
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measuring QoE of interactive workloads and characterising
frequency governors on mobile devices

Citation for published version:
Seeker, V, Petoumenos, P, Leather, H & Franke, B 2014, Measuring QoE of interactive workloads and
characterising frequency governors on mobile devices. in Workload Characterization (IISWC), 2014 IEEE
International Symposium on. IEEE, pp. 61-70. DOI: 10.1109/IISWC.2014.6983040

Digital Object Identifier (DOI):
10.1109/IISWC.2014.6983040

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Workload Characterization (IISWC), 2014 IEEE International Symposium on

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.1109/IISWC.2014.6983040
https://www.research.ed.ac.uk/portal/en/publications/measuring-qoe-of-interactive-workloads-and-characterising-frequency-governors-on-mobile-devices(ecc5c684-f9bd-47eb-b96e-ef6ba5697045).html


Measuring QoE of Interactive Workloads and
Characterising Frequency Governors on Mobile

Devices

Volker Seeker, Pavlos Petoumenos, Hugh Leather and Björn Franke
Institute for Computing Systems Architecture

School of Informatics, University of Edinburgh
Informatics Forum, 10 Crichton Street, Edinburgh, EH8 9AB, United Kingdom

Email: v.g.seeker@sms.ed.ac.uk, ppetoume@inf.ed.ac.uk, hleather@inf.ed.ac.uk, bfranke@inf.ed.ac.uk

Abstract—Mobile computing devices such as smartphones and
tablets have become tightly integrated with many people’s life,
both at work and at home. Users spend large amounts of time
interacting with their mobile device and demand an excellent
user experience in terms of responsiveness, whilst simultane-
ously expecting a long battery life between charging cycles.
Frequency governors, responsible for increasing or decreasing
the CPU clock frequency depending on the current workload
and external events, try to balance the two contrasting goals of
high performance and low energy consumption. However, despite
their critical role in providing energy efficiency it is difficult to
measure the effectiveness of frequency governors in an interactive
environment. In this paper we develop a novel methodology
for creating repeatable, fully automated, realistic, workloads
that can accurately measure time lag in interactive applications
resulting from non-optimally selected operating frequencies. We
also introduce a new metric capturing the user experience for
different ANDROID frequency governors. We evaluate interactive
workloads to demonstrate how our approach enables us to
automatically record and replay sequences of user interactions for
different system configurations. We demonstrate that none of the
available ANDROID frequency governors performs particularly
well, but leave substantial room for improvement. We show that
energy savings of up to 27% are possible, whilst delivering a
user experience that is better than that provided by the standard
ANDROID frequency governor. We also show that it is possible
to save 47% energy with performance that is indistinguishable
from permanently running the CPU at the highest frequency.

I. INTRODUCTION

Thanks to their immense functionality and portability mo-
bile computing devices such as smartphones, tablets and ebook
readers have become ubiquitous in the hands of consumers and
corporate users alike. These gadgets make it possible for users
to access email, browse the internet and download music and
applications, regardless of location. While expecting a highly
performant device and short system response times, users also
want a long battery lifetime between charging cycles.

After the screen and radios, the CPU is one of the most
energy consuming parts of a mobile system [1]. Several power
saving strategies are used to find a good balance between
energy consumption and performance. One of them is dynamic
frequency and voltage scaling (DVFS) which in Linux is done
by the frequency governor. This technique allows the OS to
trade performance for power and energy, and visa versa. The
DVFS strategies of the standard Linux frequency governors

like Ondemand or Interactive are based on the current load
of the CPU. As soon as the load of a core reaches a high-
threshold, the frequency is raised and when it falls below a
low-threshold, it is lowered again. This approach works well
for non-interactive workloads to deliver performance when it
is needed by the core and to save energy when there is nothing
to do.

Our study shows, however, that the standard frequency
governors often set the CPU frequency incorrectly for inter-
active workloads. They raise the frequency when the user
does not need extra performance – for example, when a
background task executes while the user is reading text and is
unconcerned how quickly the background task completes. The
governors also raise frequencies more than is needed to satisfy
the user – for example, humans cannot adequately tell the
difference between a task running in ten milliseconds or one
hundred milliseconds. In these cases, the frequency governor
wastes energy. Conversely, the governors will not maintain
a high enough frequency for long enough and the user will
be irritated, waiting for a task to complete. It is, therefore,
critically important to consider the user’s point of view while
evaluating how well a frequency governor performs to achieve
the best energy efficiency while at the same time providing
user satisfaction.

None of the current mobile benchmark suites, however,
comes with an easy-to-use and deterministic method to eval-
uate user perception for an interactive workload [2,3,4]. A
classic approach to evaluate user perception is using question-
naires [1,5]. This is, however, a long and demanding process
which requires a lot of experiments with many different users
to get a statistically sound result. One could reduce the
statistical error by making sure that a user always executes
the same chain of interactions with the device for every run
through of an experiment. For a human, however, this is not
only a tedious, but nearly impossible task, especially as the
length of the benchmark exceeds a certain time span (in our
study we include 24 hour workloads).

In this paper we introduce a methodology that allows us
to record and replay custom interactive workloads on AN-
DROID mobile devices and automatically evaluate the effects
of changes to the system in terms of user perception. Figure 1
shows the concept of our methodology. To get a clear picture
of how the user perceives the system, we execute an interactive



Fig. 1. Execute an interactive workload and record screen output in a video.
Automatically identify interaction lag timings in the video and evaluate them
in terms of user satisfaction.

workload and capture a video of what the screen is showing.
We then mark beginning and end of each interaction lag we
find in the video. We call the time between user input and the
time when the user feels the system has process his request
interaction lag (see Figure 2). By marking begin and end of all
interaction lags we create an interaction lag profile that lists the
length of all lags the user perceived in the executed workload.
We can then compare the durations of those lags to another
execution of the same workload possibly using a different
system configuration. From the interaction lag profiles of each
captured video we derive a “user irritation” metric which
allows us to make a decision about which system configuration
was less irritating to the user due to shorter interaction lags.

