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Abstract

�e Internet has signi�cantly evolved in the number and variety of applications. Network operators need mechanisms to constantly
monitor and study these applications. Modern routers employ passivemeasurement solution called SampledNetFlow to collect basic
statistics on a per-�ow basis (for a small subset of �ows), that could provide valuable information for application monitoring. Given
modern applications routinely consist of several �ows, potentially to many di�erent destinations, only a few �ows are sampled per
application session using Sampled NetFlow. To address this issue, in this paper, we introduce related sampling that allows network
operators to give a higher probability to �ows that are part of the same application session. Given the lack of application semantics
in the middle of the network, our architecture, RelSamp, treats �ows that share the same source IP address as related. Our heuristic
works well in practice as hosts typically run few applications at any given instant, as observed using a measurement study on real
traces. In our evaluation using real traces, we show that RelSamp achieves 5-10x more �ows per application session compared
to Sampled NetFlow for the same e�ective number of sampled packets. We also show that behavioral and statistical classi�cation
approaches such as BLINC, SVM and C4.5 achieve up to 50% better classi�cation accuracy compared to Sampled NetFlow, while not
impairing existing management tasks such as volume estimation too much.

Keywords: NetFlow, related sampling, network management.

1. Introduction

�e tremendous success of the Internet, and the fertile ground
for innovation that it provides has spawned a diverse range of ap-
plications, with new applications continually and rapidly emerg-
ing and gaining in prominence. �e last decade alone has seen
rapid growth in popularity of peer-to-peer (p2p) systems (e.g.,
BitTorrent, Skype, PPLive), online social networks (e.g., Face-
book), and more recently, cloud-based applications (e.g., Sales-
force [1], Google Apps [2]). While Internet tra�c was predomi-
nantly dominated by theWeb in the 1990’s, p2p tra�c accounted
for over 60% of tra�c around 2005, and more recently, video-
based applications such as YouTube are gaining in popularity.

Concurrent with the growth of new applications and changes
in popularity across applications, we are continually seeing shi�s
in characteristics and communication patterns of existing ap-
plications. For instance, the characteristics of Web tra�c have
signi�cantly changed with the average size of Web objects in-
creasing from 12 KBytes in 2000 to 68 KBytes in 2007 [3]. Fur-
ther, p2p applications such as BitTorrent are being redesigned
so that communication is localized within ISP networks, rather
than crossing ISP boundaries [4, 5].
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�e emergence of new applications, and their rapidly chang-
ing characteristics require network operators to continuously
measure and monitor tra�c characteristics in their networks.
�esemeasurements allow operators to, for instance, potentially
re-provision their networks, detect any new types of undesir-
able behavior within applications (e.g., p2p system vulnerabili-
ties [6, 7, 8, 9], attacks on Ajax-based web services [10]) and in
general, prepare their networks better against anymajor applica-
tion trends. Further, such tra�c monitoring must ideally occur
in a ubiquitous fashion as applications characteristics may di�er
signi�cantly depending on the location [11].

Router-level measurement solutions such as NetFlow repre-
sent the most widely deployed and popular approach used for
tra�cmonitoring today. �e widely available nature of NetFlow
across many modern routers makes it an ideal candidate for
ubiquitous low-cost network monitoring. Unfortunately, how-
ever, routers employ packet sampling to scale to high line rates,
that makes NetFlow ill-suited to monitor the new range of ap-
plications evolving in the Internet today. In particular:
● Emerging p2p and cloud-based applications are routinely
composed of many di�erent �ows to potentially di�erent
servers/hosts that are o�en geographically distributed. With
random packet sampling, only a small subset of �ows, if any,
are sampled for an application session that comprises many
di�erent �ows. �is makes it di�cult to accurately character-
ize application behavior from sampled data.

● Several researchers have pointed out the inadequacies of sim-
ple port-based classi�cation for emerging applications such
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as p2p [12, 13, 14]. While several alternate approaches based
on statistical techniques, or host behavioral patterns have
emerged [15, 13, 16, 17, 18, 14, 19], much of this work has dealt
with unsampled data. �e e�ectiveness of these techniques is
likely to degrade with random packet sampling.
Motivated by these limitations of random packet sampling, in

this paper, we propose the notion of related sampling based on
the following key idea: Once a �ow is sampled, all �ows that are
part of the same application session, are sampled with high prob-
ability. Applying related sampling means that either an applica-
tion session is (almost) fully sampled, or not sampled at all. Be-
havioral classi�ers bene�t from the extra information (of �ows
that are related) and characterization can be all the more accu-
rate.

