” depending on

context conditions that capture most of the semantics here. Alternatively, one could

have opted for a “response-heavy” design where each expectation corresponds to a

state in the RCP diagram, and ExpJI expectations are explicitly added and removed

from EXPA depending on the situation. The choice of design here depends on what

part of the dynamics the user wants to make explicit for behaviour checking (as the

expectation graph is determined by tests and operations on EXPA). In our formali-

sation above, for example, one would not be able to make decisions contingent on

future communicative behaviour of X or Y , as the messages are not used as tests.

The reasoning agent could only anticipate different outcomes for A ∨ ¬Q ∨ fail.

Note that the ESB version of JI reconstructs the agent’s reasoning that follows

logically from the “mentalistic” semantics of the communication acts – whether

or not these are correct in the actual system depends on whether agents’ internal

reasoning mechanism implements them correctly.

36 COMPUTATIONAL INTELLIGENCE

As regards strategies, in this simple set of expectations, there is no real need to

choose a constrained strategy, as the number of transitions in the expectation graph

is very small. We shall see cases in which strategies become more useful in more

complex examples below.

In terms of behaviours (condition B action pairs), only two behaviours are re-

quired for an agent to act upon joint intentions, that is:

ji(self ,Y,A,Q) B add belief (haveJI(Y,A,Q))

mustNotify(self ,Y,A,Q) Badd belief (triggerNotify(Y,A,Q))

i.e. the agent simply adds a corresponding belief at the BDI level, where the dif-

ferent names for beliefs (haveJI, triggerNotify) are only chosen to illustrate that at

the BDI level beliefs might be taken from a different language of primitives and

that behaviours act as an explicit interface between ESB and the general practical

reasoning level. What these belief revision operations effectively achieve would be

that a guard like haveJI(. . .) on all plans for joint action would ensure that no such

action is initiated without a joint intention having been previously formed. Similarly,

triggerNotify(. . .) would trigger an intention to notify the other agent of the required

fact. While this may seem a very obvious and simple case of social reasoning, it

shows how ESB can be used to make the reasoning pattern explicit and generate

actual social behaviour from a declarative specification of the mechanism in concrete

implementations.

Moreover, although the above is all that is strictly necessary to express joint

intentions, ESB provides an easy route to simply and generically query the social

reasoning mechanism. An example of this is determining when to request a joint

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 37

action, and when to agree to one. We could postulate that we should request this if it

is possible in the future to hold a JI toward A, and it is desired:

(desire A)∧E♦(ji(self ,Y,A))Badd belief (requestJI(A))

The condition is similar for agreeing to a request, the only difference being the

requirement that a request has been received:

(desire A)∧request(self ,Y,A,Q)∧ E♦(ji(self ,Y,A)Badd belief (agreeJI(A))

While these behaviours might not seem to add much in our concrete set of expecta-

tions, they would help avoid engaging in RCPs if, for example, additional knowledge

was available about agents who will never agree to a request.

6.2. Norm-autonomous agents

The second case study we use to illustrate the broad applicability of our frame-

work is taken from the area of normative systems, which is usually concerned with

formulating and reasoning about system-level rules for agent behaviour to achieve

certain social objectives. Within this space, we deliberately choose the Normative

Agent architecture (NoA) (Kollingbaum, 2005) as an example of a framework which

relies less on strict regimentation of agent behaviour and allows agents to make deci-

sions about which norms to adhere to autonomously. This allows us to move from a

purely “socio-centric” social reasoning mechanism like Joint Intentions toward more

“agent-centric” frameworks, and thus to illustrate that ESB is also useful to capture

this kind of social reasoning.

NoA provides the usual concepts of obligations, permissions and prohibitions,

and uses these within the general practical reasoning cycle of the agent, operating on

38 COMPUTATIONAL INTELLIGENCE

explicitly represented plans and goals. Thereby, it enables the agent to deliberate

over conflicting prohibitions and permissions, and to detect inconsistencies with

obligations. The architecture assumes that plans explicitly state their effects (so that

obligations can trigger plan selection, as obligations refer to states of affairs that

should be achieved), and it also makes use of explicit plan and goal representations

to be able to apply prohibitions selectively (e.g. when only certain instances of an

abstract plan need to be prohibited, NoA is able to derive appropriate constraints that

still permit application of the same plan for other instantiations).

Without going into too much detail on the general NoA architecture, we illustrate

its translation to ESB here using the blocks world example presented by Kolling-

baum (Kollingbaum, 2005, p. 69). The example features two norms for a block

moving robot:

obligation (

robot,

achieve clear(X),

not clear(X),

clear(X)

)

prohibition (

robot,

achieve on(X,"c"),

TRUE,

FALSE

)

The first of these states that robot is obliged to achieve the state clear(X) (this is

called the “action specification” in NoA). It becomes active if not clear(X), and

ceases to be relevant (“expires”) if clear(X). The second norm prohibits robot

from achieving on(X,"c") for a specific block c. This norm is always active and

never expires.

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 39

In ESB, each norm corresponds to two expectations: a “norm expectation” to

handle the deontic content of the norm by asserting appropriate beliefs concerning

the action specification of the norm, and the “complement” which is needed to store

knowledge of the norm while it is not active so that it can be re-activated (this is not

needed for norms that never expire, like the prohibition above).

The expectations for the two norms above are shown in Table 2.

[Table 2 about here.]

