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a b s t r a c t

The impact of eddy potential vorticity fluxes on the dynamical evolution of the flow is obscured by the pres-

ence of large and dynamically-inert rotational fluxes. However, the decomposition of eddy potential vorticity

fluxes into rotational and divergent components is non-unique in a bounded domain and requires the impo-

sition of an additional boundary condition. Here it is proposed to invoke a one-to-one correspondence be-

tween divergent eddy potential vorticity fluxes and non-divergent eddy momentum tendencies in the quasi-

geostrophic residual-mean equations in order to select a unique divergent eddy potential vorticity flux. The

divergent eddy potential vorticity flux satisfies a zero tangential component boundary condition. In a simply

connected domain, the resulting divergent eddy potential vorticity flux satisfies a powerful optimality condi-

tion: it is the horizontally oriented divergent flux with minimum L2 norm. Hence there is a well-defined sense

in which this approach removes as much of the dynamically inactive eddy potential vorticity flux as possible,

and extracts an underlying dynamically active divergent eddy potential vorticity flux. It is shown that this

approach leads to a divergent eddy potential vorticity flux which has an intuitive physical interpretation, via

a direct relationship to the resulting forcing of the mean circulation.

© 2015 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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. Introduction

The fundamental dynamical equations for the ocean can typi-

ally be cast into a flux form in which changes to physical quan-

ities depend upon the divergence of their flux. This reflects the

xistence of integral conservation laws and yields a natural phys-

cal interpretation in terms of the transport of properties such as

eat, salinity, or potential vorticity from one region of the ocean to

nother. However, in practice, the direct analysis of the dynamical

mpact of oceanic fluxes is often obscured by the existence of large

on-divergent flux components, which necessarily have no direct dy-

amical effect. The general resolution of this issue is through the ap-

lication a Helmholtz decomposition, separating the flux into a diver-

ent component, which is dynamically active, and a non-divergent

omponent, which is dynamically inert. Unfortunately, this decom-

osition is inherently non-unique in bounded domains, and is depen-

ent upon a choice of boundary conditions (Fox-Kemper et al., 2003).

This issue is of particular concern in the analysis and compar-

son of eddy parameterisations, which typically specify parame-

erised eddy fluxes. For example, the existence of locally up-gradient
∗ Corresponding author. Tel.: +44 131 6505036.
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uxes does not necessarily rule out the application of down-gradient

ux parameterisations – an appropriately defined divergent eddy

ux may be more closely aligned counter to the mean gradients

e.g. Marshall and Shutts, 1981). Similarly, down-gradient poten-

ial vorticity closures violate momentum conservation constraints in

eneral (Bretherton, 1966; Marshall et al., 2012), but momentum con-

ervation can be restored via the introduction of an appropriate non-

ivergent eddy potential vorticity flux (Eden, 2010).

In a domain average sense, eddy potential vorticity fluxes must

e oriented down the mean gradient in order to ensure net genera-

ion of eddy enstrophy, itself required in order to balance small-scale

nstrophy dissipation. However it has long been recognised that this

rinciple need not hold locally (Harrison, 1978; Holland and Rhines,

980). Local fluxes of eddy enstrophy permit the eddy potential vor-

icity flux to be oriented in any direction. In Marshall and Shutts

1981) eddy fluxes are separated into a component balancing the

ean advection and a residual component. In the barotropic vortic-

ty model of Marshall (1984) it is found that the residual eddy po-

ential vorticity flux thus defined is more strongly aligned with the

ean potential vorticity gradient. The methodology is directly gen-

ralised in Nakamura (1998) and Nakamura and Chao (2002). A re-

ated approach is described in Greatbatch (2001) and Medvedev and

reatbatch (2004), whereby the eddy fluxes are separated into ad-

ective, diffusive, and rotational fluxes, which are then related to the
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1 Here the horizontal skew-gradient is equivalent to a three-dimensional curl via

ẑ × ∇H� = −∇H × (� ẑ) = −∇ × (� ẑ), where ∇ is the three-dimensional gradient

operator.
2 It is assumed that ( . . . ) is a linear projection operator which commutes with the

ẑ× operator and with derivatives with respect to space and time. It is further assumed

that f0, βy, ρ0, and N0 have zero eddy component.
components of the total (mean plus eddy) advective eddy variance

flux in the along and across mean gradient directions. This results in

a decomposition similar to the Temporal Residual Mean I formula-

tion of McDougall and McIntosh (1996) (with the latter replacing the

use of the total advective eddy variance flux with the mean advective

eddy variance flux – see Maddison and Marshall (2013, Appendix B)

for further details). The decomposition of Medvedev and Greatbatch

(2004) is itself generalised in Eden et al. (2007) via the consideration

of higher order eddy budgets.

An alternative approach is to decompose eddy potential vortic-

ity fluxes into rotational and divergent components via the use of

a Helmholtz decomposition (e.g. Lau and Wallace, 1979). In Roberts

and Marshall (2000) ocean eddy fluxes, diagnosed from a primitive

equation model, are decomposed into rotational and divergent com-

ponents via the application of a Helmholtz decomposition, subject to

zero normal divergent flux boundary conditions. The resulting diver-

gent eddy fluxes are in this case found to be rather poorly correlated

with corresponding mean gradients.

Non-uniquness of the Helmholtz decomposition in bounded do-

mains, and consequences for the decomposition of eddy fluxes, is dis-

cussed at length in Fox-Kemper et al. (2003). The zero normal diver-

gent flux boundary condition is only one of countless valid options.

Subject to an alternative choice of boundary conditions it is possible,

in a bounded domain, to extract an eddy flux which has a minimum

norm, or a minimum deviation from the mean gradient (Fox-Kemper

et al., 2003). Without any additional constraints on the problem there

is no way to select a boundary condition from amongst these options.

This article discusses a physically motivated approach for resolv-

ing this ambiguity in the Helmholtz decomposition of eddy poten-

tial vorticity fluxes. Specifically the quasi-geostrophic residual-mean

equations allow the identification of a one-to-one correspondence

between divergent eddy potential vorticity fluxes and non-divergent

eddy momentum tendencies. The definition of the latter leads to an

unambiguous definition of the former, which leads to a unique di-

vergent eddy potential vorticity flux which satisfies a zero tangen-

tial component boundary condition. In a simply connected domain

the resulting divergent eddy potential vorticity flux satisfies a pow-

erful optimality condition: it is the (horizontally oriented) divergent

flux with minimum L2 norm. Hence there is a well-defined sense in

which this approach removes as much of the dynamically inactive

non-divergent eddy potential vorticity flux as possible, and extracts

an underlying dynamically active divergent eddy potential vorticity

flux. It is shown that this approach leads to a divergent eddy poten-

tial vorticity flux which has an intuitive physical interpretation, via a

direct relationship to the resulting forcing of the mean circulation.

The paper proceeds as follows. Section 2 describes the mathe-

matical formulation. The quasi-geostrophic residual-mean equations

are outlined, and the relationship between divergent potential vor-

ticity fluxes and non-divergent momentum tendencies is described.

A stream function tendency, or “force function”, is used to define the

divergent potential vorticity fluxes, and it is shown that in a simply

connected domain the resulting divergent potential vorticity flux

satisfies an optimality property. Resulting divergent eddy potential

vorticity fluxes are diagnosed from a three layer quasi-geostrophic

model in Section 3. The decomposition is compared against the more

conventional use of zero normal divergent potential vorticity flux

boundary conditions, and the utility for the assessment of eddy pa-

rameterisations is considered. The paper concludes in Section 4.