To demonstrate the feasibility of our method and metric,
we use them to investigate the potential of saving energy
by improving the CPU frequency governor considering user
perception. We compare the energy consumption and user
irritation of three standard ANDROID frequency governors and
find that neither of them performs particularly well. We derive
optimal frequency profiles for each executed workload which
show us that up to 27% energy savings are possible whilst
maintaining a system performance that fully satisfies the user.

t

Calendar
clicked

Calendar
loaded

Interaction Lag

Input
Received

Input
Serviced

Fig. 2. Interaction lag is the time between user input and the time when
the user feels the input has been serviced by the system. In the example, the
interaction lag begins when the user clicks on the calendar and ends when the
calendar is fully loaded.

A. Contributions

Among the contributions of this paper are:

1) a record and replay mechanism to deterministi-
cally replay realistic interactive workloads on the
same/another mobile device

2) a set of interactive mobile workloads used in this
study. These form a suite of realistic, repeatable,
automated, interactive workloads that can be used by
others to compare frequency governor characteristics
as well as other system modifications

3) automatic detection of interaction lag, based on non-
intrusive analysis of video output and device event
queues,

4) a metric derived from interaction lag profiles to
classify user irritation for a particular workload,

5) a study on how this measurement methodology can
be use to develop a frequency governor with optimal
energy-efficiency for interactive workloads. This is
done whilst maintaining the same or even improving
system responsiveness compared to three standard
governors.

B. Motivating Example

Figure 3 shows a short snapshot of how the frequency
of the CPU adapts to an input event for two different DVFS
governors. The beginning of the user input is marked at
point A. Point B marks the time at which the user would
like the input to have been serviced. The thin line represents
the frequency using the Ondemand governor, while the bold
line represents the decisions of an alternative DVFS governor.
The Ondemand governor uses multiple different frequency
levels, usually alternating between the highest and the lowest
frequency. With full knowledge of the user’s perspective, the
alternative governor raises the frequency immediately after the
input and holds it long enough to ensure that processing is
complete before the user is irritated.

265 266 267 268 269 270 271
Time in Seconds

0.0

0.5

1.0

1.5

2.0

Fr
e
q

u
e
n
cy

in
G

H
z

ondemand oracle

A Input
Received

B Input
Serviced

Fig. 3. Snapshot of the behavior of the Ondemand governor and another
more energy efficient governor for one of this study’s interactive workloads.

When we showed a video of this short example to a group
of different users, they were not able to distinguish between
the two frequency configurations, being fully satisfied with the
performance of both. But despite this similarity in terms of the
user perception of performance, the Ondemand governor needs
about 30% more energy. We identified three major issues that
cause this significant difference in energy consumption:



1) Ondemand raises the frequency at times where the
user would not notice a difference between a fast or a
slow task and therefore would not care. This happens
outside of interaction lags.

2) When the user does care, e.g. inside of interaction
lags, Ondemand overshoots the goal. It raises the
frequency higher than necessary to satisfy the user.

3) Ondemand uses very low frequencies at times where
a higher frequency would save energy due to the
race-to-idle phenomenon 1. This happens inside and
outside of interaction lags.

What we need to know in order to avoid those issues is the
user’s point of view of the system. We need to know when the
user starts interacting with the system, when the user feels that
the interaction has been processed and how short the time in
between needs to be for a satisfying response time. We could
then use this interaction lag information to rank a frequency
governor in terms of energy efficiency and user satisfaction
and later to construct an optimal one.

Since current mobile benchmark suites [2,3,4] do not offer
a way of identifying user interaction lag, we set out to create
a new methodology. Identifying the beginning and the end of
user interactions for a mobile workload is a straightforward
task. In our first experiments, we pointed a camera at an
ANDROID Galaxy Nexus and started executing a workload. We
opened the recorded video in a standard video editing tool and
stepped through it frame by frame (see step two in Figure 1).
Every time we identified a frame as the one where the user
submitted an input command, we set a begin-marker. Every
time we decided that the system now looks like it has serviced
the input, we set an end-marker. Afterwards, we extracted the
number of frames between all markers and had our interaction
lag profile. We could now compare two profiles of different
executions of the same workload or overlay them with the
corresponding frequency profile to see what the governor did.

Unfortunately, the process of marking up a video show-
ing only 10 minutes (18000 frames at 30 fps) of relatively
interaction intensive workload takes already about 4 hours
and 15 minutes. This is clearly too costly and inefficient to
be of any use and it would be even more so if we used
this process to produce enough data for a thorough study.
As an example, the results presented in Section IV required
5 different 10-minute workloads, each one executed for 17
different frequency configurations, with each configuration run
5 times in order to get statistically sound data. That translates
into 4250 minutes of video material, for which we would need
1800 hours to markup, or almost a whole man-year. It is clear
that if we want to be able to capture and study interactive
workloads, we need to automate this process to a high degree.
In the next section we will present such an automated novel
methodology which allows us to reduce the manual work to a
total time of 40 minutes which is a factor of 2700x.

A second important requirement for improving the fre-
quency governor’s energy efficiency is to have realistic and
repeatable workloads. We asked a group of different users
to execute the legacy mobile benchmark suite as proposed

1Servicing the input quickly using a higher frequency and putting the CPU
to a low power idle state might be preferable to servicing the input using a
lower frequency.

in [2]. It consists of playing a Guitar Hero like game, one
minute of audio playback, one minute of video playback and
a browser benchmark. The browser benchmark automatically
loads a web page, scrolls to the bottom and loads the next one.
We found that executing the game manually, as proposed, leads
to input event traces with timings that vary by 0.5 to 1 second
between multiple runs. The audio and video playback only
require a single interaction for the whole workload which is
not enough to analyze interaction lag. The browser benchmark
is repeatable but none of our users found that it represents a
realistic mobile workload since they would not use a device
in such a way. We need a way of recording and replaying
actual, rather than artificial, user interactions with millisecond
accuracy to get representative workloads. These need to be re-
peatable without major deviations in order to compare multiple
executions. With our technique, users can create repeatable and
realistic workloads as they would naturally execute them.

