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 Corticotroph cells of the anterior pituitary are electrically excitable and are an integral 

component of the HPA axis which governs the neuroendocrine response to stress. 

 Corticotrophs display predominantly single spike activity under basal conditions that 

transition to complex bursting behaviours upon stimulation by the hypothalamic 

secretagogues CRH and AVP, however the underlying mechanisms controlling bursting 

are unknown.  

 In this study, we show that CRH and AVP induce different patterns of corticotroph 

electrical activity, and we use an electrophysiological approach combined with 

mathematical modeling to show the ionic mechanisms for these differential effects. 

 The data reveals that secretagogue-induced bursting is dependent on large conductance 

Ca
2+

-activated K
+
 (BK) channels and is driven primarily by CRH whereas AVP promotes 

an increase in single-spike frequency through BK-independent pathways involving 

activation of non-selective cation conductances. 

 As corticotroph excitability is differentially regulated by CRH and AVP this may allow 

corticotrophs to respond appropriately to different stressors. 

Word count: 150 

 

ABSTRACT 

Anterior pituitary corticotroph cells are a central component of the hypothalamic-pituitary-

adrenal (HPA) axis essential for the neuroendocrine response to stress. Corticotrophs are 

excitable cells that receive input from two hypothalamic secretagogues, corticotrophin-

releasing hormone (CRH) and arginine vasopressin (AVP) to control the release of 

adrenocorticotrophin hormone (ACTH). Although corticotrophs are spontaneously active and 

increase in excitability in response to CRH and AVP the patterns of electrical excitability and 
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underlying ionic conductances are poorly understood. In this study, we have used 

electrophysiological, pharmacological and genetic approaches coupled with mathematical 

modeling to investigate whether CRH and AVP promote distinct patterns of electrical 

excitability and to interrogate the role of large conductance calcium- and voltage-activated 

(BK) channels in spontaneous and secretagogue-induced activity. We reveal that BK 

channels do not play a significant role in the generation of spontaneous activity but are 

critical for the transition to bursting in response to CRH. In contrast, AVP promotes an 

increase in single spike frequency, a mechanism independent of BK channels but dependent 

on background non-selective conductances. Co-stimulation with CRH and AVP results in 

complex patterns of excitability including increases in both single spike frequency and 

bursting. The ability of corticotroph excitability to be differentially regulated by 

hypothalamic secretagogues provides a mechanism for differential control of corticotroph 

excitability in response to different stressors.  

 

Abbreviations: ACTH, adrenocorticotrophic hormone; AVP, arginine vasopressin; BK, 

large conductance Ca
2+

 - and voltage-activated potassium channel; CRH, corticotrophin-

releasing hormone; HPA, hypothalamic-pituitary-adrenal; IK, intermediate conductance Ca
2+

-

activated potassium channel; NMDG, N-methyl-D-glucamine; POMC, proopiomelanocortin; 

PVN, paraventricular nucleus; STREX, stress regulated exon; ZERO, BK channels lacking 

STREX insert. 

INTRODUCTION 

Excitable cells, such as neurons and endocrine cells, exhibit diverse patterns of spontaneous 

electrical activity that can be modified in response to neuropeptide stimulation. These diverse 
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responses are coordinated by an eclectic array of ion channels and establishing the role of any 

particular ion channel remains a significant challenge. 

Endocrine cells of the anterior pituitary typically display spontaneous activity (Stojilkovic et 

al., 2010) that is characterized by either single action potentials or bursts of electrical activity, 

termed “pseudo-plateau bursting”, that results in small oscillations of the membrane potential 

during the active phase of the burst, rather than full spikes (Tsaneva-Atanasova et al., 2007; 

Stern et al., 2008; Vo et al., 2014).  Pseudo-plateau bursting has been proposed to increase 

intracellular Ca
2+

 to a greater extent than spiking alone which is thought to be important in 

driving hormone secretion in endocrine cells (Van Goor et al., 2001c; Stojilkovic et al., 

2005). Previous studies have identified a role for large conductance Ca
2+

- and voltage-

activated potassium (BK) channels in the generation of spontaneous pseudo-plateau bursting 

in anterior pituitary somatotrophs and lactotrophs (Van Goor et al., 2001a; Tsaneva-

Atanasova et al., 2007; Tabak et al., 2011)  whereas gonadotrophs, that express little BK 

current, show spontaneous single spiking (Van Goor et al., 2001b; 2001c; Stojilkovic et al., 

2010). 

However, anterior pituitary corticotrophs, the central hub of the hypothalamic-pituitary-

adrenal (HPA) axis which governs the homeostatic response to stress, express BK channels 

(Shipston & Armstrong, 1996; Shipston et al., 1999; Tsaneva-Atanasova et al., 2007; 

Brunton et al., 2007; Stern et al., 2008; Liang et al., 2011; Vo et al., 2014) yet display 

predominantly spontaneous single spike activity but can transition to pseudo-plateau bursting 

when stimulated (Kuryshev et al., 1997; Van Goor et al., 2001c; Stojilkovic et al., 2005; 

Liang et al., 2011). This suggests that under unstimulated conditions BK channels in 

corticotrophs do not contribute to spontaneous electrical activity but may promote pseudo-

plateau bursting in response to the hypothalamic secretagogues corticotrophin-releasing 

hormone (CRH) and arginine vasopressin (AVP).  CRH and AVP activate distinct G-protein 
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receptor signaling cascades: the cAMP/PKA and IP3/PKC pathways respectively (Antoni, 

1986; King & Baertschi, 1990; Van Goor et al., 2001a; Tsaneva-Atanasova et al., 2007; 

Tabak et al., 2011), both of which have been reported to control BK channel activity and 

properties in pituitary cells, including corticotrophs (Shipston et al., 1996; Tian et al., 2008; 

Zhou et al., 2012b). 

Fast activating BK channels (BK-near), in close proximity to voltage activated calcium 

channels, have been demonstrated to facilitate pseudo-plateau bursting (Tabak et al., 2011). 

The rapid activation of the channels that occurs during the upstroke of an action potential 

limits the spike amplitude and activation of delayed rectifier K
+
 channels and thus allows the 

membrane potential to oscillate, resulting in a burst (Tabak et al., 2011; Vo et al., 2014).  BK 

channels that are located distantly from voltage-gated Ca
2+

 channels (BK-far) are responsible 

for the termination of a burst (Tsaneva-Atanasova et al., 2007). While the molecular basis for 

these different populations is not established, importantly functional diversity of BK channel 

properties in anterior pituitary cells can be conferred by multiple mechanisms including 

alternative pre-mRNA splicing and post-translational modification of the pore-forming 

subunit encoded by a single gene, KCNMA1 (for example see Tian et al., 2004; Chen et al., 

2005; Tian et al., 2008; Stojilkovic et al., 2010).   