2. Formulation

This section describes the Helmholtz decomposition of arbitrary

potential vorticity fluxes into divergent and non-divergent compo-

nents. Section 2.1 describes the horizontal Helmholtz decomposition,

and discusses the origin of ambiguity in decomposing vector fields

into divergent and rotational components. Section 2.2 introduces the
uasi-geostrophic residual-mean equations, and uses these to the re-

ate divergent potential vorticity fluxes to non-divergent momentum

endencies. In Section 2.3 this relation is used to define a horizon-

al Helmholtz decomposition for potential vorticity fluxes, by relat-

ng the divergent component of potential vorticity fluxes to stream

unction tendencies, or “force functions”, associated with momentum

endencies. The assertion that the decomposition should be linear de-

nes a unique horizontal Helmholtz decomposition for the eddy po-

ential vorticity flux. Finally in Section 2.4 it is shown that, in a simply

onnected domain, the resulting divergent eddy potential vorticity

ux is optimal, in that it is the unique (horizontally aligned) divergent

ddy potential vorticity flux with minimal L2 norm. The resulting di-

gnostic equations for force functions are summarised in Section 2.5.

.1. Horizontal Helmholtz decomposition

The Helmholtz decomposition of a vector field splits the field into

hree components: a divergent component (with zero curl), a rota-

ional component (with zero divergence), and a harmonic component

with both zero curl and zero divergence). This article considers the

orizontal Helmholtz decomposition which, for a vector field F, takes

he form:

= ∇H�F + ẑ × ∇H�F + HF , (1)

here �F and �F are two scalar potentials, the divergent component

s ∇H�F, the rotational component is1ẑ × ∇H�F , and the harmonic

omponent is HF. HF has both zero divergence and zero horizontal

url, ∇H · HF = (ẑ × ∇H) · HF = 0. ∇H = (∂x, ∂y, 0)T is the horizontal

radient operator, and (ẑ × ∇H) · ( . . . ) is the horizontal curl operator.

A horizontal Helmholtz decomposition of F can in principle be

erformed by solving for the two potentials �F and �F, and then

sing these to compute the harmonic residual HF. Taking the diver-

ence and horizontal curl of F leads to two elliptic problems for the

otentials:

2
H�F = ∇H · F (2a)

2
H�F = (ẑ × ∇H) · F. (2b)

The critical issue here is that no boundary conditions have been

mposed on these problems. The selection of alternative boundary

onditions allows harmonic fields to be exchanged between the di-

ergent, rotational, and harmonic components of the decomposition.

ithout the specification of appropriate boundary conditions (e.g. as

iscussed in Denaro (2003)) the Helmholtz decomposition of a vector

eld is, in a bounded domain, not unique.

.2. The quasi-geostrophic residual-mean equations

We now explicitly limit consideration to the quasi-geostrophic

quations. A quantity θ is decomposed into a mean component θ and

n eddy component θ ′ = θ − θ .2 The mean quasi-geostrophic mo-

entum and buoyancy equations are then:

t ug + ug · ∇Hug + f0ẑ × uag + βyẑ × ug

= − 1

ρ0

∇H pag + S − u′
g · ∇Hu′

g, (3a)

t b + ∇H ·
(
ugb

)
+ wagN2

0 = B − ∇H · u′
gb′, (3b)

here ug is the geostrophic velocity, uag is the horizontal compo-

ent of the ageostrophic velocity, and wag is the vertical component
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3 See also Lau and Wallace (1979), where the term “flux streamfunction” is used in

the definition of rotational eddy fluxes.
f the ageostrophic velocity. In the quasi-geostrophic limit the mean

eostrophic and ageostrophic velocities are each non-divergent:

H · ug = ∇H · uag + ∂zwag = 0. (4)

ag is the ageostrophic pressure, b is the buoyancy, f = f0 + βy is the

oriolis parameter, ρ0 is the reference density, N0 is the buoyancy

requency, and S = (Sx, Sy, 0)T and B include additional forcing and

issipation.

As is described below the quasi-geostrophic residual-mean equa-

ions are reached by noting that there is a dynamical equivalence be-

ween horizontal fluxes of buoyancy and vertical fluxes of momen-

um. This can be used to remove the eddy buoyancy flux from the

uoyancy equation, subject to the addition of a compensating term in

he momentum equation (Andrews and McIntyre, 1976; 1978; Nurser

nd Lee, 2004), (Marshall et al., 2012, appendix). See Maddison and

arshall (2013) for an overview of such transformations for the

uasi-geostrophic equations.

Consider the following residual-mean ageostrophic velocity:

∗
ag + w∗

agẑ = uag + wagẑ + 1

f0

∇ ×

⎛
⎜⎝

f0

N2
0

vgb

− f0

N2
0

ugb

1
2N2

0

b2 − u2
g − v2

g

⎞
⎟⎠.

here ∇ is the three-dimensional gradient operator. Substitution

eads to:

t ug + ẑ × ugq + f0ẑ × u∗
ag = − 1

ρ0

∇H pag + S − ẑ × u′
gq′, (5a)

t b + w∗
agN2

0 = B, (5b)

here q is the quasi-geostrophic potential vorticity (QGPV):

= (ẑ × ∇H) · ug + βy + ∂z

(
f0

N2
0

b

)
. (6)

o mean or eddy buoyancy fluxes appear in the residual-mean buoy-

ncy Eq. (5b), and these are instead replaced by the appearance of

ean and eddy potential vorticity fluxes in the residual-mean mo-

entum Eq. (5a).

The residual-mean momentum Eq. (5a) can be expressed:

t ug = −ẑ × F, (7)

ith:

= ugq + u′
gq′ + f0u∗

ag − 1

ρ0

ẑ × ∇H pag + ẑ × S. (8)

ince the mean geostrophic velocity is non-divergent it follows that:

H · (∂t ug) = ∇H · ( − ẑ × F) = 0, (9)

nd hence −ẑ × F is the non-divergent momentum tendency. The

ivergent component of momentum tendencies project onto the

geostrophic terms in the momentum equation, so that the total mo-

entum tendency is horizontally non-divergent.

Taking the horizontal curl of Eq. (7), the z-derivative of Eq. (5b),

nd using (4), leads to the mean QGPV equation:

t q = −∇H · (F − f0u∗
ag) + ∂z

(
f0

N2
0

B

)
. (10)

ence F can now be explicitly identified as a potential vorticity flux.

oreover its horizontal curl vanishes by Eq. (9):

ẑ × ∇H) · F = ∇H · ( − ẑ × F) = 0. (11)

ence the momentum equation defines the non-divergent momen-

um tendency, which then defines a unique horizontally curl free po-

ential vorticity flux F.
.3. The force function and divergent potential vorticity fluxes

It is typical that, given a non-divergent velocity field, one intro-

uce an appropriate corresponding stream function. For example,

iven the non-divergent mean geostrophic velocity ug, the mean

uasi-geostrophic stream function ψ is defined so that ug = ẑ ×
Hψ . Marshall and Pillar (2011) extend this principle to momen-

um tendencies via the introduction of a corresponding force func-

ion.3 For example, given the non-divergent mean geostrophic veloc-

ty tendency ∂t ug, a corresponding force function � is defined so that

t ug = ẑ × ∇H� . The mean stream function tendency and force func-

ion are thus equal up to an arbitrary function of z and t:

= ∂tψ + c(z, t). (12)

e now limit consideration to a simply connected domain with no-

ormal-flow boundary conditions for ug, which leads to Dirichlet

oundary conditions for ψ . In this case it suffices to choose c(z, t) such

hat � = 0 on all lateral boundaries – that is homogeneous Dirichlet

oundary conditions may be applied to the force function � . Note

hat the quasi-geostrophic stream function defines both the horizon-

al momentum tendency and a buoyancy tendency, and hence the

ertical derivative (which depends upon the values on the boundary)

s of dynamical significance, and is set by mass and momentum con-

traints (McWilliams, 1977), (Pedlosky, 1987, section 3.25). The force

unction defines a horizontal momentum tendency only, and hence

uch constraints are not applied (that is, the c(z, t) gauge vanishes

nder the horizontal gradient).

