

Edinburgh Research Explorer

Automatic Optimization of Thread-coarsening for Graphics
Processors

Citation for published version:
Magni, A, Dubach, C & O'Boyle, M 2014, Automatic Optimization of Thread-coarsening for Graphics
Processors. in Proceedings of the 23rd International Conference on Parallel Architectures and Compilation.
ACM, New York, NY, USA, pp. 455-466. DOI: 10.1145/2628071.2628087

Digital Object Identifier (DOI):
10.1145/2628071.2628087

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 23rd International Conference on Parallel Architectures and Compilation

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43714504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2628071.2628087
https://www.research.ed.ac.uk/portal/en/publications/automatic-optimization-of-threadcoarsening-for-graphics-processors(bda8fb68-1c9d-41f4-9512-da753005be59).html

Automatic Optimization of Thread-Coarsening for Graphics
Processors

Alberto Magni
School of Informatics

University of Edinburgh
United Kingdom

a.magni@sms.ed.ac.uk

Christophe Dubach
School of Informatics

University of Edinburgh
United Kingdom

christophe.dubach@ed.ac.uk

Michael O’Boyle
School of Informatics

University of Edinburgh
United Kingdom

mob@inf.ed.ac.uk

ABSTRACT
OpenCL has been designed to achieve functional portability
across multi-core devices from different vendors. However,
the lack of a single cross-target optimizing compiler severely
limits performance portability of OpenCL programs. Pro-
grammers need to manually tune applications for each spe-
cific device, preventing effective portability. We target a
compiler transformation specific for data-parallel languages:
thread-coarsening and show it can improve performance across
different GPU devices. We then address the problem of se-
lecting the best value for the coarsening factor parameter,
i.e., deciding how many threads to merge together. We ex-
perimentally show that this is a hard problem to solve: good
configurations are difficult to find and naive coarsening in
fact leads to substantial slowdowns. We propose a solution
based on a machine-learning model that predicts the best
coarsening factor using kernel-function static features. The
model automatically specializes to the different architectures
considered. We evaluate our approach on 17 benchmarks on
four devices: two Nvidia GPUs and two different generations
of AMD GPUs. Using our technique, we achieve speedups
between 1.11× and 1.33× on average.

1. INTRODUCTION
Graphical Processing Units (GPUs) are widely used for

high performance computing. They provide cost-effective
parallelism for a wide range of applications. The success of
these devices has lead to the introduction of a diverse range
of architectures from many hardware manufacturers. This
has created the need for a common programming language to
harness the available parallelism in a portable way. OpenCL
is an industry-standard language for GPUs that offers pro-
gram portability across accelerators of different vendors: a
single piece of OpenCL code is guaranteed to be executable
on many diverse devices.

A uniform language specification, however, still requires
programmers to manually optimize kernel code to improve
performance on each target architecture. This is a tedious

.

process, which requires knowledge of hardware behavior, and
must be repeated each time the hardware is updated. This
problem is particularly acute for GPUs which undergo rapid
hardware evolution.

The solution to this problem is a cross-architectural opti-
mizer capable of achieving performance portability. Current
proposals for cross-architectural compiler support [21, 34] all
involve working on source-to-source transformations. Com-
piler intermediate representations [6] and ISAs [5] that span
across devices of different vendors have still to reach full
support.

This paper studies the issue of performance portability fo-
cusing on the optimization of the thread-coarsening compiler
transformation. Thread coarsening [21, 30, 31] merges to-
gether two or more parallel threads, increasing the amount
of work performed by a single thread, and reducing the total
number of threads instantiated. Selecting the best coarsen-
ing factor, i.e., the number of threads to merge together, is
a trade-off between exploiting thread-level parallelism and
avoiding execution of redundant instructions. Making the
correct choice leads to significant speedups on all our plat-
forms. Our data show that picking the optimal coarsening
factor is difficult since most configurations lead to perfor-
mance downgrade and only careful selection of the coarsen-
ing factor gives improvements. Selecting the best parameter
requires knowledge of the particular hardware platform, i.e.,
different GPUs have different optimal factors

In this work we select the coarsening factor using an au-
tomated machine learning technique. We build our model
based on a cascade of neural networks that decide whether
it is beneficial to apply coarsening. The inputs to the model
are static code features extracted from the parallel OpenCL
code. These features include, among the others, branch di-
vergence and instruction mix information. The technique
is applied to four GPU architectures: Fermi and Kepler
from Nvidia and Cypress and Tahiti from AMD. While naive
coarsening misses optimization opportunities, our approach
gives an average performance improvement of 1.16x, 1.11x,
1.33x, 1.30x respectively.

In summary the paper makes the following contributions:

• We provide a characterization of the optimization space
across four architectures.

• We develop a machine learning technique based on a
neural network to predict coarsening.

• We show significant performance improvements across
17 benchmarks

The remainder of the paper is organized as follows. Sec-
tion 2.1 provides a brief overview of OpenCL and describes
the thread coarsening transformation. A motivating exam-
ple for the problem is provided in section 3. Section 4 de-
scribes the experimental setup and the compiler infrastruc-
ture. Section 5 presents a characterization of the optimiza-
tion space. Section 6 describes the machine the machine
learning model. The results are presented in Section 7. Sec-
tion 8 presents the related work and section 9 concludes the
paper.

2. BACKGROUND

2.1 OpenCL
OpenCL is a cross-vendor programming language used for

massively parallel multi-core graphic processors. OpenCL
kernel functions define the operations carried out by each
data-parallel hardware-thread. Kernels are compiled at run-
time on the host (a standard CPU) and sent to execution
onto the device (in our case a GPU). It is the program-
mer’s responsibility to decide how many threads to instan-
tiate and how to arrange them into work-groups, defining
the so-called NDRange of thread-ids. Each thread-id cor-
responds to thread executing within a work-group. Work-
items in a work-group are guaranteed to be scheduled onto
a single core and can share data in local memory and syn-
chronize using barriers.

OpenCL programmers, usually, instantiate as many threads
as they have data element to process. This results in hun-
dreds of thousands of threads being scheduled on the tar-
get device, maximizing the degree of parallelism. However,
there is no guarantee that this policy is the best for each
possible target device. Consider for instance the presence
of thread-invariant instructions [18, 33] which produces the
same results independently from the thread executing them.
Maximizing the number of threads might increase the total
number of redundant operations executed by the GPU.

2.2 Thread Coarsening
One way to prevent the problems associated with having

too fine-grained parallelism is to merge threads together.
This reduces the redundancy in the number of integer oper-
ations and branches performed per floating point operation.
This transformation, known as thread coarsening [21, 30,
31], works by fusing multiple work items together increasing
the amount of work performed by a single thread and re-
ducing the overall number of launched threads. While it ap-
pears to be an easy task for the programmer, it is preferable
to apply this transformation automatically using a compiler
for two reasons: (1) the merging is done by replicating in-
structions inside the kernel, which is error-prone to do by
hand; (2) the Coarsening Factor (i.e., the number of times
the body of the thread is replicated) which gives the best
performance depends on the program and on the hardware.

