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Palladium-activated prodrug therapy is an experimental therapeutic approach that relies on
the unique chemical properties and biocompatibility of heterogeneous palladium catalysis
to enable the spatially-controlled in vivo conversion of a biochemically-stable prodrug into
its active form. This strategy, which would allow inducing local activation of systemically
administered drug precursors by mediation of an implantable activating device made of
Pd0, has been proposed by our group as a way to reach therapeutic levels of the active
drug in the affected tissue/organ while reducing its systemic toxicity. In the seminal
study of such an approach, we reported that propargylation of the N1 position of 5-
fluorouracil suppressed the drug’s cytotoxic properties, showed high stability in cell culture
and facilitated the bioorthogonal restoration of the drug’s pharmacological activity in the
presence of extracellular Pd0-functionalized resins. To provide additional insight on the
properties of this system, we have investigated different N1-alkynyl derivatives of 5-
fluorouracil and shown that the presence of substituents near the triple bond influence
negatively on its sensitivity to palladium catalysis under biocompatible conditions.
Comparative studies of the N1- vs. the N3-propargyl derivatives of 5-fluorouracil revealed
that masking each or both positions equally led to inactive derivatives (>200-fold reduction
of cytotoxicity relative to the unmodified drug), whereas the depropargylation process
occurred faster at the N1 position than at the N3, thus resulting in greater toxigenic
properties in cancer cell culture.

Keywords: chemotherapeutics, palladium, prodrugs, bioorthogonal chemistry, 5-fluorouracil

INTRODUCTION
Based on the ability to interfere with and/or halt cell division
at different stages, cytotoxic agents of various classes have been
used as chemotherapeutic drugs in antineoplastic treatment reg-
imens for over 70 years (Chabner and Roberts, 2005; DeVita and
Chu, 2008). Although highly effective, the mode of action of
these drugs also renders them particularly harmful to healthy tis-
sues with a high rate of cell regeneration. As a result, the clinical
dose of most cytotoxic drugs is limited by their lack of selectiv-
ity for cancer cells (Chabner and Roberts, 2005; DeVita and Chu,
2008). To reinvigorate the medical use of approved drugs without
a satisfactory safety profile and promising drug candidates that
failed in clinical trials due to pharmacokinetic issues, one of the
main strategies followed by medicinal chemists is to transform
chemotherapeutic agents into latent prodrugs that become active
in specific organs or tissues by a biological / metabolic mediator
(Huttunen et al., 2008; Rautio et al., 2008).

Many different classes of prodrugs have been developed to date
(Huttunen et al., 2008; Rautio et al., 2008), resulting in clinically
approved therapeutics (e.g., the dopamine precursor levodopa

Jenner, 2008) and numerous prodrug candidates and advanced
technologies currently in preclinical and clinical development
(such as directed enzyme prodrug therapies, which are based
on the metabolic activation of drug precursors through enzymes
artificially introduced into the organism Xu and McLeod, 2001).
While most popular prodrugs become active through a bio-
chemical process, significant progress on the use of benign non-
biological means to activate drug precursors (Castano et al.,
2006; Versteegen et al., 2013; Clavel et al., 2014; Velema et al.,
2014; Weiss et al., 2014a,b; Zanda, 2014) mandate the con-
sideration of expanding the classical prodrug concept and the
distinction between two fundamentally different classes of pro-
drugs: biolabile and bioorthogonal prodrugs. Since the term
biolabile is used to define compounds prone to transforma-
tion by biological means, the first class would represent all
drug precursors belonging to the classical definition of prodrug
(Huttunen et al., 2008; Rautio et al., 2008). On the other hand,
inspired by the concept of bioorthogonality developed by Bertozzi
in the early 2000’s (Saxon and Bertozzi, 2000; Agard et al.,
2004; Sletten and Bertozzi, 2011), bioorthogonal prodrugs would
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encompass physiologically-stable drug precursors subject to acti-
vation by non-native, non-biological, non-perturbing means,
such as benign light sources (Castano et al., 2006; Velema et al.,
2014), metal-free click chemistry (Versteegen et al., 2013), mild
hyperthermia (Clavel et al., 2014) or bioorthogonal organometal-
lic (BOOM) reactions (Weiss et al., 2014a,b; Zanda, 2014).

As a first-in-class prodrug approach, our group is investigat-
ing the application of metallic palladium as an activating device
to modulate the cytotoxic activity of antineoplastic drugs in a
bioorthogonal, spatially-controlled manner. The strategy is based
on the unique catalytic properties and biocompatibility of hetero-
geneous Pd0 both in vitro and in vivo (Yusop et al., 2011; Unciti-
Broceta et al., 2012; Weiss et al., 2014a,b), which has enabled the
in situ BOOM activation of precursors of 5-fluorouracil (5FU)
and gemcitabine in cancer cell culture (Weiss et al., 2014a,b). The
surgical insertion of benign palladium-functionalized implants in
the disease area (e.g., advanced tumors) in combination with the
general administration of palladium-labile prodrugs, could not
only decrease systemic levels of the active drug (thereby reducing
unwanted toxicity in healthy tissues and organs), but also enhance
cancer treatment by generating greater drug levels localized at
the disease site than could ever be safely reached by systemic
chemotherapy.