C. Overview

This paper is structured as follows. In Section II we present
our novel approach of automatically detecting interaction lag
in realistic and repeatable workloads and how we derive a user
irritation metric. This is followed in Section III by a description
of our experimental setup to apply our methodology to a
frequency governor study. A presentation of experimental
results can be found in Section IV. We discuss related work in
Section V before we summarise and conclude in Section VI.

II. METHODOLOGY

In this section we will describe in detail how our method-
ology works. We start by giving an overview about the
automation steps we did and then explain them in detail.

A. Automation Steps Overview

Instead of executing a workload manually for each run,
we record and replay user inputs. We capture input events
directly from the Linux input subsystem, so we are able to
replay them in exactly the same way and with accurate timings
whenever needed. We do that by following the same approach
as presented in other studies [6].

Knowing the exact timings for all input events, already
gives us the beginning of each interaction lag. Now we also
automated finding the ending of an interaction lag. The ending
is the time when the user feels that the system has serviced
his input. To do this we implemented a matcher algorithm
that uses a database of images. These images show for each
lag how the expected ending looks like on the mobile screen.
The matcher steps through the video we captured from the
workload execution frame by frame. Starting at each lag
beginning, it finds the corresponding lag ending by comparing
each frame to the expected image. With recorded inputs, the
matcher and the database, the workload is repeatable and its
interaction lag evaluation fully automatic.

Now we create the image database which we call anno-
tating the workload. Annotating a workload means selecting
an image for each interaction lag that shows how the mobile
screen looks when the user feels that the system has serviced
his input. This needs to be done only once, after which the
workload will be reusable time and again. We made the process



Fig. 4. This figure shows the automated version of our method to create
repeatable and realistic workloads and to evaluate them in terms of user
perception. Part A shows how a workload is annotated. This task needs to
be executed only once per workload. It produces an annotation database
containing an image of the expected ending for each interaction lag. Part B
is then fully repeatable for the same workload. Here we use the annotation
database to automatically mark up a video of the workload’s execution and
produce a lag profile.

easy for the workload creator by automating most of it as well.
In our manual markup method in Section I the user had to
look at all frames in the video that follow the begin frame to
identify a corresponding end. Instead of looking at all frames,
the user now only has to look at a small selection of frames
which already have a high potential of being the correct one.
These potential ending frames are automatically selected by a
suggester algorithm for each lag. The user only needs to pick
the right one. This takes in average only a couple of seconds
per interaction lag. The image the user picked is then added
to the workload’s image database which is later used by the
matcher.

Figure 4 shows the automated version of our method
derived from the former concept in Figure 1. Part A shows
the annotation step and needs to be executed only once. Here
we run a prerecorded workload and capture a video of it. Our
suggester algorithm then presents a selection of potential lag
ending frames for each lag beginning and the user picks the
correct ones. Part B is fully repeatable and can be executed an
arbitrary number of times for the same workload with different
system configurations or even different mobile devices. This is
under the requirement that the initial system state of the device
is always the same. Again a prerecorded workload is run and
a video is captured. The matcher algorithm now automatically
finds the corresponding lag ending for each lag beginning using
the annotation database and produces a lag profile. This profile
can then be compared with profiles of other video evaluations
of the same workload in terms of user perception.

B. Automatic Record and Replay of Interactive Workloads

In order to accurately record and replay a workload the
user executed on the mobile device, we capture input events
directly from the Linux input subsystem. This system provides
a standard interface for handling the input provided by various
peripheral devices and sensors. On a mobile device that would
be for example touch screen, hardware buttons, light sensor,

/dev/input/event1: 0003 0039 00000003
/dev/input/event1: 0003 0030 0000000e
/dev/input/event1: 0003 003a 00000089
/dev/input/event1: 0003 0035 0000016b
/dev/input/event1: 0003 0036 000001a3
/dev/input/event1: 0000 0000 00000000
/dev/input/event1: 0003 0039 ffffffff
/dev/input/event1: 0000 0000 00000000

Fig. 5. An example of the GETEVENT input recording.

etc. The hardware version of the input events captured by the
single device drivers are converted into a standard input event
format. All incoming events for each active device can be
accessed via the /dev file system interface. The input event
interface for the touchscreen of the Galaxy Nexus, for example,
can be found at /dev/input/event1. A single touch is composed
out of multiple input events as shown in Figure 5.

The first hexadecimal number specifies the type of event
like a key or button press, relative motion or absolute motion.
The second number specifies a code of which button or axis
is being manipulated and the last number specifies the actual
value.

1) Record: ANDROID provides a tool called GETEVENT
which is a front-end to reading the /dev input event interface.
When we record a workload, we use this tool to capture
executed input events together with exact timestamps. The
recording process needs no external hardware support, it is
executed on the user’s device, while it is carried with them
about their daily business.

2) Replay: ANDROID also provides a tool called SENDE-
VENT which is a front-end for writing to the /dev input
event interface like the corresponding device driver would.
Unfortunately, this tool is very basic and does not provide
enough functionality and performance to replay our recorded
event trace accurately. Therefore, we implemented our own
event replay agent. This agent knows the input event trace we
recorded and replays it with accurate timings.

C. Capturing Screen Output

Fig. 6. We capture a video of the mobile screen output by recording an HDMI
signal with a video capture device like the Elgato Game Capture HD [7].

Figure 6 shows how we capture a video of the mobile
device screen. Rather than using a camera, we now capture
the direct screen output via HDMI. This way we avoid image
artifacts which would significantly complicate the process of



010 ... 01 ... 10 ... 01110 ... 010 ... 010010001110 ... 01

input
2058

input
225423 238 15 16 81

Suggested Lag Ending Frames

3

Fig. 7. The suggester algorithm maps successive video frames to a sequence of ones and zeros. A zero is assigned to a frame that looks equal to its predecessor
and a one to each frame that differs from it. Each one preceding a zero is then suggested as potential lag ending since it marks the beginning of a period of
still standing images.

comparing video frames with each other. Many modern mobile
devices have either a MINI-HDMI socket or support the MHL
or SLIMPORT protocol which returns an HDMI signal over the
MICRO USB port. The HDMI signal is forwarded to a video
capture device like the Elgato Game Capture HD [7] which
decodes it and sends it to a desktop or laptop via USB. There,
an application records the signal and creates a video file with
a standard format.