The coarsening transformation we implemented increases
the amount of work performed by the kernel by replicating
the instructions in its body. Leveraging divergence analy-
sis [9, 15, 18] only instructions that depend on the thread-
id (divergent instructions) are replicated. This reduces the
overhead of executing uniform instructions across multiple
threads. Divergent instructions are replicated and inserted
right after the original ones updating the thread-id to work

1 kernel void square (global f loat ∗ in , out) {
2 int g id = g e t g l o b a l i d (0) ;
3 out [g id] = in [g id]∗ in [g id] ; }

(a) Original code

1 kernel void square2x (global f loat ∗ in , out) {
2 int g id = g e t g l o b a l i d (0) ;
3 int t i d0 = 2∗ g id+0;
4 int t i d1 = 2∗ g id+1;
5 out [t i d0] = in [t i d0]∗ in [t i d0] ;
6 out [t i d1] = in [t i d1]∗ in [t i d1] ; }

(b) After coarsening with factor 2

Figure 1. Vector square example in OpenCL. In the origi-
nal code each thread takes the square of one element of the
input array a. When coarsened by a factor two b , each
thread now processes two elements of the input array.

on the correct data elements. Finally, the number of instan-
tiated thread is reduced at runtime.

Figure 1 shows a kernel that calculates the square of the el-
ement of the input array. In the original code, each thread is
responsible for squaring one element of the input array. Af-
ter coarsening has been applied with factor two, each thread
processes two element of the input array. As can be see on
lines 3–4 of figure 1b, the index in the input array are calcu-
lated from the original thread iteration space as returned by
the OpenCL get global id(0) function. Prior work on this
compiler transformation ([21]) presents how to effectively
manage branches and loops.

3. MOTIVATION
This section motivates the work explaining the importance

of determining whether to coarsen, and by how much. Fig-
ure 2 shows the speedup given by thread-coarsening over the
baseline (no coarsening) as a function of the corsening factor
for two benchmarks on different GPUs.

The first figure 2a shows the performance of NBody on two
AMD architectures: Cypress and Tahiti . Even though these
two devices are from the same vendor, they have significant
architectural differences [3]. Cypress cores are VLIW while
Tahiti cores have processing elements working in SIMD fash-
ion. Such differences are reflected in the different reactions
shown by the benchmark to the coarsening transformation.
The higher degree of ILP made available by coarsening in
the NBody benchmark is successfully exploited by the VLIW
cores of Cypress ensuring a significant speedup. The same
does not apply to Tahiti where no improvement can be ob-
tained and we record a significant slowdown for higher fac-
tors.

Differences across architectures also emerge for Binary-
Search. Here, we make a comparison between the AMD
Tahiti and the Nvidia Fermi architectures. On the first de-
vice BinarySearch ensures an improvement of 2.3x over the
default for coarsening factor 8. On Nvidia, however, no im-
provement can be obtained.

From these simple examples it is clear that optimizing
the coarsening pass is an important problem. In addition,
the coarsening factor must be determined on a per-program
and per-platform basis. Classical hand-written heuristics

Speedup

Coarsening Factor
1 2 4 8 16 32

0

1

2

3

4

Cypress

Tahiti

(a) NBody run on Cypress and Tahiti
Speedup

Coarsening Factor
1 2 4 8 16 32

0.5

1

1.5

2

Fermi

Tahiti

(b) BinarySearch run on Fermi and Tahiti

Figure 2. Speedup achieved with thread coarsening as a
function of the coarsening factor for NBody and Binary-
Search

Original
OpenCL Nvidia

Transformed
OpenCL

1. Clang 3. Axtor

4. Proprietary
Compiler2. Coarsening

LLVM
IR

AMD

Figure 3. Compiler toolchain

are not only complex to develop, but are likely to fail due to
the variety of programs and ever-changing OpenCL devices
available.

4. EXPERIMENTAL SETUP
This section describes the compiler toolchain (4.1), the

coarsening stride (4.2), the benchmarks (4.3) and the devices
used in the experiments (4.4).

4.1 Compiler Toolchain
One way to automatically evaluate a compiler transfor-

mation in OpenCL on multiple devices is to use a source-
to-source compiler. It avoids the need to have access to
potentially properietary compiler internals. Alternative ap-
proaches based on SPIR [6] could also be used in the fu-
ture, when it is going to reach wide adoption. Figure 3
shows our compilation infrastructure. The OpenCL C code
of the target kernel is translated to LLVM bitcode using
the clang open-source front-end (stage 1). The coarsening
transformation is applied at the LLVM bitcode level (stage
2). The transformed LLVM program is then translated back
to OpenCL C using the axtor [24] LLVM OpenCL-backend
(stage 3). The transformed OpenCL program is then fed
into the hardware vendor proprietary compiler (stage 4) for
code generation.

Program name Source Num. Threads

1) binarySearch AMD SDK 268M
2) blackscholes Nvidia SDK 16M
3) convolution AMD SDK 6K
4) dwtHaar1D AMD SDK 2M
5) fastWalsh AMD SDK 33M
6) floydWarshall AMD SDK (8K x 8K)
7) mriQ Parboil 524K
8) mt AMD SDK (4K x 4K)
9) mtLocal AMD SDK (4K x 4K)

10) mvCoal Nvidia SDK 16K
11) mvUncoal Nvidia SDK 16K
12) nbody AMD SDK 131K
13) reduce AMD SDK 67M
14) sgemm Parboil (3K x 3K)
15) sobel AMD SDK (1K x 1K)
16) spmv Parboil 262K
17) stencil Parboil (3K x 510 x 62)

Table 1. OpenCL applications with the reference number
of threads.

4.2 Coarsening Factor
In this work we address the tuning of the coarsening fac-

tor parameter. The first one controls how many threads to
merge together. For our experiments we allowed this param-
eter to have the following values: [1, 2, 4, 8, 16, 32]. Where
coarsening factor of 1 corresponds to the original program.
We limited our evaluations to powers of two since these are
the most widely applicable parameter values, given the refer-
ence input sizes for the considered benchmarks. The tuning
technique in the next chapters can be easily extended to
support non powers of two.

4.3 Benchmarks
We have used 17 benchmarks from various sources as

shown in table 1. In the case of the Parboil benchmarks
we used the opencl base version. The table also shows the
global size (total number of threads) used. The baseline
performance reported in the results section is that of the
best work group size as opposed to the default one chose by
the programmer. This is necessary to give a fair compari-
son across platforms when the original benchmark is written
specifically for one platform. Each experiment has been re-
peated 50 times aggregating the results using the median.
Previous work ([22]) has shown that the choice for the op-
timal coarsening factor is consistent across input sizes. For
this reason we restricted our analysis to the input size (i.e.,
total number of threads running) for the uncoarsened kernel
listed in table 1.