A palladium-labile prodrug needs to be designed in such a
manner that it only undergoes chemical activation by mediation
of this metal. Consequently, the nature of the chemical group used
to mask the drug together with the position to be functionalized,
are essential features which will determine the overall success of

the strategy. In practice, based on the drug’s mode of action and
the selective catalytic properties of Pd0, masking strategies are
designed to accomplish three goals: (i) eliminating drug’s phar-
macological properties; (ii) minimizing prodrugs’ susceptibility
to enzymatic cleavage; and (iii) rendering them “cleavable” by
palladium catalysis.

Due to its long clinical history, its well-established mode of
action and its narrow therapeutic index (Longley et al., 2003),
cytotoxic 5FU was our first choice to explore this challenging
strategy (Weiss et al., 2014a). 5FU is as an antimetabolite that
undergoes intracellular metabolization on the NH group in posi-
tion 1 to generate cytotoxic nucleotides (Figure 1A), which are
the direct cause of 5FU pharmacological activity (Longley et al.,
2003). Blocking the formation of active 5FU metabolites by func-
tionalization of the N1 position was thus the rationale followed to
chemically mask the cytotoxic properties of the drug. Moreover,
due to 5FU’s lactam/lactim tautomery (see Figure 1B), the N1
position of the ring possesses a pKa value of ∼9 (Jang et al.,
2001), an unusually low value for NH groups that prompted
us to explore chemical groups uncharacteristic for NH protec-
tion chemistries. The use of allyl, propargyl and benzyl moieties
[alkyl groups widely employed in protection strategies for pheno-
lic OH (pKa ∼ 9) (Weiss et al., 2014a)] was investigated on the
basis on their anticipated biochemical stability and their poten-
tial lability in the presence of palladium (Weiss et al., 2014a). As
expected, inactive prodrugs were successfully obtained by alkyla-
tion with each of the three groups employed. Remarkably, only
the propargyl derivative displayed high sensitivity to palladium in

FIGURE 1 | (A) Intracellular bio-functionalization of 5FU to generate cytotoxic metabolites. (B) 5FU its conjugate bases and their theoretical pKa values (Jang
et al., 2001).
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biocompatible conditions, allowing the chemical rescue of 5FU’s
pharmacological activity in cancer cell culture by the mediation
of extracellular Pd0-functionalized resins.

Herein we report a follow-on study to provide additional
insights on the properties, scope and optimization of this novel
prodrug system. A set of N1-alkynyl derivatives of 5FU have
been developed and their sensitivity to palladium catalysis tested
under biocompatible conditions. In addition, biological studies
have been carried out to determine the difference in bioorthogo-
nality and palladium sensitivity of the N1- vs. the N3-propargyl
derivatives of 5FU.

MATERIALS AND METHODS
GENERAL METHODS
Chemicals and solvents were purchased from Fisher Scientific,
Sigma-Aldrich or VWR International Ltd. NMR spectra were
recorded at ambient temperature on a 500 MHz Bruker Avance
III spectrometer. Chemical shifts are reported in parts per mil-
lion (ppm) relative to the solvent peak. Rf values were determined
on Merck TLC Silica gel 60 F254 plates under a 254 nm UV
source. Purifications were carried out by flash column chro-
matography using commercially available silica gel (220–440
mesh, Sigma-Aldrich).

SYNTHESIS OF Pd0-RESINS
Pd0-functionalized resins were prepared from NovaSyn TG
amino resin HL (0.39 mmol NH2/g) as previously described
(Weiss et al., 2014a).

SYNTHESIS OF 5-FLUORO-1-PROPARGYLURACIL (3a)
Compound 3a was prepared from 5-fluorouracil, 1, as previously
described (Weiss et al., 2014a).

SYNTHESIS OF N1-FUNCTIONALIZED 5FU DERIVATIVES 3b-e
5FU (100 mg, 0.77 mmol) and DBU (115 μl, 0.77 mmol) were
dissolved in acetonitrile (2 ml), and the mixture was cooled
down to 4◦C in an ice bath. The corresponding alkyl bro-
mide (0.77 mmol) was added dropwise and the reaction mixture
allowed to warm up to room temperature. The mixture was
stirred overnight, the solvents removed in vacuo and the resulting
crude purified via flash chromatography (eluent: 1.5% MeOH in
DCM), to yield compounds 3b-e as pure white solids.