D. Semi-Automatic Markup of Workload Videos

As mentioned in section II-A we are using a semi-
automatic process of marking interaction lag beginnings and
endings in a workload video. Instead of looking at all possible
frames, a suggester algorithm picks out a small selection of
frames that have a high potential of showing the correct lag
ending, i.e. the state of the system where the user feels that
the system has finished servicing his input command. The user
then only needs to pick the correct one for each lag.

Figure 7 shows an example of how our suggester works
for user input leading to an interaction lag. The interaction
being executed is a click on the Gallery shortcut on the home
screen. This interaction will cause the Gallery application to
start. The state considered the end of servicing the input is
when the gallery is completely loaded and showing the image
album overview. The images on the bottom of Figure 7 are all
suggestions made by the algorithm while the ones and zeros in
the long box above show the suggester’s inner representation
of the video frames. The small box on the left side shows that
an input occurs at video frame 2058 and the small box on the
right shows the next input at frame 2254. The curly brackets
summarize chains of zeros.

The point at which users determine the end of processing
an input is always the last of some number of changing
frames. The end point is never during a period of unchanging
frames. The suggester algorithm compares successive frames
and assigns a zero to a frame that is equal to its predecessor
and a one to a frame that is different. The algorithm then

suggests each one preceding a zero. That way a frame is
suggested if it is the first of a period of still standing images
(a range of zeros following a one). There are always periods
of still standing images which we pick out as the potential
ending of an interaction lag. The still period can be very short,
for example with on-screen keyboard input, or very long, for
example when reading an e-book.

In Figure 7 multiple suggestions appear while the Gallery
loads up single elements of the final screen one by one.
Loading the Gallery takes about 200 frames at the lowest CPU
frequency (about 6 seconds at 30 fps) and leads to 8 to 10
suggested images. The number of frames the user has to look
at is therefore reduced by a factor of 20. When a workload
contains long periods without screen updates (as is the case
with our 24 hour workload), the reduction in the number of
frames can be much larger.

The suggester can be configured for each interaction lag
to make the process of picking a frame more convenient and
faster. If, for example, a blinking cursor is producing a long
string of suggestions, the suggester can be set to allow a
certain amount of pixel difference between frames. If a small
animation prevents the suggester from finding still standing
images, a mask can be applied to hide it. The amount of zeros
following a one can be specified to control the expected length
of a still period. If it were set to 30 in our example, the number
suggestions would be reduced to 2 and we would still safely
catch the correct one. Our workload creation GUI allows these
settings to be explored and tuned easily.

E. Detecting Lag Endings Using the Annotation Database

Now that we have produced an annotation database con-
taining an image of how each interaction lag ending is expected
to look like, we can use it to mark up videos of any further
execution of the same workload. Our matcher algorithm steps
through the video frame by frame and looks for a lag beginning
according to input timings. As soon as a time is reached where
an input was issued, it picks the corresponding lag ending from



Fig. 8. We can mask out parts of the images being compared to handle
a certain degree of non determinism between workload executions. In the
example, we mask out the clock so the matcher can find the required ending
image for different workload executions.

the annotation data base and compares all following frames
with that image until it finds a match. The time between
beginning and end is then saved in a lag profile.

In order to find ending frames in new videos of the
same workload, it is important that the executed input events
stay in sync with the state of the system. For example, if a
button needs to be pressed, the system must have reached
the spot where the corresponding screen is visible. This will
then lead to the expected ending image and will allow the
next input to be placed correctly. This can become an issue
for random contents like advertisement pop-ups or randomly
generated levels in games. We try to avoid these contents in our
workloads, we are, however, able to handle a certain degree
of non-determinism with the following techniques.

When annotating the workload in the markup process, it
is possible to specify additional information for each lag.
For some lags it is necessary to specify an image mask to
be used by the matcher. If, for example, the system clock
needs to be masked out when comparing images or a random
advertisement looks different for every time a workload is
executed (see Figure 8). It could also happen that the user
input leads to an interaction which ends up on the exact
same screen as where it was started. For example sending
an email could pop up a loading bar which disappears again
after the email is send. The suggested lag ending therefore
looks like the beginning. In this case the user can specify
that the matcher should look for the second occurrence of the
required image. Our GUI makes it easy for users to change
mentioned parameters and to both design custom masks and
to apply standard ones. Such additional information is saved
together with the image in the annotations database and helps
the matcher to successfully find the lag endings in a video.
With this system, the workloads can be replayed and analyzed
fully automatically.

F. User Irritation Metric

Since the inputs are always the same for different execu-
tions of the same workload, there will always be the same
number of interaction lags. Our method produces a lag profile
after evaluating a video which lists the lag length for each
interaction lag in the evaluated video. In order to compare lag
profiles of different executions of the same workload in terms
of user irritation, we introduce a new metric.

Figure 9 shows a timeline for a single interaction lag. The
beginning is marked and each circled number stands for a lag
ending. The endings were found in experiments with different
CPU frequencies and therefore the lag duration differs. 1©
marks the ending of the fastest frequency and 6© the ending
of the slowest. The user then sets an Irritation Threshold. If
the lag length is below this threshold, it does not count as

t
1 2 3 4 5 6

Fig. 9. This figure shows the timeline of a single interaction lag. Each circled
number stands for the lag ending of a specific system configuration. Each lag
length that stays below the specified Irritation Threshold does count as not
irritating and for each lag length that exceeds it a penalty is applied.

irritating to the user, if it is above, we give an irritation penalty.
The penalty is the amount of time the lag duration is above
the threshold. Our metric is an accumulation of the penalty
for each lag in the workload and therefore the total amount
of time a user is irritated by too long lag times in a certain
workload.

In our method, the Irritation Threshold is set independently
for each lag. When picking the interaction lag ending from
the suggested selection, the user can choose the threshold
from a standard HCI model [8] which offers four interaction
categories: typing (150ms), simple frequent task (1s), common
task (4s) and complex task (12s). He can also apply a custom
model or specify each Irritation Threshold individually. Our
GUI makes custom thresholds easy to apply for each lag or
use a standard HCI model or other common settings.