As regards the obligation, achieve(X) is the belief added when the OblClear(C) norm

is adopted, and clear(X) controls addition/removal of OblClear(X) and its com-

plement OblClearCompl(X). The prohibition, on the other hand, can be expressed

pretty trivially as it simply establishes a permanent social belief ¬allowed(on(X ,c)).

Note that the ESB style adopted for implementing this example is more “response-

heavy” than in our Joint Intentions example. In fact, OblClear(X) has no expectation

condition at all, and the only conditions we use are ¬relaxOC and ¬relaxPO to

represent domain-dependent situations in which the obligation/prohibition would be

relaxed (dropped) – they are simply placeholders in our example.

To translate these beliefs to BDI-level behaviour, we need a mapping from the

different types of action specifications provided by NoA into ESB, as shown in

Table 3. Apart from obligations, the norms translate to actual BDI plan selection

policies by means of a predicate allowed(. . .) which can be used as a guard on plan

selection rules (note that this predicate does not have a built-in semantics for ESB,

it is introduced as a special belief at the BDI level). For obligations, things are more

40 COMPUTATIONAL INTELLIGENCE

complicated, as plan selection policies need to be modified – this is discussed in

more detail in the next section.

[Table 3 about here.]

6.2.1. Controlling permissions, prohibitions, and obligations. NoA uses explicit

representations of the effects of plans. Given that deliberation normally heavily

relies on plan selection, this is necessary as obligations, permissions and prohibitions

might refer to states of affairs (rather than to actions/plans directly), and an agent

needs to know what the effects of a plan would be before selecting it in order to be

able to check how that plan relates to existing norms. In the Blocks World domain,

an unstack plan, for example, could be described as follows:

plan unstack(X,Y)

precondition(on(X,Y)),

effects(ontable(X), not on(X,Y),clear(Y))

(

achieve clear(X);

primitive doMove(X,Table);

)

This plan should only be selected if it is motivated by an obligation and the effects

are permitted by the norms according to some deliberation strategy. In ESB-RS, this

requires modification of plans at the BDI (in our case, Jason) level, to make the

effects explicit, so that the plan would look like this:

+!unstack(X,Y): block(X) & block(Y) & on(X,Y)

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 41

& effects(unstack(X,Y))

<- !achieve(clear(X));

!move(X,table).

where:

effects(unstack(X,Y)):- effect(unstack(X,Y)) & effect(ontable(X))

& effect(clear(Y)) & effect(notA(on(X,Y))).

is the statement that makes the effects of the plan explicit, and ensures that the

plan itself, its actions, sub-goals, and post-conditions are admissible, based on the

following predicate:

effect(X) :- not ¬allowed(X)

| (¬allowed(X) & allowed(Y) & moreSpecific(Y,X))

| (¬allowed(X) & allowed(Z) & sameScope(Z,X)

& moreRecent(Z,X))

| (¬allowed(X) & allowed(W) & intersection(W,X)

& moreRecent(W,X)).

This (plan-independent, general) rule also enables the agent to deal with contra-

dictory allowed propositions regarding the same action/fact at different levels of

abstraction: it will make effect(X) true either if X is not explicitly disallowed

itself, or if (i) a more specific instance, (ii) a more recent and equally specific, or (iii)

a more recent, semantically overlapping instance of X is allowed, while X itself is

disallowed. For states of affairs, an explicit notA predicate is used. This is required

for implementation. The reason for this is that it is not required to check if P is in

the belief base (i.e. ¬P is true), but rather the predicate is used when matching effect

42 COMPUTATIONAL INTELLIGENCE

specifications of plans. notA in a plan effect specification indicates explicitly that

not P is achieved as an effect.

The functions above to check the scope (moreSpecific, sameScope, in-

tersection) work by comparing the variables that are unified for the effects’

parameters. These are implemented as simple support plans in Jason that recurse over

the parameters of the effects statements being compared to determine the difference

in the sets of ground variables. For example, a more specific set of effects would

have more ground variables than a less specific one.

As before with the relaxOC and relaxPO facts, this just captures one possible

method of conflict resolution, and is only shown as an illustration of how the ESB-

RS implementation of NoA norms can be used by the BDI-level practical reasoner

to implement norm-autonomous behaviour (effectively specifying how the agent

chooses to interpret the norms at a local reasoning level).

To trigger plan selection, as a result of norms requiring the achievement of a goal

or the selection of a plan, two small extensions to the BDI reasoner are required.

Firstly, to select a particular plan it is simply adopted as an intention (and the above

mechanism ensures that plan is allowed). Secondly, if particular effects are required,

an internal action is triggered to select a plan based on the above effect information.

This process is described in more detail in Wallace (2010).

The fact that these interventions at the BDI reasoning level are required in ESB

mirrors the use of a “bespoke” BDI reasoner in the original NoA architecture, that

can reason explicitly about plan effects. While not strictly part of ESB, we include it

here to show that aspects of practical reasoning that are clearly non-social (such as

plan selection, in this case) cannot be dealt with by ESB in a straightforward way, at

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 43

least not in combination with an off-the-shelf practical reasoning system like Jason

– wherever a social reasoning method affects general practical reasoning, system

implementation will have to cross the boundary between the two.

6.2.2. Translation from NoA to ESB. To summarise, we briefly recap the steps to

translate a NoA specification into ESB, given the additional generic ESB machinery

described above.