Substitution of the force function definition into Eq. (7) leads to:

t ug = −ẑ × F = ẑ × ∇H�, (13)

hich defines a horizontal Helmholtz decomposition for the mo-

entum tendency −ẑ × F, with zero divergent and harmonic com-

onents. It immediately follows (by applying the ẑ × ( . . . ) opera-

or) that the corresponding potential vorticity flux has a horizontal

elmholtz decomposition:

= −∇H�, (14)

nd hence the potential vorticity flux F has zero rotational or har-

onic component, and is uniquely defined in terms of the force

unction � .

The force function defines a horizontal Helmholtz decomposition

f the total momentum tendency −ẑ × F, and equivalently of the po-

ential vorticity flux F. Since the eddy potential vorticity flux, u′
gq′, is

nly one term in the full potential vorticity flux, a unique definition

or the horizontal Helmholtz decomposition of an arbitrary poten-

ial vorticity flux is required. This is achieved by asserting that the

orce function for the sum of two momentum tendencies must equal

he sum of their respective force functions. That is, a potential vortic-

ty flux and its associated force function must be related via a linear

perator or, equivalently, a potential vorticity flux and its divergent

omponent must be related via a linear operator. This ensures that

he elliptic problems for the force functions associated with differing

omentum tendencies are decoupled.

More precisely, let the operator 	 map an arbitrary momentum

endency G to its force function �G = 	(G), where:

= ∇H�G + ẑ × ∇H�G + HG. (15)

hen given two momentum tendencies G1 and G2 and arbitrary con-

tants a1 and a2 linearity requires that:

(a1G1 + a2G2) = a1	(G1) + a2	(G2). (16)

his linearity principle, combined with the use of homogeneous

irichlet boundary conditions for the total force function � , implies
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4 Qw is related to the Ekman upwelling via wEk = H1Qw/ f0.
that the force function for any momentum tendency is also subject to

homogeneous Dirichlet boundary conditions. Moreover this implies

that the divergent components of potential vorticity fluxes satisfy a

zero tangential component boundary condition.

In particular, the horizontal Helmholtz decomposition for the

eddy potential vorticity flux becomes:

u′
gq′ = −∇H�e + ẑ × ∇H�e + ẑ × He (17a)

and the eddy force function �e is then the solution of:

∇2
H�e = −∇H · u′

gq′ (18a)

�e = 0 on ∂
, (18b)

where ∂
 is the boundary of the horizontal domain 
. The applica-

tion of a horizontal Helmholtz decomposition, its relation to an eddy

force function, and the assertion that the decomposition is linear, are

sufficient to define a unique divergent eddy potential vorticity flux.

2.4. Optimality

The aim of performing a Helmholtz decomposition of the eddy

potential vorticity flux is to remove a rotational and harmonic com-

ponent, which may be large (Griesel et al., 2009; Jayne and Marotzke,

2002; Marshall and Shutts, 1981), so that an underlying dynamically

active divergent component can be exposed. It is therefore mean-

ingful to consider the Helmholtz decomposition which filters out as

much of the eddy potential vorticity flux as possible – that is, the de-

composition which yields the divergent component that is as small

as possible. The eddy force function satisfies exactly this property in

a simply connected domain. That is, among all scalar potentials which

define a divergent component of the eddy potential vorticity flux,

the force function yields the unique divergent flux −∇H�e whose L2

norm
√∫


 ∇H�e · ∇H�e is minimised. See Appendix A for a proof of

this property.

2.5. Diagnostic equations

In summary, writing the residual-mean momentum Eq. (5a) as:

∂t ug =
∑

i

Gi, (19)

then in a simply connected domain the force function associated with

an arbitrary momentum tendency Gi is defined via:

∇2
H�Gi

= (ẑ × ∇H) · Gi, (20a)

�Gi
= 0 on ∂
, (20b)

which defines a horizontally rotational component of the momentum

tendency �̂z × ∇H�Gi
. The eddy force function is then defined via (18),

yielding a horizontally divergent comment of the eddy potential vor-

ticity flux via (17).

For the quasi-geostrophic equations there is an equivalence be-

tween the vertical derivative of buoyancy tendencies (multiplied by

f0/N2
0

) and the horizontal curl of momentum tendencies. That is, any

buoyancy tendency may be transformed into a horizontal momen-

tum tendency (which is defined up to the addition of a horizontally

non-divergent gauge). Hence if the mean QGPV Eq. (10) is written as:

∂t q =
∑

i

Qi, (21)

then a force function associated with each potential vorticity ten-

dency Qi can be defined via:

∇2
H�Qi

= Qi (22a)

�Qi
= 0 on ∂
. (22b)

This, for example, allows for the calculation of a full force function

budget, accounting for any residual arising from a non-zero ∂t q, and

for terms defined directly in terms of a potential vorticity tendency

(such as the wind forcing (26) in the numerical example to follow).
. Numerical example

In this section eddy fluxes are diagnosed from a three layer quasi-

eostrophic model. The eddy fluxes are decomposed using a hori-

ontal Helmholtz decomposition, with the dynamically active diver-

ent component defined using the eddy force function described in

he previous section. The model equations and configuration are out-

ined in Section 3.1. The decomposition of mean potential vortic-

ty fluxes is briefly described in Section 3.2. The decomposition of

ddy fluxes is described in Section 3.3, and this is compared against

decomposition with zero normal divergent flux boundary condi-

ions in Section 3.4. Finally the utility of the eddy force function

or assessment of mesoscale eddy parameterisations is considered in

ection 3.5, by considering a basic down-gradient potential vorticity

arameterisation.

.1. Multi-layer quasi-geostrophic model

The multi-layer quasi-geostrophic equations are (Pedlosky, 1987;

allis, 2006):

t qi + ∇H · (ug,iqi) = ν∇2
Hωi − rδinωi + δi1Qw, (23)

here ug,i = ẑ × ∇Hψi, ωi = ∇2
H
ψi, and where qi and ψ i are the

GPV and stream function for layer i respectively. i = 1 corresponds

o the top layer, and i = n corresponds to the bottom layer. ν is the

aplacian viscosity coefficient, r is the bottom friction coefficient, and

w is a term arising from an upper layer wind forcing.4 δij is the Kro-

ecker delta. The multi-layer QGPV is given by:

1 = ∇2
Hψ1 + βy + s+

1 (ψ2 − ψ1) (24a)

i = ∇2
Hψi + βy + s−

i (ψi−1 − ψi)

+ s+
i (ψi+1 − ψi) for 2 ≤ i ≤ n − 1 (24b)

n = ∇2
Hψn + βy + s−

n (ψn−1 − ψn), (24c)

here n > 1 has been assumed. The stratification parameters are

iven by:

±
i

= f 2
0

Higi±1/2

, (25)

here Hi is the thickness of layer i and where gi+1/2 is the reduced

ravity at the interface between layers i and i + 1. Zero buoyancy

oundary conditions have been applied on the upper and lower in-

erfaces, corresponding to the potential vorticity δ-sheet boundary

ondition treatment described in Bretherton (1966).

