

Edinburgh Research Explorer

A High-Level Language for Rule-Based Modelling

Citation for published version:
Pedersen, M, Plotkin, G & Phillips, A 2015, 'A High-Level Language for Rule-Based Modelling' PLoS One,
vol. 10, no. 6, e0114296. DOI: 10.1371/journal.pone.0114296

Digital Object Identifier (DOI):
10.1371/journal.pone.0114296

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
PLoS One

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/43714512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1371/journal.pone.0114296
https://www.research.ed.ac.uk/portal/en/publications/a-highlevel-language-for-rulebased-modelling(6e27b1fd-cc07-414f-9ea2-48afe6122c4d).html

RESEARCH ARTICLE

A High-Level Language for Rule-Based
Modelling
Michael Pedersen1,2*, Andrew Phillips2, Gordon D. Plotkin3

1Department of Plant Sciences, Cambridge University, Cambridge, England, 2 Biological Computation
Group, Microsoft Research, Cambridge, England, 3 Laboratory for Foundations of Computer Science, School
of Informatics, Edinburgh University, Edinburgh, Scotland

* michael.d.pedersen@gmail.com

Abstract
Rule-based languages such as Kappa excel in their support for handling the combinatorial

complexities prevalent in many biological systems, including signalling pathways. But

Kappa provides little structure for organising rules, and large models can therefore be hard

to read and maintain. This paper introduces a high-level, modular extension of Kappa called

LBS-κ. We demonstrate the constructs of the language through examples and three case

studies: a chemotaxis switch ring, a MAPK cascade, and an insulin signalling pathway. We

then provide a formal definition of LBS-κ through an abstract syntax and a translation to

plain Kappa. The translation is implemented in a compiler tool which is available as a web

application. We finally demonstrate how to increase the expressivity of LBS-κ through em-

bedded scripts in a general-purpose programming language, a technique which we view as

generally applicable to other domain specific languages.

Introduction
Mathematical modelling plays a key role in systems biology, facilitating the generation of
knowledge through the cycle of model analysis, experimental testing of hypotheses, and model
refinement. As our biological knowledge base increases through improvements in experimental
techniques, the models under study also increase in size and complexity. Large models based
on traditional mathematical formalisms such as ODEs are hard to develop and maintain since
they are “flat” with no structure or modularity and since they bear a somewhat indirect relation
to the corresponding biological phenomena. This has prompted the development of a range of
new modelling formalisms inspired by computer science, allowing models to be written in a
structured fashion and generally supporting multiple types of simulation and analysis based on
a single model. These formalisms include process calculi such as the stochastic π-calculus [1,
2], the continuous π-calculus [3], Beta binders [4, 5], BlenX [6], PEPA [7] and BioPEPA [8];
and rule-based languages such as BIOCHAM [9], Kappa [10, 11], BioNetGen [12] and Stochas-
tic Multilevel Multiset Rewriting [13].

Some of the above formalisms, in particular those based on process calculi, have built-in
support for modularity, allowing large systems to be described in terms of their components.

PLOSONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 1 / 26

a11111

OPEN ACCESS

Citation: Pedersen M, Phillips A, Plotkin GD (2015)
A High-Level Language for Rule-Based Modelling.
PLoS ONE 10(6): e0114296. doi:10.1371/journal.
pone.0114296

Academic Editor: Hans A Kestler, Leibniz Institute
for Age Research, GERMANY

Received: September 5, 2013

Accepted: November 8, 2014

Published: June 4, 2015

Copyright: © 2015 Pedersen et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Funding: The first author is grateful for the support
from EPSRC through its Postdoctoral Fellowship
programme, reference EP/H027955/1, and from
Microsoft Research through its European PhD
Scholarship programme. The third author is grateful
for support from The Centre for Systems Biology at
Edinburgh, a Centre for Integrative Systems Biology
funded by BBSRC and EPSRC, reference BB/
D019621/1, and then from the ERC Advanced Grant
“Rule-Based Modelling,” reference 320823. The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0114296&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0114296&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0114296&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Other such formalisms, however, lack modular features, complicating the development and
maintenance of large models. Higher-level modular extensions have thus been developed on
top of these formalisms. The Language for Biochemical Systems (LBS) [14, 15] is one such ex-
tension, defined on top of standard biochemical reactions. But LBS is more than an extension:
it is a general framework which is parameterised on key structures, allowing for instantiation
to other languages.

In this paper we show how LBS can be instantiated to yield a modular extension of the oth-
erwise flat rule-based language Kappa. Rules in Kappa describe the transformation of com-
plexes at the level of agent (protein) binding sites, effectively handling the combinatorial
explosion in the number of species, which is a key problem in the modelling of signalling path-
ways in particular. The instantiation of LBS to Kappa, called LBS-κ, can be adapted with minor
modifications to the closely related BioNetGen rule-based language. The contribution of the in-
stantiation is two-fold: providing a language for writing modular rule-based models and also
demonstrating the generality of LBS as a framework. As an additional contribution, a tool for
LBS-κ has been implemented and is available as a web application directly through a browser.
The tool provides a compiler from LBS-κ to flat Kappa, and it provides a simulator for the re-
sulting flat models.

As a brief illustration, the following LBS-κmodel shows how a generic phosphorylation
module can be defined and instantiated. The module takes two parameters, namely an enzyme
a with binding site m, and a substrate b with binding site n. The module consists of three rules:
the first for binding the agents on their given sites as indicated by the binding label 1, the sec-
ond for phosphorylating the substrate, and the third for unbinding. Phosphorylation states are
indicated by u and p, meaning respectively unphosphorylated and phosphorylated. The first
two rules apply only when the substrate is unphosphorylated, whereas the third applies in ei-
ther case. All three rules apply regardless of any enzyme modification state, and regardless of
any enzyme binding on other sites than the one given. The instantiation provides the parame-
ter Raf as the enzyme and MEK as the substrate.

1 module phosphorylate(agent a{m}, b{n}){
2 a{m} + b{n˜u}! a{m! 1}-b{n˜u! 1}|
3 a{m! 1}-b{n˜u! 1}! a{m! 1}-b{n˜p! 1}|
4 a{m! 1}-b{n! 1}! a{m} + b{n}
5 };
6
7 phosphorylate(Raf{x}, MEK{S222})

The LBS framework is designed with formal foundations in mind, based on the modular
Calculus of Chemical Systems [16]. While formal foundations may be of little interest to the
general modelling practitioner, there are some key advantages. One is that the language itself is
precisely defined, so there is no ambiguity in the meaning of any of the language constructs;
the intended meaning can be obtained by reference to the formal semantics. A second is that
new instantiations of the framework, such as LBS-κ, can be defined with relative ease, without
having to redefine the full language. And a third advantage is that key properties of an LBS in-
stantiation can be studied independently of the full language, as was demonstrated in [17] for
Petri net invariants. In the Kappa context, this may for example prove useful in studies of mod-
ular analysis techniques.

In addition to the modular features inherited from the Calculus of Chemical Systems, LBS
provides features such as compartments, complex agent expressions, combinatorial combina-
tors, and parameterised modules with a notion of agent subtyping. In the Results section we
first introduce these features informally through examples. We then demonstrate through case

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 2 / 26

Competing Interests: AP is employed by Microsoft
Research Cambridge, and author MP was contracted
as a consultant by Microsoft Research Cambridge.
Author GDP is an occasional Visiting Researcher at
Microsoft Research Silicon Valley, but all the research
reported in this paper was done while working at
Edinburgh University. This study was partly funded by
Microsoft Research (http://research.microsoft.com)
through its European PhD Scholarship programme.
There are no patents, products in development or
marketed products to declare. This does not alter the
authors’ adherence to all the PLOS ONE policies on
sharing data and materials.

http://research.microsoft.com

studies of a chemotactic switch ring, a MAPK cascade, and an insulin signalling pathway, how
the features of LBS-κ give rise to improved readability, maintainability and reusability. We fi-
nally introduce the LBS-κ web application, and we demonstrate how the expressive power of
LBS-κ can be increased by introducing embedded scripts written in the general purpose pro-
gramming language F#. In the Discussions section we consider related work with a particular
focus on two different approaches to high-level language development: one via domain-specific
languages such as LBS-κ, and the other via embedded languages such as the recent PySB [18]
which is based on the general-purpose language Python. In the Methods section we formally
define the LBS-κ language. Since LBS is a general framework, we need only define the necessary
instantiation to Kappa, and refer to the previously published general semantics of LBS [15].
The Methods section assumes an understanding of basic computer science, but the remainder
of the paper can be read independently of this section.

Results

2.1 Language Overview
2.1.1 Agents, Rules, Composition and Compartments. An agent expression describes

one or more species. For example, Raf {x˜p} is an atomic agent with name Raf that is phos-
phorylated on site x. More generally, post-translational modification is represented by an inter-
nal state name following a tilde symbol; we write p for phosphorylated and u for
unphosphorylated. Agents can be composed into complexes using the agent composition oper-
ator, −; for example Raf {x˜p! 1}−MEK {S222˜u! 1} describes a complex of two agents,
Raf and MEK. The binding is represented by the label 1 following an exclamation mark on the
respective sites. The label can be any integer, but must distinguish a particular binding from
any other bindings that may be present in a rule.

A rule describes the transformation of agents at the level of binding sites. Take for example
the following rule which expresses the binding of two proteins, Raf and MEK, on their respec-
tive sites x and S222.