In a first step, plans are translated into plans in the Jason BDI component of ESB-

RS. Preconditions become guards, and the effects are specified as separate “effects”

predicates, as per the previous section. The actions in the NoA plan form the body

of the Jason plan.

Then, for each norm, the activation condition becomes the test of the complement

expectation (the condition is that the norm is not relaxed, and Φ is set to true). The

response to the test of this expectation is to add the norm-expectation. This has a

true condition, and the Φ term is as set out in Table 3 depending on the type of

norm. The deactivation condition of the norm becomes the test of this expectation,

and the responses swap the expectation for its complement.

The process of this translation from a NoA specification into ESB-RS is sum-

marised in Figure 3. Note that this translation algorithm presents a naive, generic

method of translation. As shown in the example above certain optimisations can be

performed where pairs of expectations can be contracted.

[Figure 3 about here.]

44 COMPUTATIONAL INTELLIGENCE

6.2.3. Discussion. The sets of expectation structures and support plans described

above provide a general way to transform the key features of NoA specifications into

an ESB representation.

Although the method of implementation is different, the case study has shown

that the key properties of a complex social reasoning system can be preserved when

it is specified in ESB. The examples given here only come from a trivial Blocks

World scenario presented by Kollingbaum (Kollingbaum, 2005), but a more com-

plex “three-party Letter of Credit” protocol described in the same work was also

implemented. We were able to see that the ESB-NoA implementation behaved the

same in terms of norm activation and plans chosen (Wallace, 2010).

Considering the “practical vs. social reasoning divide” in the NoA implementa-

tion, more work is required on the practical reasoner side than would be desirable.

This is in part due to the inability to reason over expectation content. Assuming

that norms are captured with expectations and that the conflict resolution function

must act on these expectations, conflict detection at least must happen at the BDI

level as it cannot occur in strategies or behaviours. It is also not surprising that work

was required on the practical reasoning side as the NoA scheme is fairly close to

practical reasoning in its implementation – it represents a BDI extension to handle

social influences.

Not considered in the ESB-RS NoA implementation is the notion of adding new

norms previously unknown to the system. This would require an extension to the

current ESB implementation to allow for adoption of new expectations, but it is easy

to sketch how this might be done: When new expectations are added it would be

necessary to re-generate the FSM specification for the model checker and to run

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 45

behaviour-condition style checks on the new expectations to ensure they caused no

problems.

A benefit brought to NoA from ESB-RS is that it situates NoA style normative

reasoning in an existing agent infrastructure (that of Jason). The NoA architecture

presented in (Kollingbaum, 2005) does not situate the reasoner in an agent infras-

tructure. Combined with the modularity shown in the ESB case studies this presents

a strong case for the argument that a framework for general purpose social reasoning

can ease implementation of such systems.

6.3. Opponent modelling in games

As an example of simple opponent modelling using ESB, we present a portion

of the reasoning rules for a Rummy (Rummy.com, 2008) playing agent (previously

introduced in (Wallace and Rovatsos, 2009)). Card games, particularly Rummy, can

provide a nice simple example domain as the strategies that the opponents might

use are known (for simple games) but depend on the cards they hold – which are

unknown. For the purposes of this example it is only important to understand that

players are trying to collect either runs of cards in a suit, e.g. {2♣,3♣,4♣}, or sets,

e.g. {2♣,2♦,2♥} (given a card X , other cards that could be part of a set/run with

that card are referred to as a “member of X’s sets/runs”).

The example involves only two players, where the ESB agent A reasons about its

opponent B picking up a 2♦. The example considers only relatively naive reasoning

on A’s part: that B will either be collecting a run of diamonds around 2, or a set

of 2s (A assumes B won’t hedge her bets by collecting cards for both a run and a

set). The expectations to enable this kind of reasoning are shown in Table 4. Note

46 COMPUTATIONAL INTELLIGENCE

that the use of variables in ESB-RS specifications in Section 5.2 allows us to write

these rules at a more general level (e.g. for any card value rather than just for 2s in a

single set of expectations). For ease of readability, we have simplified the description

of expectations in places. For example, we say “member of a run” instead of a

disjunction of all the cards in that run. We keep the example specific to 2s here

to be able to show a relatively concise expectation graph below.

[Table 4 about here.]

Figure 4 shows the accessible expectation graph generated from the expectations

in Table 4 and initial state S2. Vertices are labelled with the expected belief Φ of

each expectation tuple, as this makes consideration of the relevant behaviours easier.

The initial state S2 is highlighted using double lines. Edges represent transitions

specified by the responses. A loop from a state indicates that the ρ+, ρ− responses

of some expectations do not cause a change in state. It is worth noting that this

example is different from the previous ones in that a lot more reasoning is encoded

in the responses, creating a richer graph.

[Figure 4 about here.]

A simple strategy that can be applied here is to consider the expectation graph

to a depth of one from the current state and to ignore loopbacks (shown by the bold

states in Figure 4, the strategy is applied assuming a current state of S5). This could

be appropriate, because responses are triggered by observations (which update the

status of tests) and these must come from observing cards played or picked up. Near

the end of the game, trying to predict actions too far ahead is meaningless. In terms

of implementation, this strategy would require slightly more control over strategy

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 47

than that presented in this paper. Although it is possible to express a condition that

must hold in the next state in CTL (so check a depth of one) only adopting this

strategy at the end of the game implies an ability to change strategy according to

some beliefs of the agent (which would be influenced by expectations, if required). It

is easy to see how the single strategy approach could be extended to a set of strategies

preconditioned on agent beliefs, but this is not a functionality of the current ESB-

RS implementation. The strategy example still serves to illustrate the principle here,

however.