The double gyre configuration described in Marshall et al. (2012)

s used (see also Berloff et al. (2007) and Karabasov et al. (2009) for

imilar configurations). This is a three layer configuration in a square

omain of size L = 3840 km, with wind forcing corresponding to:

w =

⎧⎪⎪⎨
⎪⎪⎩

− τ0

ρ0

2π

H1L
A sin

(
π

L
2

+ yv
L
2

+ ym

)
if yv < ym

τ0

ρ0

2π

H1L

1

A
sin

(
π

yv − ym

L
2

− ym

)
otherwise

. (26)

here x, y ∈ [0, L], yv = (y − L/2), and ym = B(x − L/2). A = 0.9 yields

elatively increased wind forcing strength in the northern gyre, and

= 0.2 leads to a north-easterly tilt of the latitude of zero wind stress

url. A partial slip boundary condition (Haidvogel et al., 1992) is ap-

lied, ∇2
H
ψi = −∇Hψ · n̂/α on ∂
, where n̂ is an outward unit nor-

al on the boundary ∂
 of the horizontal domain 
, with a par-

ial slip length scale of 1/α = 120 km. The stratification parame-

ers are chosen so as to yield baroclinic deformation radii of 40 km

nd 23 km. Other parameters are as listed in Table 1. These pa-

ameters correspond to a Munk width of δM = (ν/β)1/3 = 17.1 km
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Fig. 1. The instantaneous potential vorticity for the upper layer (left), middle layer (centre), and lower layer (right) for the double gyre configuration after a 25,000 day integration

from rest. Unless otherwise stated the colour bar limits in this and the following figures indicate the data range.

Table 1

Physical parameters for the double gyre configuration, as per Marshall et al. (2012).

Quantity Symbol Value(s)

Domain size L 3840 km

Meridional planetary vorticity gradient β 2 × 10−11 m−1 s−1

Wind stress coefficient τ 0 0.08 N m−2

Viscosity coefficient ν 100 m2 s−1

Bottom friction coefficient r 4 × 10−8 s−1

Partial slip length scale 1/α 120 km

Layer thickness H1 0.25 km

H2 0.75 km

H3 3 km

Stratification parameters s+
1

H1 = s−
2

H2 2.965 × 10−7 m−1

s+
2

H2 = s−
3

H3 5.603 × 10−7 m−1

Reference density ρ0 1000 kg m−3
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5 There is an additional contribution to the eddy force function due to the eddy po-

tential energy term arising from averaging of (B.2). This contribution is a small numer-

ical artefact (which vanishes in the continuous case), with force function magnitude

less than 0.0042 Sv yr−1 in all layers.
nd a Reynolds number relative to the Sverdrup velocity scale of

e = τ0/(ρ0νH1β) = 160.

The equations are discretised in space using a finite element

iscretisation, with a conforming triangle mesh equipped with

iecewise linear continuous basis functions for all fields (P1 discrete

unction spaces). A structured uniform grid with x- and y-direction

ertex spacing of �x = 7.5 km is used. The equations are discre-

ised in time using third order Adams-Bashforth with a timestep size

f �t = 20 min. The model is implemented using the FEniCS sys-

em (Alnæs et al., 2009; 2014; Kirby, 2004; Kirby and Logg, 2006;

ogg et al., 2012; Logg and Wells, 2010; Ølgaard and Wells, 2010)

ith the time discretisation handled using the approach described

n Maddison and Farrell (2014). The model is described in further de-

ail in Appendix B. In particular the model is constructed so that a

iscrete variant of the Taylor–Bretherton identity (Bretherton, 1966;

ritschel and McIntyre, 2008; Maddison and Marshall, 2013; Plumb,

986; Taylor, 1915; Young, 2012) exists, thus ensuring the existence of

discrete flux-divergence relationship between eddy potential vor-

icity flux and eddy momentum stress.

The equations are integrated for a spinup period of 20,000 days,

nd diagnostics are computed over a further integration of 5,000

ays. The mean is defined via a time mean over this latter 5,000 day

indow, and mean quantities are computed via the summation al-

orithm of Kahan (1965) (see also Higham (1993)). Fig. 1 shows the

nal potential vorticity, and Fig. 2 shows the mean stream function.

he flow consists of a double-gyre, separated by a baroclinic jet which

eparates from the western boundary, and is populated by an active

ddy field.
.2. Force function budget

While this article is principally concerned with the force function

ssociated with the eddy potential vorticity flux, it is possible never-

hess to define a force function for all terms in the QGPV equation, as

escribed in Section 2.5. This is illustrated in Fig. 3, which shows the

arotropic force functions associated with the upper layer wind forc-

ng, the advection of planetary vorticity, and the advection of mean

omentum. Sverdrup balance in the interior and inertial balance in

he upstream jet are evident. The full force function budget was thus

omputed, and it was verified that the diagnosed budget was numer-

cally closed.

.3. Eddy force function

The eddy force function is shown in Fig. 4. The eddy force function

ue to the eddy Reynolds stress and eddy buoyancy flux are shown

n Figs. 5 and 6 respectively5. The eddy Reynolds stress force func-

ion exhibits a dipole structure on either side of the downstream jet,

ith the sign indicating a positive forcing of the downstream mean

et in all layers. In the upstream region and in the upper and mid-

le layers the dipole sign reverses, indicating a negative forcing of

he upstream mean jet in these layers. The upper layer eddy buoy-

ncy flux force function exhibits a quadrapole structure. Towards the

orthern boundary there is an anti-cyclonic forcing of the upper layer,

alanced by a cyclonic forcing of the middle layer, while on the north-

rn side of the downstream jet there is a cyclonic forcing of the up-

er layer, balanced by an anti-cyclonic forcing of the lower layer.

his pattern is mirrored in the southern gyre. This structure indi-

ates that the upper layer mean flow is decelerated by the eddy buoy-

ncy fluxes towards the northern and southern boundaries (a down-

ard flux of momentum input by the wind), but that the upper layer

ownstream mean jet is accelerated by the eddy buoyancy flux. The

epth integrated buoyancy flux force function vanishes, reflecting the

onservation of depth integrated momentum by the eddy buoyancy

ux.

It follows directly from the definition (12) that a non-zero mean

ow is accelerated by a force function if its gradient is oriented in the

irection of the mean stream function gradient, and conversely that a



174 J.R. Maddison et al. / Ocean Modelling 92 (2015) 169–182

-26 -20 -10 0 10 20

H1ψ1 (Sv)
-24 -10 0 10 20 30

H2ψ2 (Sv)
-36 -20 0 20 40 60

H3ψ3 (Sv)

Fig. 2. The mean stream function for the upper layer (left), middle layer (centre), and lower layer (right), for the double gyre configuration, defined using a 5,000 day time mean

after a 20,000 day spinup.

Fig. 3. The barotropic force function associated with the wind forcing (left), advection of planetary vorticity (centre), and advection of mean momentum (right), in units of

Sverdrups per (Julian) year. A contour for the mean upper layer stream function is shown, with value equal to the upper layer stream function boundary value, to indicate the

approximate location of the separating jet. These figures share a common colour scale.

Fig. 4. The eddy force function in the upper layer (left), middle layer (centre), and lower layer (right). The mean stream function contour is as described in Fig. 3.



J.R. Maddison et al. / Ocean Modelling 92 (2015) 169–182 175

Fig. 5. The eddy force function due to eddy Reynolds stress in the upper layer (left), middle layer (centre), and lower layer (right). The mean stream function contour is as described

in Fig. 3.

Fig. 6. The eddy force function due to eddy buoyancy flux in the upper layer (left), middle layer (centre), and lower layer (right). The mean stream function contour is as described

in Fig. 3.
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6 For the purposes of numerical calculations this boundary condition may lead to an

ill posed problem. Instead the alternative boundary condition ( − ∇H�∗
e − u′

gq′) · n̂ =
0 is used. While the additional term vanishes identically for the continuous case, it is
on-zero mean flow is decelerated by a force function if its gradient is

riented against the direction of the mean stream function gradient.

his is reflected in the associated mean energy generation – given

potential vorticity flux F with an associated force function � , the

mplied local mean energy generation per unit volume per unit time

ue to the divergent component of the flux is ρ0∇H� · ∇Hψ . The

ocal mean energy generation due to the eddy Reynolds stress and

ddy buoyancy flux force functions are shown in Figs. 7 and 8, and

ntegrated energy generation is listed in Table 2.