We explore the potential of related sampling in the context of
the RelSamp architecture. Ideally, �ows corresponding to the
same application session must be identi�ed as related. How-
ever, since determining this is hard, RelSamp considers all �ows
that contain the same source IP address created within a given
amount of time from each other as related. �is heuristic is mo-
tivated from a measurement study on a 13-hour campus trace.
�e RelSamp architecture incorporates related sampling with
the help of three stages of sampling. First, we use a host selection
probability that controls which host (identi�ed using the IP ad-
dress) gets selected for subsequent packet selection. Once a host
gets selected, packets are subject to a �ow-selection probability
that governs the probability with which a �ow that contains the
host as the source IP address is created. Finally, the last stage of
packet sampling dictates the rate at which �ow records are up-
dated. �us, RelSamp biases packet and �ow selection in favor
of hosts that are already admitted.

Because RelSamp selects hosts based on source IP address, it
can recognize �ows from di�erent hosts behind NAT as if they
are from a single host. Hence, biasing host selection as proposed
can be di�cult in an environment where NAT devices are heav-
ily deployed. As such, not all types of networks can rely on our
approach. Instead, we identify two key important networks—
enterprise and campus networks—where accurate application be-
havior monitoring and classi�cation is crucial. We believe that
NAT issue is less concern in the networks; it is relatively easy
for operators to locate a right deployment place for RelSamp for
mitigating the NAT issue. In that sense, RelSamp can be most
suitable for those networks. By the same token, we ignore home
and core networks from consideration of deploying RelSamp.
Our study is built upon the networks where NAT boxes are

less deployed or operators have a full control over managing
them. Under this condition, the paper makes the following con-
tributions:
● We introduce related sampling that allows �ows that are part of
the same application session to be sampled with higher prob-
ability. Our architecture allows selecting a large majority of
�ows from a given application session thus allowing scalable
monitoring and characterization of new and emerging Inter-
net applications.

● Using real traces, we extensively evaluate the e�cacy of
RelSamp. In our results, we observe that RelSamp is capable
of obtaining 5-10x more �ows per application session com-

pared to sampled NetFlow and �ow sampling [20] without
signi�cantly compromising the accuracy of aggregate packet
count estimates (less than 12%).

● Using real packet traces with payload, we study the impact
of RelSamp on tra�c classi�cation. Speci�cally, we show that
the classi�cation accuracy of BLINC, SVM andC4.5 increases
by up to 50% in comparison with the �ows output by sampled
NetFlow for �ows that are not easily classi�able using port
numbers.

2. Measurement Model

Consider a router at the edge of a large-scale campus net-
work or an enterprise network, typically referred to as a gate-
way. Our goal in this paper is to facilitate scalable monitoring
of application tra�c in order to characterize, study and moni-
tor application behavior in a continuous fashion at such enter-
prise gateways. Such application monitoring is critical for en-
terprise network operators due to many reasons. First, oper-
ators need to prepare against any application trends that may
potentially a�ect their network. For instance, analysts are al-
ready warning about new security vulnerabilities exposed by
Ajax-based Web services [10]. Similarly, p2p applications have
been recently shown to contain several vulnerabilities that can
potentially be exploited to launch DDoS attacks [9, 6, 8]. Sec-
ond, operators typically continuously plan for reprovisioning
their networks based on evolving application trends. Under-
standing application trends, such as number of �ows a given ap-
plication generates, or the number of bytes transferred within
a given �ow, or burstiness of �ows generated by modern appli-
cations (e.g., Ajax-based Web applications generate several re-
quests asynchronously within milliseconds [21]) is essential to
conducting “what-if ” analysis.

Typical enterprise gateway routers today operate at 10 Gbps
capacity and these line rates are poised to increase further as
technology scales. For example, the Internet gateway link at the
Purdue university campus today is already of 10 Gbps capacity.
A network operator interested in continuouslymonitoring these
routers has currently twomajor options:�e �rst option is to in-
strument an optical tap to split tra�c and mirror it to a capture
device. While the capture card itself is quite costly (currently
a 10 Gbps capture card costs around $20-30K), a more serious
problem is the volume of data one needs to collect (a 1 TB disk
will be �lled up in approximately 2 minutes). �us, a second
option, which most network operators use today, is to collect
�ow-level information using an inherent monitoring capability
of routers today in the form of NetFlow. NetFlow provides �ow
records that summarize the tra�c characteristics at the gateway.
Because NetFlow does not easily scale to high line rates, opera-
tors use sampled NetFlow (e.g., at 10 Gbps, typically a 1-in-1024
sampling rate is used).

