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Abstract—Dynamic Binary Translation (DBT) allows software
compiled for one Instruction Set Architecture (ISA) to be executed
on a processor supporting a different ISA. Some modern DBT
systems decouple their main execution loop from the built-in
Just-In-Time (JIT) compiler, i.e. the JIT compiler can operate
asynchronously in a different thread without blocking program
execution. However, this creates a problem for target architectures
with dual-ISA support such as ARM/THUMB, where the ISA of the
currently executed instruction stream may be different to the one
processed by the JIT compiler due to their decoupled operation
and dynamic mode changes. In this paper we present a new
approach for dual-ISA support in such an asynchronous DBT
system, which integrates ISA mode tracking and hot-swapping of
software instruction decoders. We demonstrate how this can be
achieved in a retargetable DBT system, where the target ISA is
not hard-coded, but a processor-specific module is generated from
a high-level architecture description. We have implemented ARM
V5T support in our DBT and demonstrate execution rates of up
to 1148 MIPS for the SPEC CPU 2006 benchmarks compiled for
ARM/THUMB, achieving on average 192%, and up to 323%, of
the speed of QEMU, which has been subject to intensive manual
performance tuning and requires significant low-level effort for
retargeting.

I. INTRODUCTION

The provision of a compact 16-bit instruction set architec-
ture (ISA) alongside a standard, full-width 32-bit RISC ISA is
a popular architectural approach to code size reduction. For
example, some ARM processors (e.g. ARM7TDMI) implement
the compact THUMB instruction set whereas MIPS has a
similar offering called MIPS16E. Common to these compact
16-bit ISAs is that the processor either operates in 16-bit or
32-bit mode and switching between modes of operation is
done explicitly through mode change operations, or implicitly
through PC load instructions.

For instruction set simulators (ISS), especially those us-
ing dynamic binary translation (DBT) technology rather than
instruction-by-instruction interpretation only, dynamic changes
of the ISA present a challenge. Their integrated instruction
decoder, part of the just-in-time (JIT) compiler translating from
the target to the host system’s ISA, needs to support two
different instruction encodings and keep track of the current
mode of operation. This is a particularly difficult problem if
the JIT compiler is decoupled from the main execution loop
and, for performance reasons, operates asynchronously in a
different thread as in e.g. [1] or [2]. For such asynchronously
multi-threaded DBT systems, the ISA of the currently executed
fragment of code may be different to the one currently pro-
cessed by the JIT compiler. In fact, in the presence of a JIT

compilation task farm [2], each JIT compilation worker may
independently change its target ISA based on the encoding of
the code fragment it is operating on. Most DBT systems [3],
[4], [5], [6], [7], [8], [9], [1], [10], [11], [12], [13], [14], [15]
avoid dealing with this added complexity and do not provide
support for dual-ISAs at all. A notable exception is the ARM
port of QEMU [16], which supports both ARM and THUMB
instructions, but tightly couples its JIT compiler and main
execution loop and, thus, misses the opportunity to offload
the JIT compiler from the critical path to a separate thread.

The added complexity and possible performance implica-
tions of handling dual ISAs in DBT systems motivate us to
investigate high-level retargetability, where low-level imple-
mentation and code generation details are hidden from the user.
In our system ISA modes, instruction formats and behaviours
are specified using a C-based architecture description language
(ADL), which is processed by a generator tool that creates a
dynamically loadable processor module. This processor mod-
ule encapsulates the necessary ISA tracking logic, instruction
decoder trees and target instruction implementations. Users
of our system can entirely focus on the task of transcribing
instruction definitions from the processor manual and are
relieved of the burden of writing or modifying DBT-internal
code concerning ISA mode switches.

In this paper we introduce a set of novel techniques
enabling dual-ISA support in asynchronous DBT systems,
involving ISA mode tracking and hot-swapping of software
instruction decoders. The key ideas can be summarised as fol-
lows: First, for ISA mode tracking we annotate regions of code
discovered during initial interpretive execution with their target
ISA. This information cannot be determined purely statically.
Second, we maintain separate instruction decoder trees for both
ISAs and dynamically switch between software instruction
decoders in the JIT compiler according to the annotation on
the code region under translation. Maintaining two instruction
decoder trees, one for each ISA, contributes to efficiency. The
alternative solution, a combined decoder tree, would require
repeated mode checks to be performed as opcodes and fields
of both ISAs may overlap. Finally, we demonstrate how dual-
ISA support can be integrated in a retargetable DBT system,
where both the interpreter and JIT compiler, including their
instruction decoders and code generators, are generated from a
high-level architecture description. We have implemented full
ARM V5T support, including complete coverage of THUMB
instructions, in our retargetable, asynchronous DBT system and
evaluated it against the SPEC CPU 2006 benchmark suite. Us-
ing the ARM port of the GCC compiler we have compiled the
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Fig. 1: Translation/Execution Models for DBT Systems.

benchmarks for dual-ISA ARM and THUMB execution. Across
all benchmarks we achieve an average execution rate of 780.56
MIPS, which is 28% faster than the single-ISA performance,
demonstrating the high efficiency of our approach. Leveraging
our asynchronous JIT compiler our automatically generated
DBT system archieves on average 192% of the performance
of QEMU-ARM, which has been manually optimised using
detailed knowledge of its low-level TCG code generator.