In the domain integral the eddy Reynolds stress decreases the

ean energy, with a total mean energy dissipation of 35 MW.

his is consistent with global barotropic instability. However the

ddy Reynolds stress force function indicates a significant gener-

tion of mean energy in the region of the downstream jet and,

oreover, dissipation on the jet flanks. This suggests that the eddy

eynolds stress both accelerates and sharpens the jet, and is con-

istent with the action of up-gradient momentum fluxes in this

egion.

In the domain integral the eddy buoyancy flux also decreases the

ean energy, with a total mean energy dissipation of 0.66 MW.

he eddy buoyancy flux results in a dissipation of mean

nergy in the upper layer with a power of 5.7 MW, and a gener-

tion of mean energy in the middle and lower layers with powers of

.9 MW and 2.1 MW respectively. This is consistent with the action of
 g
downward flux of momentum, input by the wind, due to baroclinic

nstability. However the eddy buoyancy flux force function indicates

local generation of mean energy in the region of the downstream

et, particularly in the upper layer. This suggests that the downstream

ean jet is forced both the eddy Reynolds stress (local barotropic

tability) and through the eddy buoyancy flux (local baroclinic

tability).

.4. Zero normal divergent flux boundary conditions

An alternative horizontal Helmholtz decomposition for the eddy

otential vorticity fluxes is considered:

′
gq′ = −∇H�∗

e + ẑ × ∇H�∗
e + ẑ × H∗

e, (27)

here now zero normal flux boundary conditions are applied for the

ivergent component:

∇H�∗
e · n̂ = 0, (28)

here n̂ is an outward unit normal on the lateral boundaries of the

omain.6 The divergent eddy potential vorticity flux thus defined
enerally non-zero for a discrete model solution.



176 J.R. Maddison et al. / Ocean Modelling 92 (2015) 169–182

Fig. 7. The mean energy generation due to the divergent potential vorticity flux arising from the eddy Reynolds stress in the upper layer (left), middle layer (centre), and lower

layer (right). The mean stream function contour is as described in Fig. 3. Symmetric colour scale bounds are used in these figures.

Fig. 8. The mean energy generation due to the divergent potential vorticity flux arising from the eddy buoyancy flux in the upper layer (left), middle layer (centre), and lower layer

(right). The mean stream function contour is as described in Fig. 3. Symmetric colour scale bounds are used in these figures.

Table 2

Mean kinetic and potential energy, and the mean energy generation due to the diver-

gent potential vorticity flux defined by the eddy Reynolds stress and eddy buoyancy

flux force functions.

Layer Mean kinetic Mean potential Eddy Reynolds Eddy buoyancy

energy (PJ) energy (PJ) stress forcing (MW) flux forcing (MW)

Upper 52 1,226 −31.9 −5.7

Middle 14 1,310 −2.3 +2.9

Lower 12 84 −0.4 +2.1

Total 77 2,619 −34.6 −0.7
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therefore has the same (i.e. zero) normal component on the bound-

aries as the total eddy potential vorticity flux.7 The resulting scalar

potentials are shown in Fig. 9.

Let De = −∇H�e refer to the divergent eddy potential vorticity

flux defined by the eddy force function, and D∗
e = −∇H�∗

e refer to

the divergent eddy potential vorticity flux which satisfies zero normal

flux boundary conditions. As discussed in Section 2.4 the eddy force

function yields the (horizontally oriented) divergent eddy potential

vorticity flux which has a minimal L2 norm. It can be seen from the

values in Table 3 that D∗ has a significantly larger L2 norm than De
e

7 This boundary condition defines �∗
e up to an arbitrary function of z and t (which

does not affect the implied divergent flux), and this additional freedom is removed by

imposing �∗
e = 0 at x = 0 and y = 0.

t

v

s

fl

b

n all layers and hence is, by this definition, significantly sub-optimal.

hat is, D∗
e includes a harmonic component which is successfully re-

oved in the definition of De.

The consequences of the additional harmonic component can be

een in Fig. 10, which shows the two divergent potential vorticity

uxes in the middle layer. De, 2 indicates a clear eddy potential vortic-

ty flux convergence in the northern gyre and eddy potential vorticity

ux divergence in the southern gyre. This pattern is evident in D∗
e,2

,

ut is obscured, particularly on the eastern side of the domain.

.5. Potential vorticity mixing

A mesoscale eddy parameterision typically specifies (or at least

mplies) a parameterised approximation for the eddy potential vor-

icity flux u′
gq′. However, as only the divergence of this flux appears

n the prognostic QGPV Eq. (10), a direct comparison of parameterised

nd diagnosed eddy potential vorticity fluxes cannot be used to mea-

ure the performance of a parameterisation. While the parameterised

ddy potential vorticity flux may differ from that measured diagnos-

ically, the parameterisation may still perform well if the potential

orticity flux divergence is well approximated. Equivalently, it is pos-

ible to re-interpret any given parameterised eddy potential vorticity

ux as a parameterisation not for the full eddy potential vorticity flux,

ut an appropriate divergent component.
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Fig. 9. The scalar potential �∗
e for the divergent eddy potential vorticity flux, defined using zero normal flux boundary conditions, in the upper layer (left), middle layer (centre),

and lower layer (right). The mean stream function contour is as described in Fig. 3.

Fig. 10. Middle layer potential vorticity flux vectors. Left: full eddy potential vorticity flux. Centre: divergent eddy potential vorticity flux defined using a horizontal Helmholtz

decomposition with zero normal divergent flux boundary conditions. Right: divergent eddy potential vorticity flux defined using the eddy force function. Every tenth value (in each

direction) of the vector fields are shown, with the red vector indicating a magnitude of 10−5 cm s−2. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)

Table 3

Normalised L2 norm of the eddy potential vorticity flux in each layer, and of divergent compo-

nents of the eddy potential vorticity flux defined using zero normal flux boundary conditions

−∇H�∗
e , and using the eddy force function −∇H�e . The percentages in brackets indicate the ra-

tio of a divergent potential vorticity flux norm to the total potential vorticity flux norm in a given

layer. The normalised L2 norm is, for a vector field v, given by ‖v‖ =
√∫


 v · v/
√∫


 1, where 
 is

the horizontal domain.

Layer
∥∥u′

g,i
q′

i

∥∥ (cm s−2)
∥∥D∗

e,i

∥∥ =
∥∥∇H�∗

e,i

∥∥ (cm s−2) ‖De,i‖ = ‖∇H�e,i‖ (cm s−2)

Upper 2.86 × 10−4 4.21 × 10−5 (14.7%) 2.24 × 10−5 (7.8%)

Middle 8.75 × 10−6 2.46 × 10−6 (28.1%) 1.82 × 10−6 (20.8%)

Lower 3.02 × 10−6 1.22 × 10−6 (40.6%) 7.08 × 10−7 (23.5%)
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8 Note that even with a constant diffusivity this does not imply that the divergent

part of the flux, defined using the force function, is equal to −κ∇H q, as q is not equal

to a constant on the boundary.
This issue can be resolved by comparing parameterised and diag-

osed eddy potential vorticity flux divergences directly. However the

ddy potential vorticity flux divergence is typically a noisy field, re-

ulting from the differentiation required for its calculation. The eddy

orce function depends only upon the eddy potential vorticity flux

ivergence, but the inverse elliptic operator inherent in its definition

nsures that this is a much smoother field. Moreover the optimal-

ty property discussed in Section 2.4 and Appendix A ensures that,

mong all possible scalar potentials (defined using alternative bound-

ry conditions), there is a well defined sense in which the eddy force

unction is the smoothest – it yields the scalar potential with mini-

um gradient (specifically the eddy force function is a scalar poten-

ial with minimum H1 semi-norm). Hence the eddy force function
0
rovides a natural means of comparing parameterised and diagnosed

ddy potential vorticity fluxes.