In this study, we have developed a mathematical model of corticotrophs and used this in 

conjunction with pharmacological and genetic approaches to interrogate the role of BK 

channels in spontaneous and CRH/AVP-evoked electrical activity in native male mouse 

corticotrophs.  We reveal that corticotroph BK channels do not play a significant role in 

spontaneous electrical activity but are essential for the transition to bursting upon CRH-

stimulation. Furthermore, we reveal that AVP, in contrast to CRH, does not promote bursting, 

rather it increases the frequency of single spikes and is independent of functional BK 

channels.  Thus CRH and AVP engage BK channel-dependent and –independent pathways 



 

 

This article is protected by copyright. All rights reserved.   6 

 

respectively and BK channels are essential for the CRH-induced transition to pseudo-plateau 

bursting in murine corticotrophs. 

 

METHODS 

Animals 

Mice lacking the pore-forming exon of the BK channel α-subunit (BK
-/-

 mice; Sausbier et al., 

2004) were backcrossed for at least 10 generations with mice expressing GFP under the 

POMC promoter (Pinto et al., 2004) to generate BK-POMC-GFP mice with a 

SV129/C57BL6 mixed background. More than 99% of GFP positive cells also stain for 

ACTH in our assays and thus all GFP positive cells of the anterior pituitary are corticotrophs 

and lack any functional BK channels in the BK
-/-

  background. The genotype of all animals 

used was verified for each pituitary isolation and culture generated. The mice show normal 

gross pituitary morphology and the same number of corticotrophs although pituitary ACTH 

content, but not POMC mRNA, is suppressed as reported previously for the BK
-/-

 mice 

(Brunton et al., 2007 ) compared to their littermate WT controls. Mice were caged in groups 

of two to four under standard laboratory conditions (lights on at 07:00, lights off at 19:00, 

21ºC, with tap water and chow available ad libitum). Wild-type (WT) or mice deficient for 

the BK channel (BK
-/-

) were used from the same litters generated by a cross of mice 

heterozygous for the BK allele. Male mice, aged 2-5 months, were used for pituitary cell 

culture with tissue collection performed between 08:30 and 10:00 in accordance with United 

Kingdom Home Office requirements (PPL 60/4349) and University of Edinburgh ethical 

review committee.  
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Pituitary cell culture 

Three to four mice were killed by cervical dislocation and the pituitaries removed and cut to 

remove the intermediate (which contain POMC-expressing melanotrophs) and posterior 

lobes. The remaining anterior lobe was chopped by hand with a single edged razor blade in 

two directions (pituitary rotated by 90º). The tissue was digested in a solution of DMEM 

(Invitrogen) containing 25 mM HEPES, 0.25% trypsin (Worthington) and 10 μg/ml DNAse I 

for 20 minutes in a 37ºC water bath. The tube was shaken every five minutes to ensure a 

complete and even digestion. Following digestion, the tissue was allowed to settle to the 

bottom and the supernatant aspirated. One ml of inhibition solution (DMEM containing 0.5 

mg/ml Soybean Trypsin inhibitor, 100 kallikrein units aprotinin (200 x dilution of Sigma 

stock), 10 μg/ml DNAse I) was added and triturated using a P1000 pipetteman (Gilson) set to 

1 ml (~40 times). A further 4 ml of inhibition solution was added and the resulting cell 

suspension was filtered through a pre-wetted 70 μm nylon mesh (BD Bioscience) and diluted 

with an equal volume of culture media (DMEM containing 25 mM HEPES, 5 μg/ml insulin, 

50 μg/ml transferrin, 30 nM sodium selenite, 0.3% BSA (w/v), 4.2 μg/ml fibronectin and 

antibiotic/antimycotic (100x dilution of sigma stock)) and spun in a centrifuge at 100 x g for 

10 minutes. The supernatant was carefully removed and the cells were gently triturated with 1 

ml of culture medium (~40 times). The cell suspension was diluted appropriately with culture 

media and plated on 12 mm coverslips in a six well plate (four coverslips per well) and 

incubated at 37ºC in 5% CO2. Media was changed every two days with an 

antibiotic/antimycotic free medium (DMEM containing 25 mM HEPES, 5 μg/ml insulin, 50 

μg/ml transferrin, 30 nM sodium selenite, 0.3% BSA (w/v) and 4.2 μg/ml fibronectin) and 

electrophysiological recordings were obtained from cells 24-96 hours post-isolation. Over 

this culture period, cells displayed a typically simple stellate or ovoid morphology with no 

significant difference in behavior or response to CRH or AVP between days in culture.  
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Electrophysiology 

Current clamp electrophysiological recordings were obtained from corticotroph cells using 

the perforated patch mode of the whole-cell patch clamp technique. The pipette solution 

contained amphotericin B at a concentration of 150 μg/ml and resulted in access resistances 

typically < 40 MΩ within 10-20 minutes, which allowed stable recordings in excess of 20 

minutes. The standard bath (extracellular) solution contained (in mM): 140 NaCl, 5 KCl, 2 

CaCl2, 0.1 MgCl2, 10 HEPES and 10 Glucose. The pH was adjusted to 7.4 with NaOH, 300 

mOsmol/l. The standard pipette (intracellular) solution contained (in mM): 10 NaCl, 30 KCl, 

60 K2SO4, 1 MgCl2, 10 HEPES, 10 Glucose and 50 Sucrose. The pH was adjusted to 7.2 with 

KOH, 290 mOsmol/l. 

Electrophysiological recordings were performed at room temperature (18-22°C) using 

Clampex 10.1 (Molecular Devices) with a sampling rate of 10 kHz and filtered at 2 kHz. 

Patch pipettes were fabricated from borosilicate glass (Garner) using a Model P-97 

micropipette puller (Sutter Instruments). Pipette tips were heat polished and had resistances 

typically between 2-3 MΩ. Cell capacitance of corticotroph cells was ranged from 2-10 pF 

and compensated series resistance was typically < 20 MΩ. Drugs were applied to cells using 

a gravity perfusion system with a flow rate of 1-2 ml/min to minimise flow-induced artefacts. 