A. Translation/Execution Models for DBT Systems

Before describing our contributions we review existing
translation/execution models for DBT systems with respect to
their ability to support target dual instruction sets.

1) Single-mode translation/execution model
a) Interpreter only. In this mode the entire target pro-

gram is executed on an instruction-by-intruction basis.
Strictly, this is not DBT as no translation takes place.
It is straight-forward to keep track of the current ISA
as mode changing operations take immediate effect and
the interpreter can handle the next instruction appropri-
ately based on its current state (see Figure 1(a)). ISS
using interpretative execution such as SIMPLESCALAR
[9] or ARMISS [15] have low implementation complex-
ity, but suffer from poor performance.

b) JIT only. Interpreter-less DBT systems exclusively rely
on JIT compilation to translate every target instruction
to native code before executing this code. As a conse-
quence, execution in this model will pause as soon as
previously unseen code has been discovered and only
resume after JIT compilation has completed. ISA mode
changes take immediate effect (see Figure 1(b)) and are
again simple to implement as native code execution and
JIT compilation stages are tightly coupled and mutually
exclusive. JIT-only DBT systems are of low complexity
and provide better performance than purely interpreted
ones, but rely on very fast JIT compilers, which in turn

will often perform very little code optimisation. This
and the fact that the JIT compiler is on the critical path
of the main execution loop within a single thread limits
the achievable performance. QEMU [16], STRATA [6],
[7], [8], SHADE [4], SPIRE [17], and PIN [18] are based
on this model.

2) Mixed-mode translation/execution model
a) Synchronous (single-threaded). This model combines

both an interpreter and a JIT compiler in a single DBT
(see Figure 1(c)). Initially, the interpreter is used for
code execution and profiling. Once a region of hot code
has been discovered, the JIT compiler is employed to
translate this region to faster native code. The advan-
tage of a mixed-mode translation/execution model is
that only profitable program regions are JIT translated,
whereas infrequently executed code can be handled
in the interpreter without incurring JIT compilation
overheads [19]. Due to its synchronous nature ISA
tracking is simple in this model: the current machine
state is available in the interpreter and can be used
to select the appropriate instruction decoder in the JIT
compiler. As before, the JIT compiler operates in the
same thread as the main execution loop and program
execution pauses whilst code is translated. This limits
overall performance, especially during prolonged code
translation phases. A popular representative of this
model is DYNAMO [20].

b) Asynchronous (multi-threaded). This model is char-
acterised by its multi-threaded operation of the main
execution loop and JIT compiler. Similar to the syn-
chronous mixed-mode case, an interpreter is used
for initial code execution and discovery of hotspots.
However, in this model the interpreter enqueues hot
code regions to be translated by the JIT compiler and
continues operation without blocking (see Figure 1(d)).
As soon as the JIT compiler installs the native code
the execution mode switches over from interpreted to
native code execution. Only in this model is it possible
to leverage concurrent JIT compilation on multi-core
host machines, hiding the latency of JIT compilation
and, ultimately, contributing to higher performance of
the DBT system [1], [2]. Unfortunately, this model
presents a challenge to implementing dual-ISA support:
the current machine state represented in the interpreter
may have advanced due to its concurrent operation
and cannot be used to appropriately decode target
instructions in the JIT compiler.

In summary, decoupling the JIT compiler from main ex-
ecution loop and offloading it to a separate thread has been
demonstrated to increase performance in multi-threaded DBT
systems. However, it remains an unsolved problem how to
efficiently handle dynamic changes of the target ISA without
tightly coupling the JIT compiler and, thus, losing the benefits
of its asynchronous operation.

B. Motivating Example

The nature of the ARM and THUMB instruction set is
such that it is not possible to statically determine from the
binary encoding alone which ISA the instruction is part of.
This becomes even more important when it is noted that ARM
instructions are 32-bit in length, and THUMB instructions are



16-bit. For example, consider the 32-bit word e2810006. An
ARM instruction decoder would decode the instruction as:

add r0, r1, #6

whereas, a THUMB instruction decoder would consider the
above 32-bit word as two 16-bit words, and would decode
as the following two THUMB instructions:

mov r6, r0
b.n +4

An ARM processor correctly decodes the instruction by
being in one of two dynamic modes:- ARM or THUMB.

A disassembler, given a sequence of instructions, has
no information about what ISA the instructions belong to,
and can therefore not make the distinction between ARM
and THUMB instructions on a raw instruction stream, and
must use debugging information provided with the binary
to perform disassembly. If the debugging information is not
available (e.g. it has been “stripped” from the binary) then the
disassembler must be instructed how to decode the instructions
(assuming the programmer knows), and if the instructions are
mixed-mode, then it will not be able to effectively decode
at all. This problem for disassemblers directly translates to
the same problem in any DBT with multi-ISA support. A
DBT necessarily works on a raw instruction stream – without
debugging information – and therefore must use its own
mechanisms to correctly decode instructions. In the example of
an ARM/THUMB DBT, it may choose to simulate a THUMB
status bit as part of the CPSR register existent in the ARM
architecture (see Section II), and therefore use the information
within the register to determine how the current instruction
should be decoded. But as mentioned in Section I-A, this
approach does not work in the context of an asynchronous JIT
compiler, as the state of the CPSR within the interpreter would
be out of sync with the compiler during code translation.