The richer nature of the graph hints at the benefits of being to be able to use more

complex CTL formulae to encode more sophisticated strategies. To give a game-

theory inspired example, consider an agent wishing to adopt a minimax strategy

for reasoning. Such a strategy would assume that the opponent will pick the worst

scoring option for the agent in each move, and so for its own move the agent will

attempt to maximise this minimum. To apply this concept to our running example,

we can model “moves”, which are the observed results of expectationT tests. The

ESB agent’s moves are not represented in the expectation graph for simplicity, but its

behaviour should maximise utility given worst-case play by the opponent. We restrict

the expectation graph by applying this principle before evaluating the preconditions

of behaviours. This requires making assumptions about the evaluation function the

opponent uses, which (to keep things simple) might look something like this:

• A pickup scores −1, as the opponent has gained a useful card.

• A discard scores +1 as the opponent has lost a card.

• Ignoring a card scores 0 as it tells us nothing.

48 COMPUTATIONAL INTELLIGENCE

Based on this, the strategy is to build a tree of the graph to a certain maximum

depth, and then restrict it to only those paths which score lowest (adding the scores

down each path to gain a total at the leaves). The agent would then only consider

behaviours whose conditions apply in this minimax-restricted view of future possible

strategies.

Again, this is a hypothetical example to illustrate the potential of using ad-

vanced strategies in ESB, the ESB-RS implementation would need some extension

to support it. The model used to check behaviour conditions would need some small

changes to support restriction to a certain depth, namely adding a counter defined

to be incremented on subsequent states from the initial state. Similarly, it would

need a domain-specific extension to score certain expectations according to their

properties (as above) and use these scores to constrain the model as per the depth.

This is a limitation of ESB as currently envisaged, and, once more, is caused by

the limitation that reasoning over expectations is limited to the meta level and not

based on inference over expectation content. Ideally in this case we would score for

minimax based on the properties of an expectation, without requiring the domain-

specific knowledge of each expectation’s score.

7. RELATED WORK

While the multiagent literature abounds in proposals for specific social reason-

ing mechanisms and frameworks, there are relatively few attempts to model social

reasoning as a general reasoning process allowing for enough generality to cover

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 49

different approaches, and to support this model by a practical computational archi-

tecture.

Along these lines, the work that is probably most closely related to ESB is the

expectation-based framework introduced by Cranefield in (Cranefield, 2006, 2007)

and later refined in (Cranefield et al., 2011). Like ESB, the authors use the con-

cept of expectations to track dynamically changing beliefs about the environment.

They introduce a hybrid Metric Interval Temporal Logic hyMITL± to capture social

expectations such as norms and commitments in electronic institutions. The original

aim of this work was to build a monitoring tool using hyMITL± that could be used as

a compliance monitor based on the evolution of the system and observation of agent

behaviour. More recently, their concept of expectations as first-class constructs has

been further developed Cranefield et al. (2011), extending the formalism to capture

nesting of expectations and describing an approach to model-check the resulting

language.

As in ESB, no first-order concepts of specific social reasoning constructs like

commitments or norms are built into the logic. Instead, the logic is argued to be

capable of capturing the relevant properties that occur in many social reasoning

frameworks. Due to its focus on detecting violations of expectations, monitoring is

works by checking conditions that must be met at certain times, hence the focus on

time in the logic, which is not a focus in our formalism. The structure of expectations

in the hiMITL±-based approach is also similar to ESB. An expectation is held under

some condition and then monitored until it is fulfilled or violated according to some

other specification. In contrast to ESB, the social expectations in that work do not say

50 COMPUTATIONAL INTELLIGENCE

anything about how expectations influence decision making and how the interaction

of an agent’s social and practical reasoning should be managed.

This work is extended to an implementation also utilising the Jason BDI engine

in Ranathunga et al. (2011). Superficially, this seems similar to work on ESB-RS.

Although the terminology is similar to that used here and in previous ESB papers,

the intent and construction of the system is different. Again the authors’ goal is

the monitoring of agent’s expectations with respect to norms. This is in contrast to

the ESB attempt to provide a generic framework to capture and implement social

reasoning schemes. Their approach to implementation also differs. They extend

Jason via the agent environment and additional internal actions for the reasoner,

to allow external plug-in expectation monitoring software. The agent reasoning is

still all part of the BDI plans and the interface from the external monitor is via

beliefs. This belief-based interface is similar to the approach in ESB-RS, however

here we present a split in the reasoning, with social reasoning separated from general

practical reasoning. This is central to our approach, and a key difference.

The definition of expectations used in the above work follows from that of Castel-

franchi in Castelfranchi (2005). These authors consider an expectation to be an

expected belief and a goal related to it. In ESB we talk about an expectation as being

the tuple containing the expected belief and the manner in which it affects other

expectations (the responses). This is because we view them as tightly interlinked

– expectations are closely related to other expectations and the overall dynamics

of the system. Castelfranchi also considers the dynamics of expectations, though in

terms of mental attitudes such as surprise and relief, relating to the actual outcome of

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 51

expected beliefs. Instead, in ESB we are interested in how responses, which capture

expectation change, affect future social beliefs and actions.

