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Abstract. Building effective optimization heuristics is a challenging
task which often takes developers several months if not years to com-
plete. Predictive modelling has recently emerged as a promising solution,
automatically constructing heuristics from training data. However, ob-
taining this data can take months per platform. This is becoming an ever
more critical problem and if no solution is found we shall be left with
out of date heuristics which cannot extract the best performance from
modern machines.

In this work, we present a low-cost predictive modelling approach for
automatic heuristic construction which significantly reduces this train-
ing overhead. Typically in supervised learning the training instances are
randomly selected to evaluate regardless of how much useful information
they carry. This wastes effort on parts of the space that contribute lit-
tle to the quality of the produced heuristic. Our approach, on the other
hand, uses active learning to select and only focus on the most useful
training examples.

We demonstrate this technique by automatically constructing a model to
determine on which device to execute four parallel programs at differing
problem dimensions for a representative CPU—GPU based heterogeneous
system. Our methodology is remarkably simple and yet effective, making
it a strong candidate for wide adoption. At high levels of classification
accuracy the average learning speed-up is 3x, as compared to the state-
of-the-art.

Keywords: machine learning, workload scheduling

1 Introduction

Building effective program optimization heuristics is a daunting task because
modern processors are complicated; they have a large number of components op-
erating in parallel and each component is sensitive to the behaviour of the others.
Creating analytical models on which optimization heuristics can be based has
become harder as processor complexity has increased, and this trend is bound to
continue as processor designs move further towards heterogeneous parallelism [1].
Compiler developers often have to spend months if not years to get a heuristic



right for a targeted architecture, and these days compilers often support a wide
range of disparate processors. Whenever a new processor comes out, even if
derived from a previous one, the optimizing heuristics need to be re-tuned for
it. This is typically too much effort and so, in fact, most compilers are out of
date [2].

Machine Learning based predictive modelling has rapidly emerged as a vi-
able means to automate heuristic construction; by running example programs
(optimized in different ways) and observing how the variations affect program
run-time automatic machine learning tools can predict good settings with which
to compile new, as yet unseen, programs. There are many studies showing that
machine learning outperforms human based approaches [2,3]. Recent work also
illustrates that it can be used to automatically port across architecture spaces [4]
and can find more appropriate ways of mapping program parallelism to various
platforms [5]. This new research area is promising, having the potential to fun-
damentally change the way compiler heuristics are designed; that is to say, com-
pilers can be automatically tuned for new hardware without the need for months
of compiler experts’ time; however, before the potential of predictive modelling
based heuristic construction can be realized there remain many hurdles which
must be tackled. One major concern is the cost of collecting training examples.
While machine learning allows us to automatically construct heuristics with lit-
tle human involvement, the cost of generating training examples (that allow a
learning algorithm to accumulate knowledge) is often very expensive.

This paper presents a novel, low-cost predictive modelling approach that can
significantly reduce the overhead of collecting training examples without sacrific-
ing prediction accuracy. Traditionally in predictive modelling training examples
are randomly selected for labelling where, in the context of machine learning
based compilers and run-time systems, labelling involves profiling code under
varying conditions. This is inefficient because random selection often provides
redundant data to the learner. In effect a cost is paid for training but little or no
benefit is actually received. We tackle this problem by using active learning [6)
to select and only focus on useful training instances, which greatly reduces the
training overhead. Specifically, we build a number of initial distinct models with
a small set of randomly selected training examples. We ask those models to make
predictions on unseen data points, and the points for which the models ‘disagree’
the most are profiled. We then rebuild the models by re-running the learning
algorithm with the new training example together with the existing ones, and
repeat this process until a completion criterion is met after which a final heuristic
is produced. In this way, we profile and collect training examples that provide
the most information to the algorithm, thereby enabling it to improve prediction
accuracy of the learned models more quickly.