C. Overview

The remainder of this paper is structured as follows. We
review the dual ARM/THUMB ISA as far as relevant for this
paper in Section II. We then introduce our new methodology
for dual-ISA DBT support in Section III. This is followed by
the presentation of our experimental evaluation in Section IV
and a discussion of related work in Section V. Finally, in
Section VI we summarise our findings and conclude.

II. BACKGROUND: ARM/THUMB

THUMB is a compact 16-bit instruction set supported by
many ARM cores in addition to their standard 32-bit ARM
ISA. Internally, narrow THUMB instructions are decoded to
standard ARM instructions, i.e. each THUMB instruction has a
32-bit counterpart, but the inverse is not true. In THUMB mode
only 8 out of the 16 32-bit general-purpose ARM registers are
accessible, whereas in ARM mode no such restrictions apply.
The narrower 16-bit instructions offer memory advantages
such as increased code density and higher performance for
systems with slow memory. The Current Program Status
Register (CPSR) holds the processor mode (user or exception
flag), interrupt mask bits, condition codes, and THUMB status
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Fig. 2: The execution engine and compilation engine are
distinct components and therefore cannot access the machine
state. To decode correctly, a snapshot is taken of the machine
state, and stored with a compilation work unit.

bit. The THUMB status bit (T) indicates the processor’s current
state: 0 for ARM state (default) or 1 for THUMB. A saved
copy of CPSR, which is called Saved Program Status Register
(SPSR), is for exception mode only. The usual method to enter
or leave the THUMB state is via the Branch and Exchange
(BX) or Branch, Link, and Exchange (BLX) instructions, but
nearly every instruction that is permitted to update the PC may
make a mode transition. During the branch, the CPU examines
the least significant bit (LSB) of the destination address to
determine the new state. Since all ARM instructions are aligned
on either a 32- or 16-bit boundary, the LSB of the address is
not used in the branch directly. However, if the LSB is 1 when
branching from ARM state, the processor switches to THUMB
state before it begins executing from the new address; if 0
when branching from THUMB state, the processor changes
back to ARM state. The LSB is also set (or cleared) in the
LR to support returning from functions that were called from
a different mode. When an exception occurs, the processor
automatically begins executing in ARM state at the address of
the exception vector, even if the CPU is running in THUMB
state when that exception occurs. When returning from the
processor’s exception mode, the saved value of T in the SPSR
register is used to restore the state. This bit can be used, for
example, by an operating system to manually restart a task in
the THUMB state – if that is how it was running previously.

III. METHODOLOGY: DUAL-ISA DBT SUPPORT

The DBT consists of an execution engine and a compilation
engine. The execution engine will execute either native code
(which has been generated from instructions by the compila-
tion engine) or will execute instructions in an interpreter loop.
The execution engine interpreter will also generate profiling
data to pass to the compilation engine (see Figure 2). The
execution engine maintains a machine state structure, within
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which is contained the current execution mode of the target
processor (along with other state information, such as register
values etc). The machine state is only available to the execution
engine, as the asynchronous compilation engine does not run in
sync with the currently executing code. The compilation engine
accepts compilation work units generated by the profiling
component of the interpreter. A compilation work unit contains
a control-flow graph (fundamentally a list of basic-blocks and
their associated successor blocks) that are to be compiled. Each
basic-block also contains the ISA mode that the instructions
within the block should be decoded with.

A. ISA Mode Tracking

The current ISA mode of the CPU is stored in a CPU state
variable, which is updated in sequence as the instructions of
the program are being executed. When the interpreter needs
to decode an instruction (and cannot retrieve the decoding

Instruction Decoder Service

ARM Thumb

Decoder Tree Selector

Interpreter JIT Worker

PC & T

Machine
State

Work
Unit

Fig. 4: Illustration of interaction between interpreter, JIT
compiler and instruction decoder service.

from the decoder cache), the current mode is looked up from
the state variable and sent to the decoder service, which then
decodes the instruction using the correct ISA decode tree.
If an instruction causes a CPU ISA mode change to occur
(for example, in the case of the ARM architecture, a BLX
instruction) then the CPU state will be updated accordingly.
Since the decoder service is a detached component, and may
be called by a thread other than the main execution loop, it
cannot (and should not) access the CPU state, and therefore
must be instructed by the calling routine which ISA mode
to use. Additionally, since a JIT compiler thread does not
operate in sync with the execution thread, it also cannot access
the CPU state and must call the decoder service with the
ISA mode information supplied in the metadata of the basic-
block it is currently compiling. A basic-block can only contain
instructions of one ISA mode. This metadata is populated by
the profiling element of the interpreter (see Figure 2). In order
to remain retargetable (and therefore target hardware agnostic),
the ISA mode is a first-class citizen in the DBT framework (see
Figure 3), and is not tied to a specific architecture’s method
of handling multiple ISAs. For example, the ARM architecture
tracks the current ISA mode by means of the T bit in the CPSR
register.