Electrophysiology Analysis 

Current clamp recordings were performed using a standard 20 minute protocol unless stated 

otherwise with analysis performed using Clampfit v10.1 (Molecular Devices). Basal activity 

was recorded for seven minutes before exposing cells to CRH and/or AVP for three minutes, 

concluding with a 10 minute washout period. Activity of corticotroph cells was measured in 

three minute blocks corresponding to basal activity (4-7 min), CRH/AVP-evoked activity 

(10-13 min) and washout period (17-20 min). Consistent with previous studies, stimulation of 
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corticotroph cells with CRH and AVP (0.2 nM and 2 nM respectively) resulted in a robust 

membrane depolarisation (Liang et al., 2011). To account for this, during event analysis the 

baseline was adjusted relative to the depolarisation so that all events were measured relative 

to current membrane potential. Measurements were made of membrane potential, event 

frequency, and mean event duration. An event was defined from the point it reached 

threshold ( 25 mV from baseline) until it fell below a re-arm level ( 5 mV). In addition to 

mean event duration, bursting behaviour was quantified through the calculation of a 

burstiness factor (BF). This method classifies any event < 100 ms as a spike and events > 100 

ms as a burst; a burstiness factor is calculated as the fraction of events that are bursts (Van 

Goor et al., 2001b; 2001c; Tabak et al., 2011). 

Mathematical  Model 

The Hodgkin-Huxley formalism is used (Hodgkin & Huxley, 1952) with currents that are 

present in pituitary corticotrophs. In our model, the potential difference across the plasma 

membrane varies according to: 

  

  

  
  (                                            )                         

where    is the membrane capacitance. There are six ionic currents in the model as shown in 

Figure 1A.     is the high voltage activated dihydropyridine sensitive L-type Ca
2+

 current that 

is responsible for most Ca
2+

 entry during an action potential.       is the rapidly activated 

delayed rectifier K
+
 current that is largely responsible for the downstroke of an action 

potential. The model also contains large-conductance, voltage and Ca
2+

-activated K
+ 

channels 

(BK channels). Some are located near Ca
2+

 channels and respond to Ca
2+

 in microdomains at 

open Ca
2+

 channels, producing the current         . Others are situated away from Ca
2+

 

channels and respond to the mean cytosolic Ca
2+

 concentration, producing the current 
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         BK-near channels represent STREX type channels, while BK-far channels represent 

ZERO type channels (Shipston et al., 1999; Chen et al., 2005; Zhou et al., 2012) although the 

spatial distribution of these channel variants, or any of the channels involved in excitability in 

corticotrophs, is not known.       is the barium insensitive inward rectifier K
+
 current that 

activates under hyperpolarization. Also, the model has a current produced by non-selective-

cation channels,    . The effect of system noise is included in the model through the 

current       .  

The non-selective-cation current has constant conductance in our model        

            The voltage-dependent currents with dynamic conductances (g) are as 

follows: 

                                                                           

                                                                               

                                                                                 

                                                                                

                                                                                

We assume that the Ca
2+

 channels and inward rectifying K
+ 

channels activate instantaneously. 

The gating variable for the activation of delayed rectifier K
+
 current (n) has first order 

kinetics and changes with time according to   

  

  
 

       

  
                                                                    

The steady-state functions are 
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For the near and far populations of BK channels we use the model of (Tsaneva-Atanasova et 

al., 2007) for pituitary somatotrophs. The gating variables are 

    

  
 

    
            

    

                                                             

    

  
 

    
         

    

                                                                

where       is the free Ca
2+

 concentration in a microdomain and   is the mean free 

cytosolic Ca
2+

 concentration. The equilibrium functions are: 

    
         

 

     
 (                )

   

                                        

    
      

 

     
 (            )

   

                                                

where 

                   
           

    

          

                                          

               
         

 

         

                                                 

and domain Ca
2+

 is modeled as proportional to the Ca
2+

-current: 

               

The equation for the mean intracellular Ca
2+

 concentration is  



 

 

This article is protected by copyright. All rights reserved.   12 

 

  

  
              

where f is the fraction of free Ca
2+

 in the cytosol,   converts current to concentration and    

is the Ca
2+

 pump rate.  

The current due to channel noise is            where    is noise amplitude and   is a 

Wiener variable. The model is implemented in the XPPAUT software program (Ermentrout, 

2002) using the Euler method (dt=0.1 ms), and the computer code is available for free 

download from http://www.math.fsu.edu/~bertram/software/pituitary. 

Parameters of the model are listed in Table 1 and the steady-state activation functions for the 

currents are shown in Figure 1B & C. 

 

Statistics 

The data were expressed as mean ± SEM (standard error of the mean), n = number of 

independent experiments. Statistical analysis was performed as appropriate by student‟s T-

test and ANOVA analysis with Bonferroni-Holm post hoc test (Microsoft Excel). Significant 

differences between groups were defined at * p < 0.05, ** p < 0.01 and *** p < 0.001. 

 

RESULTS 

CRH/AVP increases frequency and bursting in corticotroph cells 

In corticotrophs isolated from POMC-GFP male mice spontaneous activity was observed in 

more than 90% of cells recorded under current-clamp using the perforated patch-clamp 

approach, as previously observed in female corticotrophs (Liang et al., 2011) with 

predominantly large amplitude single-spike action potentials (Figure 2A & B). Very 

occasional longer duration bursts of activity were observed, together with single spike action 

http://www.math.fsu.edu/~bertram/software/pituitary
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potentials, in less than 6% of all corticotrophs analysed under basal conditions. Corticotrophs 

had a resting membrane potential of -53.7 ± 1.5 mV, displayed spontaneous action potentials 

at a frequency of 0.34 ± 0.14 Hz and had a mean cell capacitance of 4.43 ± 0.94 pF (Figure 

2D & E).  The mean event duration of 69 ± 26 ms and a burstiness factor (BF) of 0.18 ± 0.10 

are both consistent with predominantly single-spike action potential behaviour (Figure 2F & 

G) in the unstimulated state. Replacement of external sodium ions with the large organic 

cation N-methyl-D-glucamine (NMDG+) resulted in a significant (p = 0.00059) hyperpolarisation 

of 22.7 ± 2.8 mV (n = 5) within one minute, accompanied by a cessation of spontaneous activity 

which was fully reversible following washout. These data are consistent with that previously 

observed in female mouse corticotrophs and that a background sodium conductance is important 

for setting the resting membrane potential of corticotrophs, as in other pituitary cells (Tomic et 

al., 2011; Liang et al., 2011). 