Also mentioning expectations, though restricted to interaction protocols, is the

work of Alberti et al. Alberti et al. (2006). They present a tool that combines different

expectations to make inferences over sets of them. This would be complementary to

our ESB approach, but we focus on the interface to practical reasoning instead. It is

similar to ESB in that they talk about expectations in the light of events actually oc-

curring, but they do not link them to agent behaviour – specification and verification

is the focus.

Another approach that uses expectation-based modelling and reasoning is pre-

sented by Nickles et al. Nickles et al. (2004). While seemingly similar, however,

the “expectation networks” presented there are only loosely related to our concept

of expectations. Expectation networks focus on communication between agents,

and are used as a means to capture communication patterns probabilistically. On

top of the probabilistic model, occurrence of these patterns is subject to logical

conditions identifying certain social states of the system (or beliefs). The motivation

for this approach is that communication is necessary for agents to interact and so any

social relationships between agents can be described in terms of the communication

structures that emerge among them. Whilst this might be true, there are types of

agent reasoning that cannot be captured in this way, e.g. reasoning about mental

attitudes of other agents and inferred states of others, which requires revising beliefs

based on the observations of others’ behaviour as suggested by ESB. In this respect,

the work described in (Nickles et al., 2004) could be seen as a far more specific form

52 COMPUTATIONAL INTELLIGENCE

of social reasoning concerned only with identification of observable communication

patterns and the prediction of future communication using on past experience.

Dennis et al. Dennis et al. (2008) propose to create an intermediate agent de-

scription language that can be used to capture different commonly used BDI pro-

gramming languages. The authors observe that there are many different BDI im-

plementations that share common constructs, and a common representation might

allow easier comparison between approaches and transfer of concepts. This goal

is certainly similar to that addressed by ESB, which tackles the same problem as

far as it concerns social reasoning, albeit at a higher level of abstraction. However,

the language Dennis et al. propose is intended to generalise over existing agent

programming languages – we suggest that ESB can be used to implement many

abstract social reasoning methods for which no practical computational framework

has been presented at all, and that it allows the combination of different such methods

in the same implementation.

At the intersection between social reasoning and general practical reasoning,

Dignum et al. have developed ideas similar to ours, albeit in a more specific manner.

Their B-DOING architecture (Dignum et al., 2000, 2002b,a) extends BDI to include

obligations and norms as motivations for an agent’s actions beyond the normal be-

liefs and desires of the BDI model. A logical system is presented to describe the

semantics of their approach and how these concepts may be captured and integrated

by way of preference orderings over goals. In contrast to the meta-level ESB reason-

ing, the object-level reasoning of B-DOING agents is based on the assumption that

these basic social motivations for action are sufficient to capture an agent’s social

concerns. A claim about how social reasoning should be done in the general case is

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 53

implicit to this approach. Quite differently, we do not wish to promote any particular

style of reasoning, but propose a generic BDI-compatible social reasoning “plugin”

that allows many such styles.

The focus of their work is also more toward the logical representation of agent

reasoning than the computational concerns of ESB, which arise from our desire to

bridge the gap from theory to implementation.

Later work (van der Vecht et al., 2009) is more closely related to the ESB ap-

proach, as it focuses on more generalised decision making based on the influence

that events processed by the agent have on the agent’s practical reasoning cycle.

They propose an architecture for dynamically modifying the ways in which the

agent chooses to be influenced by others, i.e. the suggested method allows for meta-

reasoning about social influence, and thus aims at a similarly general level of social

reasoning as ESB does. Also, the suggested meta-reasoning can be used to determine

what type of reasoning and “how much of it” is appropriate in a particular situation.

This is similar to the goal of bounding social reasoning in ESB. However, while

the paper gives examples of a rule-based controller for this type of mechanism in a

particular domain, no general language and computational engine is given that could

aid designers in implementing agents with these capabilities more generally.

Sindlar et al. Sindlar et al. (2009, 2011) propose the use of abduction to infer

mental states of other agents given assumptions about their internal structure and

observations of agent behaviour in a BDI context. The underlying idea of tracking an

agent’s assumptions about hidden properties of the system based on observations is

similar to the basic idea behind expectations in ESB, however the authors apply this

idea in a much more specific way: Their focus is exclusively on BDI agents (as the

54 COMPUTATIONAL INTELLIGENCE

agents that are being modelled, not the modelling agent herself), and on producing

explanations for observed behaviour, whereas ESB focuses on bounding reasoning

(through strategies) and on social decision making and acting (through behaviours).

Thus, abduction-style reasoning to infer mental states could be something that might

be implemented in ESB, but there are many other instances of ESB that could be

very different in style.

8. CONCLUSION

In this paper, we have presented a computational framework for practical social

reasoning based on making the update mechanisms regarding social beliefs explicit,

by connecting them to observations. Our framework allows for defining how sets of

such belief-observation-update rules, which we call expectations, are reasoned over,

taking into account the reasoning resources available to the agent, by specifying

strategies that define the set of future expectation states considered when making

inferences. Furthermore, it specifies how decision making and actual behaviour gen-

eration can be influenced at a general practical reasoning level by using behaviours

that are conditioned on properties regarding current and future expectations.

The ESB framework makes the following contributions: From an analysis point

of view, we introduce the conceptual machinery necessary to capture practical social

reasoning mechanisms at the desired level of generality, i.e. using abstractions of

expectations, strategies, and behaviours as metaphors for structuring social reason-

ing process. These abstractions allow for an analysis of existing social reasoning

mechanisms.