1 Raf{x˜p} + MEK{S222˜u}! Raf{x˜p! 1}-MEK{S222˜u! 1}

The left hand side of the rule thus specifies that for the rule to apply, Rafmust be phos-
phorylated on x and MEKmust be unphosphorylated on S222. The respective internal states
are the same on the left hand side (LHS) and the ride hand side (RHS) and are hence preserved
by the rule. The absence of any binding labels on the LHS states that the agents cannot be
bound on their respective sites before applying the rule. But the rule imposes no further condi-
tions; in particular, the rule can be applied in situations where RAF or MEK are bound to other
proteins on other sites, regardless of the internal state of any other sites. In this way a rule gen-
erally represents many concrete reactions, thus effectively helping alleviate the problem of
combinatorial explosion of the size of models.

We have adopted a syntax for rules which differs slightly from both Kappa and BioNetGen
in order to accommodate the higher-level language constructs of LBS-κ. In particular, sites are
specified within curly brackets, {}, rather than within parentheses. We explicitly represent com-
plexes using the dash symbol, −, and we represent distinct agents within a rule by separation
with the + symbol. This syntax follows the BioNetGen convention, whereas Kappa syntax in-
stead has a flat structure of comma-separated agents. Note that rules can generally be equipped
with rates, which are written in LBS-κ in brackets following arrows as in e.g. A! {0.1} B.
We omit rates from the examples for the sake of clarity.

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 3 / 26

While agents often model proteins they can also represent other objects, for example chemi-
cal compounds such as nucleic acids. The following is a high-level example of MEK gene expres-
sion in whichmRNA is transcribed from a gene and an RNA polymerase rnap in the first
rule, and the mRNA is translated into MEK in the second rule.

1 gene + rnap! gene + rnap + mRNA|
2 mRNA! MEK

Observe how the two rules are composed using the parallel composition operator, j, which is
the glue used more generally for joining two models together. In this example the rules corre-
spond to standard, concrete reactions, given that none of the participating reactant agents have
any sites.

The location operator, [], allows models to be composed within a tree-structured hierarchy
of static compartments, and furthermore allows for cross-compartment transport rules. The
following example shows how the above binding example and gene expression example can be
composed within a compartment structure. Gene expression now takes place within the nu-
cleus compartment, and we have added an additional rule for transporting mRNA out of the
nucleus into the top level cell compartment before translation. Note that multiple occur-
rences of the same compartment name refer to the same compartment.

1 cell[
2 Raf{x˜p} + MEK{S222˜u}! Raf{x˜p! 1}-MEK{S222˜u! 1}|
3 nucleus[
4 gene + rnap! gene + rnap + mRNA
5]|
6 nucleus [mRNA]! mRNA|
7 mRNA! MEK{S222˜u}
8]

2.1.2 Agent Expressions for Complexes. The rules in the previous section are relatively
short and easy to read. However, larger rules containing many agents can be hard to read, as
demonstrated by the following two rules adapted from a model in [10]. The first rule uses the
wild card binding symbol _, meaning that the site must be bound to some unspecified agent. It
expresses phosphorylation of Shc. The second rule expresses binding of Ras to a
large complex.

1 EGFR{CR!_, Y1148˜p! 1}-Shc{PTB! 1, Y318˜u}! EGFR{CR!_, Y1148˜p! 1}-Shc
{PTB! 1, Y318˜p}|
2
3 EGFR{Y1148˜p! 1}-Shc{PTB! 1, Y318˜p! 2}-Grb2{SH2! 2, SH3! 3}-SoS{a! 3, b}
+ Ras{S1S2˜gdp}!
4 EGFR{Y1148˜p! 1}-Shc{PTB! 1, Y318˜p! 2}-Grb2{SH2! 2, SH3! 3}-SoS{a! 3, b!
4}-Ras{S1S2˜gdp! 4}

We use an explicit notation for complexes to simplify reading as compared to the standard
Kappa rules. Despite this simplification, it still remains difficult at first glance to determine
what actions the second rule expresses. Doing so requires a detailed comparison of the LHS to
the RHS. LBS-κ addresses this through a richer notion of agent expressions by allowing com-
plexes to be abbreviated and subsequently updated. The above rules can then be re-written as
follows:

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 4 / 26

1 agent c1 = EGFR{CR!_, Y1148˜p! 1}-Shc{PTB! 1, Y318˜u};
2 c1! c1hShc{Y318˜p}i|
3
4 agent c2 = EGFR{Y1148˜p! 1}-Shc{PTB! 1, Y318˜p! 2}-Grb2{SH2! 2, SH3! 3}-SoS
{a! 3, b};
5 c2 + Ras{S1S2˜gdp}! c2hSoS{b! 4}i-Ras{S1S2˜gdp! 4}

In both cases the LHS components are assigned to an identifier, c1 and c2, respectively.
The identified complex is then referred to and updated on the RHS of the rules using the up-
date operator, hi. The update for the first rule states that the RHS is exactly the same as c1, ex-
cept that species Shc is phosphorylated on site Y318. The update for the second rule states
that the RHS is a complex obtained from c2 by adding a link from Sos to Ras.

As a further abbreviation, agent expressions can be defined in-line using the as keywords,
as follows:

1 EGFR{CR!_, Y1148˜p! 1}-Shc{PTB! 1, Y318˜u} as c1! c1hShc{Y318˜p}i|
2
3 EGFR{Y1148˜p! 1}-Shc{PTB! 1, Y318˜p! 2}-Grb2{SH2! 2, SH3! 3}-SoS{a! 3, b} as
c2 + Ras{S1S2˜gdp}!
4 c2hSoS{b! 4}i-Ras{S1S2˜gdp! 4}

2.1.3 New Agents. All agents must be defined using the new operator before first use, al-
though we have omitted doing so in the preceding examples. The Shc agent can for example
be defined as follows:

1 agent c = new Shc{PTB:(u p), Y318:(u p)};

The new operator specifies the name of the new agent together with the internal state values
each site can take. Internal state values default to u and p, so could have been omitted in the
above example. As the name suggests, the new operator does indeed generate a new agent,
with a name Shc, that is universally unique within the model. If the above definition were re-
peated, the two occurrences of the c identifier would bind to semantically distinct agents. How-
ever, the identifier is significant because it is needed for the update expression shown in the
previous example, i.e. chShc {Y318˜p}i. Often it is convenient for the agent identifier to
which a new agent is assigned to be the same as the agent name, as follows:

1 agent Shc = new Shc{PTB:(u p), Y318:(u p)};

In these cases we can omit the agent name on the right hand side as an abbreviation, as
follows:

1 agent Shc = new {PTB:(u p), Y318:(u p)};

We use a similar abbreviation for updates on atomic agents, so that e.g. Shc {Y318˜p} in
fact is an abbreviation for the expression Shc hShc{Y318˜p}i.

2.1.4 Parameterised Modules. A key aspect of high-level languages is their support for
modularity. Modules in LBS-κ can be parameterised on agents and their sites; on compart-
ments; and on rates. The following is a verbose example of a module encapsulating phosphory-
lation through three rules, namely one for binding, a second for phosphorylation, and a third
for unbinding:.

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 5 / 26

1 module phosphorylate(agent c1:k{m}, c2:s{n}){
2 c1hk{m}i + c2hs{n˜u}i ! c1hk{m! 1}i-c2hs{n˜u! 1}i|
3 c1hk{m! 1}i-c2hs{n˜u! 1}i ! c1hk{m! 1}i-c2hs{n˜p! 1}i|
4 c1hk{m! 1}i-c2hs{n! 1}i ! c1hk{m}i + c2hs{n}i
5 };
6
7 agent r = new Raf{x, y};
8 agent m = new MEK{t, S218, S222};
9 phosphorylate(r:Raf{x}, m:MEK{S222})

The first formal parameter in line 1, agent c1: k {m}, is for the kinase. It states that an
agent expression is expected with at least one atomic kinase agent containing at least one site.
Given the corresponding actual parameter r: Raf {x} in the module invocation in line 9, the
identifier c1 is bound to the same expression as r is bound to at module invocation time,
which happens to be an atomic agent expression; the agent name k is bound to the agent name
Raf; and the site name m is bound to the site name x. Observe how agent Raf has more sites
than are required by the module, which is fine as long as it has at least the number of required
sites, and with matching types (in the above, the default site types are assumed in both formal
and actual parameters). This hence corresponds to a notion of subtyping. A similar notion ap-
plies at the level of agent expressions: the identifier r could have been bound to a complex spe-
cies in the module invocation. For the sake of illustration, the modular phosphorylation model
“expands” to the following equivalent flat model:

1 agent Raf = new {x, y};
2 agent MEK = new {t, S218, S222};
3
4 Raf{x} + MEK{S222˜u}! Raf{x! 1}-MEK{S222˜u! 1}|
5 Raf{x! 1}-MEK{S222˜u! 1}! Raf{x! 1}-MEK{S222˜p! 1}|
6 Raf{x! 1}-MEK{S222! 1}! Raf{x} + MEK{S222}

Following our abbreviations for atomic agent expressions outlined in Section 2.1.3, the
phosphorylation module can be simplified because it only deals with atomic agents. Hence
there is no need to distinguish the formal agent name and the corresponding identifier, so the
formal parameter agent c1: k{m} could just as well be written as agent k: k {m} which is
abbreviated simply as agent k: {m}. With the corresponding abbreviations in the body of the
module, the phosphorylation example can be written more concisely as follows:

1 module phosphorylate(agent k:{m}, s:{n}){
2 k{m} + s{n˜u}! k{m! 1}-s{n˜u! 1}|
3 k{m! 1}-s{n˜u! 1}! k{m! 1}-s{n˜p! 1}|
4 k{m! 1}-s{n! 1}! k{m} + s{n}
5 };
6
7 agent Raf = new {x, y};
8 agent MEK = new {t, S218, S222};
9 phosphorylate(Raf:{x}, MEK:{S222})

2.1.5 Agent Aliases. Sometimes we need to be able to identify and update one of several
agents with the same name within a complex. Agent aliases can be created in conjunction with
the new operator for this purpose. Consider the following example of a rule from the chemo-
tactic switch ring model case study involving a homo-multimer containing three agents with
the same name P; internal states here take values 0 and 1.