III. EXPERIMENTAL SETUP AND EXECUTION

In the following sections we demonstrate the feasibility
of our method. We analyze the three standard ANDROID
frequency governors in terms of energy consumption and user
irritation. We will also derive an optimal frequency profile for
each executed workload which shows how much more energy
savings are possible whilst maintaining a system performance
that fully satisfies the user.

A. Workloads

TABLE I. A ROUGH DESCRIPTION OF THE MAIN ACTIVITIES THE
USERS WERE EXECUTING IN EACH WORKLOAD.

Dataset Description
01 Image manipulation with Gallery application.
02 Logo Quiz game.
03 Pulse News widget and multimedia text messaging.
04 Movie Studio video creation.
05 Pulse News application.

To create our workloads we asked five people to use a
mobile device with our recording system installed for ten
minutes each. No further instructions were given, beyond
asking that they “exercise the software”. Their interactions
were recorded on the device (see Table I). Before getting
access to the device it was reset to a known state to ensure
that the recorded workloads could be rerun from that same
state later. Among the applications we had pre-installed and
made use of by our volunteers were Facebook, Pulse News,
a Logo Quiz game, the Play Store, the Gallery, Gmail, the
Music Player, the Calculator. In addition, to demonstrate the
capabilities of our system, one user recorded a workload for a
full timespan of 24 hours.

In total we recorded 5 different workloads. We replay
each of them for each available core frequency. During those
executions the frequency is fixed for the whole runtime.
The Snapdragon 8074 processor we use allows 14 different
frequency points. We also replayed each workload for each of



the three governors. To reduce the statistical error, we repeat
this process 5 times per workload. Altogether we execute each
workload 5∗ (14+3) = 85 times.

B. Frequency Governors and Oracle

The three frequency governors we look at are the Onde-
mand, the Conservative and the Interactive governor. Onde-
mand and Conservative are included in almost every modern
Linux-based system and Interactive is the standard governor
for most ANDROID mobile devices. All three base their DVFS
strategies on the current load of each core. They ramp up
the frequency as soon as the load raises above a fixed high-
threshold and lower it again as soon as the load falls below a
low-threshold. Conservative changes the load more smoothly
than Interactive and Ondemand and stays longer in intermedi-
ate steps. Interactive has an additional feature where it reacts
directly to incoming user input events and immediately ramps
up the frequency while ignoring the load in those cases.

When executing a workload we collect frequency and CPU
load traces in the background for each run. We then use the
traces of all fixed frequency workload executions to compose
an optimal frequency trace (oracle) that uses the least amount
of energy possible without irritating the user. Consider the
interaction lag example in Figure 9 where each circled number
stands for the lag ending of a certain frequency configuration.
1© marks the ending of the fastest frequency, 2© the ending

of the second highest and so forth. To construct the oracle we
pick the lowest frequency and corresponding load for each lag
that is still below the chosen irritation threshold. In Figure 9
that would be frequency 3©. For each lag we set the irritation
threshold to 110% of what the fastest frequency could achieve.
We assume that the user does not notice a 10% difference
between lag timings2. For each interval in a workload where
there is no lag, we pick the frequency and corresponding
load that had the lowest overall energy consumption for the
complete workload. Figure 3 shows for a short timespan how
the oracle’s frequency selection compared to a governor looks
like.

We calculate energy consumption for each frequency-load
profile of the governors and the oracle by using a power model
and compare them with each other. Additionally, we derive
our user irritation metric from their interaction lag profiles
generated by our methodology and compare those too.

C. Experiment Platform

For our frequency governor experiment we are using the
Qualcomm Dragonboard APQ8074 which is based on the
Snapdragon 8074 quad core processor. It has the same un-
derlying architecture as the Google Nexus 5 but allows us
easier access to connectors and interfaces to measure energy
and modify various parts of the system. We run ANDROID
Jelly Bean version 4.2.2 with kernel 3.4.0. For our experiments
we switch off all cores except one while evaluating frequency
governors to reduce statistical noise from load balancing
between different cores.

To calculate energy for our oracle and the governors
using the collected frequency and load profiles, we create

2Customized irritation thresholds are easily specified in our workload
construction GUI.

01 02 03 04 05 average 24hour
Dataset

0

50

100

150

200

250

Ev
en

t C
ou

nt

68

149

76

114

83
98

218

Taps Swipes Actual Lags Spurious Lags

Fig. 10. The graph shows an input classification for all workloads and the
24 hour workload. For each pair of bars, the left bar shows tap inputs and
swipe inputs, while the right bars shows the lags and spurious lags.

a power model for the Snapdragon processor. We execute a
CPU intensive micro benchmark for each core frequency and
measure overall system power. We then subtract the idle system
power to get dynamic core power for each frequency.

IV. DISCUSSION OF RESULTS

Figure 10 shows an input classification for all datasets we
used for our evaluation including the 24 hour workload. The
left bars show tap inputs in a light color and swipe inputs in a
darker color. The tap inputs are dominating due to the nature
of our workloads. The right bars show the number of inputs
we identified as actual lags in a light color and the inputs that
were spurious lags in a darker color. It can happen that an input
event does not lead to any reaction from the system. If the user,
for example, taps next to a button or a settings menu is not
supported for a certain application, the system will just ignore
the input. Therefore, we consider those inputs as spurious lags
and ignore them as well. The 10 minute datasets we use for our
frequency governor evaluation are interaction intensive as the
graphs demonstrate when compared to the 24 hour workload.

Figure 11 shows violin plots of lag durations for each
frequency configuration for a single dataset with a zoomed in
version on the right side. Again we present only the findings
for Dataset 01 due to their similarity. The left graph has a
single kernel plot for the Ondemand frequency governor in the
top right corner. The kernel plot shows that with an average
of about 500ms, most of the lags are rather short. There is
the occasional very long lag with up to 13 or 12 seconds
in the lowest frequency. In this particular workload we were
editing images and saving the results to the sd card. These
long durations occur since we consider the whole time the
image needs to be saved as a lag. The lag durations are in all
workloads significantly longer for the Conservative governor
while Interactive and Ondemand are close to each other. The
frequency configurations with a fixed frequency settle on an
average lag length the higher the frequency gets. This already
indicates that we can reach the same user perceived system
response time for most of the interactions with a medium
frequency as we would with the the highest.