1-(1-BUTYN-3-YL)-5-FLUOROURACIL (3b)
75 mg, 54% yield. Rf = 0.55 (10% MeOH in DCM). 1H NMR
(500 MHz, DMSO) δ 11.89 (s, 1H), 8.15 (d, J = 6.8, 1H), 5.40–
5.30 (m, 1H), 3.61 (d, J = 2.4, 1H), 1.47 (d, J = 7.0, 3H). 13C
NMR (126 MHz, DMSO) δ 157.01 (d, J = 26.0, C), 148.69,
140.19 (d, J = 231.4, C), 125.97 (d, J = 33.8, CH), 81.34, 76.53
(CH), 42.92 (CH), 20.47 (CH3). MS (ESI) m/z 181.0 [M-H]−.
HRMS (FAB) m/z calcd for C8H6O2N2F1, 181.0412; found
181.0419.

1-(2-BUTYN-1-YL)-5-FLUOROURACIL (3c)
63 mg, 45% yield. Rf = 0.53 (10% MeOH in DCM). 1H NMR
(500 MHz, DMSO) δ 11.86 (s, 1H), 8.11 (d, J = 6.7, 1H), 4.41
(q, J = 2.3, 2H), 1.82 (t, J = 2.4, 3H). 13C NMR (126 MHz,
DMSO) δ 157.30 (d, J = 25.9, C), 149.04, 139.71 (d, J = 230.2,

C), 128.93 (d, J = 33.8, CH), 81.61, 73.39, 37.30 (CH2), 3.07
(CH3). MS (ESI) m/z 181.0 [M-H]−. HRMS (FAB) m/z calcd for
C8H6O2N2F1, 181.0412; found 181.0419.

1-(2-PENTYN-1-YL)-5-FLUOROURACIL (3d)
56 mg, 37% yield. Rf = 0.53 (10% MeOH in DCM). 1H NMR
(500 MHz, DMSO) δ 11.86 (s, 1H), 8.10 (d, J = 6.6, 1H), 4.43
(t, J = 2.2, 2H), 2.21 (qt, J = 7.5, 2.2, 2H), 1.06 (t, J = 7.5, 3H).
13C NMR (126 MHz, DMSO) δ 157.31 (d, J = 25.9, C), 149.03,
139.71 (d, J = 230.2, C), 128.87 (d, J = 33.7, CH), 87.05, 73.53,
37.27 (CH2), 13.45 (CH3), 11.60 (CH2). MS (ESI) m/z 195.0 [M-
H]−. HRMS (FAB) m/z calcd for C9H8O2N2F1, 195.0573; found
195.0575.

1-(3-PHENYL-1-PROPARGYL)-5-FLUOROURACIL (3e)
66 mg, 35% yield. Rf = 0.66 (10% MeOH in DCM). 1H NMR
(500 MHz, DMSO) δ 11.92 (s, 1H), 8.22 (d, J = 6.6, 1H), 7.49–
7.36 (m, 5H), 4.73 (s, 2H). 13C NMR (126 MHz, DMSO) δ 157.35
(d, J = 25.9, C), 149.12, 139.83 (d, J = 230.4, C), 131.53 (CH),
129.01 (d, J = 34.0, CH), 129.04 (CH), 128.69 (CH), 121.60,
84.38, 83.79, 37.64 (CH2). MS (ESI) m/z 243.0 [M-H]−. HRMS
(FAB) m/z calcd for C13H8O2N2F1, 243.0575; found 243.0574.

SYNTHESIS OF 5-FLUORO-3-PROPARGYLURACIL (6)
N-t Boc protection of N1 position
5FU (100 mg, 0.77 mmol) was dissolved in a 2:1 mixture of
acetonitrile and DMF (3 ml). Boc2O (252 mg, 1.16 mmol) and
DMAP (19 mg, 0.15 mmol) were subsequently added to the mix-
ture and stirred overnight at room temperature. The solvents
removed in vacuo and the resulting crude purified via flash chro-
matography (eluent: hexane/ EtOAc 3:1), to yield compound 4
as a white solid (70 mg, 40%). 1H NMR (500 MHz, DMSO) δ

10.60 (s, 1H), 7.64 (d, J = 4.7, 1H), 1.62 (s, 9H). 13C NMR
(126 MHz, DMSO) δ 159.21 (d, J = 24.4, C), 150.70, 139.59 (d,
J = 224.8, C), 123.02 (d, J = 31.6, CH), 61.45, 29.35 (CH3).

Propargylation of N3 position
N1-tBoc-protected compound 4 (56 mg, 0.24 mmol), propargyl
bromide (31 μl, 0.29 mmol) and DBU (55 μl, 0.36 mmol) were
dissolved in dry DCM (2 ml), and the mixture stirred at room
temperature for 4 h. The solvents were removed in vacuo and the
reaction crude purified via flash chromatography (eluent: hex-
ane / EtOAc 5:1), to yield compound 5 as an colorless oil (43 mg,
67%). 1H NMR (500 MHz, CDCl3) δ 7.40 (d, J = 4.6, 1H), 4.45
(d, J = 2, 2H), 2.49 (t, J = 2.6, 1H), 1.68 (s, 9H). 13C NMR
(126 MHz, CDCl3) δ 159.08 (d, J = 24.3, C), 150.31, 140.51 (d,
J = 233.9, C), 123.13 (d, J = 33.9, CH), 76.22, 75.88 (CH), 64.18,
38.01 (CH2), 29.76 (CH3).