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 6 / 26

1 agent P1, P2, P3 = new P{f:(0 1), x:(0 1), y:(0 1), s};
2
3 agent c000 = P1{f˜y! 1}-P2{x! 1, f˜0, y! 2, s}-P3{x! 2, f˜3};
4 c000$ c000hP2{f˜1}i

Aliases P1, P2 and P3 are created to allow the rule to update only a selected agent, namely
the second one, within the complex. This example also shows the use of reversible rules using
the bidirectional arrow,$.

2.1.6 Non-determinism. Another feature of agent expressions is non-determinism, which
provides a means of grouping agents which are functionally similar through the or operator.
The following example, adapted from [11], shows how the binding between a family of ERK
and MEK proteins can be expressed using this mechanism:

1 agent M = MEK1 or MEK2;
2 agent E = ERK1 or ERK2;
3 MhMEK{D}i + EhERK{CD}i ! MhMEK{D! 1}i-EhERK{CD! 1}i

The first line states that MEK can either be MEK1 or MEK2, and the second line is analogous
for ERK. The third line expresses binding between these families of proteins variants; it expands
to the following four concrete rules, one for each combination of proteins within the two
families:

1 MEK1{D} + ERK1{CD}! MEK1{D! 1}-ERK1{CD! 1}|
2 MEK1{D} + ERK2{CD}! MEK1{D! 1}-ERK2{CD! 1}|
3 MEK2{D} + ERK1{CD}! MEK2{D! 1}-ERK1{CD! 1}|
4 MEK2{D} + ERK2{CD}! MEK2{D! 1}-ERK2{CD! 1}

For this example to work, the agents MEK1 and MEK2must initially be defined to allow up-
dates on the same site D on a common agent name MEK, and similarly for ERK1 and ERK2.
This is achieved by passing the common name to the new operator as follows:

1 agent MEK1 = new MEK{D, S218, S222};
2 agent MEK2 = new MEK{D, S222, S226};
3 agent ERK1 = new ERK{CD, T202, Y204};
4 agent ERK2 = new ERK{CD, T185, Y187};

2.2 Case Studies
2.2.1 The Chemotactic Switch Ring. Chemotaxis is the process whereby bacteria move in

their environment, generally towards nutrients or away from toxins. Some bacteria, including
Escherichia coli, achieve such movement through the mechanical rotation of flagella attached
to the cell surface. The direction of flagella rotation is determined by a switch consisting of a
ring of 34 protomers each with two conformations, active and inactive, which collectively de-
termine the overall switch state of the ring [19, 20]. Each protomer can switch from inactive to
active conformations, and the switch is catalysed by either a binding to a phosphorylated CheY
protein or by neighbouring protomers being active. Fig 1 illustrates the ring conformation and
the activation reactions.

We here consider a flat Kappa model by Vincent Danos of the chemotactic switch ring, spe-
cifically a subset which captures the modular structure of interest. The subset is reproduced in
S1 Listing with permission from the author. It consists of 8 reversible rules, each expressing
conformational change of a protomer within a context of two neighbour protomers. A

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 7 / 26

protomer P has four sites: two for binding in the ring (x and y), one for binding CheY (s), and
one for representing conformational state (f) where the internal state 0 represents inactive and
1 represents active. The full model additionally includes rules for CheY binding and initial con-
ditions which are not relevant for our case study. The initial conditions, which define a ring
with 34 protomer agents, are revisited in Section 2.3.2 in the context of embedded scripts.

An LBS-κ version of the flat model in S1 Listing is shown in (Table 1). We use identifiers of
the form cXXX to represent agent expressions with three protomers, with the values of the Xs
indicating the conformational state of each. The bulk of the model lies in the definition of a
module called flips, which contains four rules for conformational changes in each of the

Fig 1. The chemotactic switch ring. An illustration of the chemotactic switch ring (a) and the activation
reactions taking place within the ring (b). The black dots indicate the active state, and the black lines indicate
the bound state. The reaction rate depends on both the active state and the binding state of the
neighbouring protomers.

doi:10.1371/journal.pone.0114296.g001

Table 1. Some of the symbols used in LBS-κ syntax and semantics.

Symbol Description

idc Compartment identifier

ea Agent expression

vs Agent value

ida Agent identifier

na Agent name

vs Site name

ξ Agent annotation

R Normal form rule

vna Normal form agent value

doi:10.1371/journal.pone.0114296.t001

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 8 / 26

possible states of neighbour conformation. The module is parameterised on a complex with
three protomers, with the middle one being subject to conformational change. Note that the
parameters include site types in addition to site names, so e.g. P2{f:(01)} refers to an agent
P2 with a site f that can take values 0 or 1. The module is also parameterised on a forward and
reverse rate multiplier, k. Within the flipsmodule an additional, nested module called
flip is defined, which embodies a single-rule flip. Defining a single-rule module may not re-
duce the size of the model, but it does add clarity by naming a repeated pattern.

Two instantiations of the module are composed in the last two lines: in the second instantia-
tion the middle protomer is bound to CheY, and in the first it is unbound. The binding to
CheY is expressed implicitly through a wild card, which is adequate here since protomers
never bind other agents on this site. Observe how the rate multipliers differ by an order of mag-
nitude in the two cases. Observe also how the module instantiations make explicit the subtle
difference between the two blocks of flip rules, which would not otherwise be immediately ap-
parent from a flat model.

The model demonstrates the use of agent updates and the use of modules parameterised on
agents and rates. Observe that the flipsmodule only specifies a single site for each protomer,
while the agents in instantiations have multiple sites, demonstrating site subtyping. The nested
flipmodule only specifies a single agent in its parameter, while the instantiations provide
complexes but with the relevant agent of each complex specified; this demonstrates subtyping
at the higher level of complexes.

2.2.2 A MAPK Cascade. The Mitogen-Activated Protein Kinase (MAPK) cascade is a
common motif in signalling pathways, and has the functional property of amplifying an up-
stream signal through three layers of protein modification as illustrated in Fig 2. The first layer
has a single phosphorylation/dephosphorylation cycle, and the two subsequent layers each
have two cycles involving two different sites of the same substrate protein. A simple Kappa
model of a MAPK cascade is given in [21]. It is reproduced with permission from the author in
S2 Listing with some restructuring to highlight the underlying modularity. The model repre-
sents each cycle by six rules: three for phosphorylation, and three for dephosphorylation.

Listing 1. An LBS-κ version of the chemotactic switch ring.

1module flips(agent c000: P1{f: (0 1)}-P2{f: (0 1)}-P3{f: (0 1)}; rate k)
2 {
3 module flip(agent cxxx:P{f:(0 1)}; rate r1; rate r2) {
4 cxxxhP{f˜0}h ${r1�k}{r2} cxxxhP{f˜1}i
5 };
6
7 agent c100 = c000hP1{f˜1}i;
8 agent c001 = c000hP3{f˜1i;
9 agent c101 = c000hP1{f˜1}ihP3{f˜1}i;
10
11 flip(c000:P2{f}, 1, 200)|
12 flip(c100:P2{f}, 1, 2)|
13 flip(c001:P2{f}, 1, 2)|
14 flip(c101:P2{f}, 100, 2)
15 };
16
17 agent P1, P2, P3 = new P{f:(0 1), x:(0 1), y:(0 1), s};
18 agent c000 = P1{f˜0, y! 1}-P2{x! 1, f˜0, y! 2, s}-P3{x! 2, f˜0};
19 agent c000b = c000hP2{s!_}i;
20
21 flips (c000:P1{f}-P2{f}-P3{f}, 1)|
22 flips (c000b:P1{f}-P2{f}-P3{f}, 10)

doi:10.1371/journal.pone.0114296.t002

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 9 / 26

An LBS-κ version of the model is shown in (Table 2). The model defines a cyclemodule
in lines 1-16 which is parameterised on a kinase (k), a phosphatase (p) and a substrate (s); all
three species parameters specify just one site, all called m. The module defines two sub-mod-
ules, one for binding, phosphorylation and unbinding (phos) which is parameterised on the
kinase and the substrate, and one for binding, dephosphorylation and unbinding (dephos)
which is parameterised on the phosphatase and substrate. Note how in-line agent definitions
are used to abbreviate the substrate complexes: the identity updates e on the RHS of lines 5 and
11 result in the binding state remaining unaffected, i.e. bound in these cases. The body of the
cyclemodule simply consists of instantiations of the two sub-modules in parallel.