In Figure 12 we show our user irritation metric on the
left and energy consumption with the oracle as baseline on
the right for Dataset 02. The smaller graph in the top right
corner of the left graph shows a zoom in on user irritation
for governors only. It is clearly visible how the user irritation
shrinks quickly the faster the frequency becomes. The shape



0.
30

G
H
z

0.
42

G
H
z

0.
65

G
H
z

0.
73

G
H
z

0.
88

G
H
z

0.
96

G
H
z

1.
04

G
H
z

1.
19

G
H
z

1.
27

G
H
z

1.
50

G
H
z

1.
57

G
H
z

1.
73

G
H
z

1.
96

G
H
z

2.
15

G
H
z

co
ns
er
va
tiv
e

in
te
ra
ct
iv
e

on
de
m
an
d

0

2000

4000

6000

8000

10000

12000

14000
La
g
le
n
g
th

in
m
s

0.0000
0.0001
0.0002
0.0003
0.0004
0.0005
0.0006
0.0007

D
e
n
si
ty

0 1000 2000 3000 4000 5000
Lag Length in ms

1

0.
30

G
H
z

0.
42

G
H
z

0.
65

G
H
z

0.
73

G
H
z

0.
88

G
H
z

0.
96

G
H
z

1.
04

G
H
z

1.
19

G
H
z

1.
27

G
H
z

1.
50

G
H
z

1.
57

G
H
z

1.
73

G
H
z

1.
96

G
H
z

2.
15

G
H
z

co
ns
er
va
tiv
e

in
te
ra
ct
iv
e

on
de
m
an
d

0

250

500

750

1000

1250

1500

1750

2000

2250

La
g
le
n
g
th

in
m
s

Fig. 11. Violin plots of the lag durations for all frequency configurations for Dataset 01 with a zoomed in version on the right. Boxes extend from lower to
upper quartile values, with a line at the median. The whiskers show the range of the lag length at 1.5 IRQ, while flier points are those past the end of the
whiskers. In the top right corner of the left graph is single kernel plot which shows the distribution of lag durations for only the Ondemand governor.

0.
30

G
H
z

0.
42

G
H
z

0.
65

G
H
z

0.
73

G
H
z

0.
88

G
H
z

0.
96

G
H
z

1.
04

G
H
z

1.
19

G
H
z

1.
27

G
H
z

1.
50

G
H
z

1.
57

G
H
z

1.
73

G
H
z

1.
96

G
H
z

2.
15

G
H
z

co
ns
er
va
tiv
e

in
te
ra
ct
iv
e

on
de
m
an
d

or
ac
le

0

20

40

60

80

100

120

140

U
se
r
Ir
ri
ta
ti
o
n
in

se
co
n
d
s

0.
30

G
H
z

0.
42

G
H
z

0.
65

G
H
z

0.
73

G
H
z

0.
88

G
H
z

0.
96

G
H
z

1.
04

G
H
z

1.
19

G
H
z

1.
27

G
H
z

1.
50

G
H
z

1.
57

G
H
z

1.
73

G
H
z

1.
96

G
H
z

2.
15

G
H
z

co
ns
er
va
tiv
e

in
te
ra
ct
iv
e

on
de
m
an
d

or
ac
le

0.0

0.5

1.0

1.5

E
n
e
rg
y
n
o
rm

a
lis
e
d
to

o
ra
cl
e

0.95
1.05

1.00
0.920.95

0.850.86
0.940.93

1.031.03

1.411.41
1.47

0.90

1.241.22

1.00

conservative interactive ondemand oracle
0

10

20

30

40

50

U
se
r
Ir
ri
ta
ti
o
n
in

se
co
n
d
s

47.43

0.69 0.23 0.00

Fig. 12. The left graph shows our user irritation metric for all frequency configurations of Dataset 02 with a governor only version in the top right corner.
The right graph shows the energy consumption for all frequency configurations of the same dataset. All energy values are normalized to the oracle’s energy
consumption on the far right.

of the bars is very similar to the violin plots in Figure 11.
By definition, both the oracle and the fastest frequency are
not irritating to the user at all. As was already apparent from
the lag durations, the Conservative governor is significantly
more irritating with longer lag durations than Interactive and
Ondemand which are again close together. In fact, the latter
two governors are doing a good job in terms of user irritation
since they are for the whole workload less than 1 second above
our oracle.

The energy consumption does not follow the same shape
as irritation and lag durations. It varies due to the race-to-idle
phenomenon which means that in some cases less energy is
consumed if a task is executed in a short time using a high
frequency than in a longer time with a lower frequency. The
most energy efficient frequency for the workload shown in Fig-
ure 12 is 0.96 GHz where the balance between task execution
time and low power consumption reaches an optimum. This is
also the frequency we would pick for all non lag periods to
construct the oracle for this workload. All energy values are
normalized to the oracle’s energy consumption on the far right.
Interactive and Ondemand need significantly more energy than
the Conservative governor with up to 24% above the oracle.
The Conservative governor, however, performs 10% better than

60 70 80 90 100
Energy in J

0

20

40

60

80

100

120

U
se
r
Ir
ri
ta
ti
o
n
in

se
co
n
d
s

0.30

0.42
0.65

0.73 0.88
0.961.04

1.19
1.27

1.50

1.57

1.73

1.96

2.15

co

inon

or

Fig. 13. Scatterplot of energy and irritation metric for Dataset 02 with
frequency governors in blue and fixed frequencies in red. Oracle and the fastest
frequency are laying on the base line for user irritation.

the oracle.

Figure 13 shows a scatter plot of the irritation and energy
metrics with the total energy consumption on the x-axis and
the user irritation in seconds on the y-axis. We chose a blue
dot for governors and a red one for fixed frequencies. While
Interactive and Ondemand are close to each other and the
oracle base line in terms of user irritation, they still leave
a lot of room for improving their energy consumption. The



Conservative governor needs less energy but is far more
irritating to the user than our proposed oracle. In this graph
it is also interesting to see that for this particular workload a
fixed frequency like 1.50 GHz or 1.57 GHz would have done a
better job than all standard governors while being only slightly
more irritating to the user than our oracle.