N1-Boc deprotection
Compound 5 (28 mg, 0.1 mmol) and K2CO3 (7 mg, 0.05 mmol)
were dissolved in MeOH (2 ml), and the mixture stirred at room
temperature for 3 h. The solvents were removed in vacuo and
the resulting crude purified via flash chromatography (eluent:
3% MeOH in DCM), to yield compounds 6 as a colorless solid
(12 mg, 71%). 1H NMR (500 MHz, MeOD) δ 7.61 (d, J = 5.2,
1H), 4.64 (dd, J = 2.5, 0.5, 2H), 2.57 (t, J = 2.5, 1H). 13C NMR
(126 MHz, MeOD) δ 158.82 (d, J = 25.8, C), 151.06, 141.35 (d,
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J = 229.9, C), 125.88 (d, J = 32.1, CH), 78.65, 71.94 (CH), 31.06
(CH2). MS (ESI) m/z 167.0 [M-H]−. HRMS (FAB) m/z calcd for
C7H4O2N2F1, 167.0262; found 167.0252.

SYNTHESIS OF 1,3-DIPROPARGYL-5-FLUOROURACIL (7)
5FU (100 mg, 0.8 mmol) and DBU (345 μl, 2.3 mmol) were dis-
solved in dry DMF (2 ml) under a nitrogen atmosphere, and the
mixture was cooled down to 4◦C in an ice bath. Propargyl bro-
mide (170 μl, 1.6 mmol) was added dropwise and the reaction
mixture allowed to warm up to room temperature. The mix-
ture was stirred overnight, the solvents removed in vacuo and
the resulting crude purified via flash chromatography (eluent:
1.5% MeOH in DCM), to yield compounds 7 as a colorless solid
(136 mg, 86%). 1H NMR (500 MHz, CDCl3) δ 7.60 (d, J = 5.3,
1H), 4.72 (d, J = 2.4, 2H), 4.61 (d, J = 2.6, 2H), 2.56 (t, J = 2.6,
1H), 2.20 (t, J = 2.5, 1H). 13C NMR (126 MHz, CDCl3) δ 156.19
(d, J = 26.0, C), 148.92, 140.26 (d, J = 237.3, C), 125.33 (d, J =
33.7, CH), 77.24, 76.74 (CH), 75.47, 71.51 (CH), 38.18 (CH2),
31.27 (CH2). MS (ESI) m/z 435.2 [2M+Na]+. HRMS (FAB) m/z
calcd for C10H6O2N2F1, 205.0419; found 205.0414.

Pd0-MEDIATED 5FU SYNTHESIS IN BIOCOMPATIBLE CONDITIONS
Prodrugs 3a-e, 6 and 7 (100 μM in DMSO) were dissolved in
PBS (1 mL) with 1 mg of Pd0-resins and shaken at 1,200 rpm and
37◦C in a Thermomixer. Reaction crudes were monitored at 0, 6,
and 24 h by analytical HPLC (Agilent) using the UV detector at
280 nm to avoid the detection of PBS salts. Eluent A: water and
formic acid (0.1%); eluent B: acetonitrile, formic acid (0.1%);
A/B = 95: 5 to 5: 95 in 3 min, isocratic 1 min, 5: 95 to 95: 5 in
1 min, isocratic 1 min.

Study of the influence of pH in the conversion rate
The pH of the PBS buffer was adjusted with 1 N solutions of
hydrochloric acid or sodium hydroxide using a pH meter (Mettler
Toledo). Reactions and analyses were carried out at pH 6.5, 7.0,
and 7.5 as described above.

CELL CULTURE
Cell lines were grown in culture media supplemented with serum
(10% FBS) and L-glutamine (2 mM) and incubated in a tissue
culture incubator at 37◦C and 5% CO2. Human pancreas ade-
nocarcinoma BxPC-3 cells (a kind gift from Dr Mark Duxbury)
were cultured in Roswell Park Memorial Institute (RPMI) media.
Human breast adenocarcinoma MCF7 cells (purchased from
ATCC), human ovarian carcinoma PE04 cells (a kind gift from
Prof Charlie Gourley), human colorectal carcinoma HCT116 cells
(a kind gift from Dr Van Schaeybroeck) and human breast can-
cer R-SKBR3a cells were all cultured in Dulbecco’s Modified Eagle
Media (DMEM).