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 55

We claim that our conceptual framework is general enough to cover most ex-

isting social reasoning abstractions, but specific enough to allow us to focus on the

computational processes that are specific to social reasoning. This also allows for a

direct comparison of different social reasoning methods using our framework.

From an engineering point of view, we present a formal model and specifi-

cation language that allows designers to write declarative specifications of social

reasoning rules like those presented in the examples above in a modular, extensible,

and domain-independent way. This language supports designers in implementing

socially intelligent agents by allowing them to formulate the “theory” of a given

social reasoning mechanism in a uniform language. Moreover, following a declar-

ative paradigm enables the reuse of specifications, and eases the task of combining

different specifications.

The central contribution from an implementation point of view is the “trans-

duction” of these specifications to executable process models. We have shown that

such deductive synthesis can be achieved within the limits of ESB, and that sim-

ple algorithms can be used to prune the models generated from a specification to

avoid unnecessary complexity (Wallace and Rovatsos, 2009). Using model checking

methods, we obtain a high degree of expressiveness in terms of behaviour checking,

and we illustrate how an ESB reasoning engine can be seamlessly integrated with

BDI-style agent programming languages.

Overall, the significance of our contribution lies in enabling agent designers

to implement a broad range of (combinations of) social reasoning methods in a

uniform, generic framework without having to “embed” the behavioural properties

that should follow from the method in the general practical reasoning mechanism

56 COMPUTATIONAL INTELLIGENCE

of the agent in an implicit way. Instead, they are provided with the “social reason-

ing middleware” that can be directly coupled to the remaining agent program, and

provides an additional level of abstraction. This, in turn, is expected to simplify

the implementation of such social reasoning algorithms, which is still the exception

rather than the rule. And, in theory, it should have similar benefits as the introduction

of generic practical reasoning schemes such as BDI: The abstractions provided by

BDI, desires, plans, intentions, goals, commitments, intention reconsideration, belief

revision, etc. enabled a standardisation that provided an additional, generic layer

for modelling architectures that previously were largely developed in an ad hoc,

incomparable fashion. In the long term, we would hope that something similar can

be achieved by ESB and other such social reasoning frameworks.

In the future, we would like to develop more practical and usable tools for ESB

so that more large-scale, complex specifications of social reasoning mechanisms can

be tested, and we can learn more about and thus improve the process of engineering

the social reasoning layer of multiagent systems in real-world applications.

REFERENCES

ALBERTI, MARCO, MARCO GAVANELLI, EVELINA LAMMA, FEDERICO CHESANI, PAOLA MELLO, and

PAOLO TORRONI. 2006. Compliance verification of agent interaction: A logic-based software tool. Applied

Artificial Intelligence, 20(2-4):133–157.

BORDINI, RAFAEL H., JOMI FRED HÜBNER, and MICHAEL WOOLDRIDGE. 2007. Programming Multi-Agent

Systems in AgentSpeak using Jason. Wiley.

CASTELFRANCHI, CRISTIANO. 2005. Mind as an anticipatory device: For a theory of expectations. In Brain,

Vision, and Artificial Intelligence. Edited by M. De Gregorio, V. Di Maio, M. Frucci, and C. Musio, Volume

3704 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp. 258–276. ISBN 978-3-540-

29282-1.

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 57

CIMATTI, ALESSANDRO, EDMUND CLARKE, FAUSTO GIUNCHIGLIA, and MARCO ROVERI. 1999. NUSMV:

a new Symbolic Model Verifier. In Proceedings Eleventh Conference on Computer-Aided Verification

(CAV’99). Edited by N. Halbwachs and D. Peled, Number 1633 in Lecture Notes in Computer Science.

Springer, pp. 495–499.

COHEN, PHILLIP R., and HECTOR J. LEVESQUE. 1991. Teamwork. Nous, 25(4).

CRANEFIELD, STEPHEN. 2006. A rule language for modelling and monitoring social expectations in multi-agent

systems. In Proceedings of Coordination, Organizations, Institutions, and Norms in Multi-Agent Systems,

AAMAS 2005, Volume 3913 of Lecture Notes in Computer Science, Springer, pp. 246 – 258.

CRANEFIELD, STEPHEN. 2007. Modelling and monitoring social expectations in multi-agent systems. In Pro-

ceedings of Coordination, Organizations, Institutions, and Norms in Agent Systems II AAMAS 2006,

Volume 4386 of Lecture Notes in Computer Science, pp. 308 – 321.

CRANEFIELD, STEPHEN, MICHAEL WINIKOFF, and WAMBERTO VASCONCELOS. 2011. Modelling and

monitoring interdependent expectations. In Coordination, Organization, Institutions and Norms in Agent

Systems, 12th International Workshop.

DENNIS, LOUISE A., BERNDT FARWER, RAFAEL H. BORDINI, MICHAEL FISHER, and MICHAEL

WOOLDRIDGE. 2008. A common semantic basis for BDI languages. In Proceedings of Programming

Multi-Agent Systems 5th International Workshop, ProMAS 2007, Volume 4908 of Lecture Notes in

Computer Science, pp. 124 – 139.

DIGNUM, FRANK, DAVID KINNY, and LIZ SONENBERG. 2002a. From Desires, Obligations and Norms to

Goals. Cognitive Science Quarterly, 2(3-4):407–430.