A down-gradient potential vorticity mixing parameterisation is

onsidered:

′
gq′ = −κ∇Hq, (29)

here κ is the eddy potential vorticity diffusivity8. The utility of

he force function is illustrated for a basic potential vorticity mix-

ng parameterisation, with a layer-wise constant eddy diffusivity
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Fig. 11. Parameterised eddy force functions resulting from a down-gradient potential vorticity mixing parameterisation with a constant eddy potential vorticity diffusivity in each

layer. The diffusivities are chosen so as to minimise the L2 mismatch between the parameterised and diagnosed eddy force functions in each layer. The mean stream function

contour is as described in Fig. 3.

Table 4

L2 optimal constant eddy potential vorticity diffusivies, which minimise the L2 mismatch between parameterised

and diagnosed eddy force functions in each layer. The normalised L2 norm is, for a vector field v, given by ‖v‖ =√∫

 v · v/

√∫

 1, where 
 is the horizontal domain.

Layer

Eddy diffusivity κ i

(m2 s−1)

Normalised L2 error∥∥	
(
ẑ × κi∇H qi

)
− �e,i

∥∥ (Sv yr−1)

Relative L2 error∥∥	
(
ẑ × κi∇H qi

)
− �e,i

∥∥/‖�e,i‖
Upper 46 263 99.8%

Middle 481 78 54.2%

Lower −789 160 84.5%
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considered. The parameterisation is not expected to perform well

without allowing for some spatial variation of the diffusivity, but this

enables the straightforward derivation of optimal constant diffusivi-

ties in each layer which minimise the L2 mismatch between the pa-

rameterised and diagnosed eddy force functions.

The resulting parameterised eddy force functions are shown in

Fig. 11, and the diffusivities are listed in Table 4. The middle layer

parameterised eddy force function is able to represent the diagnosed

eddy force function with a relative L2 error of 54.2%. This is rather en-

couraging – even a basic constant eddy diffusivity is able to achieve

a partial representation of the eddy force function. However the up-

per layer parameterised eddy force function matches the diagnosed

eddy force function poorly, with a relative L2 error of 99.8%. That

is, in the upper layer the parameterised eddy force function is very

nearly L2 orthogonal to the diagnosed eddy force function, and the

mean potential vorticity gradient is providing little information on

the structure of the eddy force function here. The lower layer L2 mis-

match has an intermediate value of 84.5%, although the diffusivity is

negative.

4. Conclusions

The consideration of the dynamical influence of eddy fluxes in the

ocean and atmosphere is always complicated by the need to consider

the possible presence of rotational fluxes, which in practice can be

large and obscure any underlying divergent component. A meaning-

ful decomposition into divergent and rotational components, while

intuitively desirable, is in general difficult to achieve – it must neces-

sarily involve a choice among a family of valid decompositions, which

differ through a choice of boundary conditions.

In this article this issue has been addressed by relating non-

divergent momentum tendencies to eddy potential vorticity fluxes.

The momentum equation comes ready equipped with a Helmholtz
ecomposition, including a unique choice of boundary condition, ei-

her through the definition of the non-divergent velocity or through

he definition of the pressure. Since potential vorticity fluxes are

erived from the momentum and thermodynamic equations, the

elmholtz decomposition provided by the momentum equation, in-

luding the associated boundary condition, can be carried through to

he potential vorticity equation, yielding a decomposition of potential

orticity fluxes.

This procedure has been applied to the quasi-geostrophic equa-

ions. The definition of the quasi-geostrophic stream function pro-

ides a boundary condition for the horizontal Helmholtz decom-

osition of the total momentum tendency in the quasi-geostrophic

esidual-mean equation. This can be used to define a stream func-

ion tendency, or “force function”, which in turn defines the non-

ivergent component of the total momentum tendency. The ten-

ency can be directly related to a potential vorticity flux, and the

orce function then defines the divergent component of this flux. A

nique decomposition for individual potential vorticity fluxes is ar-

ived at by asserting that the decomposition should be linear – in

articular this asserts that one should be able to resolve force func-

ions (or equivalently non-divergent momentum tendencies) via di-

ect summing. The divergent component of the eddy potential vortic-

ty flux thus defined satisfies a zero tangential component boundary

ondition.

This results in a unique Helmholtz decomposition for eddy po-

ential vorticity fluxes, with an explicit relation between the diver-

ent eddy potential vorticity flux and the eddy momentum forcing.

here is therefore an immediate intuitive link between the dynami-

ally active divergent component of the eddy potential vorticity flux

nd the local forcing of the mean flow. In a simply connected domain

his approach results in the unique (horizontally oriented) divergent

ddy potential vorticity flux with minimum L2 norm, and hence there

s a well-defined sense in which the decomposition is optimal, and
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xtracts the smallest possible underlying divergent eddy potential

orticity flux.

The decomposition has been applied to eddy potential vortic-

ty fluxes diagnosed from a three-layer quasi-geostrophic model.

xpected features of the eddy-mean-flow interaction were identi-

ed. The eddy Reynolds stress force function indicated a forcing of

he mean jet, consistent with the action of up-gradient momentum

uxes. In some parts of the domain the eddy buoyancy flux force

unction indicated a downward flux of momentum input by the wind,

lthough local forcing of the upper layer downstream mean jet was

bserved. These diagnostics suggested that the mean jet was forced

hrough both local barotropic and baroclinic stability, although the

ystem was found to be globally both barotropically and baroclini-

ally unstable.

The decomposition has been compared against an alternative

elmholtz decomposition of potential vorticity fluxes, with zero

ormal divergent flux boundary conditions. This latter decomposi-

ion lacks a direct relationship between divergent potential vorticity

uxes and local mean momentum forcing, obscuring the interpreta-

ion. In a simply connected domain it also necessarily defines a larger

ivergent component (in an L2 sense) than that defined using the

ddy force function, obscuring structure in the resulting divergent

otential vorticity fluxes.

Finally it has been proposed that the eddy force function is suit-

ble for assessment and comparison of eddy parameterisations. The

eed to consider rotational flux components means that it is not ap-

ropriate to compare parameterised and diagnosed eddy potential

orticity fluxes directly, but rather some comparison based upon po-

ential vorticity flux divergences must be considered. The potential

orticity flux divergence itself is a noisy field, due to the differen-

iation inherent in its definition. However the eddy force function,

hich is directly related to the eddy potential vorticity flux diver-

ence through a linear operator, is a much smoother field. Indeed in a

imply connected domain it is, among all possible scalar potentials

efining a divergent eddy potential vorticity flux, a potential with

inimum H1
0

semi-norm, and hence in this sense is the smoothest.

Parameterised and diagnosed eddy force functions were com-

ared for a basic down-gradient potential vorticity flux closure with

constant eddy diffusivity. The results were very encouraging in the

iddle layer, where even the use of a constant diffusivity yielded par-

ial agreement. However in the upper layer the parameterised and di-

gnosed eddy force functions were very nearly orthogonal (in an L2

ense), suggesting that, in a down-gradient potential vorticity flux pa-

ameterisation in this layer, much of the structure of the eddy fluxes

ust be represented not by the mean potential vorticity gradient, but

y the eddy diffusivity. A detailed analysis which considers spatially

arying diffusivities is the subject of an in-preparation article.