CELL VIABILITY STUDIES
HCT116 cells were seeded in a 96 well plate format at 1000
cells/well and incubated for 48 h before treatment. Each well
was then replaced with fresh media containing compound 1,
3a, 6, or 7 and incubated for 5 days. Untreated cells were incu-
bated with DMSO (0.1% v/v). PrestoBlue™ cell viability reagent
(10% v/v) was added to each well and the plate incubated for
1 h. Fluorescence emission was detected using a PerkinElmer

EnVision 2101 multilabel reader (Perkin Elmer; excitation filter
at 540 nm and emissions filter at 590 nm). All conditions were
normalized to the untreated cells (100%) and curves fitted using
GraphPad Prism using a sigmoidal variable slope curve.

TIME-LAPSE PROLIFERATION STUDY OF DRUG vs. BOOM ACTIVATION
ASSAYS OF COMPOUNDS 3a, 6, AND 7
HCT116 cells were plated as described before and each well
was then replaced with fresh media containing: Pd0-resins
(0.67 mg/mL) with DMSO (0.1% v/v); 3a, 7, or 6 (100 μM)
with DMSO (0.1% v/v); 5FU 1 (100 μM) with DMSO (0.1%
v/v); or combination of 0.67 mg/mL of Pd0-resins + 3a, 7, or 6
(100 μM) with DMSO (0.1% v/v). Untreated cells were incubated
with DMSO (0.1% v/v). Each well was imaged every 3 h over
5 d under standard incubation conditions using an IncuCyte™
ZOOM microscope (placed inside the incubator). Imaged-based
analysis of cell confluence was carried out using the IncuCyte™
software.

Pd0-MEDIATED DEALKYLATION OF COMPOUNDS 3a AND 6 IN CELL
CULTURE
HCT116 cells, were plated as described above. BxPC-3 were plated
at 2500 cell / well, MCF7 cells were plated at 2000 cells/well,
PE04 cells were plated at 1000 cells / well and R-SKBR3a cells
were plated at 156 cells/well. Each well was then replaced with
fresh media containing: Pd0-resins (0.67 mg/mL) with DMSO
(0.1% v/v); 3a, or 6 (3, 10, 30, 100 μM) with DMSO (0.1%
v/v); 5FU 1 (3, 10, 30, 100 μM) with DMSO (0.1% v/v); or
combination of 0.67 mg/mL of Pd0-resins + 3a or 6 (3, 10, 30,
100 μM) with DMSO (0.1% v/v). Untreated cells were incubated
with DMSO (0.1% v/v). Cells were incubated with drugs for 5
days. PrestoBlue™ cell viability reagent (10% v/v) was added to
each well and the plates were incubated between 60 and 180 min
depending on the cell line. Fluorescence emission was detected
and results normalized as described above.

RESULTS AND DISCUSSION
Pd0-FUNCTIONALIZED RESINS AS HETEROGENEOUS CATALYSTS FOR
BOOM CHEMISTRY
Based on the potential toxicity of palladium as a contaminant
in the food chain, most of the early examples of palladium
substrates employed in chemical biology were colorimetric and
fluorogenic probes used to detect palladium in biological sam-
ples (Li et al., 2013). Nevertheless, our group (Yusop et al., 2011;
Unciti-Broceta et al., 2012; Weiss et al., 2014a,b; Zanda, 2014)
and others (Li et al., 2011, 2014; Michel et al., 2012; Spicer
et al., 2012; Spicer and Davis, 2013) have recently shown that
the catalytic properties of palladium are biocompatible and its
cytotoxicity controllable to a certain degree, thus allowing the
development of various BOOM reactions in cell culture. While
soluble palladium species can display significant cytotoxic prop-
erties (Environmental Health Criteria, 2002), metallic palladium
is the safest form of this transition metal (Environmental Health
Criteria, 2002; Rushforth, 2004). On this basis, we investigated
the development of solid devices functionalized with palladium
nanoparticles as a way to eliminate the free mobility of palladium
and induce spatially-controlled chemical reactions.

Frontiers in Chemistry | Medicinal and Pharmaceutical Chemistry July 2014 | Volume 2 | Article 56 | 4

http://www.frontiersin.org/Medicinal_and_Pharmaceutical_Chemistry
http://www.frontiersin.org/Medicinal_and_Pharmaceutical_Chemistry
http://www.frontiersin.org/Medicinal_and_Pharmaceutical_Chemistry/archive


Weiss et al. Palladium-mediated activation of N-alkynyl derivatives of 5-fluorouracil

To mediate BOOM heterocatalysis outside cells, we devel-
oped a functional device consisting of palladium nanoparticles
entrapped in a biocompatible polymer matrix. These palladium-
functionalized resins (Pd0-resins) are larger than cells (150 μm in
average diameter) and formed by a co-polymer matrix made of
polyethylene glycol grafted onto polystyrene resin (Weiss et al.,
2014a), two polymers that have been extensively employed in
the manufacture of a variety of biomedical devices (Alcantar
et al., 2000; Sanchez-Martin et al., 2005; Dhaliwal et al., 2011;
Unciti-Broceta et al., 2011). As previously reported (Weiss et al.,
2014a,b), we have demonstrated the high biocompatibility of
these catalyst-entrapped polymeric structures both in vitro and
in vivo. On this basis, Pd0-resins (containing 4.4% w/w in Pd)
were used as the extracellular activating device in the studies
subsequently described.