Lines 18-24 define the agents used in the model. All agents have the default internal state
types (i.e. u and p) except for Ras which therefore explicitly declares the type for its site (gdp
and gtp). Lines 26-30 consist of a parallel composition of five module invocations, one for
each cycle. Note the subtle distinction between the state of parameter agents and the site pa-
rameter: in e.g. line 29, the MEK parameter is phosphorylated on sites S218 and S222 and can
have any internal state on site n, but it is the latter site n which is passed to the module
for binding.

This example demonstrates the use of parameterised modules with multiple instantiations
and with site subtyping. The outer module effectively has six rules and five instantiations, and
the inner modules each have three rules and a single instantiation. In addition to clarifying the

Fig 2. The MAPK cascade. An illustration of the MAPK cascade, amplifying a signal through three layers of protein modification. The lines with circular
heads indicate catalysis, and the Ps indicate phosphorylation.

doi:10.1371/journal.pone.0114296.g002

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 10 / 26

model through structure, the model is also significantly smaller than the corresponding flat
model with 30 rules. Note finally that the inner modules are very general, and could hence be
defined in a standard library for wider use as in e.g. [18]. A simulation plot for the MAPK cas-
cade model is shown in Fig 3 in the context of the web tool discussed in Section 2.3.

2.2.3 Insulin Signalling. The insulin signalling pathway responds to rises in blood glucose
levels and accompanying rises in insulin levels with the net effect of inducing glucose uptake by
cells. Numerous models have been developed using traditional mathematical formalisms
which are challenged by the combinatorial complexity arising from e.g. receptor-ligand binding
[22, 23]. We here consider a Kappa model of insulin signalling by Isha Antani and Gordon
Webster. The model is reproduced in S3 Listing with permission from the authors and contains
approximately 120 rules, listed with no clear a priori modular structure; it hence constitutes a
challenging test case for LBS-κ. The full LBS-κ version of the model is given in S4 Listing.

The LBS-κmodel exploits modularity at two levels. At the top level are modules with no pa-
rameters and only one instance each. These are used purely for structure, allowing the main

Table 2. The abstract syntax for general LBS agent expressions, parameterised on site types ρ and
site expressions es.

ea ::= AGENT EXPRESSION

j new na{σ} NEW AGENT

j idc[ea] LOCATION

j ea � e0
a COMPOSITION

j eahidc ½na; a�i UPDATE

j ea or e
0
a CHOICE

j ea:ξ ANNOTATION

j ida IDENTIFIER

ξ ::= idc ½na; ns � ANNOTATION

σ ::= {ns 7! ρ} AGENT TYPE

α ::= {ns 7! es} SITE ASSIGNMENTS

doi:10.1371/journal.pone.0114296.t003

Fig 3. A screenshot of the web application for LBS-κ. The left hand side provides a syntax-highlighting editor, and the right hand side shows time course
simulation plots.

doi:10.1371/journal.pone.0114296.g003

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 11 / 26

body of the model to be specified as a parallel composition of module instantiations, each rep-
resenting a functionally self-contained component:

1 receptorActivation()| pipAktSignalling()| gluconeogenesis()|
2 glycogenSynthesis() | cellGrowth() | glucoseUptake()

At the second level are modules with multiple instances. They are all small, containing up to
three rules, many of which represent variations of the phosphorylation (bpu) and dephosphor-
ylation (bdu) modules used in the MAPK cascade; these variations are in turn defined as in-
stances of more general phosphorylation and dephosphorylation modules which are
parameterised separately on agents for each of the three rules, allowing agent states to differ
both between rules and between instances. Some modules contain just a single rule, e.g. for
binding, unbinding and modification. Even though the resulting decrease in model size is in-
consequential, these small modules do result in increased clarity by directly exposing the ac-
tions associated with one or more rules; they also implicitly expose rules which confer more
complicated actions not embodied in standard modules. Consider the following excerpt:

1 bpu3(PDK1{PH}:{PH, pkc}, PKCz:{T410, pdk1})|
2
3 Akt{as160, S473˜p, T308˜p} + AS160{gap˜u! 1}-Rab10{g˜u! 1}!
4 Akt{as160! 1, S473˜p, T308˜u}-AS160{gap˜u! 1} + Rab10{g˜u}|
5 pho(Akt{as160! 1}-AS160{gap˜u! 1}: AS160{gap})|

Listing 2. An LBS-κ version of the MAPK cascade from [21].

1 module cycle(agent k:{m}, p:{m}, s:{m}){
2
3 module phosphorylate(agent k:{m}, s:{m}){
4 k{m} + s{m˜u} ! k{m! 1}-s{m˜u! 1} as c;
5 c ˜ chs{m˜p! e}i|
6 k{m! 1}-s{m˜p! 1} ! k{m} + s{m˜p}
7 };
8
9 module dephosphorylate (agent p: {m}, s: {m}){
10 p{m} + s{m˜p} ! p{m! 1}-s{m˜p! 1} as c;
11 c ! chs{m˜u! e}i|
12 p{m! 1}-s{m˜u! 1} ! p{m} + s{m˜u}
13 };
14
15 phosphorylate (k: {m}, s: {m})|dephosphorylate(p: {m}, s: {m})
16 };
17
18 agent Ras = new {n: (gtp gdp)};
19 agent Raf = new {n};
20 agent MEK = new {S218, S222, n};
21 agent ERK = new {T185, Y187};
22 agent PP2A1 = new {n};
23 agent PP2A2 = new {n};
24 agent MKP3 = new {n};
25
26 cycle (Ras: {n}, PP2A1: {n}, Raf: {n})|
27 cycle (Raf{n˜p}: {n}, PP2A2: {n}, MEK: {S218})|
28 cycle (Raf{n˜p}: {n}, PP2A2: {n}, MEK: {S222})|
29 cycle (MEK{S218˜p, S222˜p, n}: {n}, MKP3: {n}, ERK: {T185})|
30 cycle (MEK{S218˜p, S222˜p?, n}: {n}, MKP3: {n}, ERK: {Y187})

doi:10.1371/journal.pone.0114296.t004

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 12 / 26

6 unbind(Akt:{as160}, AS160:{gap})

The first line immediately conveys that PDK1 phosphorylates PKCz through some standard
mechanism embodied by the bpu3module. The following three lines immediately convey that
Akt phosphorylates and unbinds AS160 through the pho and unbindmodules (lines 5 and
6), but also that the binding rule (lines 3 and 4) is more complicated and may require further
examination. Of course this approach relies on meaningful naming conventions for modules;
further tool support could be helpful here, e.g. by providing a shortcut for going to the defini-
tion of a module from a module instantiation point.

The LBS-κmodel uses non-determinism in two cases, namely for the related GSK3a and
GSK3b agents, and for the related IRS1 and IRS2 agents. It also uses agent expressions in sever-
al cases, e.g. for reducing the complexity of long rules as follows:

1 Akt{PH! 1, T308˜u}-PIP{three˜p! 1} as a +
2 PDK1{PH! 2, akt}-PIP{three˜p! 2} as b!
3 ahAkt{T308! 4}i-bhPDK1{akt! 4}i as c;
4 c! chAkt{T308p˜! e}i

This last rule exploits the identity update feature also used by the MAPK cascade: Akt
{T308˜p! e} expresses that the site T308 should be phosphorylated, but that the binding
state should remain unchanged, in this case bound to PDK1.

2.3 Tools
The LBS-κ language is supported by a web application which we describe in Subsection 2.3.1.
We then demonstrate in Subsection 2.3.2 how the expressive power of LBS-κ can be increased
through embedded scripts.

2.3.1 AWeb Application. The LBS-κ compiler translates LBS-κ programs to sets of
Kappa rules, as defined by the above semantics. The compiler is implemented in the F# lan-
guage. The parser implementation uses standard parser generator libraries (Lex and Yacc), and
the code generator implementation follows a functional style naturally aligned with the defini-
tion of the LBS-κ semantics. Furthermore, the compiler is translated to JavaScript using the
WebSharper kit, and is embedded in a web application; a screenshot is shown in Fig 3.

The web application provides a syntax-highlighting editor and a simulator for the flat
Kappa models resulting from compilation of LBS-κmodels. This simulator is implemented in
F# and translated to JavaScript using WebSharper. We have adopted a simulation algorithm
which uses just-in-time compilation to reactions, based on the framework introduced in [24].
Like the original simulation algorithm for Kappa [25], this avoids a compilation to a set of reac-
tions which generally grows in proportion to the number of possible instantiations of the rules
and which may even be infinite. Unlike the original simulator, our algorithm does not explicitly
represent individual agents in the system and may for that reason yield improved performance
for systems with large agent copy numbers. For systems with low agent copy numbers the orig-
inal algorithm may perform better. Although the LBS-κ web application does not currently
allow for the selection of simulators, introducing such an option is certainly possible and could
be the subject of future work.

The web application is provided within a general framework, Bio Simulators, which allows for
dynamic loading of simulator plugins via the web [26]. It is available at bsims.azurewebsites.net.
The LBS-κ plugin can be selected through the menu shown at the top in the screenshot, available
by clicking on the triangle next to the Bio Simulators title. A plugin for flat Kappa models based
on the KaSim simulator from www.kappalanguage.org is also available.