B. Hotswapping Software Instruction Decoders

The instruction decoder is implemented as a separate
component, or service, within the DBT and as such is called
by any routine that requires an instruction to be decoded. Such
routines would be the interpreter, when a decoder cache miss
occurs, and a JIT compilation thread, when an instruction
is being translated. Upon such a request being made, the
decoder must be provided with the PC from which to fetch the
instruction, and the ISA that the instruction should be decoded
with. Given this information, as part of a decoding request, the
decoder service can then make a correctly sized fetch from the
guest systems memory, and select the correct decoder tree with
which to perform the decode of the instruction.

The interpreter will perform the decode request using the
current machine state, available as part of the execution engine,
and a JIT compilation thread will perform the decode request
using the snapshot of the machine state provided as part of the
compilation work unit (see Figure 4).



1 AC_ARCH(armv5t)
2 {
3 // General Purpose Registers
4 ac_regbank<uint32> RB:16;
5

6 // General Flags
7 ac_reg<uint8> C, V, Z, N;
8

9 // Machine word size
10 ac_wordsize 32;
11

12 // Two ISAs: ARM and Thumb.
13 // Make ARM the default ISA
14 ac_isa_mode arm default;
15 ac_isa_mode thumb;
16

17 // Constructor
18 ARCH_CTOR(armv5t)
19 {
20 // Include instruction specifications
21 ac_isa("armv5_isa.ac");
22 ac_isa("armv5_thumb_isa.ac");
23

24 // Set endianess
25 set_endian("little");
26 };
27 };

Listing 1: Top-level ARCHC-like specification of ARMV5T model

C. High-Level Retargetability

We use a variant of the ARCHC [21] architecture de-
scription language (ADL) for the specification of the target
architecture, i.e. architecturally visible registers, instruction
formats and behaviours. A simplified example of our ARM
V5T model is shown in Listing 1. Please note the declaration
of the two supported ISAs in lines 18–19, where the system
is made aware of the presence of the two target ISAs and the
ARM ISA is set as a default. Within the constructor in lines
25–26 we include the detailed specifications for both supported
ISA.

After the top-level model (describing register banks, reg-
isters, flags and other architectural components) has been
defined, details of both supported ISAs need to be specified.
Simplified examples of the ARM and THUMB ISA models
are shown in Listings 2 and 3 in Figure 5. For each ISA
we need to provide its name (line 4) and fetch size (line
5) (of which instruction words are multiples of). This is
followed by a specification of instruction formats present in the
ARM and THUMB ISAs (lines 7–11) before each instruction
is assigned exactly one of the previously defined instruction
formats (lines 13–17). The main sections of the instruction
definitions (starting in lines 21 and 20, respectively) describe
the instruction patterns for decoder generation (lines 24 and
23), their assembly patterns for disassembly (lines 25 and 24)
and names of functions that implement the actual instruction
semantics, also called behaviours (lines 27 and 25).

In an offline stage, we generate a target-specific processor
module (see Figure 3) from this processor and ISA description.
In particular, the individual decoder trees (see Figure 4) for
both the ARM and THUMB ISAs are generated from an
ARCHC-like specification using an approach based on [22],
[23]. Note that we use ARCHC as a description language only,
and do not use or implement any of the existing ARCHC tools.
The benefit of choosing to use ARCHC as the description
language is that it is well-known in the architecture design
field, and descriptions exist for a variety of real architectures.

1 AC_ISA(armv5)
2 {
3 // ARM ISA - 32bit
4 ac_mode arm;
5 ac_fetchsize 32;
6

7 // Declare Instruction Formats
8 ac_format Type_DPI1 =
9 "%cond:4 %op!:3 %func1!:4 %s:1 %rn:4 %rd:4

10 %shift_amt:5 %shift_type:2 %subop1!:1 %rm:4";
11

12 // Declare Instructions
13 ac_instr<Type_DPI1> adc1, ...
14

15 ISA_CTOR(armv5)
16 {
17 // adc1 instruction
18 adc1.set_decoder(op=0x00, subop1=0x00, func1=0x05);
19 adc1.set_asm("adc%[cond]%sf %reg, %reg, %reg",
20 cond, s, rd, rn, rm, shift_amt=0, shift_type=0);
21 adc1.set_behaviour(adc1);
22 };
23 };

Listing 2: Simplified ARCHC-like specification for ARM ISA

1 AC_ISA(thumb)
2 {
3 // Thumb ISA - 16bit
4 ac_mode thumb;
5 ac_fetchsize 16;
6

7 // Declare Instruction Formats
8 ac_format ALU_OP_INS = "0x10:6 %op:4 %rs:3 %rd:3";
9

10 // Declare Instructions
11 ac_instr<ALU_OP_INS> adc, ...
12

13 // Details of Thumb instructions
14 ISA_CTOR(thumb)
15 {
16 // adc instruction
17 adc.set_decoder(op=0x5);
18 adc.set_asm("adc %reg, %reg", rd, rs)
19 adc.set_behaviour(thumb_alu_adc);
20 };
21 };

Listing 3: Simplified ARCHC-like specification for THUMB ISA

Fig. 5: Overview of ARCHC-like specifications for both the ARM
and THUMB ISAs.