0.8

0.9

1.0

1.1

1.2

1.3

1.4

E
n
e
rg
y
C
o
n
su
m
p
ti
o
n

N
o
rm
a
lis
e
d
to
O
ra
cl
e

Conservative Interactive Ondemand

01 02 03 04 05 avg
Dataset

0

10

20

30

40

50

Ir
ri
ta
ti
o
n
in
S
e
co
n
d
s

Fig. 14. This figure shows a summary of the governor’s energy consumption
for all datasets in the top graph. The energy values are normalised to the
oracle. The bottom graph shows a summary of the governor’s user irritation
for all datasets.

Figure 14 shows a summary of energy and irritation of
the governors for all datasets we used in this study. The top
graph is showing energy and all values are normalised to the
corresponding oracle’s energy consumption. The Conservative
governor’s energy consumption is on average 8% better than
the oracle. Interactive and Ondemand need on average 22%
and 20% more energy. The graph on the bottom shows a
summary of user irritation for all datasets. Conservative is
significantly more irritating than Interactive and Ondemand
and needs on average 36 seconds longer for all lags together.
The latter two, however, are close to our oracle and need on
average only about 1 second more for all lags in a workload
together.

V. RELATED WORK

A. Interactive Mobile Workloads

Gutierrez et al. [2] compare mobile workloads to traditional
SPEC benchmarks w.r.t. their micro-architectural behavior. It
uses BBENCH, an automated browser benchmark, to open
downloaded web pages, scroll to the bottom of the page
and measure performance. This sequence of actions does not
require any user interaction. Additionally, three further appli-
cations (game, music player, video playback) are evaluated,
however, these appear to introduce inaccuracies between test
runs as their execution is not automated, but are manually
launched. Huang et al. [4] present a benchmark suite compris-
ing popular applications for the mobile ANDROID OS, which
are executed on the GEM5 simulator. These benchmarks avoid
user interaction altogether and run with predefined input sets.
Pandiyan et al. [3] also present a mobile benchmark suite
comprising video playback, image rendering and browsing ap-
plications. As before, these benchmarks avoid user interaction
and operate on predefined user inputs. Thus, this framework
does not support record and replay of interactions and no user
perception is evaluated. Gomez et al. [6] is probably most
similar to our approach as their system supports record and

replay of user input events. Using their tool they are capable
of reproducing bugs in popular ANDROID applications, but
their study does not focus on user perception. Sunwoo et al. [9]
study several existing smartphone benchmarks and applications
including ANDEBENCH, CAFFEINEMARK, RL BENCHMARK,
ANGRY BIRDS, and KINGSOFTOFFICE with the aim to mea-
sure the performance of the DALVIK virtual machine, SQLITE
and the OS. They use the GEM5 simulator and an AUTOGUI
system, which captures user input and subsequently synchro-
nizes service of input by evaluating the frame buffer. How-
ever, as with other studies this does not consider HCI based
user satisfaction metrics. GOOGLE MONKEY [10] is a stress
tester for ANDROID applications and generates random input.
ROBOTIUM [11], and GOOGLE’s MONKEYRUNNER [12], are
automation tools tied to the ANDROID OS. ROBOTIUM is
additionally tied to a particular application and requires the
user to write an automation script using knowledge of the
application layout and the ANDROID API. MONKEYRUNNER
is more general and can replay mouse and keyboard events
rather than application-specific events, but fires input events
at fixed times rather than adaptively and synchronized with
the application. Manual development of automation files for
ROBOTIUM and MONKEYRUNNER is a rather tedious process.
GUITAR [13] extends ANDROID SDK’s MONKEYRUNNER
tool to allow users to create their own test cases with a
point-and-click interface that captures press events. However,
GUITAR does not support touchscreen gestures, e.g. swipe and
zoom, or other input devices, e.g. accelerometer and compass.
XNEE [14] is an automation tool for LINUX, which records
user input and related X 11 events events is specific to the
software stack running on top of the LINUX kernel and not
applicable to ANDROID.

B. User Perception Based DVFS

Shye et al. [15] use artificial neural networks to esti-
mate individual user satisfaction levels from the hardware
performance counters. They employ explicit user feedback
for training a user-aware DVFS algorithm. The focus of this
paper is on DVFS for desktop system, which do not operate
under power/energy constraints and typically run different
workloads (in this study, e.g. video playback, SHOCKWAVE
animation, JAVA). User feedback is through questionnaires,
which are neither automated nor scalable. Workloads cannot be
replayed using a different system configuration. An extended
system using biometric input from the user to control DVFS
is presented inShye et al. [16]. Experiments are conducted
with real user to investigate how different frequency levels
in different scenarios affect biometric input. Again, workloads
are not replayable and mainly involve desktop applications.
Mallik et al. [17] use the same approach to evaluate user
satisfaction based on visual output. They measure the rate
of pixel intensity changed over time and use this metric to
to control frequency governor. Similar to other studies, they
use questionnaires, focus on DVFS for desktop platforms and
do not make provising for replaying workloads with modified
settings to evaluate success. Shye et al. [1] create a logging
application that collects usage data in the background. Using
a linear regression model power consumption is predicted
for interactive workloads. Their results suggest that the CPU
together with the screen dominate the power consumption
in mobile devices. A proposed scheme for “slow” screen



brightness and CPU frequency reduction delivers mixed results.
While brightness reduction appears to be effective, perceived
random CPU frequency changes introduce lags in games and
videos, which users have found annoying. This approach is
not automated, but requires users filling in questionnaires.
Yan et al. [18] aim to improve DVFS based on user perceived
latencies in system response time for interactive workloads. It
monitors events in the LINUX X window system to measure
latency and to control the frequency governor. The focus of this
work is on desktop systems. Lorch et al. [19] analyze traces of
user interface events to derive a heuristic to determine when
user interface task completes, which is subsequently used to
influence DVFS decisions based on abstract user satisfaction
thresholds.