In vivo, corticotrophs are exposed to pulses of both CRH and AVP released from the 

hypothalamus in response to stress, resulting in the release of ACTH.  Thus corticotrophs 

were stimulated with CRH and AVP (0.2 and 2 nM respectively) at concentrations chosen to 

be physiologically relevant and within peak concentrations in portal circulation in response to 

stress (Gibbs & Vale, 1982; Sheward & Fink, 1991). A three minute exposure to CRH/AVP 

resulted in a robust depolarisation and an increase in firing frequency (Figure 2A) with a 

transition from predominantly single-spike action potentials (Figure 2B) to complex bursting 

patterns (Figure 2C) that included both single spike and „pseudo-plateau burst‟ behaviours. 

Following CRH/AVP exposure, there was a significant (p = 0.0031) membrane 

depolarisation to -47.4 ± 0.8 mV (Figure 2D) and a significant (p = 0.0080) increase in event 

frequency to 0.86 ± 0.18 Hz (Figure 2E).  This was accompanied by a significant (p = 0.016) 

increase in mean event duration (564 ± 160 ms) following CRH/AVP stimulation (Figure 2F) 

as well as a significant (p = 0.00014) increase in the burstiness factor to 0.79 ± 0.06 (Figure 
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2G), indicating a switch to predominantly pseudo-plateau bursting following CRH/AVP 

exposure. After 10 min washout of CRH/AVP, membrane potential returned to -52.5 ± 1.3 

mV which was not significantly different to baseline (Figure 2D). However, corticotroph 

activity remained elevated compared to pre-stimulation with event frequency elevated at 0.88 

± 0.2 Hz (Figure 2E). Although event duration and the burstiness factor were elevated 

compared to pre-stimulation levels, they were suppressed compared to levels 3 min following 

CRH/AVP application (Figure 2F & G). These data reveal that exposure of corticotrophs to 

physiological levels of the hypothalamic secretagogues CRH and AVP result in a complex 

patterns of excitability that include increases in event frequency and a transition to pseudo-

plateau bursting. 

Modeling of the CRH/AVP effect in pituitary corticotrophs 

To examine whether our mathematical model of the corticotroph can recapitulate the key 

features of both spontaneous (basal) activity and the subsequent depolarisation and transition 

to bursting following CRH and AVP stimulation we changed ionic current parameters in the 

model that correspond to currents implicated in the control of corticotroph excitability. The 

model consists of six ionic currents (Figure 1A & B): L-type Ca
2+

 current (ICa), delayed 

rectifier K
+
 current (IK-dr), inward rectifier K

+
 current (IK-ir,) BK-near (IBK-near) and BK-far 

(IBK-far) currents and non-selective current (INS) with a simple geometry as the spatial 

organization of ion channels and Ca
2+

 pools in corticotrophs is very poorly characterised. See 

methods for full description.   

L-type Ca
2+

 channels are critical for CRH/AVP stimulated ACTH secretion and CRH has 

been reported to increase L-type Ca
2+

 current in a variety of corticotroph models (Mollard et 

al., 1987; Guérineau et al., 1991; Kuryshev et al., 1995).  CRH and AVP have been reported 

to activate non-selective cation channels (Takano et al., 1996; Mani et al., 2009)  in 
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corticotrophs or other cells and a non-selective Na
+
-dependent conductance is critical for 

determining the resting membrane potential (Liang et al., 2011). Although CRH has been 

reported to regulate inward rectifier K
+
 current IK-ir in rat corticotrophs (Kuryshev et al., 

1997) the barium sensitive IK-ir has no functional effect in mouse corticotrophs (Liang et al., 

2011). Distinct BK channel splice variants, including the stress regulated exon (STREX) and 

ZERO (lacking STREX insert) splice variants of the channel are expressed in the anterior 

pituitary and murine corticotrophs (Shipston & Armstrong, 1996; Shipston et al., 1999; 

Brunton et al., 2007; Liang et al., 2011). The model incorporates two distinct BK channel 

populations: BK-near and BK-far. While the molecular identity of these populations is not 

prescribed, the characteristics of these populations are similar to those of the STREX and 

ZERO variants, respectively.  For example, BK-near (STREX) have a significantly left 

shifted apparent voltage for half maximal activation compared to BK-far (ZERO) channels 

(Xie & McCobb, 1998; Chen et al., 2005) (Figure 1C). Moreover, activation of the 

cAMP/PKA pathway shifts the properties of STREX channels to channels with ZERO-like 

properties including a significant right shift in the half maximal voltage of activation and 

faster activation kinetics (Tian et al., 2001a; 2004; Chen et al., 2005; Zhou et al., 2012a). 

Thus in our model we first simulated the application of CRH/AVP through changes to three 

ionic currents: the L-type Ca
2+

 current (ICa), the non-selective cation current (INS), and the 

BK-near current (IBK-near). Figure 3A & B shows the model corticotroph cell exhibiting 

spontaneous spiking over the first 100 seconds as seen experimentally. The slow spiking is 

due to the noise that pushes the voltage randomly above spike threshold with the resting 

membrane potential set close to threshold by gNS. The application of CRH/AVP is simulated 

by increasing the conductances gNS and gCa (Table 1). Also, the BK-near channel time 

constant     
 is decreased along with           

 (Table 1), producing a faster activation of 

this current and shifting its activation curve rightward to overlap that of the BK-far activation 
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curve (Figure 1C, blue curve becomes like red curve). After these changes to the model 

parameters, the low frequency spiking changes to high-frequency bursting (Figure 3A & C). 

Moreover, the spike amplitude decreases substantially (by ~20 mV) and the base membrane 

potential increases (by ~20 mV), as seen experimentally. The effects of drug washout is 

simulated by slowly changing parameters back to their original values (Figure 3A). 

CRH and AVP differentially regulate corticotroph excitability in vitro 

CRH and AVP act synergistically to increase ACTH secretion from corticotroph cells and 

activate distinct G-protein coupled receptor activated intracellular signaling cascades: the 

cAMP/PKA and IP3/PKC pathways, respectively. Stimulation of corticotrophs with 

combined secretagogues CRH/AVP increased both firing frequency and bursting behaviour. 