Furthermore, the instruction behaviours we define are purely
semantic and are not tied to the execution pipeline.

Unlike QEMU, where instruction behaviours are expressed
using sequences of calls to its low-level tiny code generator
(TCG), we use high-level C code to directly express these
behaviours. The advantage is in the reduced effort for retar-
geting to another target ISA, which in our system essentially
involves copying pseudo-code instruction specifications from
the processor manual into a slightly more formal C repre-
sentation. Examples of both ARCHC-like and TCG semantic
actions for the same ARM V5 adc instruction are shown in
Figure 6. While the ARCHC-like specification is high-level and
has been directly derived from the processor manual its QEMU
counterpart is low-level, complex and prone to errors.

Our generator system parses the instruction behaviours,
generates an SSA form for optimisation and then generates
a function that when invoked will emit LLVM bitcode for the
given decoded instruction. This technique ensures only bitcode
that is required for the instruction is generated, eliminating any



1 /* rd = rn + imm + CF. Compute C, N, V and Z flags */
2 execute(adc) {
3 uint32 rn_val = read_register(inst.rn);
4 uint32 imm = ROR(inst.imm, inst.rot);
5 uint32 c_flag = read_flag(C);
6

7 uint32 rd_val = rn_val + imm + c_flag;
8 write_register(inst.rd, rd_val);
9

10 if(inst.S) {
11 write_flag(N, !!(rd_val & 0x80000000));
12 write_flag(Z, rd_val == 0);
13 write_flag(C, carry_from(rn_val, imm, c_flag));
14 write_flag(V, overflow_from(rn_val, imm, c_flag));
15 }
16 }

Listing 4: ARCHC-like behaviour for an ARM V5 adc instruc-
tion

1 /* dest = T0 + T1 + CF. Compute C, N, V and Z flags */
2 static void gen_adc_CC(TCGv_i32 dest, TCGv_i32 t0,
3 TCGv_i32 t1)
4 {
5 TCGv_i32 tmp = tcg_temp_new_i32();
6 if (TCG_TARGET_HAS_add2_i32) {
7 tcg_gen_movi_i32(tmp, 0);
8 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0, tmp,
9 cpu_CF, tmp);

10 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF,
11 cpu_CF, t1, tmp);
12 } else {
13 TCGv_i64 q0 = tcg_temp_new_i64();
14 TCGv_i64 q1 = tcg_temp_new_i64();
15 tcg_gen_extu_i32_i64(q0, t0);
16 tcg_gen_extu_i32_i64(q1, t1);
17 tcg_gen_add_i64(q0, q0, q1);
18 tcg_gen_extu_i32_i64(q1, cpu_CF);
19 tcg_gen_add_i64(q0, q0, q1);
20 tcg_gen_extr_i64_i32(cpu_NF, cpu_CF, q0);
21 tcg_temp_free_i64(q0);
22 tcg_temp_free_i64(q1);
23 }
24 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
25 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0);
26 tcg_gen_xor_i32(tmp, t0, t1);
27 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
28 tcg_temp_free_i32(tmp);
29 tcg_gen_mov_i32(dest, cpu_NF);
30 }

Listing 5: Equivalent QEMU code for an adc instruction

Fig. 6: Comparison: Semantic action of an ARM V5 adc instruction
expressed as using high-level ARCHC-like specification (top) and
low-level QEMU implementation (bottom).

unnecessary runtime decoding checks (such as flag setting).
The generated processor module is dynamically loaded by our
DBT system on startup and contains both a threaded interpreter
and an LLVM based JIT compiler. At runtime the JIT compiler
performs translation of regions of target instructions [2] to
native code of the host machine using the offline generated
generator functions, which employ additional dynamic optimi-
sations such as partial evaluation [24] to improve both quality
and code size of the generated code.

As the high-level implementation of the instructions are
written in a strict subset of C, the behaviours for each
instruction are used directly by the interpreter to execute each
instruction as it is encountered. As the interpreter executes,
it builds profiling information about the basic blocks it has
encountered and after a certain configurable threshold is met,
the profiling information (which includes a control-flow graph)

TABLE I: DBT Host Configuration.

Vendor & Model DELL
TM

POWEREDGE
TM

R610

Processor Type 2⇥ Intel c�Xeon
TM

X5660
Number of cores 2⇥6
Clock/FSB Frequency 2.80/1.33 GHz
L1-Cache 2⇥6⇥ 32K Instruction/Data
L2-Cache 2⇥6⇥ 256K
L3-Cache 2⇥ 12 MB
Memory 36 GB across 6 channels
Operating System Linux version 2.6.32 (x86-64)

TABLE II: DBT System Configuration.

DBT Parameter Setting

Target architecture ARM V5T
Host architecture X86-64
Translation/Execution Model Asynch. Mixed-Mode
Tracing Scheme Region-based [2]
Tracing Interval 30000 blocks
JIT compiler LLVM 3.4
No. of JIT Compilation Threads 10
JIT Optimisation -O3 & Part. Eval. [24]
Dynamic JIT Threshold Adaptive [2]
System Calls Emulation

is sent as a compilation work unit to the work unit queue,
where it is picked up by an idle compiler worker thread. The
worker thread then processes the blocks within the work unit,
and (utilising the generator functions) generates native code
for the block (see Figure 3).