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 13 / 26

http://bsims.azurewebsites.net
http://www.kappalanguage.org

2.3.2 Embedded Scripts in LBS-κ. LBS-κ is a domain specific language: it is designed to
naturally and succinctly capture processes in the specific domain of biochemistry. But at times
more expressive power is needed, e.g. for generating large initial conditions as in the chemotac-
tic switch ring case study. We here propose a simple solution using a general-purpose program-
ming language as a scripting mechanism. This allows the domain specific features of LBS-κ to
be used for the bulk of a model, while seamlessly calling upon the general-purpose language
when needed for more complicated or ad hoc constructions. Our general purpose language of
choice is F#, although any other language is in principle possible. We refer to segments of gen-
eral purpose code as scripts, enclosed by script blocks within LBS-κ; scripts evaluate to
strings which themselves are LBS-κ programs. The scripting feature is available for LBS gener-
ally, but we explain it here in terms of LBS-κ.

Below is an example of how 100 variants of an agent can be created and combined into a
single non-deterministic agent S using a script. The resulting non-deterministic agent is subse-
quently used in a degradation rule (line 10) outside of the script, using the standard domain
specific features of LBS-κ.

1 script {
2 let agentNames = seq {for i in 1 .. 100! “S” + string(i)} in
3 let newDefsLst =
4 Seq.map (fun s! “agent␣” + s + “␣=␣new{};”) agentNames in
5 let newDefsStr = String.concat “\n” newDefsLst in
6 let choiceStr = “agent␣S␣=␣” + (String.concat “␣or␣” agentNames) + “;”
in
7 newDefsStr + “\n” + choiceStr
8 +
9 };
10
11 S!

Line 2 creates a sequence of a hundred strings representing agent names, S1 to S100. Lines
3-4 create a list of new agent definition strings, one for each agent name. Line 5 combines this
list into a string. Line 6 creates a definition string for a non-deterministic agent S. The new
agent definitions and non-deterministic agent definitions are finally combined and returned in
line 7. The net effect of the script is, informally, to replace the script by the string resulting
from evaluating the script. Hence the rule in line 8 is evaluated in an environment where the
identifier S is bound to a non-deterministic species with a hundred variants, thus resulting in a
hundred different degradation rules.

It is furthermore possible to define and reuse embedded scripts. This enables a second, gen-
eral-purpose notion of modularity in LBS-κ through F# function definitions. The following ex-
ample shows how the above F# code for generating a non-deterministic agent definition can be
abstracted into an F# function called generate which is parameterised on an agent name
and a number of variants; the function definition is then embedded within a scriptdef
block, and subsequently invoked from within a separate script block.

1 scriptdef {
2 let generate name num =
3 let agentNames = seq {for i in 1.. num! name + string(i)} in
4 let newDefsLst =
5 Seq.map (fun s! “agent␣” + s + “␣=␣new{};”) agentNames in
6 let newDefsStr = String.concat “\n” newDefsLst in
7 let choiceStr =
8 “agent␣” + name + “␣=␣” + (String.concat “␣or␣” agentNames) in

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 14 / 26

9 newDefsStr + “\n” + choiceStr
10 in
11 };
12
13 script {
14 generate “S” 100
15 };
16
17 S!

We end by revisiting the chemotactic switch ring case study from Section 2.2.1. The full
model includes an initial condition of a ring with 34 protomers. This initial condition can be
defined with an embedded script as follows:

1 script {
2 “init␣” +
3 (
4 seq {
5 for i in 1 .. 34!
6 “P(f˜0, s, x!” + string(i%34) + “, y!” + string((i+1)%34) + “)”
7 }
8 |i String.concat “-”
9) + “␣1;”
10 }

Embedded scripts are only available in a Windows command line version of the LBS-κ tool
[27] which also includes F# source code. The reason is that dynamic code generation in a web
application is technically more involved and cannot be achieved purely using JavaScript. The
formal foundations of the script language construct are outlined in Subsection 4.5.

Discussion
We discuss related work in the first subsection before finally concluding.

3.1 Related Work
The languages Antimony and PySB mentioned in the introduction are closely related to LBS-κ
in that they both address the problem of modularity in a rule-based setting. Being independent-
ly developed, the three languages have emerged with different sets of features and strengths.
We compare each language to LBS-κ below; but common to both Antimony and PySB is that
neither have language support for the LBS-κ features of agent expressions, agent subtyping in
modules, compartment hierarchies, or non-determinism; further, neither has tools accessible
directly through a web browser.

3.1.1 Antimony. Antimony is designed to be a “modular human-readable, human-write-
able model [28]. A key focus is on translation to SBML, and the language therefore directly sup-
ports SBML features such as events and inhibition/activation reaction types. Antimony also
supports synthetic biology features such as DNA parts. A tool for editing models and compil-
ing them to SBML is available for Windows and Mac OS.

As a consequence of its SBML focus, Antimony models express concrete reactions rather
than Kappa-style rules as in LBS-κ. On a more fundamental level, the LBS framework is de-
signed with formal foundations in mind, yielding the benefits outlined in the introduction.

3.1.2 PySB. Both LBS-κ and Antimony can be considered domain specific languages.
PySB, in contrast, can be described as an embedded language: models are written in the syntax

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 15 / 26

of a general-purpose programming language, here Python, but in a style that fits the domain as
closely as possible. This extends previous work on a Python-embedded language called Little b
[29]. PySB provides seamless integration with tools for simulation and analysis of Kappa and
BioNetGen models. A number of mature Python libraries for scientific computing are also
readily available, which is a key strength of the embedded approach. Another strength is flexi-
bility: since Python is a general-purpose programming language, there are no limitations on
the models which can be generated.

Flexibility, however, also has a downside. Since anything is possible, bad things may also be
possible. For example, a module may include a rule in which two reactant agents are bound
using the binding label 1, and two additional reactant agents are parameters of the module. If
these parameters are instantiated with agents bound using the same label 1, this would result
in an error when the generated Kappa model is processed by the Kappa tools.

Another downside of embedded languages is their syntax, which, by definition, cannot es-
cape the heritage of their general purpose host language. The following is an example of a PySB
catalysis module adapted from the supplementary material of [18], with rule labels removed
for clarity:

1 def catalyze(enz, e_site, sub, s_site, prod, klist):
2 kf, kr, kc = klist
3 Rule(enz({e_site:None}) + sub({s_site:None}) hi
4 enz({e_site:1}) % sub({s_site: 1}), kf, kr)
5 Rule(enz({e_site:1}) % sub({s_site: 1}) ii
6 enz({e_site:None}) + prod({s_site:None}), kc)

While the meaning of this module is fairly clear due to the use of Python operator overload-
ing for e.g. +, % (complexes), i i (reactions) and h i (reversible reactions), some syntactic over-
head is still needed; for example, the Rule identifier must be used. Note also how site
parameters are independent from the corresponding agent parameter, so in order to use the
module it may be necessary to inspect the module body to determine which site belongs to
which agent. Finally, site values are Python primitives, meaning that a single site cannot have
both internal state and binding state; it may hence be necessary to artificially separate one site
into two distinctly named sites. We note that although these points do apply to PySB, they are
not necessarily general points against embedded languages: embeddings into other languages
with different trade-offs may be possible.

S5 Listing shows a more comprehensive PySB example, namely that of a MAPK cascade,
thereby affording a direct comparison with the corresponding LBS-κMAPK cascade model.
Both models define a cyclemodule which in turn contains sub-modules for phosphorylation
and dephosphorylation, and both instantiate the cyclemodule five times. As with the exam-
ple above one sees that the PySB model is significantly more verbose and that site parameters
are listed independently from their corresponding agents. One also sees how separate sites are
needed for binding and modification.

3.2 Conclusion
We have introduced the LBS-κ language for writing high-level, modular rule-based models,
and we have illustrated its use via a number of small examples and three larger case studies.
The first two case studies are characterised by repeated structure which can be expressed natu-
rally using LBS-κmodularity. The third, and largest, case study, a model of insulin signalling
exhibits no obvious large scale modularity, but the model nevertheless benefits from the use of

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 16 / 26

modules for common rules and triplets of rules, and from other language constructs such as
agent expressions and non-determinism.

The LBS-κ language has been formally defined, and a compiler from LBS-κmodels to flat
Kappa models has been implemented and made available through a web application. We have
contrasted two approaches to language-based modelling, namely through DSLs and embedded
languages, and we have demonstrated one way of combining both approaches through the use
of F# scripts directly within LBS-κ. We view this discussion as being of wider relevance to
modelling language design, as the notion of embedded scripts is not LBS-κ specific.

As regards future work, the question of whether largemulti-instance modules of the kind
discussed here really exist in natural, evolved systems remains open. But in synthetic biology,
where novel systems are engineered for useful purposes, abstraction through modularity is like-
ly to become an important means for coping with complexity. Modular DSLs targeted to the
synthetic biology domain may hence be of increasing interest. With respect to language design,
one promising direction is to extend Kappa sites with a notion of colour as in coloured Petri
nets [13, 30], allowing more elaborate conditions on internal state and changes thereof during
rule application.

Methods
We now turn to the formal definition of LBS-κ. The LBS framework is parameterised on two
structures. The first is a syntactic parameter which specifies a syntax for agent site expressions.
The second is a semantic parameter which specifies the target semantical objects and relevant
operations on these. In the case of LBS-κ, the target semantical objects are flat Kappa programs.
The semantic parameter generally depends on the syntactic one: only agents which have a no-
tion of binding in their site expressions can be translated to Kappa.