DIGNUM, FRANK, DAVID KINNY, and LIZ SONENBERG. 2002b. Motivational attitudes of agents: on desires,

obligations, and norms. In Second International Workshop of Central and Eastern Europe on Multi-Agent

Systems, CEEMAS 2001, Volume 2296 of Lecture Notes in Artificial Intelligence, pp. 83 – 92.

DIGNUM, FRANK, DAVID MORLEY, ELIZABETH A. SONENBERG, and LAWRENCE CAVEDON. 2000. Towards

socially sophisticated BDI agents. In Proceedings of the Fourth International Conference on MultiAgent

Systems, Springer, pp. 111 – 18.

GABBAY, DOV M., MARK A. REYNOLDS, and MARCELLO FINGER. 2000. Temporal Logic: Mathematical

Foundations and Computational Aspects, Volume 2. Oxford Science Publications.

KOLLINGBAUM, MARTIN. 2005. Norm-governed Practical Reasoning Agent. Ph. D. thesis, University of

Aberdeen, Dept. of Computing Science.

KUMAR, SANJEEV, MARCUS J. HUBER, PHILIP R. COHEN, and DAVID R. MCGEE. 2002. Toward a

58 COMPUTATIONAL INTELLIGENCE

formalism for conversation protocols using joint intention theory. Computational Intelligence, 18(2):174 –

228. ISSN 08247935.

NICKLES, MATTHIAS, MICHAEL ROVATSOS, WILFRIED BRAUER, and GERHARD WEISS. 2004. Towards

a Unified Model of Sociality in Multiagent Systems. International Journal of Computer & Information

Science, 5(2).

RANATHUNGA, S., S. CRANEFIELD, and M. PURVIS. 2011. Integrating expectation handling into Jason.

In Proceedings of the 9th International Workshop on Programming Multi-Agent Systems (ProMAS), pp.

105–120.

Rummy.com 2008. The Rules of Rummy. http://rummy.com/rummyrules.html. last checked 29/09/2008.

SHOHAM, YOAV, and KEVIN LEYTON-BROWN. 2009. Multiagent Systems – Algorithmic, Game-Theoretic,

and Logical Foundations. Cambridge University Press.

SINDLAR, MICHAL P., MEHDI M. DASTANI, FRANK DIGNUM, and JOHN-JULES CH. MEYER. 2009. Mental

state abduction of BDI-based agents. In Declarative Agent Languages and Technologies VI, Volume 5397

of Lecture Notes in Computer Science, pp. 161–178.

SINDLAR, MICHAL P., MEHDI M. DASTANI, FRANK DIGNUM, and JOHN-JULES CH. MEYER. 2011.

Programming Mental State Abduction. In Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent

Systems (AAMAS 2011). Edited by K. Tumer, P. Yolum, L. Sonenberg, and P. Stone, Taipei, Taiwan, pp.

301–308.

VAN DER VECHT, BOB, FRANK DIGNUM, and JOHN-JULES. CH. MEYER. 2009. Autonomy and coordination:

Controlling external influences on decision making. In 2009 IEEE/WIC/ACM International Conference on

Web Intelligence and Intelligent Agent Technology, Volume 2, pp. 92 –95.

WALLACE, IAIN. 2010. Social Reasoning in Multi-Agent Systems with the Expectation-Strategy-Behaviour

Framework. Ph. D. thesis, School of Informatics, University of Edinburgh.

WALLACE, IAIN, and MICHAEL ROVATSOS. 2009. Bounded Social Reasoning in the ESB Framework. In Pro-

ceedings of the Eighth International Joint Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2009), pp. 1097–1104.

WALLACE, IAIN, and MICHAEL ROVATSOS. 2011. Executing specifications of social reasoning agents.

In Declarative Agent Languages and Technologies VIII, Volume 6619 of Lecture Notes in Artificial

Intelligence, Toronto, ON, Canada, pp. 112 – 129.

WOOLDRIDGE, MICHAEL. 2000. Reasoning about Rational Agents. Intelligent robotics and autonomous agents.

The MIT Press.

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 59

WOOLDRIDGE, M. 2009. An Introduction to Multiagent Systems, 2nd edition. John Wiley & Sons, Chichester,

England.

60 COMPUTATIONAL INTELLIGENCE

FIGURE 1. Conceptual Overview of an ESB-RS Agent

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 61

PWAG(X,Y,A,Q) JI(X,Y,A,Q)
JI

Complete

JI
Failed

JI
Failed

REQUEST(X,Y,A,Q) AGREE(Y,X,A,Q)

REFUSE(Y,X,A)
∨ CANCEL(X,Y,A)

INFORM(Y,X,NOT DONE A)

INFORM(Y,X,DONE A)

∨ CANCEL(X,Y,A)

FIGURE 2. The Request Conversation Protocol (adapted from Kumar et al. (2002))

62 COMPUTATIONAL INTELLIGENCE

Require: NoAP, Set of NoA plans
Require: NoAN , Set of NoA norms
Ensure: BDIP, Set of BDI plans and rules that capture NoAP
Ensure: EXPN , Set of ESB-RS expectation capturing NoAN

for all P ∈ NoAP do
Create a BDI plan P′ ∈ BDIP
Name(P′) = Name(P)
Precondition(P′) = precondition(P) & effects(Name(P′))
Body(P′) = Body(P)