Previous studies have reported that CRH and AVP are individually able to regulate electrical 

excitability in corticotrophs (e.g see Mollard et al., 1987; Guérineau et al., 1991; Lee & Tse, 

1997; Tse & Lee, 1998). We thus asked whether CRH and AVP at physiologically relevant 

concentrations reported in the portal circulation (Gibbs & Vale, 1982; Sheward & Fink, 

1991), promote distinct, or similar, patterns of electrical activity when applied alone in an 

attempt to dissect key conductances that may be the targets of these neuropeptides.  

Individually, both CRH (Figure 4A & B) and AVP (Figure 4C & D) were still able to 

produce an increase in corticotroph excitability. However, the patterns of stimulated 

excitability were distinct. Treatment of corticotrophs with 0.2 nM CRH resulted in a 

significant (p = 0.0057) depolarisation from -53.0 ± 2.4 mV to -43.0 ± 3.8 mV. Firing 

frequency increased significantly (p = 0.043) from 0.13 ± 0.07 Hz to 1.45 ± 0.68 Hz (Figure 

4E). Following 10 min washout, event frequency had significantly declined to 0.40 ± 0.22 Hz 

in contrast to the sustained elevation of excitability observed in cells treated with combined 

CRH/AVP (0.88 ± 0.24 Hz). A transition from spiking to bursting was observed in all tested 
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cells and mean event duration increased significantly (p = 0.021) from 63 ± 49 ms to 378 ± 

267 ms following CRH stimulation (Figure 4F). In contrast, cells treated with 2 nM AVP 

alone failed to produce a significant depolarisation, but there was a significant (p = 0.033) 

increase in firing frequency from 0.32 ± 0.17 Hz to 1.77 ± 0.42 Hz (Figure 4E). Firing 

frequency remained elevated (1.33 ± 0.60 Hz) following 10 min washout suggesting that 

AVP promotes a sustained increase in activity. Interestingly, AVP alone failed to induce a 

transition from spiking to bursting in any cell examined. Mean event duration was 55 ± 46 ms 

under basal conditions and did not significantly increase (105 ± 78 ms) following AVP 

exposure (Figure 4F). AVP has been reported to stimulate intracellular Ca
2+

 release, although 

most reports utilize supraphysiological AVP levels an order of magnitude greater than used 

here, that has been reported to activate Ca
2+

-activated potassium currents that produce brief 

hyperpolarization in rat corticotrophs (Corcuff et al., 1993). We never see an AVP-induced 

hyperpolarization under our recording conditions suggesting that either AVP (2nM) does not 

significantly promote intracellular Ca
2+

 release in our system or this calcium elevation is not 

efficiently coupled to activation of Ca
2+

-activated potassium channels. 

These data suggest that CRH can drive a transition to pseudo-plateau bursting while AVP 

promotes a sustained increase in single-spike frequency but does not support a transition to 

bursting.  This predicts that CRH and AVP differentially control conductances important for 

increased electrical excitability in corticotrophs and that conductances regulated by the 

cAMP/PKA pathway are likely responsible for the transition to bursting. 

Distinct conductances differentially regulate spike frequency and bursting in the corticotroph 

model 

The experimental findings we observed after the addition of CRH only or AVP only were 

further investigated in our model. In the experiments, adding only CRH (without AVP) 
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changes the basal single-spike activity to bursting (Figure 4A & B). Since CRH may act on 

several conductances, we asked which conductances were necessary for conversion to 

bursting. We found that increasing either the non-selective-cation current conductance gNS or 

Ca
2+

 current conductance gCa increases spike frequency but does not produce bursting. 

However, making the BK-near channels similar to BK-far by reducing     
 of the BK-near 

channel from 20 ms to 4 ms and right-shifting its activation curve (          
 from 18 to 6 

μM) is sufficient to convert spiking to bursting without the need to make any other changes 

(Figure 5A & B). A small additional increase of the L-type conductance did not prevent that 

transition to bursting, but increased burst frequency and amplitude. 

The data in Figure 4C & D show that application of AVP alone greatly increases the spike 

frequency but does not convert spiking to bursting. We found that increasing gNS alone (from 

0.1 to 0.2 nS) is sufficient to generate the effect seen in experiments. That is, an increase in 

firing frequency and a slight depolarisation of the membrane potential without a transition to 

bursting (Figure 5C). In accordance with a role for gNS in AVP action, step current injection 

alone only stimulates an increase in firing frequency, not a transition to bursting (for example 

a 1 pA current injection results in a 2.41 ± 0.31 (n = 4) fold increase in action potential 

frequency). Moreover, inhibition of the non-selective sodium conductance results in 

membrane hyperpolarization and prevents CRH/AVP induced depolarisation and increase in 

excitability (Liang et al., 2011). Changes in gCa alone increases spike frequency and 

amplitude, while changes in     
 and           

 convert spiking to bursting. Hence the 

model suggests that changes in BK-near cause the CRH-induced transition to bursting, and an 

increase in the non-selective cation conductance causes the increased spike frequency 

induced by AVP.   
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In the model, BK channels have almost no effect on the spontaneous low-frequency spiking 

activity. Figure 6A shows spontaneous activity in the absence of BK conductance. When 

application of CRH and AVP together is simulated the spike frequency greatly increases and 

the model cell is depolarised, but there is no bursting (Figure 6B). However, when even a 

small fraction (15%) of BK conductance remains there is a mixture of bursting and fast 

spiking (Figure 6C). 

CRH/AVP-evoked bursting activity is suppressed by pharmacological inhibition of BK 

channels 

The model predictions of Figure 6 were tested in corticotrophs exposed to the selective BK 

channel inhibitor paxilline (1 μM). To investigate the role of BK channels in regulating basal 

activity, corticotrophs were exposed to paxilline for three minutes. In 3/3 cells tested, 

paxilline had no effects on spontaneous corticotroph activity for all parameters measured. 

These results are not surprising as the BK channel has been suggested to promote bursting 

behaviour which is uncommon under basal conditions. 