We demonstrate the effectiveness of our approach by using active learning to
automatically construct a heuristic to determine which processor will give the
better performance on a CPU—GPU based heterogeneous platform at differing
problem sizes for a given program. More specifically, our approach is evaluated
by building heuristics to predict the better processor to use for 4 benchmarks



which have equivalent OPENMP and OPENCL implementations; where OPENMP
is used for the CPU since it has a more mature implementation than OPENCL.
Comparing our work to a typical random sampling technique, widely used in
prior work, reveals that our methodology speeds up training by a factor of 3x
on average: saving weeks of intensive compute time.

The research presented in this paper makes the following contributions. It

— shows that the training overhead of machine learning based compiler heuris-
tics design can be significantly reduced without sacrificing prediction accu-
racy;

— demonstrates how active learning can be used to automatically derive a
heuristic to map OPENMP and OPENCL programs on a CPU—GPU based
heterogeneous platform;

— provides detailed analysis of active learning based heuristic tuning.

The rest of this paper is organized as follows: in Sect. 2 we give a motivating
example for this research, in Sect. 3 we discuss our approach and the imple-
mentation details of our system, in Sect. 4 we outline the methodology used to
validate our technique, Sect. 5 provides our results and accompanying analysis,
Sect. 6 references related work, and we conclude in Sect. 7.

2 Motivation

To motivate our work, we demonstrate how much unnecessary effort is involved
in the traditional random-sampling based learning techniques, and point out the
extent to which a better strategy can improve matters. In Fig. 1(a) we show for
HotSpot, from the Rodinia [7,8] suite, when it is better to run on the CPU versus
the GpU for maximum performance. The benchmark accepts two independent
program inputs, and these form the axes of the graph. The graph data itself
was generated by randomly selecting 12,000 input combinations and running
them on both the Cpu and GPU enough times to make a statistically sound
decision about which device is better for each, where a boundary line separates
the regions at which either device should be chosen.

Machine learning has been shown to be a viable option for creating heuristics
for this type of problem [9,10]. To build such a heuristic, a machine learning
algorithm typically requires a set of training examples to learn from. In our
case, we need to use a set of profiled program inputs to find a model that is a
good estimate of the boundary as shown in Fig. 1(a). The quality of the training
examples will have a significant impact on the accuracy of the resultant model.

In Fig. 1(b) a random selection of 200 inputs to HotSpot is chosen, as might
be typical in a standard ‘passive’ learning technique®. From this data a heuris-
tic is created with the RandomCommittee machine learning algorithm from the

3 In passive learning techniques, the training examples are selected without feedback as
to the quality of the machine learned heuristic. Most usually, this will mean that all
training examples are generated ahead of time and then a heuristic is learned once.
In active learning, by contrast, the selection of training examples is an iterative
process which is driven by feedback about the quality of the heuristic.
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Fig. 1: Passive learning over randomly selected inputs versus learning from ideally
selected inputs. Figure (a) shows the problem space of the Rodinia HotSpot benchmark.
12,000, 2-dimensional program inputs are run to discover which device (CpuU or GPU)
gives the better performance. A boundary line separates the parts of the space where
Cpu and GPU are better. Figure (b) shows a random selection of 200 inputs. Using
RandomCommittee to learn a heuristic with these inputs achieves an accuracy of 95%.
Figure (c) shows an ideal selection of 50 inputs near to the boundary line. Using
RandomCommittee to learn a heuristic with these inputs achieves an accuracy of 97%,
representing a 4x speed-up in training time.

Weka tool-kit [11], and the heuristic achieves a respectable 95% accuracy. Ma-
chine learning can clearly learn good heuristics in this case, but our intuition
insists that the majority of the randomly selected inputs offer little useful infor-
mation. In fact, we would expect that only those points near to the boundary
line in Fig. 1(a) should be required to accurately define a model.

We prove this intuition in Fig. 1(c) where we have instead selected just 50
inputs close to the boundary line and once again asked the RandomCommittee
algorithm to learn a heuristic. Using fewer than 15% as many observations as
the standard passive learning technique we achieve an accuracy of 97%. There is,
therefore, significant potential to reduce the training cost for the machine learned
heuristics if we could only choose the right inputs to train over. Unfortunately,
without already knowing the shape of the space it is impossible to tell what
the best inputs should be, but nevertheless we will show that it is possible to
approximate their location.