The LBS framework [14, 15] provides a general syntax, for example that of module defini-
tions and invocations, that is independent of any particular choice of agent site expressions.
For the sake of completeness, we reproduce selected parts of this general syntax in Section 4.2,
where we also define the syntax of agent site expressions which is specific to the LBS-
κ instantiation.

The LBS framework also provides a general semantics, specifying how language constructs
such as module definitions and invocations are translated independently of any particular tar-
get semantics such as Kappa. We do not reproduce the full general semantics here, but refer in-
stead to [14, 15]. We do however outline the general semantics framework in Section 4.3 in
order to define the structure of the LBS semantic parameter. We then proceed to define the
Kappa semantic parameter in Section 4.4, thereby completing the formal definition of the in-
stantiation of LBS to LBS-κ.

4.1 Notation
We let R denote the set of real numbers ranged over by r and we let N denote the set of natural
numbers ranged over by k. We write x for lists, x:i for the ith element (starting from 1) of a list,
jxj for the length of a list and " for the empty list. The concatenation of lists x and y is written

x y , and the prefix of an element a to a list x is written ax .

Given a set X we write X� for the Kleene closure of X. We write {xi}i2I for a finite indexed set
and omit I and/or i and write {xi}I, {xi} or {x} when they are understood from the context. Par-
tial finite functions f:X ,!fin Y are denoted by finite indexed sets of pairs {xi 7! yi} where f(xi) =
yi. The domain of definition and image of a function f are denoted by dom(f) and im(f), respec-
tively. We specify the type of a partial function f by writing f(x) = y where x and y are given var-
iables ranging over two sets; the sets are then understood to form the domain and image of f.

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 17 / 26

We write e ’D e0 for definitions where the expression e equals the expression e0 if e0 is de-
fined, and where e is undefined otherwise. When a notion of well-typedness applies to e0, we

furthermore write e ’D t e
0 for definitions where e equals e0 if e0 is defined and well-typed, and

where e is undefined otherwise.
For easy reference some of the key symbols appearing in the syntax and semantics defini-

tions are given in Table 3.

4.2 The Abstract Syntax of LBS-κ
The abstract syntax of LBS-κ forms the foundation for its subsequent semantics. A formal defi-
nition of the concrete syntax of LBS-κ and its mapping into the abstract syntax are omitted.
Both can be deduced without surprises from the abstract syntax and the examples in the
previous section.

4.2.1 Agent Expressions. The abstract syntax for agent expressions is given in Table 4,
where na ranges over a finite set of agent names, ns ranges over a finite set of site names, ida
ranges over a finite set of agent identifiers and idc ranges over a finite set of compartment identi-
fiers (note that in [14, 15] we used ns for species/agent names and nm for site names; we have
adopted a different notation here to better reflect the usual Kappa terminology). Agent names

Table 3. The abstract syntax for LBS-κ site types and expressions.

ρ ::= binding(V) SITE TYPES

es ::= (i, l) SITE EXPRESSIONS

i ::= INTERNAL STATE

j v INTERNAL STATE VALUE

j ? WILD CARD

j " IDENTITY

l ::= LINK

j ? FREE OR BOUND

j _ BOUND TO SOMETHING

j � FREE

j (k, b) RESTRICTED LINK LABEL

j " IDENTITY

doi:10.1371/journal.pone.0114296.t005

Table 4. The abstract syntax for LBS-κ programs.

P ::= PROGRAM

j ea
!er

e0a
RULE

j P j P0 PARALLEL COMPOSITION

j idc[P] LOCATED PROGRAM

j D; P DEFINITION

j idmðidc ; ea ; er Þ MODULE INVOCATION

j init ea n INITIAL POPULATION

j nil EMPTY PROGRAM

er ::= RATE EXPRESSION

j r CONSTANT

j idr RATE IDENTIFIER

doi:10.1371/journal.pone.0114296.t006

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 18 / 26

identify atomic agents independently of any sites, while agent identifiers refer to possibly com-
plex expressions including both the names and site states of atomic agents in the complex.
Table 4 specifically omits the definition of site types ρ and site expressions es since these are pa-
rameters of the syntax. They are defined separately in the following. Note that several abbrevia-
tions can be defined in terms of the basic abstract syntax in Table 4; some of these
abbreviations are mentioned below.

New agents are created by specifying a name and a type consisting of a partial finite function
from site names to site types; as shown in Section 2.1.2, the agent name can be left out as an ab-
breviation in definitions in which case the identifier, to which the new agent is assigned, is as-
sumed as the name. Location allows agents to span compartments within rules. For this reason
updates generally include compartments in addition to an agent name and a site update expres-
sion; updates on atomic agents may however omit the agent name as an abbreviation. Annota-
tions are used when agents are passed as actual parameters in module instantiations: they
specify how located atomic agents and sites should be mapped to the located atomic agents and
sites in the corresponding formal agent parameter which also includes an annotation. An infor-
mal explanation of this mapping, but without location, is given in Section 2.1.4. Examples
using the choice operator for writing non-deterministic rules which expand to many concrete
rules are given in Section 2.1.6. The composition and identifier expressions are straightforward
and have often been used in the above examples.

Let V be a given finite set of internal state values. Binding site types and binding expressions
specific to LBS-κ are then defined by the abstract syntax in Table 5, where V� V ranges over
sets of internal state values, v 2 V ranges over individual internal state values and b 2 {0, 1}� is
used to create namespaces for confining link labels within modules.

A site type simply consists of a set of allowed internal state values. A site expression is a pair
consisting of an internal state i and a link l. An internal state can be a value v, such as “phos-
phorylated” or “unphosphorylated”; it can be a wild card indicating “any” value; or it can be
the identity " for use in updates when the internal state should remain unaffected. A link can
be one of two kinds of wild cards, with the more permissive being “either free or bound” and
the more restricted being “bound to something”; a link can also be free, i.e. unbound; it can be
bound by some restricted link label which is given by a label k together with a namespace index
b 2 {0, 1}�; or it can be the identity " for use in updates when the link state should remain unaf-
fected. The internal state may be omitted from a site expression as an abbreviation, in which
case the wild card, ?, is assumed, and the link may be omitted as an abbreviation in which case
the free link, �ο, is assumed. If both are omitted, the pair (?, �ο) is assumed.

4.2.2 Programs. The abstract syntax of programs is given in Table 6, where n 2 N, idm
ranges over the set ofmodule identifiers, idr ranges over the set of rate identifiers and idc again
ranges over the set of compartment identifiers. Definitions, ranged over by D, are defined
below. The grammar closely matches the syntax used in the examples and should be self-ex-
planatory, perhaps with the exception of initial populations and nil programs: the former are

Table 5. The abstract syntax for definitions.

D ::= DEFINITION

j ida = ea AGENT

j idc = new comp NEW TOP-LEVEL COMPARTMENT

j idc = new comp inside idc NEW NESTED COMPARTMENT

j idr = er RATE

j idmðidc ; ida : x; idr Þ ¼ P MODULE

doi:10.1371/journal.pone.0114296.t007

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 19 / 26

specified using the! init! keyword and can occur anywhere in a program, and the latter acts as
the identity element under parallel composition: this can be useful for advanced constructions.

There are some evident abbreviations. For example, a reversible rule corresponds to the par-
allel composition of the rules for each direction, and the definition of an agent expression with-
in a rule using the! as! keyword can be expressed using a standard agent definition prior to the
rule as detailed in [14, 15].

4.2.3 Definitions. The abstract syntax for definitions is shown in Table 5. Note that com-
partments, like agents, are defined using the! new! keyword, and unless a compartment is used
at the top level (the first case), a parent must be specified (the second case). Formal agent pa-
rameters in module definitions have annotations ξ as defined in the abstract syntax for agent
expressions and as demonstrated through examples in Section 2.1.4. Together with the corre-
sponding annotation of actual agent parameters which are included in the abstract syntax for
agent expressions, this is sufficient to construct a mapping that allows use of the agents inside
the module body after invocation; we refer to Section 5.2.1 and Section 5.4 of [14] for the full
technical details.

4.3 The General Semantics Framework
The general semantics framework of LBS is independent of any particular target semantics
such as Kappa. The framework hence defines, in general terms, the meaning of e.g. agent up-
dates, location, module definitions and module invocations. As a result, the general semantics
need not be redefined for each concrete semantics under study: all that is needed is the defini-
tion of the functions on which the general semantics is parameterised. We hence refer to [14,
15] for the definition of the general semantics, which also includes instantiations to concrete
semantics for ordinary differential equations, continuous time Markov chains and Petri nets;
in these cases agents in the abstract syntax have no binding structure.

The general semantics evaluates individual rules to normal form rules R as defined by the
following grammar:

R ::¼ vna)r v0na

vna ::¼ nc ½na; as�

as ::¼ fns 7!ðr; esÞg

Table 6. The abstract syntax for Kappa rules.

x ::= a!ra0 KAPPA RULE

a ::= ðna; sÞ AGENT

s ::= (ns, i
−, l−) SITE

i− ::= INTERNAL STATE

j v INTERNAL STATE VALUE

j ? WILD CARD

l− ::= LINK

j ? FREE OR BOUND

j _ BOUND TO SOMETHING

j �ο FREE

j k LINK LABEL

doi:10.1371/journal.pone.0114296.t008

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 20 / 26

A ground normal form rule is like a rule but with rate expressions evaluated to rate con-
stants and agent expressions evaluated to normal form agent values, vna; normal form agent val-
ues are lists of triples with a comparment list for identifying location, an agent name, and a
typed site assignment ασ which to each site assigns a type ρ and a site expression es. Note that
the site type and expressions constitute the parameters of the general syntax. Note also that the
general semantics includes an additional ground normal form of rules and agents, but that dis-
tinction is not needed in the LBS-κ context where site expressions have no variables.