While it is suggested that H1
0

optimality of the eddy force func-

ion is useful from the perspective of parameterisation assessment, it

hould be noted that the corresponding local divergent eddy fluxes

annot be used directly to infer a local potential vorticity diffusivity.

pecifically, the eddy enstrophy equation is (assuming �e can be de-

ned so that the harmonic component He = 0):

t� + ∇ · (ug�) = −u′
gq′ · ∇Hq + R

= ∇H�e · ∇Hq − (ẑ × ∇�e) · ∇Hq + R, (30)

here � = q′q′/2 and where R includes forcing and dissipation. Inte-

ration and application of no-normal-flow boundary conditions leads

o:

t

∫



� =
∫



∇H�e · ∇Hq −
∫
∂


q(ẑ × ∇�e) · n̂ +
∫



R. (31)

he second right-hand-side term need not vanish, and

ence in a statistically steady state there is no require-

ent for the first and third terms on the right-hand-side

o balance. An alternative, and appropriately invariant,
orm is:

t

∫



� =
∫



q∇2
H�e +

∫



− R, (32)

lthough this does not suggest a local method for diagnosing a diffu-

ivity. Note that for the decomposition subject to zero normal diver-

ent flux boundary conditions the corresponding boundary integral

oes vanish:

t

∫



� =
∫



∇H�∗
e · ∇Hq +

∫



R. (33)

The approach described in this article can be generalised to the

ydrostatic primitive equations via application of the decomposition

f Marshall and Pillar (2011). In this case vector force functions are

efined and, carrying the corresponding non-divergent momentum

endencies through to the Ertel potential vorticity equation, this de-

nes filtered Ertel potential vorticity fluxes. While in the general this

oes not define a Helmholtz decomposition of the potential vorticity

uxes (the resulting filtered potential vorticity fluxes are not gener-

lly curl free) this nevertheless yields dynamically consistent filtered

otential vorticity fluxes with a simple intuitive relation to local mo-

entum forcing.

Note that, as pointed about by Fox-Kemper (pers. comms.), we

ave here considered only the dynamically active divergent compo-

ent of fluxes of potential vorticity. For the very special case of the

uasi-geostrophic equations subject to zero buoyancy boundary con-

itions on the upper and lower surfaces, an intuitive divergent com-

onent of the eddy buoyancy fluxes can be defined (see Appendix C).

or more general cases, as discussed in Bachman and Fox-Kemper

2013), the non-uniqueness of divergent eddy fluxes remains, and the

pproach described in this article does not appear to provide much

uidance.

Since eddy enstrophy is dissipated on small scales it is known that

he eddy potential vorticity flux and mean potential vorticity gradi-

nt must on average be anti-correlated (that is, their L2 inner product

s negative). In this sense eddy fluxes must be down-gradient on aver-

ge, and hence must mix potential vorticity on average. Considerable

ffort has previously been invested in studying the degree to which

he eddy potential vorticity flux is locally oriented down-gradient,

ut the inherent freedom to remove arbitrary dynamically inactive

otational fluxes means that this analysis is fraught with ambiguity.

his issue affects the study of eddy parameterisations more generally

if only divergent fluxes are to be parameterised, then it must first

e decided which divergent flux is relevant. Here it is proposed that

he divergent flux be defined in a manner consistent with the link be-

ween the momentum and potential vorticity dynamics. This yields a

mooth eddy force function which it is further proposed is suitable

or assessment of parameterised eddy potential vorticity flux diver-

ences.
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Appendix A. The L2 minimal divergent eddy potential vorticity

flux

Consider a horizontal Helmholtz decomposition of the eddy po-

tential vorticity flux

u′
gq′ = −∇H�∗

e + ẑ × ∇H�∗
e + ẑ × H∗

e, (A.1)

The divergent potential vorticity flux, −∇H�∗
e , is defined by the

scalar potential �∗
e , which is a solution of the Poisson equation

∇2
H�∗

e = −∇H · u′
gq′. (A.2)

Consider weak solutions �∗
e ∈ H1(
) which satisfy∫



∇Hζ · ∇H�∗

e = −
∫



∇Hζ · u′
gq′ ∀ζ ∈ H1

0(
), (A.3)

where 
 is the horizontal domain. In this appendix it is proved that,

among all such weak solutions, homogeneous Dirichlet boundary

conditions in the problem for �∗
e yield the unique divergent poten-

tial vorticity flux −∇H�∗
e which has minimal L2 norm. That is, up the

addition of an arbitrary function of z and t (which has zero horizon-

tal gradient), there exists a unique solution to (A.3) which minimises√∫

 ∇H�∗

e · ∇H�∗
e , and moreover this optimal solution is equal to a

constant on all boundaries. This optimality property follows from the

following:

Lemma. Let 
 ⊂ R
d, F ∈ [L2(
)]d, and consider a real Hilbert space

U⊆H1(
). Define the following:

=
{
φ ∈ U :

∫



φ = 0

}
(A.4a)

0 = U ∩ H1
0(
) (A.4b)

1 =
{
φ ∈ U :

∫



∇ζ · ∇φ = 0 ∀ζ ∈ V0

}
(A.4c)

=
{
φ ∈ V :

∫



∇ζ · ∇φ =
∫



∇ζ · F ∀ζ ∈ V0

}
. (A.4d)

Then there exists a unique φ ∈ W which minimises the functional

J : W → R where:

J(φ) = ‖φ‖2
H1

0
= ‖∇φ‖2

L2 =
∫



∇φ · ∇φ. (A.5)

Moreover there exists a unique c ∈ R such that φ + c ∈ V0.

Proof. All φ ∈ W can be separated into particular and homogeneous

parts, φ = φ0 + φ1, where φ0 ∈ V0 and φ1 ∈ V1. Then∫



∇ζ · ∇φ =
∫



∇ζ · F ∀ζ ∈ V0

⇐⇒
∫



∇ζ · ∇φ0 +
∫



∇ζ · ∇φ1 =
∫



∇ζ · F ∀ζ ∈ V0

⇐⇒
∫



∇ζ · ∇φ0 =
∫



∇ζ · F ∀ζ ∈ V0,

where the final line follows from the definition of V1. By the Lax-

Milgram lemma this is satisfied by a unique φ0 ∈ V0. Now define a

functional Ĵ : V1 → R where

Ĵ
(
φ′

1

)
=

∫



∇(
φ0 + φ′

1

)
· ∇(

φ0 + φ′
1

)
. (A.6)

This functional is minimised if and only if the Gâteaux derivative van-

ishes in all directions η ∈ V1

dĴ
(
φ′

1;η
)

= 0 ∀η ∈ V1

⇐⇒
∫



∇η · ∇φ0 +
∫



∇η · ∇φ′
1 = 0 ∀η ∈ V1

⇐⇒
∫



∇η · ∇φ′
1 = 0 ∀η ∈ V1

⇐⇒
∫



∇φ′
1 · ∇φ′

1 = 0.
here the penultimate line follows from the definition of V1. Hence

he φ′
1 which minimise Ĵ are L2 equivalent to constant functions.