In this paper we present a simple active learning technique that maintains a
set of training inputs, adding to the set incrementally by selecting inputs that
look likely to improve the heuristic quality based on what has already been seen.
For the HotSpot benchmark, our approach avoids nearly all of the unimportant
inputs, quickly focussing in on the best inputs to choose. Our active learning
method needs only 31 inputs to create heuristics as accurate as passive learning
generates with 200 inputs; a reduction in training cost of 85%. The following
section describes our methodology in detail.
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Fig.2: An overview of our active learning approach. Initially, we use a few random
samples to construct several intermediate models. Those models are utilized to choose
which new data point is to be profiled. The new sampled data point is then used to
update the models. We repeat this process until a certain termination criterion is met
where a final model will be produced as the outcome.

3 Owur Approach

As a case study, this work aims to learn a predictor to determine the best
processor to use for a given program input. We wish to avoid profiling inputs
that provide little or no information for the learning algorithm to train over so
that we can minimize the overhead of collecting training examples. We achieve
this by using active learning which carefully chooses each input to be profiled
in turn. At each step, our algorithm attempts to choose a new input that will
most improve the machine learned heuristic when it is added to the training set
of examples.

Figure 2 provides an overview of how our approach can be applied to this
case study problem. First, some number of program inputs are chosen at random
to ‘seed’ the algorithm and these are then profiled to determine the better device
for them — CpU or GPU. What follows is a number of steps which progressively
add to the set of training inputs until some termination criterion are met. To
select which program input to add to the training set for profiling, a number
of different, intermediate models are created using the current training set and
different machine learning algorithms. Our method then searches for an input
for which the intermediate models or heuristics most disagree as to whether it
should be run on the CpU or the GrPU. The intuition is that the more these
models agree on an input, the less likely it is able to improve the prediction
accuracy of the learned heuristic.

The technique for choosing new training inputs is called Query by Com-
mittee (QBC) [12] and is described in Sect. 3.1, whilst Sect. 3.3 details how
the program training inputs are profiled: particularly, how the decision about
whether the input should be run on the CPU or on the GPU is made statistically
sound.

3.1 Query by Committee

The key idea behind active learning is that a machine learning algorithm can
perform better with fewer training points if it is allowed to choose the data from
which it learns. There are a number of approaches available [13] but we employ



a heterogeneous implementation of the Query by Committee (QBC) algorithm,
a widely utilized active learning technique, to select the most useful training
examples from the input-space.

The QBC algorithm requires a group of distinct machine learning models (in-
stead of just one) to be used. The ‘committee’ consists of a number of different
learning algorithms that are initially trained with a small set of randomly col-
lected training examples. In our case, those training examples are a set of profiled
program inputs with a label indicating which processor gives better performance
for each input. As those models are initially built from a small set of training
examples, they are unlikely to be highly accurate. We will improve them with
the following iterative steps using new training examples. The key point is how
to only select the training examples (i.e. which program inputs to be profiled in
our case) that are likely to improve the prediction accuracy. To do so, we ask
each model in the committee to make predictions on a random candidate set of
program inputs that are not present in the current training example set (and
hence they haven’t been profiled yet). As a result, different models may or may
not reach consent for a particular program input. We then only profile those
inputs for which the ‘committee’ disagrees the most to discover the true, best-
performing processor, adding those new training examples into the training set,
and re-running the learning algorithms to update the models. The justification
for this is that we do not want to create new training instances from parts of the
problem-space which are already understood by the committee of algorithms,
but rather would like to sample those regions which are least well defined. The
insight being that if we reduce the regions of disagreement between the com-
mittee members, by choosing training instances from within those regions, we
incrementally get closer to the true boundary over which the processor choice
should be altered and hence increase the accuracy of our final heuristic.