4.4 Devices
For our experiments we used four devices from two ven-

dors. From Nvidia we used GTX480 and Tesla K20c. The
first one is based on the Fermi architecture [2] with 15 stream-
ing multiprocessors (SM) and 32 CUDA cores for each. The
Tesla K20c has the latest Kepler architecture [4]. K20c has
13 SMs each with 192 CUDA cores.
From AMD we used the Radeon HD 5900 and Tahiti 7970.
The first one, codenamed Cypress, has 20 SIMD cores each
with 16 thread processors, a 5-way VLIW core. The Graph-
ics Core Next architecture in Tahiti 7970 is a radical change

bi
na

ry
Se

ar
ch

bl

ac
ks

ho
le

s
co

nv
ol

ut
io

n
dw

tH
aa

r1
D

fa

st
W

al
sh

flo

yd
W

ar
sh

al
l

m
riQ

m

t
m

tL
oc

al

m
vC

oa
l

m
vU

nc
oa

l
nb

od
y

re
du

ce

sg
em

m

so
be

l
sp

m
v

st
en

ci
l

ag
gr

eg
at

e 0

0.5

1

1.5

2

2.5 Speedup

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

3.95 3.95

(a) Fermi

bi
na

ry
Se

ar
ch

bl

ac
ks

ho
le

s
co

nv
ol

ut
io

n
dw

tH
aa

r1
D

fa

st
W

al
sh

flo

yd
W

ar
sh

al
l

m
riQ

m

t
m

tL
oc

al

m
vC

oa
l

m
vU

nc
oa

l
nb

od
y

re
du

ce

sg
em

m

so
be

l
sp

m
v

st
en

ci
l

ag
gr

eg
at

e 0

0.5

1

1.5

2

2.5 Speedup

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

(b) Kepler

bi
na

ry
Se

ar
ch

bl

ac
ks

ho
le

s
co

nv
ol

ut
io

n
dw

tH
aa

r1
D

fa

st
W

al
sh

flo

yd
W

ar
sh

al
l

m
riQ

m

t
m

tL
oc

al

m
vC

oa
l

m
vU

nc
oa

l
nb

od
y

re
du

ce

sg
em

m

so
be

l
sp

m
v

st
en

ci
l

ag
gr

eg
at

e 0

0.5

1

1.5

2

2.5 Speedup

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

3.21 3.24 3.78 3.78

(c) Cypress

bi
na

ry
Se

ar
ch

bl

ac
ks

ho
le

s
co

nv
ol

ut
io

n
dw

tH
aa

r1
D

fa

st
W

al
sh

flo

yd
W

ar
sh

al
l

m
riQ

m

t
m

tL
oc

al

m
vC

oa
l

m
vU

nc
oa

l
nb

od
y

re
du

ce

sg
em

m

so
be

l
sp

m
v

st
en

ci
l

ag
gr

eg
at

e 0

0.5

1

1.5

2

2.5 Speedup

●

● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

3.4 2.82 12.01 12.01

(d) Tahiti

Figure 4. Violin plots showing the distribution of speedups for all the benchmarks on the four devices. The shape of the
violin corresponds to the speedup distribution. They indicate on how hard it is to tune a program. The thick black line shows
where 50% of the data lies. The white dot is the position of the median.

Name Model GPU OpenCL Linux
Driver version kernel

Fermi Nvidia GTX 480 304.54 1.1 CUDA 5.0.1 3.2.0
Kepler Nvidia K20c 331.20 1.1 CUDA 5.0.1 3.7.10
Cypress AMD HD5900 1124.2 1.2 SDK 1124.2 3.1.10
Tahiti AMD HD7970 1084.4 1.2 SDK 1084.4 3.1.10

Table 2. OpenCL devices used for our experiments.

for AMD. Each of the 32 computing cores contains 4 vector
units (of 16 lanes each) operating in SIMD mode. This ex-
ploits the advantages of dynamic scheduling as opposed to
the static scheduling needed by VLIW cores.

5. OPTIMIZATION SPACE CHARACTER-
ISTICS

In the motivating example, in figure 2, we showed that dif-
ferent applications behave differently with respect to coars-
ening on different devices. In this section we expand on this
topic and present the overall optimization space.

5.1 Distribution of Speedup
The violin plots in figure 4 show the distribution of the

speedups (over no coarsening) achievable by changing the
coarsening factor and the local work group size. The width
of each violin corresponds to the proportions of configura-
tions with a certain speedup. The white dot denotes the me-
dian speedup, while the thick black line shows where 50%

of the data lies. These plots are effective in highlighting
differences and similarities in spaces of different applica-
tions. Intuitively, violins with a pointy top correspond to
benchmarks difficult to optimize: configurations giving the
maximum performance are few. For example consider mt
and mtLocal (matrix multiplication and matrix multiplica-
tion with local memory). These two program show similar
shapes among the two Nvidia and AMD devices. On the
other hand nbody shows different shapes among the four
architectures: a large improvement is available on Cypress
while no performance gain can be obtained on the other
three devices. Interesting cases for analysis are benchmarks
such as mvCoal and spmv . They have an extremely pointy
top with the whole violin lying below 1, meaning no perfor-
mance improvement is possible on these benchmarks with
coarsening. Consider now the aggregate violin in the final
column of each subfigure. This shows the distribution of
speedups across all programs. In all the four cases the white
dots lies well below the 1, near 0.5 in most cases. This
means that on average, the coarsening transformation will
slow programs down. This fact coupled with the different
optimization distributions shows how difficult choosing the
right coarsening factor is. This is probably the reason why
there is little prior work in determining the right coarsening
factor. The model presented in section 6 tackles this prob-
lem of selecting an appropriate factor for each program.

5.2 Coarsening Factor Characterization
The objective of this work is the determination of the best

thread-coarsening factor. In this section we quantify how

●

●

1

2

4

8

16

32

Coarsening Factor
bi

na
ry

Se
ar

ch
bl

ac
ks

ho
le

s
co

nv
ol

ut
io

n
dw

tH
aa

r1
D

fa
st

W
al

sh
flo

yd
W

ar
sh

al
l

m
riQ m

t
m

tL
oc

al
m

vC
oa

l
m

vU
nc

oa
l

nb
od

y
re

du
ce

sg
em

m
so

be
l

sp
m

v
st

en
ci

l

(a) Fermi

●

●

1

2

4

8

16

32

Coarsening Factor

bi
na

ry
Se

ar
ch

bl
ac

ks
ho

le
s

co
nv

ol
ut

io
n

dw
tH

aa
r1

D
fa

st
W

al
sh

flo
yd

W
ar

sh
al

l
m

riQ m
t

m
tL

oc
al

m
vC

oa
l

m
vU

nc
oa

l
nb

od
y

re
du

ce
sg

em
m

so
be

l
sp

m
v

st
en

ci
l

(b) Kepler

●

●

1

2

4

8

16

32

Coarsening Factor

bi
na

ry
Se

ar
ch

bl
ac

ks
ho

le
s

co
nv

ol
ut

io
n

dw
tH

aa
r1

D
fa

st
W

al
sh

flo
yd

W
ar

sh
al

l
m

riQ m
t

m
tL

oc
al

m
vC

oa
l

m
vU

nc
oa

l
nb

od
y

re
du

ce
sg

em
m

so
be

l
sp

m
v

st
en

ci
l

(c) Cypress

●

●

1

2

4

8

16

32

Coarsening Factor

bi
na

ry
Se

ar
ch

bl
ac

ks
ho

le
s

co
nv

ol
ut

io
n

dw
tH

aa
r1

D
fa

st
W

al
sh

flo
yd

W
ar

sh
al

l
m

riQ m
t

m
tL

oc
al

m
vC

oa
l

m
vU

nc
oa

l
nb

od
y

re
du

ce
sg

em
m

so
be

l
sp

m
v

st
en

ci
l

(d) Tahiti

Figure 5. Hinton diagram showing the percentage of configurations with the given coarsening factor in the performing top
5% configurations. Intuitively, the larger the square is the more likely it is for the given coarsening factor to perform close to
the optimum.