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup and Methodology

The target architecture for our DBT system is ARM V5T.
We provide full coverage of both the standard ARM and
compact THUMB ISAs. The host machine we have used for
performance measurements is a 12-core x86 DELL

TM POW-
EREDGE

TM as described in Table I. We have configured our
DBT system according to the information provided in Table
II.

We have evaluated our retargetable DBT system using the
SPEC CPU2006 integer benchmark. It is widely used and con-
sidered to be representative of a broad spectrum of application
domains. We used it together with its reference data sets. The
benchmarks have been compiled using the GCC 4.6.0 C/C++
cross-compilers, targeting the ARM V5T architecture (without
hardware floating-point support) and enabling THUMB code
generation with -O3 optimisation settings. We have measured
the elapsed real time between invocation and termination of
each benchmark in our DBT system using the UNIX time
command. We used the average elapsed wall clock time
across 10 runs for each benchmark and configuration in order
to calculate execution rates (using MIPS in terms of target
instructions) and speedups. For summary figures we report
harmonic means, weighted by by dynamic instruction count,
to ensure the averages account for the different running times
of benchmarks. For the comparison to the state-of-the-art we
use the ARM port of QEMU 1.4.2 as a baseline.



TABLE III: Summary of dynamic instruction and ISA switching counts for ARM/THUMB SPEC CPU2006 integer benchmarks.

Benchmark Single ISA: ARM Dual ISA: ARM/THUMB
Total # Instr. Total # Instr. # ARM Instr. # THUMB Instr. # ISA Switches # Instr./ISA Sw.

400.perlbench 2070645752958 2745872053111 109261984987 (3.98%) 2636610068124 (96.02%) 3092645300 887.9
401.bzip2 2609484715134 3391051042092 3957811169 (0.12%) 3387093230923 (99.88%) 41230478 82246.2
403.gcc 1344893784628 1585255060497 264507977163 (16.69%) 1320747083334 (83.31%) 5927290776 267.5
429.mcf 331216948652 371554040583 1168734854 (0.31%) 370385305729 (99.69%) 15390338 24142.0
445.gobmk 2060618929096 2700537905311 231853199930 (8.59%) 2468684705381 (91.41%) 13122868288 205.8
456.hmmer 4178532202837 5487961870059 630860648583 (11.50%) 4857101221476 (88.50%) 18791239666 292.0
458.sjeng 2750900623655 3394758209517 122294693575 (3.60%) 3272463515942 (96.40%) 3483958798 974.4
462.libquantum 3121145754851 3036494720123 213268081860 (7.02%) 2823226638263 (92.98%) 2313765054 1312.4
464.h264ref 4362455306706 4814088772603 382630838508 (7.95%) 4431457934095 (92.05%) 10733077846 448.5
471.omnetpp 1245176341871 1368136735157 688403094229 (50.32%) 679733640928 (49.68%) 37557603952 36.4
473.astar 1208355180711 1601164683296 9017475374 (0.56%) 1592147207922 (99.44%) 497065322 3221.2
483.xalancbmk 1196441939837 1367527495851 135130437925 (9.88%) 1232397057926 (90.12%) 3559980618 384.1
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Fig. 7: Relative execution rate of dual-ARM/THUMB execution in
comparison to single-ISA ARM execution.

B. Key Results

We use MIPS (Millions of Instructions per-second) as a
metric to measure the execution rate of both our DBT and
QEMU, where the instruction execution rate is that of the
target instructions executed per-second by the DBT. Since
the number of target instructions does not change between
the DBT systems (as we use exactly the same binary with
exactly the same input for each test in both our DBT and in
QEMU), this also directly correlates to total runtime, but we
choose to present in MIPS to show the instruction throughput,
in accordance with industry practice. Figure 7 shows that
in nearly every case the relative execution rate of a dual-
ISA implementation of the benchmark is greater than that
of the single-ISA implementation. Whilst the actual running
times are longer for dual-ISA binaries (due to the higher
dynamic instruction count), the DBT throughput is greater and
on average we achieve a 1.28x improvement in execution rate
over single-ISA. The instruction counts in Table III, show that
more instructions are executed for dual-ISA implementations,
which leads to a longer running time. But, the throughput of
our DBT (as measured in target MIPS) outperforms the single-
ISA implementation. It has been shown (e.g. in [25]) that
whilst THUMB compiled applications are typically physically
smaller than when compiled for ARM, the amount of overhead
introduced leads to a greater execution time for actual hardware
implementations. This overhead can be attributed to the extra
operations required in THUMB mode, to achieve the same
effect in ARM mode. Specifically, there are two main sources
of overhead:

1) Data processing instructions can only operate on the first
eight registers (r0 to r7) - data must be explicitly moved
from the high registers to the low registers.

2) No THUMB instructions (except for the conditional branch
instruction) are predicated, and therefore local branches
around conditional code must be made, in contrast to
ARM where blocks of instructions can be simply marked-
up with the appropriate predicate to exclude them from
execution.