DESIGN, SYNTHESIS AND Pd0-LABILITY OF N1-ALKYNYL DERIVATIVES
OF 5FU
The clinical application and effective therapeutic response to sev-
eral chemotherapeutics with a cytotoxic mechanism-of-action,
including 5FU, is severely limited by numerous dose-limiting tox-
icities in patients. As previously reported (Weiss et al., 2014a),
functionalization of the N1 position of 5FU with a propargyl
group resulted in a bioorthogonal prodrug (3a) prone to con-
version into 5FU in the presence of Pd0-resins both in PBS
(biocompatible solution) and cell culture; a strategy that could
allow for the reduction of systemic side effects of 5FU treatment.
In order to investigate whether other alkynes could increase the
rate of the dealkylation process, a set of N1-alkynyl derivatives
of 5FU were synthesized following the procedure described in
Figure 2. Subsequently, to study the susceptibility of derivatives
3b-e to palladium catalysis, Pd0-resins were used as the hetero-
geneous catalyst and palladium-labile 5-fluoro-1-propargyluracil
(3a) as positive control (Figure 3A). Compounds 3a-e (100 μM)
and Pd0-resins [1 mg/mL, (Pd0) = 400 μM] were dispersed in
PBS (isotonic buffered solution at pH =7.4), incubated at 37◦C
for 24 h and the reaction crudes analyzed by HPLC using a UV
detector. While compound 3a led to 100% conversion in less
than 24 h, compounds 3b-e generated considerably lower levels
of 5FU, 1 (see small table in Figure 3A). The susceptibility to pal-
ladium of compounds 3c-e (containing a methyl, ethyl and benzyl
group at the terminal carbon of the triple bond, respectively) was
inversely proportional to the size of the moiety, indicating that the
lesser the accessibility to the triple bond, the slower the reaction
occurs. 24 h reaction of compound 3b with Pd0-resins resulted
in a 26% conversion into 5FU, a clear improvement over deriva-
tives 3c-e but significantly inferior to the reactivity of 3a toward
palladium. These results indicate that steric hindrance is a limit-
ing factor in the reaction kinetics and, therefore, suggest that the
non-substituted propargyl group is the optimal choice to generate
palladium-labile bioorthogonal probes and prodrugs.

N1- vs. N3-PROPARGYL DERIVATIVES OF 5FU: SENSITIVITY TO Pd0

Due to 5FU tautomerism, the NH groups at positions 1 and 3
possess relatively low pKa values. Since, according to the litera-
ture (Jang et al., 2001), the N3 position has a lower pKa value than
the N1, we hypothesized that propargylation of the N3 position

FIGURE 2 | Synthesis of compounds 3a-e (upper panel) and

compounds 6, 7 (lower panel).

could in principle generate derivatives with improved sensitiv-
ity to palladium catalysis. Importantly, the absence of a free NH
group in that position would impede the formation of hydro-
gen bonding interactions between the substrate and the active
site of the enzyme (UMP synthase) (Wittmann et al., 2008), thus
reducing the efficacy of the phosphorylation process and the gen-
eration of 5FU’s cytotoxic nucleotides (Figure 1A). On this basis,
bioorthogonal prodrugs could also be generated by chemical
masking of that particular position. To investigate this, 5-fluoro-
3-propargyluracil (6) and 1,3-dipropargyl-5-fluorouracil (7) were
synthesized from 5FU (see Figure 2) and their susceptibility to
palladium catalysis tested as described above (Figures 3A,B).
Interestingly, palladium-mediated dealkylation of compound 6
underwent depropargylation at a slower rate than compound 3a,
with a conversion rate of approx. 85% after 24 h incubation. As
observed in Figure 3B (right panel), 24 h reaction of bis-protected
compound 7 with Pd0-resins resulted in the generation of 5FU
(26%) and derivative 6 (43%), thus confirming that dealkylation
of the propargyl group proceeds faster at the N1 position than
the N3 one. While the theoretical pKa values of each group (Jang
et al., 2001) would have predicted the opposite outcome, the N3
is flanked by two oxo groups and the N1 by only one, underlin-
ing again the relevance of steric and conformational effects on the
depropargylation kinetics.

N1- vs. N3-PROPARGYL DERIVATIVES OF 5FU: INFLUENCE OF PH ON
THE Pd0-MEDIATED DEALKYLATION OF COMPOUNDS 3a AND 6
Due to hypoxia and glucose deprivation, solid tumors are esti-
mated to have a pH in the order of 0.5 units lower than healthy
tissues (Tannock and Rotin, 1989; Xu et al., 2002). Since the pro-
drug strategy proposed herein is expected to have application
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FIGURE 3 | (A) Palladium-mediated dealkylation of compounds 3a-e, 6, and
7 and table containing conversion percentages (relative values calculated by
chromatographic peak integration). Each of the drug precursors (100 μM)
were incubated with 1 mg/mL of Pd0-resins in PBS at 37◦C for 24 h and the

crude reaction analyzed by HPLC. (B) HPLC chromatograms (UV detector
280 nm) of 100 μM PBS solutions of compounds 3a (left panel), 6 (central
panel), and 7 (right panel) treated with Pd0-resins at 37◦C for 0 h (top) and
24 h (bottom).