this parameter varies across program and platform. Figure
5 shows a Hinton diagram for each target device. For each
benchmark and coarsening factor it plots a square. The size
of the square is proportional to the percentage of configura-
tions having the given coarsening factor among the top 5%
performing ones. Intuitively: the larger the square is, the
more likely it is that the corresponding coarsening factor
will perform well. From these plots it is immediately clear
that no single factor can give good performance for all the
programs. On the two Nvidia devices (Fermi and Kepler)
the optimal coarsening factor tends to be among 1, 2, or 4,
with few exceptions. On the two AMD architectures (Tahiti
and Cypress) instead the best coarsening factor are often
larger (4 or 8).
In section 7 we provide an evaluation of the improvement
that can be obtained using a single coarsening factor for all
the programs. We compare our prediction model against
this baseline.

5.3 Cross-architecture optimization portabil-
ity

In this section we investigate if the knowledge of the best
coarsening factor for one architecture can be successfully ex-
ploited to a new platform. This study fulfills two purposes:
(1) it characterizes the diversity of the devices that are eval-
uated in this work, (2) it studies how successful would an
optimizer tuned for a given platform be when ported to an-

other one. For this task we explored all coarsening factors
on all the kernel and devices selecting the best for each.
Given two devices A and B we then evaluate for each kernel
the performance of the best coarsening factor of A (Search-
Device) on B (Target-Device). Figure 6 reports the results
of this analysis for all combinations of A and B.

From these plots we can see, for example, that perfor-
mance transfers effectively from Kepler to Fermi (where we
reach 77% of the maximum speedup) but, interestingly, the
contrary is not true (where only 47% is attainable). Its im-
portant to notice that porting performance across Nvidia
and AMD leads to bad performance on average. For exam-
ple the best configurations from Fermi and Kepler give 28%
and 41% of the maximum on Cypress. Similarly bad per-
formance is given when porting from Cypress and Tahiti to
Kepler.

Consider that these results represent the upper bound of
how an optimizer specialized for one architecture would be-
have when applied to another one. Any realistic compiler
heuristic when applied to an unseen program, would per-
form considerably worse than this. This shows that per-
formance portability is not guaranteed when going across
vendors, even if we have optimized the same program on
a previous device This justifies the need to specialize the
choice of the coarsening configuration on a per-platform ba-
sis relying on a flexible optimizer.

0

20

40

60

80

100

% of Max Speedup

0

20

40

60

80

100

% of Max Speedup

0

20

40

60

80

100

% of Max Speedup

0

20

40

60

80

100

% of Max Speedup

0

20

40

60

80

100

% of Max Speedup

0

20

40

60

80

100

% of Max Speedup

0

20

40

60

80

100

% of Max Speedup

0

20

40

60

80

100

% of Max Speedup

0

20

40

60

80

100

% of Max Speedup

0

20

40

60

80

100

% of Max Speedup

0

20

40

60

80

100

% of Max Speedup

0

20

40

60

80

100

% of Max Speedup

0

20

40

60

80

100

% of Max Speedup

0

20

40

60

80

100

% of Max Speedup

0

20

40

60

80

100

% of Max Speedup

0

20

40

60

80

100

% of Max Speedup

Ta
hi

ti
C

yp
re

ss
K

ep
le

r
F

er
m

i
Fermi Kepler Cypress Tahiti

S
ea

rc
h−

D
ev

ic
e

Target−Device

Figure 6. Each barplot reports the percentage of the max-
imum performance of Target-Device (columns) is obtained
when evaluating the best configuration found searching on
Search-Device (rows). When Target-Device and Search-
Device are the same the bar reached 100% by construction.
For example, the Fermi-Cypress subplot (on the top-left)
shows that 37% of the maximum performance of Cypress is
achievable when using the best configuration coming from
Fermi .

6. PREDICTIVE MODEL
The goal of the model is to decide the optimal coarsening

factor for each kernel on a specific architecture. The model
works using static program features extracted at compile
time. Relying on these features, the model makes a binary
decision on whether to coarsen or not. By iteratively query-
ing the model we can decide when to stop coarsening. We
train a new model for each architecture: four in total.

6.1 Training
This section describes how we generate training data.
We use Leave One Out Cross Validation. This standard

machine learning technique works selecting one benchmark
for testing and using the remaining ones for training. This
means we train our model on 16 benchmarks and apply it to
the testing program. We repeat this process 17 times, one
for each test case.
Figure 7 gives a visual representation of the training process.
OpenCL kernels from the training set are compiled and run
with the six different coarsening factors. During the compi-
lation step (Phase 1) a compiler-analysis pass collects static
features of each different version of the code. The full list of
these features is given in section 6.3. In Phase 2 we run all
the different versions of the program arranging the results

Static Features

(Y, Y
, N

, N
, ...

)

Run-Time Output

ML Training ML Model
CF: 1, 2, 4, 8, 16

Training Kernels

 1 2 4 8 16

Y

Y
N N

(x2, y2 , z2 , ...)

(x1 , y1 , z1 , ...)CoarseningPh
as

e
1

Ph
as

e
2

R
u
n
-T

im
e

CF

Figure 7. Model training overview. In Phase 1) we collect
static features of the kernel functions. In Phase 2) we run
the testing programs collecting the binary output variables.

by increasing coarsening factor. The binary training out-
put variable is computed answering the following question:
Is further coarsening going to improve the performance of
the current version? Asking this question on each version
of the kernel function will generate a tuple of binary values.
Then, for each kernel the 5 sets of features and the 5-tuple of
binary variables are used for training the machine learning
model. This process is repeated for each target architecture.