The optimisation strategies employed in our DBT system
remove a lot of this overhead, local branches (i.e. branches
within a region) are heavily optimised using standard LLVM
optimisation passes and high-register operations are negated
through use of redundant-load and dead-store elimination.

C. Dynamic ISA Switching

Our results on dynamic ISA switching are summarised in
Table III. For each benchmark we list the total number of
ARM instructions, ARM/THUMB instructions, ISA switches
and average dynamic instruction count between ISA switches.
All benchmarks make use of both the ARM and THUMB ISAs.
On average 8.76% of the total number of instructions are ARM,
the rest THUMB instructions, but this figure varies significantly
between benchmarks. 401.bzip2 and 429.mcf have similar ra-
tios of THUMB instructions (both have approximately 99%) but
quite different relative performance characteristics. 429.mcf
executes 3% slower in dual-ISA mode, where 401.bzip2
executes 16% faster. This kind of variance indicates that our
DBT supporting a dual-ISA does not necessarily introduce any
overhead, but is simply a function of the behaviour of the
binary being translated.

D. Comparison to State-of-the-Art

Figure 8 shows the absolute performance in target MIPS
of our DBT compared with the state-of-the-art QEMU. The
performance of our DBT system is consistently higher than
that of QEMU, on average our DBT is 192% faster for dual-ISA
implementations. Since the target instruction count is exactly
the same between DBTs (per benchmark), this also indicates
an improvement in DBT running time. We can attribute this
to the ability of our JIT compiler to produce highly optimised
native code, using aggressive LLVM optimisations that simply
do not (and can not, given the trace-based architecture) exist
in QEMU. We employ a region-based compilation strategy,
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Fig. 8: Absolute performance (in target MIPS) of single- and mixed-mode execution in our retargetable DBT and QEMU.

enabling control-flow within a region to be subject to a series
of loop optimisations. Our ability to hide compilation latency
by means of offloading JIT compilation to multiple threads
also provides a performance gain, as we are continuously
executing target instructions, in contrast to QEMU which stalls
as it discovers and compiles new code. The high-level code
used to describe instruction implementations enables easy
debugging, testing and verification, and we have internal tools
that can automatically generate and run tests against reference
hardware. In contrast, QEMU has a single large file that
contains the decoder and the code generator, with limited
documentation and no explanation of how instructions are
decoded – or how their execution is modelled. Using our
system, once the high-level code has been written, any im-
provements in the underlying framework (or even the processor
module generator, see figure 3) are immediately available to
all architecture descriptions, and if errors are detected in the
decoder or instruction behaviours, it only requires correcting
once in high-level code to fix in both the JIT and interpretive
component.

E. Comparison to Native Execution

Figure 9 shows the absolute performance in target MIPS of
our DBT compared with execution on a native ARM platform
(QUALCOMM DRAGONBOARD featuring four SNAPDRAGON
800 cores). On average, we are 31% slower than native
execution for dual-ISA implementation, but there are some
cases where our simulation is actually faster than the native
execution on a 1.7GHZ out-of-order ARM core. For example,
429.mcf is 3.1x faster in our DBT, compared to executing
natively. This may be attributed to 429.mcf warming up
quite quickly in our JIT, and spending the remaining time
executing host-optimised native code. Conversely, 403.gcc is
2.2x slower than native in our DBT, which may be attributed to
403.gcc’s inherently phased behaviour, and therefore invoking

multiple JIT compilation sessions throughout the lifetime of
the benchmark.

V. RELATED WORK

DAISY [3] is an early software dynamic translator, which
uses POWERPC as the input instruction set and a proprietary
VLIW architecture as the target instruction set. It does not
provide for dual-mode ISA support. SHADE [4] and EMBRA
[5] are DBT systems targeting the SPARC V8/V9 and MIPS 1
ISAs, but neither system provides support for a dual-mode ISA.
STRATA [6], [7] is a retargetable software dynamic translation
infrastructure designed to support experimentation with novel
applications of DBT. STRATA has been used for a variety of
applications including system call monitoring, profiling, and
code compression. The STRATA-ARM port [8] has introduced a
number of ARM-specific optimisations, for example, involving
reads of and writes to the exposed PC. STRATA-ARM targets
the ARM V5T ISA, but provides no support for THUMB
instructions. The popular SIMPLESCALAR simulator [9] has
been ported to support the ARM V4 ISA, but this port is lacking
support for THUMB. The SIMIT-ARM simulator can asyn-
chronously perform dynamic binary translation (using GCC, as
opposed to an in-built translator), and accomplish this by dis-
patching work to other processor cores, or across the network
using sockets [1]. It does not, however, support the THUMB
instruction set – nor does it intend to in the near future. XTREM
[10] and XEEMU [11] are a power and performance simulators
for the INTEL XSCALE core. Whilst this core implements the
ARM V5TE ISA, THUMB instructions are neither supported
by XTREM or XEEMU. FACSIM [12] is an instruction set
simulator targeting the ARM9E-S family of cores, which im-
plement the ARM V5TE architecture. FACSIM employs DBT
technology for instruction-accurate simulation and interpretive
simulation in its cycle-accurate mode. Unfortunately, it does
not support THUMB instructions in either mode. SYNTSIM
[13] is a portable functional simulator generated from a high-
level architectural description. It supports the ALPHA ISA,
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Fig. 9: Absolute performance (in target MIPS) of single- and mixed-mode execution in native execution and our retargetable DBT.