Create a rule effects(Name(P′))
effects(Name(P′)) = effect(E1) & effect(E2). . . & effect(notA(N1) &

effect(notA(N2). . .
Where E1,E2 . . .EN are achieved by effects(P)

N1,N2 . . .NN are explicitly not achieved by effects(P)
end for
for all N ∈ NoAN do

Create an expectation E1N ∈ EXPN
C(E1N) = true
Φ(E1N) = ActivationCondition(N), mapped as per Table 3
T (E1N) = ExpirationCondition(N)
ρ+(E1N) = add({E2N}), del({E1N})
ρ−(E1N) is empty

Create an expectation E2N ∈ EXPN
C(E2N) ¬relax, where this is a belief specific to relaxing this norm.
Φ(E2N) = true
T (E2N) = ActivationCondition(N)
ρ+(E2N) = add({E1N}), del({E2N})
ρ−(E2N) is empty

end for

FIGURE 3. Pseudocode describing a translation from a NoA specification into ESB-
RS.

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 63

T(E1),T(E3),T(E4)

T(E2),T(E5)

T(E2),T(E5)

¬T(E1),T(E2),T(E5)

¬T(E5)
¬T(E2)

T(E1),¬T(E2),¬T(E5)

¬T(E5)

¬T(E3),¬T(E4)

¬T(E1)

¬T(E2)

¬T(E3),¬T(E4)

T(E4),¬T(E4)
T(E3),T(E4)

Φ(E2): Collecting a ♢ run

Φ(E5):Collecting a ♢ run

Φ(E1):Collecting 2s

Φ(E3):Not collecting 2 set

Φ(E4):Not collecting set or run

Φ(E2): Collecting a ♢ run

Φ(E4):Not collecting set or run

Φ(E5):Collecting a ♢ run

Φ(E3):Not collecting 2 set

Φ(E4):Not collecting set or

run

Φ(E1):Collecting 2s

Φ(E2): Collecting a ♢ run

Φ(E5):Collecting a ♢ run

1

2

3

4

5

FIGURE 4. Accessible Expectation Graph, showing the states reachable from the
initial state S2. Bold states represent states accessible with a simple depth-1 strategy
from state S5.

64 COMPUTATIONAL INTELLIGENCE

TABLE 1. JI Expectations. All are in the initial set EXPA of both agents. X,Y are both variables, but the
example in the text assumes X requests a JI with Y.

ExpJI(A,Q) ExpAgree(A,Q)

C
pwag(X ,Y,A,Q) ∧ agree(Y,X ,A,Q) ∧
pwag(Y,X ,A, pwag(X ,Y,A,Q)
[Q∧pwag(X ,Y,A,Q)])

Φ
ji(X ,Y,A,Q) pwag(Y,X ,A,

[Q∧pwag(X ,Y,A,Q)])

T A∨¬Q∨ fail false

ρ+ add(ExpNotify(X ,Y,A,Q)) -

ρ− del(ExpNotify(X ,Y,A,Q)) -

e ExpReq(A,Q) ExpNotify(A,Q)

C
request(X ,Y,A,Q) ji(X ,Y,A,Q)

Φ
pwag(X ,Y,A,Q) mustNotify(X ,Y)

T false false

ρ+ - -

ρ− - -

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 65

TABLE 2. Obligation-to-Clear and Prohibition-On expectations in the blocks’ world example

OblClear(X) OblClearCompl(X) ProhibitionOn(X)

C true ¬relaxOC ¬relaxPO

Φ achieve(clear(X)) true ¬allowed(on(X ,c))

T clear(X) ¬clear(X) false

ρ+ add(OblClearCompl(X)), add(OblClear(X)), -
del(OblClear(X)) del(OblClearCompl(X))

ρ− - - -

66 COMPUTATIONAL INTELLIGENCE

TABLE 3. Translation of Action Specifications into ESB Representation. S represents a state of affairs, P
a plan (or single action). Duals for negative cases (e.g. prohibit(¬perform(P)) for obligation(perform(P))) are
omitted for brevity.

Norm ESB Φ belief

permission(achieve(S)) allowed(S)
prohibition(achieve(S)) ¬allowed(S)
obligation(achieve(S)) achieve(S), select a plan with allowed(S) in its effects
permission(perform(P)) allowed(P)
prohibition(perform(P)) ¬allowed(P)
obligation(perform(P)) select plan P

A FRAMEWORK FOR PRACTICAL SOCIAL REASONING 67

TABLE 4. Expectations in the Rummy example: the labels of initial expectations (1,2,5) are shown in bold
face; tests are broken down into +(. . .) and −(. . .) events that would confirm/disappoint the expectation

N C Φ T ρ+ ρ−

1 B picked
up 2♦

B
collecting
2s

B picks up an avail-
able 2 and has dis-
carded none

remove({2,5})
add({3,4})

remove({1})

2 B picked
up 2♦

B
collecting
♦ run

B picks up member
of 2♦ run and has
discarded none

remove({1,3,4})
add({5})

remove({2,5})
add({3,4})

3 B dis-
carded
2♣

B not col-
lecting 2s

B ignores a 2 - remove({1,3})
add({2,5})

4 B
ignored
a 2

B not after
2s for run
or set

B ignores a 2 - remove({1,3})
add({2,5})

5 B picked
up 3♦

B
collecting
♦ run

B picks up another
member of 3♦ run
and has discarded
none

remove({1,3,4})
add({2})

remove({2,5})
add({1,3,4})