6.2 Cascade NN Model
Our model is built using Neural Networks for classifica-

tion. Neural Networks [7] are a supervised learning algo-
rithm that classify data-points assigning to each of them
the expected probability to belong to a given class.
Given a previously unseen program the model determines
whether coarsening should be applied or not. If the answer
is yes, the model is applied again to the coarsened version
of the program to determine if we should keep going or stop
coarsening. In the latter case, the model is called a third
time deciding if the program should be coarsened one more
time and so on. Figure 8 gives an overview of how the model
is applied. Such model relies on the peculiar shape of the
coarsening performance curve, which shows improvement up
until the optimal coarsening factor.
Further coarsening leads to performance degradation. This
common behavior is shown with figure 2. Note that no ac-
tual recompilation of the program is needed. The values of
the features for the coarsened versions can be statically com-
puted from the values of the uncoarsened version. This it
true because the coarsening transformation, from the source-
code point of view, behaves in a predictable manner. The
model simply takes as input the static features of the original
OpenCL kernel and gives as output the predicted coarsening
factor. This makes extremely easy to integrate such model
in a real optimizer compiler.
We choose the cascading predictor to implement a conserva-
tive approach. By iteratively querying the model in multi-
ple intermediate steps we make sure to limit the application
of thread coarsening only to those applications which truly
benefit from it. This is a beneficial property, since large
coarsening factors are rarely optimal (consider the Hinton
diagrams in figure 5).

NNmodel

Coarsening ?

YesNo

Coarsening ?

YesNo

Coarsening ?

No

NNmodel

NNmodel

...

Static Code Features

Predicted Coarsening Factor

Kernel (CF1)

Cascade NN model

Kernel (CF2)

Features

Kernel (CF4)

Features

Figure 8. High-level view the use of our Neural Network
cascade model. Static source code features of the program
are extracted from the original kernel code and fed into the
model which decides whether to coarsen or not. If yes, new
features are computed and the model is queried again. From
a high level point of view the model simply computes the
best coarsening factor from static program characteristics.
At the end of the process the program is compiled using the
predicted factor.

6.3 Program Features
This section describes the static feature selection process.

The model is based exclusively on static characteristics of
the target OpenCL kernel function. These characteristics,
called features, are extracted using a function pass work-
ing on the LLVM intermediate representation. Note that,
since our goal is to develop a portable optimizer, we don’t
use any architecture-specific feature. We apply our func-
tion analysis at the LLVM-bitcode level because this is the
lowest level of abstraction that is portable across architec-
tures. In particular, we do not collect any information after
instruction scheduling or register allocation, since these are
target-specific phases. We first describe the candidate fea-
tures. This is followed by the process used to reduce these
to a smaller useful subset.

6.3.1 Candidate Feature
The full list of candidate features is given in table 3. We

selected these based on the results of previous work [21];
where we analyzed which hardware performance counters
are affected by the coarsening transformation. These are
the number of executed branches, memory utilization (in
terms of load and cache utilization) and instruction level
parallelism (ILP). We approximate these dynamic counters
using static code characteristics counterparts, such as the to-

Feature Name Description

BasicBlocks Number of Basic Blocks
Branches Number of Branches
DivInsts Number of Divergent Instruc-

tions
DivRegionInsts Number of Instructions in Diver-

gent Regions
DivRegionInstsRatio Ratio between the Number of in-

structions inside Divergent Re-
gions and the Total number of
instructions

DivRegions Number of Divergent Regions
TotInsts Number of Instructions
FPInsts Number of Floating point In-

structions
ILP Average ILP per Basic Block
Int/FP Inst Ratio Ration between Integer and

Floating Point Instructions
IntInsts Number of Integer Instructions
MathFunctions Number of Math Builtin Func-

tions
MLP Average MLP per Basic Block
Loads Number of Loads
Stores Number of Stores
UniformLoads Number of Loads that do not de-

pend on the Coarsening Direc-
tion

Barriers Number of Barriers

Table 3. Candidate static features used by the machine
learning model.

tal number of kernel instructions, static number of branches
and divergent regions and static ILP. There are 17 candidate
static features that approximate the six most important dy-
namic counters.

Absolute Features.
Divergent control flow has a strong impact on performance

for graphics processors because it forces the serialization of
instructions that would normally be executed concurrently
on the different lanes of a warp [1]. The degree of a kernel
thread divergence is measured using the results of divergence
analysis. We count the total number of divergent instruc-
tions (instructions that depend on the thread-id, i.e., the
position of the work-item in the NDRange space), the total
number of divergent regions (CFG regions controlled by a
divergent branch) and their relative size with respect to the
overall number of instructions in the kernel. Other counters
related to the complexity of the control flow of the kernel
are the total number of blocks. Finally we also compute the
average per-block theoretical ILP and Memory Level Paral-
lelism (MLP) at the LLVM instruction level. To compute
the static ILP and MLP we followed the methodology pre-
sented in prior work [27].

Relative Features.
As described in section 2.2 the effects of thread coarsen-

ing on the shape of the code are highly predictable. Thanks
to this property we can statically compute the value that
features will assume after the application of the coarsen-
ing transformation. This information is used during train-
ing and prediction. In particular, for each feature, we also
calculate its relative increase caused by thread coarsening.
This value is computed according to the following formula:

Delta TotInsts Delta IntInsts Delta Loads Delta Stores Delta DivInsts

Delta Branches Delta BasicBlocks Delta ILP Delta MLP Delta DivRegions Delta DivRegionInsts

FPInsts DivInsts MathFunctions FP/Int Inst Ratio

TotInsts Branches IntInsts Loads BasicBlocks

Stores Barriers UniformLoads DivRegionInsts DivRegionInstsRatio Delta UniformLoads Delta DivRegionInstsRatio

Delta FPInsts Delta MathFunctions Delta FP/Int Inst Ratio

ILP MLP DivRegions

1. Delta Instructions
2. Delta Divergence3. Arithmetic Intensity

4. Instructions

5. Divergence
6. Delta Arithmetic Intensity

7. Instruction Parallelism7) Instruction Parallelism

6) Delta Arithmetic Intensity

5) Divergence

4) Instructions

3) Arithmetic Intensity

2) Delta Divergence

1) Delta Instructions

Figure 9. Result of the PCA analysis with Varimax rotation. The seven resulting components are labeled on the left and
sorted according to their relative importance (the amount of variance of the feature space covered by each of them). On the
right-end side segment-plots depicts the contribution of each original feature to a given output principal component. Features
are laid out in rows according to the component they contribute to.

1) Delta instructions
2) Delta divergence
3) Arithmetic Intensity
4) Instructions
5) Divergence
6) Delta Arithmetic Intensity
7) Instruction Parallelism

Table 4. Final features selected after the application of
Principal Component Analysis.

(featureAfter−featureBefore)

featureBefore
, where featureBefore and

featureAfter are the values of the feature before and after
coarsening. In the remainder of the paper delta features are
identified by Delta added to the feature name.

6.3.2 Feature Selection
This section describes how we select features starting from

the candidate ones.

Principal Component Analysis.
The large number of features (absolute plus deltas) is au-

tomatically reduced using the standard technique of Princi-
pal Component Analysis.
It is important to notice that we use the same set of features
in table 3 for all devices without manual intervention. Prin-
cipal Components Analysis minimizes the cross-correlation
of the input features by linearly aggregating those features
that are highly correlated and therefore redundant. After
application of PCA we have the 7 final selected features in
table 4 which describe 95% of the variance of the original
space.
With the goal of providing an understanding of the impor-
tance of each feature we applied to the results of naive PCA
a space transformation called Varimax rotation [23]. This
transformation makes sure that each feature of the origi-
nal space contributes either very strongly or very weakly to
each new principal component. Such a property makes eas-

ier to interpret the output of PCA and allows one to label
each principal component with a meaningful name based on
the features that contribute to it. A similar approach to
PCA has been followed by Kerr et al. [16] for prediction
of execution time of parallel applications in heterogeneous
environments.