In order to produce normal form rules from a model the general semantics is parameterised
on the following relation and functions pertaining to site types ρ and site expressions es:

• A typing relation of the form es:ρ giving types to site expressions. This is used for determining
well-typedness of agent expressions.

• A default expression function of the form default(ρ) = es giving default expressions to site
types. This is used to assign site expressions to unassigned sites in agent expressions.

• An update function of the form eshe0si ¼ e00s for updating one site expression with another.
This is used in the semantics of agent update expressions.

• A seal function of the form sealðes; bÞ ¼ e0s for confining names in site expressions to a
namespace given by a binary string b 2 {0, 1}�. This is used to avoid capture of free names
(link labels in the Kappa context) when agent expressions are passed as module parameters.

In order to produce a concrete semantical object such as a flat Kappa model from an LBS-κ
model, the general semantics framework is further parameterised, on a concrete semantics
structure (S, jS, 0S, RS, IS) consisting of:

• A set S of semantical objects ranged over byO.

• A partial binary composition function jS on semantical objects.

• A distinguished nil semantical object 0S 2 S.

• A partial rule assignment function of the form RS(R, b) =O assigning a semantical object to a
given normal form rule R named b.

• A partial initial condition assignment function of the form IS(vna, k) =O assigning a semanti-
cal object to an initial population k of a normal form agent value vna.

4.4 The Concrete Kappa Semantics
We define the relations and functions pertaining to site types and expressions in the Kappa in-
stantiation as follows, where IV(es) denotes the (singleton or empty) set of internal state values
in the site expression es:

• es: binding(V) for all es and V with IV(es)� V

• default(binding(V)) ’D (?, ?)

• (i, l)h(i0, l0)i’D ihi0i, lhl0i) where

– ihi0i’D i if i0 ¼ "

i0 otherwise

(

– lhl0i’D l if l0 ¼ "

l0 otherwise

(

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 21 / 26

• sealðði; lÞ; bÞ’D ði; ðk; bb0ÞÞ if l ¼ ðk; b0Þ
ði; lÞ otherwise

(

The typing relation asserts that a binding expression can only use internal state values declared
by its type. The default expression for unspecified modification site types has a wild card inter-
nal state and link, which reflects the use of unspecified sites in Kappa. The update function
overwrites any internal state or links in all cases except when the identity is used for updating.
Finally, the seal function simply updates the namespace of any link labels by concatenating the
given binary string to the binary string already present.

Next we define the concrete semantics structure for Kappa. The abstract syntax for Kappa
rules is given in Table 6 where, as before, na ranges over the set of agent names, ns ranges over
the set of site names, r 2 R and k 2 N. Furthermore, v 2 V [Nc ranges over a given set of in-

ternal state values as in LBS-κ, but also over the set of compartment name lists; the latter is
needed in order to encode LBS-κ compartments in Kappa. The abstract syntax for Kappa rules
follows that of the literature (see e.g. [31]), but is adapted notationally for our purposes.

A Kappa rule consists of a list of reactant agents and a list of product agents, and the arrow
is labelled with a rate constant. A Kappa agent is similar to an LBS-κ agent, with the exception
that, following the practices of Kappa, site expressions are lists rather than functions and the
identity " is omitted from internal and link states.

A Kappa program K is then a pair (X, I) where X is a set {xi} of Kappa rules and I is a list a

of complexes (which in turn are lists of agents) representing the initial conditions for simula-
tion. An agent is well-typed if each of its site names occurs exactly once; a list of agents is well-
typed if all the agents are well-typed and each link label occurs exactly twice; a rule is well-
typed if its two lists of agents are well-typed; initial conditions are well-typed if all agents are
ground, i.e. they contain no wild cards; and finally, a Kappa program is well-typed if all its rules
and its initial conditions are well-typed. We denote byK the set of all well-typed
Kappa programs.

We are now in a position to define two elements of the concrete semantics structure for
Kappa, namely the the parallel composition and the nil object:

• K1 jK K2 ’D where

– XK ’D t K1[XK2

– IK ’D t K1 IK2

• 0K ’D (;, ")
We define the remaining elements below.

The sites of an LBS-κ agent are represented by finite functions rather than lists as in Kappa.
The translation to Kappa must therefore “linearise” these functions, for which we assume a lin-
ear ordering,�, on site names.

It must also convert restricted link labels to natural-number link labels, for which we assume
an injective function of the form enc(k, b) = k0; a definition could e.g. be based on a Gödel num-
bering. Given an LBS-κ typed site assignment ασ = {nsj 7! (ρ, (i, l))j} we then define kaps(ασ) to
be the list with the element (nsj, ij, enc(lj)) at index |S| where

S’D ns 2 domðasÞ j ns � ns jg

We here assume enc extended to LBS-κ links in an evident manner. Note that site types are not
needed for the Kappa translation, and so are discarded.

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 22 / 26

The translation of an LBS-κ agent to a Kappa agent simply translates the agent’s sites and
adds an additional site with an internal state representing the enclosing compartments. For the
latter we assume a distinguished site name, comp. This ensures that agents in different com-
partments are distinguished.

We now define a kappa translation function of the form kapðvnaÞ ¼ a for translating normal
form agent values to lists of Kappa agents as follows:

kapðnc ½na; as�Þ’D na; kapsðasÞðcomp; nc ; �ÞÞ

where kapsðasÞðcomp; nc ; �Þ following our notational conventions is the postfixing of the triple
ðcomp; nc ; �Þ to the list kaps(ασ). LBS-κ rules are translated into Kappa rules by applying the

above function to each normal form agent value and flattening the lists representing reactants
and products. In the following we therefore assume a given function flatten for flattening lists,
and also a given function of the form k	 a ¼ a0 which generates a list a0 with k copies of the

agent list a.
The concrete semantics for LBS-κ in terms of Kappa is then given by the tuple (K, jK, 0K,

GK, IK) where the first three elements are defined above and the last two elements are defined
as follows:

• GKðvna)r v0na ; bÞ’D t where

–XK ’D tfflattenðkapðvnaÞ!rflattenðkapðv0naÞÞg
– IK ’D "

• IK(vna, k) ’D t K where

– XK ’D ;
– IK ’D t k ×kap(vna)

Note that the rule assignment function is only defined if the resulting Kappa rule is well-
typed, and the initial conditions assignment function is only defined if the resulting agent list is
well-typed. Note too that well-typedness of agent expressions with respect to link labels is only
determined by the general semantics when the concrete semantics is applied to rules. A dedi-
cated type system would be needed to determine well-typedness earlier, e.g. at species
definition time.

The translation can be adapted with minor modifications to target BioNetGen. There,
agents in rules are separated by connectivity as in LBS-κ, meaning that rules need not be flat-
tened during translation.

4.5 Scripts
The scripting feature, demonstrated in Subsection 2.3.2, is not defined in the general syntax
and semantics for LBS presented in [14, 15]. We now outline how this can be done. One ex-
tends the syntax of LBS-κ by two more productions for programs:

P ::¼ PROGRAM

j script F1 ; P SCRIPT

j scriptdef F2 ; P SCRIPT DEFINITION

where F1 and F2 are F# programs satisfying the following conditions:

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 23 / 26

• F1 has type string, and its string value must be an LBS-κ program with a hole at the end. Since
the hole is always at the end, it has no explicit syntax, and in practice is preceded by either
the “;” or “|” operator as shown in the examples.

• F2 is a top-level expression containing definitions.

Semantically, the contents of scriptdef blocks are collected into a script environment dur-
ing compilation of an LBS-κmodel; the environment is simply a string, consisting of the con-
catenation of any script definitions in scope at a given point during compilation. A script of the
form script F1; P is evaluated by first appending F1 to the current script environment and then
compiling the resulting F# code using the standard F# compiler (through the F# CodeDom li-
brary). The compiled code is then executed to obtain an LBS-κ program string with a trailing
hole. This string is parsed using the LBS-κ parser extended to accommodate holes, resulting in
an abstract syntax tree (AST) for the script. The AST for P, i.e. the sequential LBS-κ program,
is then inserted into the hole of the first AST, and the compiler recurses on the resulting AST,
keeping the same script environment.