Table 1 | Influence of pH in the palladium-mediated dealkylation of

compounds 3a and 6.

Prodrug t = 6 h t = 24 h

pH = 6.5 pH = 7.0 pH = 7.5 pH = 6.5 pH = 7.0 pH = 7.5

3a 28.9% 33.7% 44.4% 100% 100% 100%

6 21.3% 33.4% 39.1% 75.6% 76.9% 80.6%

Conversion percentages were calculated by chromatographic peak integration.

against locally-advanced tumors, it was suggested to examine
the effect of pH changes in the reaction conversion rate. Hence,
palladium-mediated depropargylation of compounds 3a and 6
was carried out as above described at various pH (6.5, 7.0, and
7.5), and reactions analyzed by HPLC at different timepoints
(6 and 24 h). As shown in Table 1, the pH had a noticeable effect
on the conversion rates, particularly after short incubation peri-
ods. While propargyl cleavage of compound 3a was completed in
less than 24 h at each of the pH’s tested, the conversion rate after
6 h was higher at a slightly basic pH (7.5). The same trend was
observed for compound 6. Importantly, even though the reaction
is enhanced at slightly basic pH, this study demonstrates that the
N-depropargylation process is compatible with the range of pH
expected to be found in vivo.

N1- vs. N3-PROPARGYL DERIVATIVES OF 5FU: STUDY OF
BIOORTHOGONALITY
To evaluate whether the cytotoxic activity of the 5FU prodrugs
were successfully masked, dose response viability studies were

carried out with HCT116 colorectal cancer cells. Data analysis
confirmed that, likewise for prodrug 3a, compounds 6 and 7 did
not display antiproliferative properties at any of the concentra-
tions used (Figure 4A), thus confirming that propargylation of
any NH group of 5FU result in the elimination of the drug’s
pharmacological properties.

N1- vs. N3-PROPARGYL DERIVATIVES OF 5FU: Pd0-MEDIATED
PRODRUG ACTIVATION IN CANCER CELL CULTURE
In situ generation of cytotoxic 5FU (1) from prodrugs 3a, 6 and
7 was first investigated with HCT116 cells in standard cell cul-
ture conditions using Pd0-resins as the extracellular activating
device. Prodrugs (100 μM) and Pd0-resins (0.67 mg/mL) were
incubated independently (negative controls) or in combination
(BOOM activation assay), and unmodified 5FU (1) used as
the positive control. Because each prodrug/Pd0-resin combina-
tion was expected to become phenotypically active at a different
rate (see above studies), automated kinetic analysis of cell pro-
liferation rate over time was used as a screening strategy to
determine and rank the efficiency of distinct prodrug/Pd0-resin
combinations. To enable the temporal visualization and quan-
tification of the experiment, cell growth was monitored for 5
days by time-lapse imaging using an IncuCyte ZOOM device
(Weiss et al., 2014a,b). To obtain the maximal differentiation
among the experiments, the cell seeding density was optimized
to reach confluency at day 5. While neither the prodrugs nor the
Pd0-resins exhibited cytotoxicity, combinations of prodrugs with
Pd0-resins displayed significant toxigenic effect (Figure 4B), con-
firming that the three prodrugs were bioorthogonally converted–
at least partly– into cytotoxic 5FU (1). The enhanced sensitivity
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FIGURE 4 | (A) Study of prodrugs’ bioorthogonality. Semi Log dose
response curves and calculated EC50values of prodrugs 3a, 6, and 7 in
comparison to unmodified 5FU (1) in HCT116 cells. Cell viability was
measured at day 5 using PrestoBlue™ reagent. Error bars: ± SD from
n = 3. (B) Bioorthogonally-activated toxigenic effect in HCT116 cancer
cell culture: Real-time cell confluence study. The cell population was
monitored for 120 h using an IncuCyte ZOOM system in an incubator

(5% CO2 and 37◦C). Drug/prodrug concentration: 100 μM. Pd0-resins
concentration: 0.67 mg/mL. Error bars: ± SD from n = 3. (C)

Phase-contrast images of cells after 5 days of treatment with: 100 μM
of 5FU (top left); 0.67 mg/mL Pd0-resins + 100 μM of 7 (bottom left);
0.67 mg/mL Pd0-resins + 100 μM of 3a (top right); 0.67 mg/mL
Pd0-resins + 100 μM of 6 (bottom right). Pd0-resins are identified as
spheres of 150 μm (average diameter).

of prodrug 3a to BOOM heterocatalysis was evidenced by a sig-
nificantly smaller bell-shaped curve than those caused by either
prodrug 6 and 7 in the presence of the palladium source. As
shown in Figure 4C (phase contrast images of cells after 5 days
of treatment), the antiproliferative effect of prodrugs 6 and 7
incubated with Pd0-resins was significantly lower than that of
5FU (1), whereas prodrug 3a generated similar cytotoxic effect
to the unmodified drug. In the presence of Pd0-resins, only
compounds 3a and 6 induced less than 50% of cell viability
at 100 μM.