Figure 9 shows the result of the PCA with Varimax ro-
tation when reducing the space from 34 candidate features
to the 7 components. The new principal components are
organized by rows and labeled on the left. Each segment
plot shows which component a given original feature con-
tributes to. Components are sorted by rows according to
their relative importance: how much of the feature variance
they cover. So the most important component is labeled
Delta Instructions. This component groups together fea-
tures describing by how much the number of instructions in
the kernel body increases while coarsening.
The second most important component (Delta Divergence)
describes the increase in the amount of divergence. It is in-
teresting to notice that the two most important components
describe the difference of characteristics in the feature space
rather then their absolute value. Absolute features account
for a smaller amount of variance of the feature space. Sec-
tion 7.4 describes how two representative features of the first
two components are related to the results of the coarsening
transformation and how they are used for prediction.

7. RESULTS
This section presents the evaluation of our machine learn-

ing predictor. All the speedups reported in this section are
relative to the execution time of the original application ex-
ecuted without applying the coarsening transformation, i.e.,
coarsening factor 1.

7.1 Unique Factor Model Description
To offer a rigorous evaluation of our machine learning

model we compare its performance against a simple heuris-
tic. Given a set of training programs with the corresponding

Max SpeedupNN ModelUnique Model Speedup

0

0.5

1

1.5

2

2.5

bi
na

ry
Se

ar
ch

bl

ac
ks

ho
le

s

co
nv

ol
ut

io
n

dw

tH
aa

r1
D

fa

st
W

al
sh

flo

yd
W

ar
sh

al
l

m
riQ

m
t

m
tL

oc
al

m

vC
oa

l
m

vU
nc

oa
l

nb
od

y

re
du

ce

sg
em

m

so
be

l
sp

m
v

st

en
ci

l
ge

om
ea

n

Speedup 2.88−3.95

(a) Fermi

0

0.5

1

1.5

2

2.5

bi
na

ry
Se

ar
ch

bl

ac
ks

ho
le

s

co
nv

ol
ut

io
n

dw

tH
aa

r1
D

fa

st
W

al
sh

flo

yd
W

ar
sh

al
l

m
riQ

m
t

m
tL

oc
al

m

vC
oa

l
m

vU
nc

oa
l

nb
od

y

re
du

ce

sg
em

m

so
be

l
sp

m
v

st

en
ci

l
ge

om
ea

n

Speedup

(b) Kepler

0

0.5

1

1.5

2

2.5

bi
na

ry
Se

ar
ch

bl

ac
ks

ho
le

s

co
nv

ol
ut

io
n

dw

tH
aa

r1
D

fa

st
W

al
sh

flo

yd
W

ar
sh

al
l

m
riQ

m
t

m
tL

oc
al

m

vC
oa

l
m

vU
nc

oa
l

nb
od

y

re
du

ce

sg
em

m

so
be

l
sp

m
v

st

en
ci

l
ge

om
ea

n

Speedup 3.21 3.24 3.78

(c) Cypress

0

0.5

1

1.5

2

2.5

bi
na
ry
Se
ar
ch

bl
ac
ks
ho
le
s

co
nv
ol
ut
io
n

dw
tH
aa
r1
D

fa
st
W
al
sh

flo
yd
W
ar
sh
al
l

m
riQ m
t

m
tL
oc
al

m
vC
oa
l

m
vU
nc
oa
l

nb
od
y

re
du
ce

sg
em
m

so
be
l

sp
m
v

st
en
ci
l

ge
om
ea
n

Speedup 3.4 2.82 5.15−5.15−12.01

(d) Tahiti

Figure 10. Bar-plots summarizing the results. The first bar (�) represents the speedup given by Unique Model. The second
bar (�) is the speedup given by the NN Model. The third bar (�) is the maximum speedup attainable with thread coarsening.

speedups for each coarsening factor we compute the single
best factor on average for that platform. The chosen value
will then subsequently be applied on the testing program
(not present in the original training set). This optimization
policy makes the assumption (often wrong) that programs
behave similarly to one-another and, therefore, similar opti-
mization parameters give comparable performance. We em-
ployed this simple average-based policy because of lack of
similar previous work against which to compare our model.
In the following sections we call this simple model Unique
Model. Our machine learning based predictor is called NN
Model.

7.2 Performance Evaluation
Figure 10 shows the results of our experiments for the

four target devices. We report three bars: one for the per-
formance of Unique Model, the second one for NN Model
and the final one shows the maximum speedup attainable
with coarsening.

Performance of Unique Model.
We first observe that Unique Model performs poorly on

all the devices. On the two Nvidia it results in a slowdown
on average, while on AMD its gives an improvement over
the baseline but it is far from the optimal. This difference
of Unique Model across the two vendors can be explained
considering that on Nvidia the performance profile is quite

irregular. Either a benchmark greatly benefit from coars-
ening, such as sgemm and floydWarshall or it does not at
all, as in the case of spmv and stencil . These two types
of behavior make hard to estimate performance based on
the average trend without considering the inherent proper-
ties of each benchmark. On AMD, Unique Model records a
speedup since coarsening given on average higher improve-
ments (1.53x and 1.54x) and a larger number of kernels ben-
efit from it.

Divergent Kernels.
Applications such as mvCoal , spmv and stencil are penal-

ized by coarsening on all the devices, i.e., the best factor is
1. The reason for this lies in the divergent behavior of these
applications. These kernels are enclosed into divergent re-
gions checking for the bounds of the iteration space. Such
a pattern is particular detrimental to the baseline perfor-
mance on GPUs and coarsening makes this problem worse.
Unique Model leads to significant slowdowns on these kernels
since they deviate from the norm. The features DivRegions
and DivRegionInsts model the degree of divergence in the
kernel body. Leveraging this information NN Model suc-
cessfully predicts coarsening factor 1 for all the benchmarks
for which Unique Model leads to slowdowns. This positive
result is a consequence of the conservative design policy of
our cascade model (section 6.2).

Binary output in Feature Space

● ● ●

●●●

●

● ● ● ●● ●● ● ●● ●● ● ●● ● ●● ●

● ●

●●

●

●

●● ●

0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Delta TotInsts

D
el

ta
 D

iv
R

eg
io

ns

Thread Coarsening Effective

Thread Coarsening NOT Effective

Thread Coarsening NOT Effective

Figure 11. All our training data-points laid out accord-
ing to two of the most relevant features: Delta TotInsts and
Delta DivRegions. A dot identifies that coarsening is success-
ful, a square that is not. The red labels highlights different
regions of the feature space.