= φ0 + φ1 ∈ W implies that J is minimised by φ1 = − ∫

 φ0. Hence

unique φ ∈ W minimises J, and moreover φ + ∫

 φ0 ∈ V0. �

ppendix B. Multi-layer quasi-geostrophic model

The Taylor–Bretherton identity relates eddy potential vorticity

ux to eddy momentum stress (Bretherton, 1966; Dritschel and

cIntyre, 2008; Maddison and Marshall, 2013; Plumb, 1986; Taylor,

915; Young, 2012). Unaveraged (relative) potential vorticity flux and

omentum stress can be similarly related, allowing the multi-layer

GPV equation to be written in the following form:

t qi + ∇H ·
(
fi + ug,iβy

)
= ν∇2

Hωi − rδinωi + δi1Qw, (B.1)

here symbols are as defined in Section 3.1 and where the potential

orticity flux fi has x- and y-components

fx,i = ∂xNi + ∂y(Mi + Pi) + Ri−1/2 − Ri+1/2

Hi

(B.2a)

fy,i = ∂x(Mi − Pi) − ∂yNi + Si−1/2 − Si+1/2

Hi

, (B.2b)

ith advective momentum flux components

i = 1

2

(
v2

g,i − u2
g,i

)
(B.3a)

i = ug,ivg,i, (B.3b)

otential energy

1 = 1

4
s+

1 (ψ2 − ψ1)
2

(B.4a)

i = 1

4

[
s−

i (ψi−1 − ψi)
2 + s+

i (ψi+1 − ψi)
2
]

for 2 ≤ i ≤ n − 1

(B.4b)

n = 1

4
s−

n (ψn−1 − ψn)
2
, (B.4c)

nd advective buoyancy flux components:

1/2 = Rn+1/2 = S1/2 = Sn+1/2 = 0 (B.5a)

i+1/2 = 1

2

(
ug,i + ug,i+1

)
His

+
i (ψi − ψi+1) for 1 ≤ i ≤ n − 1 (B.5b)

i+1/2 = 1

2

(
vg,i + vg,i+1

)
His

+
i (ψi − ψi+1) for 1 ≤ i ≤ n − 1. (B.5c)

g, i and vg, i are the x- and y- components of ug, i, respectively. The

otential vorticity flux fi thus defined is a (vertically discrete) di-

ergence of a (vertically discrete) rank two momentum stress ten-

or. Averaging of these equations leads to a vertically discrete Taylor–

retherton identity.

Given discrete function spaces V⊂H1(
) and V0 = V ∩ H1
0(
), and

onsidering times t ∈ [0, τ ], the equations are discretised in space via

he following semi-discrete formulation:

ind qi ∈ V × C1([0, τ ]) such that



φ0∂t qi −

∫



∇Hφ0 ·
(
fi + ug,iβy

)

= −
∫



∇Hφ0 · ν∇Hωi −
∫



φ0δinrωi

+
∫



φ0δi1Qw ∀φ0 ∈ V0, i ∈ {1, . . . , n} (B.6a)

ind ψi ∈ {v ∈ V × C0([0, τ ]) : v − ci ∈ V0

×C0([0, τ ])}, c ∈ C0([0, τ ]) such that:
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−
∫



∇Hφ0 · ∇Hψ1 +
∫



φ0s+
1 (ψ2 − ψ1)

=
∫



φ0(q1 − βy) ∀φ0 ∈ V0 (B.6b)

−
∫



∇Hφ0 · ∇Hψi +
∫



φ0[s−
i
(ψi−1 − ψi) + s+

i
(ψi+1 − ψi)]

=
∫



φ0(qi − βy) ∀φ0 ∈ V0, i ∈ {2, . . . , n − 1} (B.6c)

−
∫



∇Hφ0 · ∇Hψn +
∫



φ0s−
n (ψn−1 − ψn)

=
∫



φ0(qn − βy) ∀φ0 ∈ V0 (B.6d)

n∑
i=1

Hiψi ∈ V0 × C0([0, τ ]) (B.6e)

∫



2(ψi+1 − ψi)

Hi + Hi+1

= 0 ∀i ∈ {1, . . . , n − 1} (B.6f)

ind ωi ∈ V × C0([0, τ ]) such that∫



φωi +
∫
∂


φ
1

α
ωi = −

∫



∇Hφ · ∇Hψi ∀φ ∈ V, i ∈ {1, . . . , n}
(B.6g)

here ∂
 is the boundary of the horizontal domain 
. A discrete

otential vorticity flux and discrete momentum stress are defined via

ontinuous Galerkin discretisations of (B.2)–(B.5).

The partial slip boundary condition (Haidvogel et al., 1992) is ap-

lied weakly on ωi in (B.6g). The partial slip boundary condition

s implicitly imposed weakly on qi via (B.6a), (24), and (B.6g) (see

arrett (1978); Campion-Renson and Crochet (1978), Gresho and Sani

2000, section 3.12.4) for related discussions on boundary condi-

ions for the weak form 2D stream function-vorticity equations). The

o-normal-flow boundary condition is applied strongly in (B.6b)–

B.6d), and a homogeneous Dirichlet boundary condition is applied

trongly on the barotropic stream function via (B.6e). Mass conser-

ation (McWilliams, 1977); (Pedlosky, 1987, section 3.25) is imposed

ia (B.6f).

The equations are discretised in time using third order Adams-

ashforth, started with a forward Euler step and a second order

dams-Bashforth step, yielding second order accuracy in time. The

artial slip boundary condition is treated by first computing q∗,m
i

∈ V,

hich do not satisfy the partial slip boundary condition, via:

ind G∗,m
i

∈ V such that:



φG∗,m

i
−

∫



∇Hφ ·
(
fm

i + um
g,iβy

)
= −

∫



∇Hφ · ν∇Hωm
i

−
∫



φδinrωm
i +

∫



φδi1Qw ∀φ ∈ V, i ∈ {1, . . . , n} (B.7a)

∗,m+1
i

= qm
i + �t

M−1∑
j=0

γ jG
∗,m− j
i

∀i ∈ {1, . . . , n}, (B.7b)

here a superscript m indicates a field at discrete time level m, �t is

he timestep size, and the γ j are coefficients of an M-step Adams-

ashforth scheme. The q∗,m+1
i

are used to compute the ψm+1
i

and
m+1
i

. Corrected qm+1
i

are then computed from the ψm+1
i

and ωm+1
i

ia (24). The procedure is equivalent, except for errors associated

ith finite numerical precision, to a full solve for all fields, and hence

he weak partial-slip boundary condition is correctly applied without

he expense of a large coupled solve.
The model is implemented using the FEniCS system (Alnæs et al.,

009; 2014; Kirby, 2004; Kirby and Logg, 2006; Logg et al., 2012; Logg

nd Wells, 2010; Ølgaard and Wells, 2010) with the time discretisa-

ion optimised using the approach described in Maddison and Farrell

2014). The elliptic problem for the ψm+1
i

is treated via projection

nto discrete baroclinic modes, which leads to n decoupled elliptic

roblems. All linear systems are solved with LU decomposition using

MFPACK (Davis, 2004) via PETSc Balay et al. (2015a, 2015b, 1997).

ppendix C. Eddy buoyancy stress function

Consider a horizontal Helmholtz decomposition of the quasi-

eostrophic eddy buoyancy fluxes in the form

f0

N2
0

u′
gb′ = −∇Hχeb + ẑ × ∇Hξeb + ẑ × �eb, (C.1)

ith ∇H · �eb = (ẑ × ∇H) · �eb = 0. As for the eddy force function,

he requirement that the elliptic problem for χ eb defines a linear op-

rator is imposed. The application of zero buoyancy boundary condi-

ions, as per Bretherton (1966), combined with this linearity property,

mplies that χeb = 0 on the upper and lower surfaces.

It follows from (22) that in a simply connected domain the force

unction associated with the eddy buoyancy fluxes is given by

2
H�eb = −∂z∇H ·

(
f0

N2
0

u′
gb′

)
(C.2a)

eb = 0 on ∂
. (C.2b)

In particular:

2
H�eb = ∇2

H∂zχeb. (C.3)

t is thus natural to define

eb =
∫

�ebdz (C.4)

ith χeb = 0 at the upper and lower surfaces. χ eb is then a stress func-

ion, in the sense that the vertical derivative of the stress function

ields a force function, whose horizontal curl yields an associated ro-

ational momentum tendency.

For the multi-layer quasi-geostrophic equations this leads to

eb,i+1/2 = −
i∑

j=1

Hj�eb, j

=
n∑

j=i+1

Hj�eb, j. (C.5)

ith this definition the left panel of Fig. (6) is equal to the negative

ddy buoyancy stress function on the interface between the upper

nd middle layers, and the right panel of Fig. (6) is equal to the eddy

uoyancy stress function on the interface between the middle and

ower layers.
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