On the basis of the toxigenicity demonstrated by prodrugs 3a
and 6 in combination with the heterogeneous palladium source,
these prodrugs were selected for further exemplification of the
strategy with a range of human cancer cell types, i.e., colorectal
cancer HCT116 cells, pancreatic adenocarcinoma BxPC-3 cells,
ovarian carcinoma PE04 cells and two types of breast cancer
cell lines: ER-overexpressing MCF7 cells and R-SKBR3a cells,
a derivative of HER2-overexpressing SKBR3 cells with induced
resistance to AZD8931 (Creedon et al., in press). Once again,
low cell seeding numbers were used to augment the effect of 5FU
treatment and thus impose more discriminative conditions to the
rate of drug generation. In accordance with previous observa-
tions, although both prodrugs 3a and 6 showed high bioorthogo-
nality in the absence of palladium at the range of concentrations
used, prodrug 3a proved again to possess enhanced susceptibility
to palladium-mediated activation by displaying superior toxi-
genic effect in all the cell lines tested (Figure 5). Nevertheless, it is
noteworthy that prodrug 3a/and prodrug 6/Pd0-resins combina-
tions induced similar cytotoxic phenotype in pancreatic cancer
BxPC-3 cells (Figure 5B). This is considered to be due to the
high sensitivity of this cell line to 5FU treatment, thus requiring

the generation of relatively low levels of drug to induce a strong
antiproliferative effect. On the contrary, in the presence of cancer-
ous cells with higher resistance to 5FU such as HCT116, MCF7,
and PE04, the difference in the activation rate (= toxigenicity
Weiss et al., 2014b) between both prodrug/activator combina-
tions was highly discriminative, thus evidencing the lower tox-
igenic effect enabled by the prodrug 6/Pd0-resins combination
(Figures 5A,C,E). This study strongly indicates that the rate of
activation is a key limiting factor for the translation of palladium-
labile prodrugs into the clinic. To successfully achieve sustained
and effective cytotoxic levels of drug and be able to control tumor
growth, the kinetics of the activation process needs to superior to
the rate of cancer cell proliferation.

CONCLUSIONS
In conclusion, a set of 2-alkyn-1-yl groups (containing a triple
bond in position 2 relative to the point of connection to 5FU)
were used to synthesize, test and rank palladium-labile prodrugs
of 5FU. Even if the drug was generated from all the precursors via
palladium-mediated cleavage under biocompatible conditions,
the propargyl group demonstrated superior sensitivity to palla-
dium catalysis. The present study suggests that reaction kinetics is
strongly influenced by the accessibility of the catalyst to the triple
bond.

We have demonstrated that the pharmacological activity of
5FU can be “switched off” by alkylation chemistry of not only
the N1 position but also the N3 position of 5FU. We have also
shown that palladium-mediated N-propargylation occurs faster
at position N1 than at position N3, and that pH can influence
the reaction conversion rate. Bioorthogonal restoration of the
drug’s cytotoxic properties with either N1 or N3-propargylated
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FIGURE 5 | Palladium-mediated conversion of prodrugs 3a and 6 into

5FU in cancer cell culture. (A) Colorectal cancer HCT116 cells; (B)

Pancretic adenocarcinoma BxPC-3 cells; (C) Breast cancer MCF-7; (D)

Breast cancer R-SKBR3a cells; (E) Ovarian carcinoma PE04 cells. Drug
generation was indirectly measured by analysis of cell viability after 5

days of treatment using the PrestoBlue™ Reagent (Life Technologies).
Treatments: untreated cell control (0.1% v /v DMSO in media, negative
control); Pd0-resins (0.67 mg/mL, negative control); 3–100 μM of 3a or 6

(negative control); 3–100 μM of 5FU (positive control); and Pd0-resin
(0.67 mg/mL) + 3a or 6 (BOOM reaction assay).

5FU by extracellular palladium chemistry in a range of cancer
cells demonstrated that the rate of activation is an essential factor
to rapidly achieve sustained and effective cytotoxic levels of drug.
Overall, the studies reported herein indicate that the propargyla-
tion of 5FU’s N1 position [masking strategy used by our group in
the seminal work on palladium-activated prodrugs (Weiss et al.,
2014a)] is yet the best approach available -in terms of bioorthog-
onality and palladium lability- to implement a BOOM-activated
prodrug strategy with this particular chemotherapeutic drug.
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