VI. SUMMARY AND CONCLUSIONS

In this paper we evaluated the energy saving potential of
current ANDROID frequency governors when considering user
perception. In order to do that we introduced a novel semi-
automatic methodology to identify interaction lag in interactive
mobile workloads. By recording and replaying user interac-
tions with an ANDROID device we could build and use real
interactive workloads for our experiments. We also presented a
metric to quantify user irritation for a workload by evaluating
the interaction lag data produced by our method and setting
maximum deadlines for each interaction. We demonstrated the
feasibility of our method and metric by evaluating three stan-
dard ANDROID governors. For each workload we generated
an optimal oracle profile that would use the least possible
energy whilst still being able to meet interaction deadlines
without irritating the user. When comparing the governor
frequency profiles with our predicted optimal profile we found
that Interactive and Ondemand leave room for more energy
savings with up to 27% while the Conservative governor
needs on average 8% less energy than our oracle. It shows,
however, a significantly higher user irritation. On average the
user is irritated for 36 seconds over the course of a 10 minute
workload. Interactive and Ondemand need on average 22%
and 20% more energy but are a lot closer to our optimum
in terms of irritation (on average less than 1 second). In this
study we could successfully show the usefulness of our method
for frequency governors but it can also easily be applied to
other system properties. Our technique can be used to evaluate
operating system, compiler or architectural changes for the first
time with repeatable and realistic workloads considering user
perceptions.

In our future work we plan to further extend our method-
ology. In its current state we are not considering networking
workloads since they are heavily non deterministic. If the user,
for example, starts the browser and opens a news web page, it
might look completely different between different workload
executions. One could circumvent this problem by using a
workload aware network proxy that creates a deterministic
environment for network accesses. We also plan to include
workloads that are dominated by Jank [20] type lags where
frames are dropped when the processor is too busy to keep
up with the load. These occur mainly during CPU intensive
workloads such as games, video playback or complex web
page rendering. We also plan to integrate our proposed user
irritation metric into the ANDROID display stack in order to
make energy efficient frequency governor decisions at runtime.

This work is funded under the EPSRC grant, ALEA (EP/H044752/1).

REFERENCES

[1] A. Shye, B. Scholbrock, and G. Memik, “Into the wild: Studying real
user activity patterns to guide power optimizations for mobile archi-
tectures,” in Proceedings of the 42Nd Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO 42. ACM, pp. 168–178.

[2] A. Gutierrez, R. Dreslinski, T. Wenisch, T. Mudge, A. Saidi, C. Em-
mons, and N. Paver, “Full-system analysis and characterization of inter-
active smartphone applications,” in 2011 IEEE International Symposium
on Workload Characterization (IISWC), pp. 81–90.

[3] D. Pandiyan, S.-Y. Lee, and C.-J. Wu, “Performance, energy char-
acterizations and architectural implications of an emerging mobile
platform benchmark suite - MobileBench,” in 2013 IEEE International
Symposium on Workload Characterization (IISWC), pp. 133–142.

[4] Y. Huang, Z. Zha, M. Chen, and L. Zhang, “Moby: A mobile
benchmark suite for architectural simulators.” [Online]. Available:
http://asg.ict.ac.cn/projects/moby/downloads/Moby-ISPASS2014.pdf

[5] J. Froehlich, M. Y. Chen, S. Consolvo, B. Harrison, and J. A. Landay,
“MyExperience: a system for in situ tracing and capturing of user
feedback on mobile phones.” ACM, pp. 57–70.

[6] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “RERAN: timing-
and touch-sensitive record and replay for android,” in 2013 35th
International Conference on Software Engineering (ICSE), pp. 72–81.

[7] Game capture HD. [Online]. Available: http://www.elgato.com/en/
gaming/game-capture-hd

[8] B. Schneiderman, “Designing the user interface: strategies for effective
human-computer interaction.”

[9] D. Sunwoo, W. Wang, M. Ghosh, C. Sudanthi, G. Blake, C. Emmons,
and N. Paver, “A structured approach to the simulation, analysis and
characterization of smartphone applications,” in 2013 IEEE Interna-
tional Symposium on Workload Characterization (IISWC), pp. 113–122.

[10] Google MonkeyRunner. [Online]. Available: http://developer.android.
com/tools/help/monkeyrunner_concepts.html

[11] Robotium - the world’s leading android test automation framework.
[Online]. Available: http://code.google.com/p/robotium/

[12] Google UI/Application exerciser monkey. [Online]. Available: http:
//developer.android.com/tools/help/monkey.html

[13] GUITAR - a GUI testing framework. [Online]. Available: http:
//sourceforge.net/projects/guitar/

[14] Xnee. [Online]. Available: http://www.gnu.org/software/xnee/

[15] A. Shye, B. Ozisikyilmaz, A. Mallik, G. Memik, P. Dinda, R. Dick,
and A. Choudhary, “Learning and leveraging the relationship between
architecture-level measurements and individual user satisfaction,” in
35th International Symposium on Computer Architecture, 2008. ISCA
’08, pp. 427–438.

[16] A. Shye, Y. Pan, B. Scholbrock, J. Miller, G. Memik, P. Dinda,
and R. Dick, “Power to the people: Leveraging human physiological
traits to control microprocessor frequency,” in 2008 41st IEEE/ACM
International Symposium on Microarchitecture, 2008. MICRO-41, pp.
188–199.

[17] A. Mallik, J. Cosgrove, R. P. Dick, G. Memik, and P. Dinda, “PICSEL:
measuring user-perceived performance to control dynamic frequency
scaling,” in Proceedings of the 13th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ser. ASPLOS XIII. ACM, pp. 70–79.

[18] L. Yan, L. Zhong, and N. Jha, “User-perceived latency driven voltage
scaling for interactive applications,” in Design Automation Conference,
2005. Proceedings. 42nd, pp. 624–627.

[19] J. Lorch and A. Smith, “Using user interface event information in
dynamic voltage scaling algorithms,” in 11th IEEE/ACM Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer
Telecommunications Systems, 2003. MASCOTS 2003, pp. 46–55.

[20] N. Duca and T. Wiltzius, “Google I/O 2013 - jank free: Chrome
rendering performance.” [Online]. Available: http://www.youtube.com/
watch?v=n8ep4leoN9A&feature=youtube_gdata_player