Supporting Information
S1 Listing. A flat Kappa model of the chemotaxis switch ring. This is part of a larger model
by Vincent Danos, reproduced with permission from the author.
(PDF)

S2 Listing. A flat Kappa MAPK cascade model adapted from [21]. Reproduced with permis-
sion from the author but with some sites renamed and the rules reorganised to better reflect
the underlying modular structure.
(PDF)

S3 Listing. A flat Kappa model of insulin signalling by Isha Antani and GordonWebster.
The model is reproduced with permission from the second author, but with rule labels and
comments removed.
(PDF)

S4 Listing. A modular LBS-κ insulin signalling model.
(PDF)

S5 Listing. An example PySB model of a MAPK cascade. Included for comparison with the
LBS-κMAPK cascade model. Lines 1-15 define the cycle module. Lines 17-25 define the
agents, here calledmonomers. Lines 27-31 contain the module instantiations. Each of these
three blocks have similar blocks in the corresponding LBS-κmodel. Because PySB distin-
guishes between sites for binding and sites with internal states, some sites are separated into
two in the PySB model; we use the “b”-prefix for sites which are used for binding, and the “m”-
prefix for sites which have modification state. The syntax of PySB is otherwise inherited from
Python, a detailed description of which is outside the scope of this comparison. We note that,
although we have attempted to construct a model which is equivalent to the LBS-κmodel, we
have not been able to verify that the the models do indeed translate to equivalent flat models.
(PDF)

Author Contributions
Wrote the paper: MP GDP AP.

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 24 / 26

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0114296.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0114296.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0114296.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0114296.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0114296.s005

References
1. Priami C (1995) Stochastic pi-calculus. The Computer Journal 38: 578–589. doi: 10.1093/comjnl/38.7.

578

2. Phillips A, Cardelli L, Castagna G (2006) A graphical representation for biological processes in the sto-
chastic pi-calculus. Trans on Comput Syst Biol 4230: 123–152.

3. Kwiatkowski M, Stark I (2008) The continuous π-calculus: a process algebra for biochemical modelling.
In: Heiner M, Uhrmacher AM, editors, Proc. CMSB. Springer-Verlag, number 5307 in LNCS, pp. 103–
122.

4. Priami C, Quaglia P (2005) Beta binders for biological interactions. In: Danos V, Schächter V, editors,
Proc. CMSB. Springer, volume 3082 of LNBI, pp. 20–33.

5. Guerriero ML, Heath JK, Priami C (2007) An automated translation from a narrative language for biolog-
ical modelling into process algebra. In: Calder M, Gilmore S, editors, Proc. CMSB. Springer Springer,
volume 4695 of LNCS, pp. 136–151.

6. Dematté L, Priami C, Romanel A (2008) Modelling and simulation of biological processes in BlenX.
SIGMETRICS Performance Evaluation Review 35: 32–39. doi: 10.1145/1364644.1364653

7. Calder M, Gilmore S, Hillston J (2006) Modelling the influence of RKIP on the ERK signalling pathway
using the stochastic process algebra PEPA. Trans on Comput Syst Biol VII 4230: 1–23. doi: 10.1007/
11905455_1

8. Ciocchetta F, Hillston J (2008) Bio-PEPA: An extension of the process algebra PEPA for biochemical
networks. Electron Notes Theor Comput Sci 194: 103–117. doi: 10.1016/j.entcs.2007.12.008

9. Chabrier-Rivier N, Fages F, Soliman S (2004) The biochemical abstract machine BIOCHAM. In: Proc.
CMSB. Springer, volume 3082 of LNCS, pp. 172–191.

10. Danos V, Feret J, FontanaW, Harmer R, Krivine J (2007) Rule-based modelling of cellular signalling.
In: CONCUR. Springer, volume 4703 of LNCS, pp. 17–41.

11. Danos V, Feret J, FontanaW, Harmer R, Krivine J (2009) Rule-based modelling and model perturba-
tion. Trans on Comput Syst Biol 5750: 116–137.

12. Faeder JR, Blinov ML, HlavacekWS (2005) Graphical rule-based representation of signaltransduction
networks. In: Proc. 2005 ACMSymp. Appl. Computing. ACM Press, pp. 133–140.

13. Oury N, Plotkin GD (2011) Coloured stochastic multilevel multiset rewriting. In: Proc. CMSB. ACM, pp.
171–181.

14. Pedersen M (2010) Modular languages for systems and synthetic biology. Ph.D. thesis, School of Infor-
matics, University of Edinburgh. Http://research.microsoft.com/apps/pubs/default.aspx?id=121736.

15. Pedersen M, Plotkin GD (2010) A language for biochemical systems: Design and formal specification.
Trans on Comput Syst Biol 5945: 77–145. doi: 10.1007/978-3-642-11712-1_3

16. Plotkin GD (2013) A calculus of chemical systems. In: Tannen V, Wong L, Libkin L, FanW, TanWC,
et al., editors, In Search of Elegance in the Theory and Practice of Computation, Springer Berlin Hei-
delberg, volume 8000 of Lecture Notes in Computer Science pp. 445–465.

17. Pedersen, M (2008) Compositional definitions of minimal flows in Petri nets. In: Heiner M, Uhrmacher
AM, editors, Proc. CMSB. Springer-Verlag, volume 5307 of LNCS, pp. 288–307. http://dx.doi.org/10.
1007/978-3-540-88562-7_21.

18. Lopez CF, Muhlich JL, Bachman JA, Sorger PK (2013) Programming biological models in python using
PySB. Molecular Systems Biology 9.

19. Bai F, Branch RW, Nicolau DV, Pilizota T, Steel BC, et al. (2010) Conformational spread as a mecha-
nism for cooperativity in the bacterial flagellar switch. Science 327: 685–689 doi: 10.1126/science.
1182105 PMID: 20133571.

20. Duke TA, Le Novère N, Bray D (2001) Conformational spread in a ring of proteins: a stochastic ap-
proach to allostery. J Mol Biol 308: 541–53. doi: 10.1006/jmbi.2001.4610 PMID: 11327786

21. Danos V (2009) Agile modelling of cellular signalling. Electr Notes Theor Comput Sci 229: 3–10. doi:
10.1016/j.entcs.2009.07.070

22. Sedaghat AR, Sherman A, Quon MJ (2002) A mathematical model of metabolic insulin signaling path-
ways. American Journal of Physiology—Endocrinology and Metabolisml 283: E1084–E1101 doi: 10.
1152/ajpendo.00571.2001

23. Kiselyov VV, Versteyhe S, Gauguin L, Meyts PD (2009) Harmonic oscillator model of the insulin and
igf1 receptors’ allosteric binding and activation. Mol Syst Biol 5: E1084–E1101. doi: 10.1038/msb.
2008.78

24. Lakin MR, Paulevé L, Phillips A (2012) Stochastic simulation of multiple process calculi for biology.
Theoretical Computer Science 431: 181–206. doi: 10.1016/j.tcs.2011.12.057

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 25 / 26

http://dx.doi.org/10.1093/comjnl/38.7.578
http://dx.doi.org/10.1093/comjnl/38.7.578
http://dx.doi.org/10.1145/1364644.1364653
http://dx.doi.org/10.1007/11905455_1
http://dx.doi.org/10.1007/11905455_1
http://dx.doi.org/10.1016/j.entcs.2007.12.008
http://research.microsoft.com/apps/pubs/default.aspx?id=121736
http://dx.doi.org/10.1007/978-3-642-11712-1_3
http://dx.doi.org/10.1007/978-3-540-88562-7_21
http://dx.doi.org/10.1007/978-3-540-88562-7_21
http://dx.doi.org/10.1126/science.1182105
http://dx.doi.org/10.1126/science.1182105
http://www.ncbi.nlm.nih.gov/pubmed/20133571
http://dx.doi.org/10.1006/jmbi.2001.4610
http://www.ncbi.nlm.nih.gov/pubmed/11327786
http://dx.doi.org/10.1016/j.entcs.2009.07.070
http://dx.doi.org/10.1152/ajpendo.00571.2001
http://dx.doi.org/10.1152/ajpendo.00571.2001
http://dx.doi.org/10.1038/msb.2008.78
http://dx.doi.org/10.1038/msb.2008.78
http://dx.doi.org/10.1016/j.tcs.2011.12.057

25. Danos V, Feret J, FontanaW, Krivine J (2007) Scalable simulation of cellular signaling networks. In:
APLAS. Springer, volume 4807 of LNCS, pp. 139–157.

26. Pedersen M, Oury N, Gravill C, Phillips A (2014) Bio simulators: A web UI for biological simulation.

27. Pedersen, M (2013) LBS command line tool and source code. Http://mdp- fileserver2.appspot.com/
static/lbs-kappa.zip.

28. Smith LP, Bergmann FT, Chandran D, Sauro HM (2009) Antimony: a modular model definition lan-
guage. Bioinformatics 25: 2452–2454. doi: 10.1093/bioinformatics/btp401 PMID: 19578039

29. Mallavarapu A, Thomson M, Ullian B, Gunawardena J (2008) Programming with models: modularity
and abstraction provide powerful capabilities for systems biology. J R Soc Interface.

30. Jensen K (1992–1997) Coloured Petri Nets. Basic conceps, analysis methods and practical use, vol-
ume 1–3 of Monographs in theoretical computer science. Springer.

31. Danos V, Feret J, FontanaW, Harmer R, Krivine J (2010) Abstracting the differential semantics of rule-
based models: Exact and automated model reduction. In: Proc. LICS. IEEE Computer Society, pp.
362–381.

A High-Level Language for Rule-Based Modelling

PLOS ONE | DOI:10.1371/journal.pone.0114296 June 4, 2015 26 / 26

http://mdp- fileserver2.appspot.com/static/lbs-kappa.zip
http://mdp- fileserver2.appspot.com/static/lbs-kappa.zip
http://dx.doi.org/10.1093/bioinformatics/btp401
http://www.ncbi.nlm.nih.gov/pubmed/19578039