To investigate the role of BK channels in the CRH/AVP response, corticotroph cells were 

treated with paxilline (1 μM) for four minutes prior to CRH/AVP exposure. Paxilline 

remained present throughout the remainder of the recording. In comparison to control cells, 

paxilline treated cells showed predominantly single-spike action potentials under basal 

conditions (Figure 7A). In contrast, there was a significant reduction in CRH/AVP-evoked 

bursting behaviour (Figure 7B). Under basal conditions, paxilline-treated cells had a resting 

membrane potential of -54.2 ± 2.8 mV and a spontaneous event frequency of 0.27 ± 0.20 Hz 

(n = 7). Paxilline treated cells also had a mean event duration of 148 ± 39 ms and a burstiness 

factor of 0.23 ± 0.13. The basal properties of paxilline treated cells were not significantly 

different to untreated cells for all parameters measured. 
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Following CRH/AVP exposure, there was a significant (p = 0.0068) depolarisation from -

54.2 ± 2.8 mV to -46.3 ± 2.9 mV in paxilline-treated cells which was no different from 

controls. Event frequency significantly (p = 0.044) increased to 0.69 ± 0.16 Hz (Figure 7C) 

which was not significantly different to untreated cells (0.86 ± 0.18 Hz). A transition to 

bursting was observed in only 4/8 cells after CRH/AVP stimulation, compared to 7/7 of 

control cells. CRH/AVP was unable to produce a significant increase in mean event duration 

(178 ± 58 ms) in paxilline-treated cells (Figure 7D), which was significantly (p = 0.021) 

reduced compared to untreated cells (564 ± 160 ms). The burstiness factor following 

CRH/AVP stimulation was 0.43 ± 0.15 which was significantly (p = 0.018) reduced 

compared to untreated cells (0.79 ± 0.06). 

BK-knockout mice show reduced bursting compared to wild-types 

Pharmacological blockade of BK channels resulted in a reduction in CRH/AVP-evoked 

bursting activity, as predicted by the model. To further investigate the role of BK channels in 

promoting bursting, cells isolated from BK channel knockout mice (BK
-/-

) were exposed to 

CRH/AVP for three minutes following the same 20 minute protocol. The mean cell 

capacitance of BK
-/-

 cells was 4.16 ± 0.40 pF (n = 6) which was not significantly different 

from wild-type cells (4.89 ± 0.29 pF). 

Current clamp recordings revealed 4/6 BK
-/-

 cells displayed spontaneous activity with 6/6 

showing an increase in activity following CRH/AVP stimulation (Figure 8A & B). In 

comparison to paxilline-treated cells, corticotrophs isolated from BK
-/-

 mice showed no 

difference in basal membrane potential (-53.7 ± 2.3 mV), frequency (0.40 ± 0.19 Hz), mean 

event duration (153 ± 106 ms) or burstiness factor (0.15 ± 0.11) compared to wild-type cells 

(n = 6). CRH/AVP exposure resulted in a significant (p = 0.00074) depolarisation to -45.1 ± 

2.4 mV which was not significantly different to wild-type. CRH/AVP was able to induce a 
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significant (p = 0.046) increase in firing frequency to 2.30 ± 0.79 Hz (Figure 8C). 

Interestingly, peak firing frequency was significantly (p = 0.040) elevated compared with 

controls (0.86 ± 0.18 Hz) representing a 2.7-fold increase in CRH/AVP-evoked activity. 

Following CRH/AVP stimulation, bursting activity was observed in 3/6 cells. Basal mean 

event duration was 153 ± 106 ms which did not significantly increase (305 ± 127 ms) 

following CRH/AVP (Figure 8D). 

These pharmacological and genetic data combined show that CRH/AVP is still able to 

produce a robust increase in electrical activity in BK
-/- 

cells. However, the increase in activity 

was largely associated with an increase in firing frequency rather than a transition to bursting 

supporting a key role for BK channels in the CRH/AVP –induced transition to bursting.  

 

DISCUSSION 

In this paper we have exploited electrophysiological, pharmacological and genetic 

approaches in conjunction with mathematical modelling of anterior pituitary corticotroph 

cells to examine the mechanisms controlling secretagogue-induced electrical excitability. 

Importantly, our data reveal that the hypothalamic neuropeptides CRH and AVP stimulate 

distinct patterns of electrical excitability. CRH promotes bursting behaviour that is dependent 

upon functional BK channels whereas AVP promotes an increase in firing frequency of 

single action potentials through BK-independent pathways likely involving activation of non-

selective conductances. Thus, as distinct stressors can stimulate differential release of CRH 

and AVP and corticotroph excitability is differentially controlled by these two hypothalamic 

secretagogues, the pattern of corticotroph excitability may be distinct for different stressors. 

In this study we examined corticotrophs from male mice expressing GFP under control of the 

POMC promoter to aid visual identification. In agreement with previous studies in female 
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mice (Liang et al., 2011) > 90% of male corticotrophs displayed spontaneous activity with 

predominantly single action potentials that varied widely in frequency (0.01 to 1 Hz) in 

unstimulated conditions using the perforated patch-clamp recording approach. In < 6% of 

corticotrophs we observed very occasional longer bursts of activity alongside single spikes.  

Whether these infrequent longer events in the basal state reflects stochastic channel behaviour 

or reflect the activity of endogenous signaling pathways that control ion channel function, as 

has been reported for the cAMP-signaling pathways in other pituitary cells (Kucka et al., 

2013), remains to be determined. However, the predominant phenotype of unstimulated 

murine corticotrophs was single spike activity of variable frequency that did not differ over 

the 1-4 days in culture. A previous study in mouse corticotrophs reported that corticotrophs 

are not spontaneously active (Lee et al., 2011), however this employed conventional whole 

cell recording that results in intracellular dialysis, a procedure that abolishes spontaneous 

activity in murine corticotrophs (Liang et al., 2011). The modeling, in conjunction with 

electrophysiological analysis, revealed that the resting membrane potential was largely 

determined by the non-selective sodium conductance with single spike activity resulting from 

stochastic fluctuations that bring the voltage above spike threshold. In accordance with other 

anterior pituitary cell types that display single spike activity under basal conditions, 

spontaneous corticotroph activity was unaffected by pharmacological or genetic inhibition of 

the BK channel (Van Goor et al., 2001b; 2001c). 