An Example: Figure 3 provides a hypothetical example to demonstrate how
new training points are selected by QBC in our case. In Fig. 3(a) we are presented
with an input-space which is fully described by two input parameters and has
some training samples already shown. In this example, our committee consists
of two different classification algorithms which will result in two classifiers that
we will call X and Y. Based upon the location of these training examples in the
space, and which device is faster under these conditions (represented by different
shapes), the two different algorithms may give different models as illustrated in
Fig. 3(a) and Fig. 3(b). If we overlap these classification boundaries of the two
models, as in Fig. 3(c), we can see that there are parts of the space that classifiers
X and Y are in agreement about and a region of disagreement. Knowing the
disagreement regions, we then only select a new program input that both model
disagree with to be profiled as our new training example. The question is which
program input to choose? This will certainly require a metric to access the
disagreement, which will be described in the next section.
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Fig. 3: A simplified input space with two input parameters and the locations of profiled
training examples. We use two different learning algorithms to build two different
classifiers — (a) and (b). We then combine these models, as in (c), to find the region
of disagreement between them and use this information to better choose where future

training samples should be drawn from.

3.2 Assessing Disagreement

We use information entropy (1) [14] to evaluate the level of disagreement for
each point that have not been profiled so far, where p (z;) is the proportion of
committee members that predict that instance X is fastest on device 7 of n.
The candidates with the maximum entropy value seen in each iteration of the
learning loop are collected and a random candidate is chosen from within this
high entropy subset as the next training example. This means that the inputs
associated with the chosen candidate are run on the CPU and GPU kernels and
it is determined which processor is faster under those input conditions. This
new training example is added to the current training set and its inputs are
removed form the candidate set to ensure the two remain disjoint. The learning
loop begins another iteration with the models being formed with the addition of
the new data.

H(X) ==Y plas) log p(xs) (1)

i=1

3.3 Statistical Sounded Profiling

Since computer timings are inherently noisy we use statistics to increase the
reliability of our models. In particular, we record a minimum number of timings
from each device, as specified by the user. We use Interquartile Range [15] outlier
removal then apply Welch’s t-test [16] to discover if one hardware device is indeed
faster than the other. If we cannot conclude from the t-test that this is the case,
then we perform an equivalence test. Both devices are said to be ‘equivalent’ if
the difference between the higher mean plus its 95% confidence interval minus
the lower mean minus its confidence is within some threshold of indifference. In



our system this threshold was set to be within 1% of the minimum of the two
means. If the fastest device cannot be determined and they are not equivalent an
extra set of observations are obtained and the tests applied again, up until some
user defined number of tries. In the case of equivalence or of no determination
being made within this threshold of attempts the CPU is chosen as the preferred
device since it is more energy-efficient.

4 Experimental Setup

This section describes the details of the experimental case studies that we un-
dertook, starting with the platform and benchmarks used, moving on to the
particular QBC settings, and finally discussing the evaluation methodology.

4.1 Platform and Benchmarks

We evaluated our approach on a CPU-GPU based heterogeneous platform with
a Intel Core i7 7770 4-core CPU (8 Hardware threads) @ 3.4GHz and a NVIDIA
Geforce GTX Titan GPU (6 GB memory). The machine runs OpenSuse V12.3
Linux and we use gcc V4.7.2 and the NVIDIA CUDA Toolkit v5.5 for compila-
tion. We used 3 benchmarks from the Rodinia suite, HotSpot, PathFinder, and
SRAD, and we also included a simple matrix multiplication application. These
benchmarks were specifically chosen because they had equivalent OPENCL and
OPENMP versions and each has multiple program inputs which affect the di-
mensions of their respective problem-spaces.

Table 1: The sizes of the input-space for each benchmark. Each dimension has a
value of between Min and Maz, inclusive, and a step value of Stride. Size gives the
total number of points in each input-space, and Cand is the number of points in the
candidate set for each benchmark.

Benchmark|#Dimentions|Min|Max|Stride| Size| Cand
HotSpot 2 1] 128 1| 16, 384(10,000
MatMul 3 1| 256 1[1.62107[10,000
Pathfinder 2| 2[1024 1]1.0210°[10,000
SRAD 2| 128| 1024 16| 3,136| 2,636

4.2 Active Learning Settings

Machine Learning Models: Our active learning framework uses 12 unique algo-
rithms from the Weka tool-kit to form the committee, each executed with de-
fault parameter values. They are Logistic, MultilayerPerceptron, IB1, IBk,
KStar, LogitBoost, MultiClassClassifier, RandomCommittee, NNge, ADTree,
RandomForest, and RandomTree. These were selected because they can produce
a binary predictor from numeric inputs and have been widely used in prior work.