Uniform Kernels.
On the other hand NN Model enables coarsening effec-

tively for benchmarks such as sgemm and floydWarshall on
all architectures. These two applications show high speedups
with coarsening. This is because they benefit from the re-
duction in redundant memory operations that coarsening en-
sures. Such a characteristic is expressed in the feature Uni-
formLoads. In [21] we propose an explanation for this be-
havior.

The two applications for which NN Model fails to achieve
significant improvements are mt and mtLocal . On AMD in
particular these two kernels benefit from coarsening but the
model does not take advantage of the possible gain. The
reason lies in the particular shape of the code of these two
programs. They contain few instructions, just loads and
stores. Thus coarsening leads to the replication of all the
instructions in the function body. Consequently this makes
the feature Delta TotInst and Delta Divergent Insts have
high values. Usually this signifies that coarsening should be
disabled.

In summary, NN Model gives an average performance im-
provement of 1.16x, 1.11x, 1.33x, 1.30x on Fermi , Kepler ,
Cypress and Tahiti respectively. Our model never spoils
performance significantly in any of the 68 cases. The largest
performance penalty happens on binarySearch run on Kepler
and it is about 5%.

7.3 Accuracy of prediction
Table 5 shows the predicted coarsening factor against the

optimal one for all programs and devices. From this table
we confirm the diversity of the best optimization factor as
described by the Hinton diagrams in figure 5. We also see
that NN Model seldom overshoots the factor and always
predicts no coarsening (i.e., factor 1) when the optimal is
one.

7.4 Model Analysis
This section provides an understanding of how the NN

Model predicts the coarsening factor relying on the distri-
bution of the training points in the feature space. Figure 11
shows all the points in our data set, i.e., all kernels for all the
coarsening factors, arranged in the two dimensional space of
Delta TotInsts and Delta DivRegions for AMD Cypress. The
plot shows a dot for each benchmark for which coarsening is
effective and a square when it is not, these are our training
data. From this plot we clearly see that Delta DivRegions
(on the y-axis) splits the data points in two clusters: one
for which its value is 0 and one for which its value is pos-
itive. For the first cluster other features will discriminate
these points in a higher-dimensional space. In the first clus-
ter fall kernels such as mt , sgemm or mri-q which do not
have any divergent region. The second cluster instead con-
tains mvCoal , stencil , spmv , kernels whose body is enclosed
by divergent branches. The feature on the x-axis instead
represent the overall difference in instructions in the kernel
body before and after coarsening.

From the distribution of dots and square we notice the fol-
lowing trends. (1) Configurations at the bottom of the graph
(with low Delta DivRegions) tend to benefit from coarsen-
ing. Not having divergent regions in the original code means
that coarsening is likely to be effective. The opposite also
holds, since configurations in the top half of the plot usu-
ally do not benefit from the transformation. (2) Configu-
rations on the right-hand side of the plot are likely not to
benefit from coarsening. A sharp increase in the instruction
number signifies a high level of divergence leading to poor
performance.

8. RELATED WORK

Thread coarsening.
Volkov et al. [31] were the first to introduce thread coars-

ening as a compiler transformation for GPGPU computa-
tion, they focused on linear algebra applications. Unkule et
al. [30] proposed an evaluation of coarsening as a compiler
pass. Coarsening has only been applied by hand to a limited
set of CUDA applications. Experiments have been deployed
only on only one device with no explanation of the perfor-
mance results. Coarsening is one of transformations used
by Yang et al. [34] in their cross-architectural compiler for
OpenCL. Their source-to-source transformations have been
implemented in the Cetus compiler working on the AST.
This limits the applicability of their methodology to sim-
ple linear algebra programs, thus missing the possibility of
studying the effects of transformations on complex bench-
marks. None of the mentioned works proposed a heuristic
or a model to automatically determine the coarsening factor,
they are mere evaluations of the attainable performance.

GPU optimizations.
The search for the maximum performance on graphics pro-

cessors has lead to the development of application-specific
auto-tuners. Examples of these are [8] and [10]. Much re-
search has been put also in more widely applicable trans-
formations for GPUs. Ryoo et al. [25] have been the first
to propose compiler transformations for GPGPU comput-
ing. They address memory-related optimizations with the
goal of improving access patterns. Liu et al. [19] perform

Kernel Fermi Kepler Cypress Tahiti

Predicted Best Predicted Best Predicted Best Predicted Best

binarySearch 1 1 4 16 2 2 8 8
blackscholes 4 8 2 4 1 1 1 2
convolution 4 4 1 1 4 4 1 1
dwtHaar1D 4 8 4 4 4 4 2 4
fastWalsh 1 2 1 1 8 4 1 1

floydWarshall 4 16 4 8 4 4 4 16
mriQ 8 4 4 2 4 4 1 2
mt 1 8 4 2 4 32 4 32

mtLocal 1 8 4 4 4 32 1 32
mvCoal 1 1 1 1 1 1 1 1

mvUncoal 1 1 1 1 4 8 2 2
nbody 1 2 2 2 2 16 4 4
reduce 4 4 1 1 2 2 2 4
sgemm 8 32 2 16 4 8 2 16
sobel 1 1 2 2 1 4 8 4
spmv 1 1 1 1 1 1 1 1
stencil 1 8 1 1 1 1 1 1

Table 5. The table reports the best coarsening factors compared against the ones predicted by NN Model for all programs
and devices.

an analysis of input sensitivity of CUDA programs choosing
the best local work size according the input size. Zhang et
al. [35] propose a dynamic thread remapping policy to re-
duce the impact on performance of branch divergence and
non-coalesced accesses. High level program tuning for GPUs
has been the target of extensive research too. Sponge [13] is
a compiler toolchain for the optimization of streaming pro-
grams for GPUs. Dubach et al. [12] propose a set of compiler
optimizations to improve performance of OpenCL programs
generated by the Lime Java compiler.

Compiler-transformation tuning using machine learn-
ing.

Much research as been focused on the tuning of com-
piler transformations using machine learning. Stephenson et
al. [28] have introduced two classification models to deter-
mine the best unrolling factor the loops of the SPEC 2000
benchmarks. In [20], a nearest neigbour model is used to
select a set of optimizations for numerical Java programs.
In [11] Dubach et al. predict the performance of an opti-
mized version of a program given static features and profile
runs of different versions of the same single-threaded pro-
gram using a Neural Network for modelling. Sanchez et
al. [26] employ Support Vector Machines to improve compi-
lation time and start-up performance of Just-In-Time com-
pilation. SVMs are also used in [32] to map streaming pro-
grams to multi-cores. Machine learning has been used by
Stock et al. [29] use an ensemble of various machine learning
models for tuning the parameters of automatic loop vector-
ization for application-specific polyhedral programs. More
recently Jia et al. have employed regression trees to ex-
plore the space of algorithmic and hardware parameters for
OpenCL GPU applications [14]. Finally, Lee et al. [17] em-
ploy a variety of machine learning methods for performance
prediction of parallel applications.