Stimulation of corticotrophs with physiological concentrations of CRH/AVP resulted in a 

robust depolarisation and increase in event frequency coupled with a transition from 

predominantly single-spike action potentials to complex bursting patterns. The modeling 

analysis revealed that the transition to the complex bursting pattern following combined 

CRH/AVP could be explained primarily by changes in three conductances: the L-type Ca
2+

 

conductance, non-selective cation conductance and the properties of the BK-near 



 

 

This article is protected by copyright. All rights reserved.   23 

 

conductance. Separately CRH and AVP are able to drive an increase in electrical activity of 

the corticotroph but differentially modulate the pattern of electrical activity. These distinct 

patterns result from the differential contribution of these three conductances in CRH and 

AVP-stimulated excitability. Corticotrophs stimulated with CRH alone promoted a transition 

to bursting, an effect dependent upon changes that make the BK-near channels like the BK-

far channels, i.e., a right shifted activation curve and faster activation.  Thus regulation of 

BK-near alone may control bursting, although regulation of gCa and gNS are required for the 

significant depolarisation of resting membrane potential and increase in the frequency of 

spikes and bursts. Indeed, when BK channels are blocked pharmacologically, or deleted 

genetically, stimulation promotes an increase in single spike activity. In contrast, AVP 

stimulated an increase in single spike frequency without a transition to bursting, an effect 

dependent upon gNS in the model. Intriguingly, AVP alone (or CRH/AVP) resulted in an 

increase in event frequency which remains elevated at the end of the washout period whereas 

with CRH alone activity declines during washout. This suggests that AVP prolongs the 

duration of the response to hypothalamic secretagogues and supports the hypothesis that CRH 

mediates a rapid increase in ACTH secretion whereas AVP acts to elicit a plateau phase (Lee 

& Tse, 1997; Tse & Lee, 1998). Clearly the ability of CRH and AVP to promote distinct 

patterns of electrical excitability, and consequently distinct patterns of Ca
2+

 dynamics in 

corticotrophs, is likely to be important for both short-term control of ACTH secretion as well 

as longer-term control of gene transcription and other Ca
2+

-regulated mechanisms in 

corticotrophs. Important in this regard will be a greater understanding of the spatial 

distribution of the ion channels controlling excitability, intracellular Ca
2+

 stores and their 

relationship to secretory vesicle localisation and release.  Cytological and ultrastructural 

analysis of corticotrophs in situ in rat has revealed heterogeneity in corticotroph 

morphologies including „stellate‟ and ovoid cell types (e.g., see Childs, 1987; Yoshimura & 
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Nogami, 1981). The proportion of these morphological distinct corticotrophs differs between 

species (e.g., human corticotrophs tend to be ovoid or round) as well as during development 

and in response to environmental challenge.  Based on electron microscopy analysis ACTH 

containing granules are typically localised toward the cell periphery and in a proportion of 

corticotrophs accumulate in extended processes. More recent analysis of the three 

dimensional architecture of murine corticotrophs from POMC-GFP expressing mice also 

shown heterogeneity in corticotroph morphology as well as extensive anatomical networks in 

situ (Budry et al., 2011). Whether such morphologically distinct corticotrophs display distinct 

properties, regulation or function is not known. However, we saw no difference in behavior 

or responses in the simple stellate and ovoid cells analysed in our short-term cultures. 

How may CRH and AVP control conductances required for stimulation of distinct patterns of 

electrical activity?  CRH and AVP operate through two distinct intracellular signalling 

cascades activated via distinct GPCRs (Antoni, 1986; King & Baertschi, 1990; Stojilkovic et 

al., 2010). CRH exerts its actions exclusively through CRHR1 in corticotroph cells resulting 

in an increase in cytosolic cAMP with subsequent activation of downstream effectors, 

predominantly PKA. In contrast AVP acts through V1B receptors, and results in the cleavage 

of PIP2 to IP3 and DAG, the latter leading to the activation of PKC. Voltage dependent Ca
2+

 

influx via L-type Ca
2+

 channels is essential for CRH and AVP-evoked ACTH secretion. 

CRH, via PKA has been shown in a number of models to stimulate Ca
2+

 influx by activating 

L-type Ca
2+

 channels, most likely via PKA phosphorylation of the channel (Kuryshev et al., 

1996).  Both CRH and AVP have been reported to activate non-selective cation conductances 

(Takano et al., 1996; Mani et al., 2009),  thus providing potential pathways for driving 

cellular depolarisation. Although the molecular identity of these non-selective conductances 

has not been defined, work in other pituitary cell types suggest that it may, in part, be 
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mediated via transient receptor potential (TRP)–like conductances that are also regulated by 

the cAMP/PKA pathway (Tomic et al., 2011). 

Our data reveals that BK channels play an important role in CRH-stimulated generation of 

bursting behaviour in corticotroph cells. Previous studies have identified a correlation 

between the level of BK expression in anterior pituitary cell types and the incidence of 

spontaneous bursting activity (Van Goor et al., 2001b; 2001a).  Furthermore, previous studies 

have suggested that there exist two populations of BK channels involved in the generation of 

bursting (Tsaneva-Atanasova et al., 2007). BK channels located in close proximity to 

voltage-gated Ca
2+

 channels (BK-near) are important in the generation of a burst whereas BK 

channels located distantly from Ca
2+

 channels (BK-far) are required for burst termination. 

Our model predicts that CRH promotes bursting by decreasing the time constant of BK-near 

and shifting the activation curve so that it becomes like BK-far.  

In vivo, global genetic deletion of BK channels results in mice with a blunted HPA axis 

response to acute stress, although the phenotype is likely manifest through changes at 

multiple levels of the HPA axis (Brunton et al., 2007). BK channels are expressed in several 

corticotroph models including murine corticotrophs where at least two splice variants, 

STREX and ZERO, are predominantly expressed (Shipston & Armstrong, 1996; Shipston et 

al., 1999; Brunton et al., 2007; Liang et al., 2011). CRH can inhibit total BK conductance in 

corticotrophs (Shipston et al., 1996; Tian et al., 2008) and in expression systems PKA 

dependent protein phosphorylation of either the STREX or ZERO variant results in channel 

inhibition or activation, respectively (Tian et al., 2001b; 2004; Chen et al., 2005). More 

importantly, the properties of the STREX and ZERO variants correspond to the key features 

of BK-near and BK-far in the model, respectively, and a key effect of PKA phosphorylation 

of STREX is to convert it to a phenotype more closely corresponding to ZERO. Thus, a 

potential mechanism for CRH induced bursting may involve PKA-dependent 
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phosphorylation of STREX variant channels that may underlie the BK-near conductance 

while also potentially enhancing BK-far. Although PKC can also regulate BK channels it can 

only regulate STREX variant channels under defined conditions, including channels that have 

already been phosphorylated by PKA (Zhou et al., 2012), suggesting that combined 

CRH/AVP may have an additional effect on BK-near. Furthermore, as glucocorticoids have 

been shown to prevent PKA-mediated regulation of BK channels (Shipston et al., 1996; Tian 

et al., 1998) it will be of interest to examine whether glucocorticoid feedback may control 

CRH-induced bursting in native mouse corticotrophs. Clearly, alternative explanations for the 

molecular composition of these BK conductances are plausible and warrant future 

investigation.  