but provides no support for mixed-mode instruction sets.
SIMICS/ARM [14] has a fairly complete implementation of
the core ARM V5 instruction set. The THUMB and enhanced
DSP extensions are not implemented, though. ARMISS [15] is
an interpretive simulator of the ARM920T architecture, which
uses instruction caching but provides no THUMB support.
Similarly, the ARM port of the popular PIN tool does not
support THUMB extensions [26]. As outlined above, none of
the ARM DBTs mentioned support the THUMB instruction
set, and others do not offer any form of multiple-ISA support
specific to their target platform. This could indicate that the
problem of supporting multiple instruction sets may have been
deemed too complex to be worth implementing, or not yet
even considered. QEMU [16] is a well-known retargetable
emulator that supports ARM V5T platforms, including THUMB
instructions. QEMU translates ARM/THUMB instructions to
native X86 code using its tiny code generator (TCG). QEMU
is interpreter-less, i.e. all executed code is translated. In
particular, this means that TCG is not decoupled from the
execution loop, but execution stops whilst code is JIT-compiled
and only resumes afterwards. This design decision avoids
the challenges outlined in this paper, but it places the JIT
compiler on the critical path for code execution and misses the
opportunity to offload the JIT compiler to another core of the
host machine [27], [2], [28]. Another mixed-ISA simulator is
presented in [29], however, this is based entirely on interpretive
execution with instruction caching and about two orders of
magnitude slower than either QEMU or our DBT system. ARM
provides the ARMULATOR [30] and FAST MODELS [31] ISS.
ARMULATOR is an interpretive ISS and has been replaced
by JIT compilation-based FAST MODELS, which supports
THUMB and operates at speeds comparable to QEMU-ARM,
but no internal details are available due to its proprietary
nature. LISA is a hardware description language aimed at
describing “programmable architectures, their peripherals and
interfaces”. The project also produces a series of tools that

accept a LISA definition and produce a toolchain consisting of
compilers, assemblers, linkers and an instruction set simulator.
The simulator produced is termed a JIT-CCS (just-in-time
cache compiled simulator) [32] and is a synchronous JIT-only
simulator, which compiles and executes on an instruction-by-
instruction basis, caching the results of the compilation for fast
re-use. However, each instruction encountered is not in fact
compiled as such, but rather linked to existing pre-compiled
instruction behaviours as they are encountered. These links
are placed in a cache, indexed by instruction address and are
tagged with the instruction data. This arrangement supports
self-modifying code and arbitrary ISA mode switches, as when
a cache lookup occurs, the tag is checked to determine if the
cached instruction is for the correct mode, and that it is equal
to the one that is about to be executed. In contrast to our
asynchronous approach, the simulator knows which ISA mode
the emulated processor is currently in at instruction execution
time and if a cache miss occurs, it can use the appropriate
instruction decoder at that point to select the pre-compiled
instruction implementation. As our decode and compilation
phase is decoupled from the execution engine, we cannot use
this method to select which decoder to use. The main drawback
to this approach is that it is not strictly JIT-compilation, but
rather JIT-selection of instruction implementations, and hence
no kind of run-time optimisation is performed, especially since
the simulation engine executes an instruction at a time. This is
in contrast to our approach, which compiles an entire region of
discovered guest instructions at a time, and executes within the
compiled region of code. Furthermore, the instructions are only
linked to behaviours, and so specialisation of the behaviours
depending on static instruction fields cannot occur, resulting
in greater overhead when executing an instruction. Our partial
evaluation approach to instruction compilation removes this
source of overhead entirely. A commercialisation of the LISA
tools is available from Synopsys as their Processor Designer
offering, but limited information about the implementation of



the simulators produced is available for this proprietary tool,
other than an indication that it employs the same strategy as
described above.

VI. SUMMARY AND CONCLUSIONS

Asynchronous mixed-mode DBT systems provide an ef-
fective means to increase JIT throughput and, at the same
time, hide compilation latency, enabling the use of potentially
slower, yet highly optimising code generators. In this paper
we have developed a novel methodology for integrating dual-
ISA support to a retargetable, asynchronous DBT system: No
prior asynchronous DBT system is known to provide any
support for mixed-mode ISAs. We introduce ISA mode tracking
and hot-swapping of software instruction decoders as key en-
ablers to efficient ARM/THUMB emulation. We have evaluated
our approach against the SPEC CPU2006 integer benchmark
suite and demonstrate that our approach to dual-ISA support
does not introduce any overhead. For an ARM V5T model
generated from a high-level description our retargetable DBT
system operates at 780 MIPS on average. This is equivalent
to about 192% of the performance of state-of-the-art QEMU-
ARM, which has seen years of manual tuning to achieve its
performance and is one of the very few DBT systems that
provides both ARM and THUMB support.
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