9. CONCLUSION
This paper addresses the problem of performance porta-

bility for general purpose computing on GPUs by optimizing
the coarsening factor for the thread-coarsening transforma-
tion pass. We first presented an evaluation of the complex-
ity of the problem characterizing the optimization space.
On top of the insights gained with this analysis we built a
machine learning model based on a Neural Network to de-
termine the best coarsening factor on four GPUs from two
different vendors. The proposed technique achieves a aver-
age performance improvement of 1.16x, 1.11x, 1.33x, 1.30x
on Fermi , Kepler , Cypress and Tahiti respectively, without
penalizing performance.

10. REFERENCES
[1] Nvidia Corporation The Cuda specification.

[2] Nvidia’s Next Generation CUDA Compute
Architecture: Fermi
http://www.nvidia.com/content/PDF/fermi_white_

papers/NVIDIA_Fermi_Compute_Architecture_

Whitepaper.pdf, 2009.

[3] AMD Accelerated parallel processing OpenCL, 2012.

[4] Nvidia’s Next Generation CUDA Compute
Architecture: Kepler
http://www.nvidia.com/content/PDF/kepler/

NVIDIA-Kepler-GK110-Architecture-

Whitepaper.pdf,
2012.

[5] HSA Programmer’s Reference Manual: HSAIL Virtual
ISA and Programming Model, Compiler Writer’s
Guide, and Object Format (BRIG), 2013.

[6] The SPIR Specification, Standard Portable
Intermediate Representation, Version 1.2, Jan. 2014.

[7] C. M. Bishop. Neural Networks for Pattern
Recognition. Oxford University Press, Inc., New York,
NY, USA, 1995.

[8] J. W. Choi, A. Singh, and R. W. Vuduc. Model-driven
autotuning of sparse matrix-vector multiply on gpus.

PPoPP ’10, pages 115–126, New York, NY, USA,
2010. ACM.

[9] B. Coutinho, D. Sampaio, F. Pereira, and W. Meira.
Divergence analysis and optimizations. PACT, pages
320 –329, oct. 2011.

[10] Y. Dotsenko, S. S. Baghsorkhi, B. Lloyd, and N. K.
Govindaraju. Auto-tuning of fast fourier transform on
graphics processors. SIGPLAN Not., 46(8):257–266,
Feb. 2011.

[11] C. Dubach, J. Cavazos, B. Franke, G. Fursin, M. F.
O’Boyle, and O. Temam. Fast compiler optimisation
evaluation using code-feature based performance
prediction. CF ’07, pages 131–142, New York, NY,
USA, 2007. ACM.

[12] C. Dubach, P. Cheng, R. M. Rabbah, D. F. Bacon,
and S. J. Fink. Compiling a high-level language for
gpus: (via language support for architectures and
compilers). In PLDI, pages 1–12, 2012.

[13] A. H. Hormati, M. Samadi, M. Woh, T. Mudge, and
S. Mahlke. Sponge: portable stream programming on
graphics engines. ASPLOS ’11, pages 381–392, New
York, NY, USA, 2011. ACM.

[14] W. Jia, K. Shaw, and M. Martonosi. Starchart:
Hardware and software optimization using recursive
partitioning regression trees. PACT ’13, 2013.

[15] R. Karrenberg and S. Hack. Improving performance of
opencl on cpus. CC, pages 1–20, 2012.

[16] A. Kerr, G. Diamos, and S. Yalamanchili. Modeling
gpu-cpu workloads and systems. GPGPU ’10, pages
31–42, New York, NY, USA, 2010. ACM.

[17] B. C. Lee, D. M. Brooks, B. R. de Supinski,
M. Schulz, K. Singh, and S. A. McKee. Methods of
inference and learning for performance modeling of
parallel applications. PPoPP ’07, pages 249–258, New
York, NY, USA, 2007. ACM.

[18] Y. Lee, R. Krashinsky, V. Grover, S. W. Keckler, and

K. AsanoviÄĞ. Convergence and scalarization for
data-parallel architectures, 2013.

[19] Y. Liu, E. Zhang, and X. Shen. A cross-input adaptive
framework for gpu program optimizations. IPDPS ’09,
pages 1 –10, may 2009.

[20] S. Long and M. F. O’Boyle. Adptive java optimisation
using instance-based learning. ICS, pages 237–246,
2004.

[21] A. Magni, C. Dubach, and M. F. O’Boyle. A
large-scale cross-architecture evaluation of
thread-coarsening. SC ’13. ACM, 2013.

[22] A. Magni, C. Dubach, and M. F. P. O’Boyle.
Exploiting gpu hardware saturation for fast compiler
optimization. GPGPU-7, 2014.

[23] B. Manly. Multivariate Statistical Methods: A Primer,
Third Edition. Taylor & Francis, 2004.

[24] S. Moll. Decompilation of LLVM IR, 2011.

[25] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S.
Stone, D. B. Kirk, and W.-m. W. Hwu. Optimization
principles and application performance evaluation of a
multithreaded gpu using cuda. PPoPP ’08, pages
73–82, New York, NY, USA, 2008. ACM.

[26] R. Sanchez, J. Amaral, D. Szafron, M. Pirvu, and
M. Stoodley. Using machines to learn method-specific
compilation strategies. CGO ’11, pages 257 –266, april
2011.

[27] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc. A
performance analysis framework for identifying
potential benefits in gpgpu applications. PPoPP ’12,
pages 11–22, New York, NY, USA, 2012. ACM.

[28] M. Stephenson and S. Amarasinghe. Predicting unroll
factors using supervised classification. CGO ’05, pages
123–134, Washington, DC, USA, 2005. IEEE
Computer Society.

[29] K. Stock, L.-N. Pouchet, and P. Sadayappan. Using
machine learning to improve automatic vectorization.
ACM Trans. Archit. Code Optim., 8(4):50:1–50:23,
Jan. 2012.

[30] S. Unkule, C. Shaltz, and A. Qasem. Automatic
restructuring of gpu kernels for exploiting inter-thread
data locality. CC, pages 21–40, 2012.

[31] V. Volkov and J. W. Demmel. Benchmarking gpus to
tune dense linear algebra. SC ’08, pages 31:1–31:11,
Piscataway, NJ, USA, 2008. IEEE Press.

[32] Z. Wang and M. F. O’Boyle. Partitioning streaming
parallelism for multi-cores: A machine learning based
approach. PACT, 2010.

[33] P. Xiang, Y. Yang, M. Mantor, N. Rubin, L. R. Hsu,
and H. Zhou. Exploiting uniform vector instructions
for gpgpu performance, energy efficiency, and
opportunistic reliability enhancement. ICS ’13, pages
433–442, New York, NY, USA, 2013. ACM.

[34] Y. Yang, P. Xiang, J. Kong, M. Mantor, and H. Zhou.
A unified optimizing compiler framework for different
gpgpu architectures. TACO, 9(2):9, 2012.

[35] E. Z. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen.
On-the-fly elimination of dynamic irregularities for
gpu computing. ASPLOS ’11, pages 369–380, New
York, NY, USA, 2011. ACM.