Program Input Space: The dimensions of the input-space for each benchmark
were chosen to give realistic values to learn over — see Table 1.

Initial Training Set and Candidate Set Sizes: For all experiments the training set
was initialised with a single randomly chosen instance — the minimum possible.
The effect of changing this parameter is discussed in Sect. 5.3. The candidate
set size was either 10,000 inputs not already present in the training and test sets
or the maximum number of points not in the training and test sets, whichever
was smaller — see Table 1.

Termination Criterion: The learning iterations were halted at 200 steps since it
was found experimentally that the learning improvement had plateaued by that
time.

4.3 Evaluation Methodology

Runtime Measurement and Device Comparison To determine if a benchmark
is better suited to the CPU or GPU for a given input it is run on each device
at least 10 times and at most 200 times. As mentioned in Sect. 3, we employ
interquartile-range outlier removal, Welch’s t-test, and equivalence testing to
ensure the statistical soundness of the gathered program execution times.

Testing For testing purposes, a set of 500 inputs were excluded from any training
and candidate sets. Both our active and passive learning experiments were run
10 times for each benchmark and the arithmetic mean of the accuracy (or other
metrics) were recorded. For both active and passive learning, the accuracy was
taken as the average accuracy of all 12 models. That is to say, we compared
the average accuracy achieved using a 12-member QBC algorithm versus the
same 12 algorithms trained using random data as the number of QBC-chosen or
randomly-chosen training sets increased in size.

5 Experimental Results

In this section we begin by presenting the overall results of our experiments,
showing that our active learning approach can significantly reduce the training
time by a factor of 3 when compared to the random sampling technique. We then
move on to examine the performance exhibited by our system for each benchmark
in turn. Finally, we discuss how the change in two user supplied parameters
(i.e. initial training set and candidate set sizes) can affect the performance of
our methodology.

5.1 Overall Learning Costs

Figure 4 shows the average learning speed-up of our approach over the pas-
sive, random-sampling technique traditionally used in heuristic construction.
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Fig.4: On average our methodology requires 3x fewer training examples to create a
high quality heuristic than the traditional random-sampling technique, proving that
this simple algorithm can save weeks, and potentially months, of compute time.

The speed-up values are based on the number of inputs which need to be profiled
in order to train a predictor to an accuracy of at least 85%. As can be seen from
this figure, our approach constantly outperforms the classical random-sampling
technique for all benchmarks, which in real terms means a saving of weeks to
train these heuristics.

5.2 Analysis of Training Point Selection

If we look at Figs. 5-8 we can see clearly where the cost savings associated with
QBC are coming from. That is, in all cases the algorithm quickly chooses points
surrounding the boundary between the CPU and the GPU optimum regions,
giving it the ability to more accurately approximate its shape in less time.

5.3 Sensitivity to Parameters

As well as confirming the validity of our approach we also conducted two further
experiments to determine the impact that some user defined parameters might
have on the effectiveness of the system. The first experiment involved altering
how many randomly selected training examples were initially supplied to the
QBC algorithm to get it started. The second experiment investigated the extent
to which changing the candidate set size would have an effect on the speed of
heuristic construction. Results for both examinations are shown in Fig. 9 and
Fig. 10, respectively.

In Fig. 9 it is clear that increasing the number of random training instances
used to seed the QBC algorithm for HotSpot has no significant affect in the
long-term performance but is detrimental in the short term, however, one can
imagine a case where a complex space with many localized features may be better
explored through an initially random approach followed-up by active learning.