Corticotroph cells treated with paxilline or isolated from BK
-/- 

mice showed no difference in 

spontaneous activity compared with controls, which suggests that BK channels are not 

responsible for regulating resting membrane potential or for the generation of spontaneous 

activity in corticotrophs. The model suggests that CRH/AVP promotes bursting primarily 

through BK channels and based on these observations one would predict that in the absence 

of BK, corticotrophs excitability driven by CRH/AVP would result mostly in an increase in 

single-spike frequency. Following CRH/AVP stimulation, both paxilline-treated and BK
-/- 

cells showed an increase in event frequency but failed to significantly transition to bursting. 

In both cases bursting was not completely abolished, which suggests that although BK 

channels greatly facilitate bursting, they are not absolutely necessary. Indeed, this has been 

predicted in a prior modeling study of pituitary cells (Teka et al., 2011). Furthermore, 

bursting was more prevalent in BK
-/-

 cells, compared to WT cells acutely exposed to the BK 

inhibitor paxilline, which could be the result of compensation through changes in expression 

of other ionic conductances. Previous studies have revealed that intermediate conductance 

Ca
2+

-activated potassium channels (IK) may control bursting activity in female corticotroph 
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cells (Liang et al., 2011), although the IK inhibitor TRAM-34 has no effect in male 

corticotrophs. This suggests that male and female corticotrophs display sexually dimorphic 

mechanisms to control bursting.   

In conclusion, we reveal that CRH and AVP regulate distinct patterns of electrical excitability 

in corticotrophs. Importantly, the CRH-induced transition to bursting is dependent upon 

functional BK channels whereas AVP promotes an increase in spike frequency alone that is 

independent of BK channel function. The ability of these neuropeptides to engage distinct 

modes of electrical excitability is likely to have important functional consequences for the 

regulation of corticotrophs in response to different stressors. 
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Figure 1: A) Schematic diagram of the ionic currents in the pituitary corticotroph model. B) 

Steady-state activation functions for the K
+
 (black), Ca-L (green) and K-ir (magenta) 

channels and  C) for the BK-far (red) and BK-near (blue) channels.  
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Figure 2: A) Representative current clamp recording of a corticotroph cell exposed to 0.2 nM 

CRH and 2 nM AVP for three minutes. Under basal conditions B) corticotroph cells display 

predominantly single-spike action potentials which C) transition to complex bursting patterns 

following CRH/AVP exposure. Grey shading indicates membrane potential between -50 mV 

and +10 mV. Summary bar graphs illustrating that stimulation with CRH/AVP results in D) a 

membrane depolarisation coupled with E) an increase in event frequency, F) event duration 

and G) burstiness factor (BF). Data are means ± SEM, (n = 7/group). * p < 0.05, ** p < 0.01, 

*** p < 0.001, Student‟s t-test compared to base values. 
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Figure 3: Adding CRH/AVP transforms spontaneous spiking to bursting in the corticotroph 

model. The CRH/AVP effect is modeled as an increase in gCa from 1.8 nS to 2.2 nS, an 

increase in gNS from 0.1 nS to 0.2 nS, a decrease in     
 from 20 ms to 4 ms and a decrease 

in           
  from 18 μM to 6 μM. 
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Figure 4: Representative traces of corticotroph cells before A) and following B) 0.2nM CRH 

alone or before C) and after D) exposure to 2 nM AVP for 3 min. Summary bar graphs reveal 

that E) individually CRH and AVP can both induce an increase in event frequency but F) 

only CRH is able to produce an increase in event duration which corresponds to a transition 

to bursting behaviour. Data are means ± SEM, (n > 3/group). * p < 0.05, ** p < 0.01, E) 

ANOVA and F) Mann-Whitney U test compared to base values. 

 

 

 

  



 

 

This article is protected by copyright. All rights reserved.   39 

 

Figure 5: Simulations of CRH and AVP alone. A) Basal spiking activity. B) CRH alone 

transforms spiking to high frequency bursting due to changes in the currents ICa (gCa is 

increased from 1.8 nS to 2.2 nS) and IBK-near (    
 is decreased from 20 ms to 4 ms and 

          
 is decreased from 18 μM to 6 μM). C) AVP alone modulates INS (gNS is increased 

from 0.1 nS to 0.2 nS) which leads to fast spiking.  
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Figure 6: Simulations with little or no BK conductance. A) Basal spiking activity in the 

absence of BK conductance. B) CRH/AVP increases spike frequency without bursting when 

there is no BK conductance. C) When some BK conductance remains, CRH/AVP elicits 

some bursting mixed with fast spiking. 
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Figure 7: A) Representative traces of corticotrophs pretreated with 1 M paxilline which B) 

reduces CRH/AVP-evoked bursting behaviour. C) Paxilline has no effect on the ability for 

CRH/AVP to increase event frequency but D) significantly reduces event duration. Data are 

means ± SEM, (n = 7/group). * p < 0.05, ** p < 0.01 ANOVA compared to respective base 

values. 
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Figure 8: A) Representative traces of corticotrophs isolated from BK
-/-

 mice which B) also 

results in a reduction in bursting following CRH/AVP stimulation. C) BK
-/-

 cells show a 

higher event frequency following CRH/AVP compared to wild-type cells but D) show a 

decrease in event duration. Data are means ± SEM, (n > 6/group). * p < 0.05, ** p < 0.01, 

ANOVA compared to respective base values. 
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Table 1: Parameter values for mathematical model of corticotroph excitability 

Parameter Value Parameter Value 

    1.8 nS (basal), 2.2 nS (CRH)           
 18 μM (basal), 6 μM (CRH) 

    0.1 nS (basal), 0.2 nS (AVP)          
 6 μM 

   8.2 nS     3 mV 
      1 nS sm 10 

         2 nS sn 10 
        1 nS sr -1 

    60 mV     
 0.1 mV 

    -10 mV        18 
   -75 mV A 0.15 
   -60 mV    0.12 μM 
   -20 mV f 0.01 
   -5 mV   0.0015 
    

 20 ms (basal), 4 ms (CRH)    5 pA 

    
 4 ms    6 pF 

   40 ms   

 

 

 