Figure 10 shows how changing the size of the candidate set for the HotSpot
benchmark affects the performance of the system. In particular, the data in-
dicates a lower candidate set size may be more beneficial. Presumably this is
because a high candidate set increases the likelihood or the learner receiving
redundant information from neighbouring high entropy points.
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Fig. 5: Since the Matrix Multiplication input-space is three-dimensional and not as
simply defined as the other benchmarks it is difficult for a human to visualise the
separation between CPU and GPU regions; to make it a little easier the graph above
was flattened so that the z-axis has values 122 < z < 144. However, active learning
was over six times faster than random sampling at producing a high quality model
for this code, quicker than the other programs tested and likely due to the additional
dimension reducing the effectiveness of random selection.
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Fig. 6: The difference between QBC and random sampling is stark for the HotSpot code.
In particular, the QBC algorithm is able to quickly converge and define the boundary
between the two devices whilst random selection trains on redundant or less informative
points, proved by the fact it takes twice as long as QBC.

6 Related Work

Analytic Modelling Analytic models have been widely used to tackle complex
optimization problems, such as auto-parallelization [17, 18], runtime estima-
tion [19-21], and task mappings [22]. A particular problem with them, however,
is the model has to be re-tuned whenever it is targeted at new hardware [23].
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Fig. 7: The PathFinder QBC graph displays more randomness than the previous two.
The probable reason for this, judging by the location of the boundary line, is that the
active learner cannot initially locate the GPU region. Nevertheless, active learning is
still twice as fast at generating a good quality heuristic compared with the random

sampling technique.
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Fig. 8: Similarly, the SRAD input-space appears to show that QBC initially searches
randomly because it has difficulty approximating the location of the comparitively
small CPU region. However, once the algorithm has an idea of where this region is
located it quickly concentrates on the boundary and forms a high-quality heuristic in
half the time of the passive learning methodology.

Predictive Modeling Predictive modeling has been shown to be useful in the
optimization of both sequential and parallel programs [9,10,24,25]. Its great ad-
vantage is that it can adapt to changing platforms as it has no a priori assump-
tions about their behaviour but it is expensive to train. There are many studies
showing it outperforms human based approaches [2,3,26-29]. Prior work for ma-
chine learning in compilers, as being exemplified by MilePost GCC project [30],
often uses random sampling or exhaustive search to collect training examples.
The process of collecting training examples could be expensive, taking several



100

accuracy %

—— init. training set = 1

""" init. training set = 4
init. training set = 16
init. training set = 64

100 150 200

training instances

Fig. 9: This graph shows that increasing the number of random examples given initially
to the QBC algorithm for HotSpot is at first detrimental to its performance, however,
in a complex space increased randomness may help discover complex localized features.

100 F

90

801

accuracy %

— cand. set = 100
''''' cand. set = 1K
cand. set = 10K
cand. set = 40K

100 150 200

70

60,

training instances
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weeks if not months. Using active learning, our approach can significantly re-
duce overhead of collecting training examples. This accelerates the process of
tuning optimization heuristics using machine learning. The Qilin compiler [31]
uses runtime profiling to predict a parallel program’s execution time and map
work across the CPU and GPU accordingly. Our approach does not require
run-time profiling and therefore avoids program slow-downs resulted from the
potentially expensive runtime profiling.

Active Learning for Systems Optimization A recent paper by Zuluaga et al. [32]
proposed an active learning algorithm to select parameters in a multi-objective
problem. Their work is not concerned with single-objective workload scheduling
and does not consider statistical soundness of raw data. Balaprakash et al. [33,34]
used active learning to reduce execution time of scientific codes but they only
consider code variants and OPENCL parameters as inputs; they do not discuss
the impact of problem size on performance.

Problem Size Optimization Optimizing code for different problem sizes in hetero-
geneous systems is discussed by Liu et al. [35] where they give an implementation
of a compiler which uses a combination of regression trees and representative
GPU kernels, but their approach uses exhaustive search. Adaptic is a compila-
tion system for GPUs [36] and uses analytical models to map an input stream
onto the GPU at runtime but their technique is not easily portable, where ours
tackles that problem directly by making learning cheaper.
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Conclusions

We have presented a novel, low-cost predictive modelling approach for machine
learning based automatic heuristic construction. Instead of building heuristics
based on randomly chosen training examples we use active learning to focus
on those instances that improve the quality of the resultant models the most.
Using QBC to construct a heuristic to predict which processor to use for a given
program input our approach speeds up training by a factor of 3x, saving weeks
of compute time.
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