Unfortunately, sampledNetFlow samples only a random frac-
tion of packets, in turn, leading to a random fraction of �ows.
Modern applications however routinely contain several �ows
to potentially many di�erent destinations; inferring application
characteristics from a small fraction of sampled �ow records is
quite di�cult. Our goal in this paper is therefore to develop a
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scalable measurement architecture for ubiquitous and continu-
ous measurement of application tra�c that addresses this short-
coming associated with sampled NetFlow. Before we can de-
scribe our architecture in §3, weneed to clearly de�ne an abstract
model of application tra�c from the perspective of a router.

2.1. Capturing relatedness of �ows

Typical measurement solutions operate at the granularity of
a �ow consisting of the 5-tuple (source and destination IP ad-
dresses, source and destination ports, and the protocol �elds).
However, application sessions typically involve many �ows, po-
tentially to many di�erent destinations. A Web application ses-
sion, for instance, consists of the set of �ows a host originates
in order to download Web objects from di�erent Web servers.
�us, the fundamental unit of measurement in our framework
is an application session that we de�ne as follows:

De�nition 2.1. Anapplication session is de�ned as the set of �ows
that correspond to a given application that originate at a given host
(client, server or peer) to one or many other hosts (server, client, or
peer) within a given amount of time of each other. To de�ne more
precisely, let us say that F j is a set of �ows of which the application
type is j from the host. A �ow is presented with a start time and an
end time, and all �ows in F j are sorted in an increasing order of
their start time. All the sessions of application j are then obtained
by clustering the �ows (starting from the �rst �ow in F j) with a
maximum idle time of τ seconds. In other words, in an application
session any �ow is within a distance of τ seconds to at least one of
its preceding �ows.

With our de�nition, only temporally clustered application ac-
tivity is considered to be part of an application session. Since
typical end usersmay use the same application at di�erent points
in time, our de�nition can help delineate between di�erent in-
stances of the same application. Further, our de�nition of an
application session does not include transitive relationships be-
cause causality is hard to determine at a router in the middle of
the network. For example, if a host A contacts a host B, which
in turn contacts host C, then we consider them two di�erent ap-
plication sessions, one that originates at A and the other at B.
Figure 1(a) pictorially represents application sessions. �e x-

axis shows the time and each arrow represents a �ow of a certain
application type, originating from the same host. For example,
App1:Session1 and App1:Session2 represent two sessions of the
same application.

While application sessions provide a useful conceptual frame-
work, it is di�cult for routers in the middle of a network to
identify �ows belonging to the same application session. In re-
cent years, it is no longer feasible to use port numbers to rep-
resent applications directly, as many applications routinely use
non-standard ports [12, 13, 14]. Deep packet inspection could
be used to identify and detect applications, however such tech-
niques are too computationally expensive to be performed in an
online fashion at routers on high-speed links [22]. While a few
works [18, 23, 24] either focused on online classi�cation or evalu-
ated the classi�cation speed of various algorithms. In particular,

App1:Session1

App2:Session1

App1:Session2

App1

App2

idle ≥ τ 

Host

f1
f2
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(a) Application sessions
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(b) HAPs

Figure 1: HAPs vs application sessions. f1 . . . f8 represent �ows generated by
applications in a host.

a recent development [24] enables an online statistical classi�ca-
tion for 10 Gbps link with a simple Bayes algorithm. However, it
is yet unclear if all the existing algorithms (e.g., SVM, C4.5, etc.)
are suitable for real-time classi�cation.

In order to deal with the scalability issues posed by online ap-
plication classi�cation in routers, we propose the notion of a host
activity period (HAP) that is de�ned as follows.

De�nition 2.2. A host activity period (HAP) is de�ned as the set
of �ows that originate at a host (client, server or peer) to one or
more destinations within a given amount of time of each other. To
be speci�c, let us say that S is a set of all �ows from the host, re-
gardless of their application type, which are sorted in an increasing
order of their start time. HAPs are obtained by clustering the �ows
(starting from the �rst �ow in S) with a maximum idle time of τ
seconds. In other words, in a HAP any �ow is within a distance of
τ seconds to at least one of its preceding �ows.

We observe that if a host runs exactly one application,
then the corresponding application session and HAP are the
same (assuming both de�nitions use the same threshold value
τ). Comparing Figure 1(a) with Figure 1(b) shows this. All
bursts of �ows temporally close to each other originating from
the same host are put together in the same HAP. Note that
HAP1 encompasses two application sessions, App1:Session1 and
App2:Session1, while HAP2 and HAP3 share a one-to-one cor-
respondence with the actual application sessions.

2.2. HAPs vs application sessions
We now explore the relationship between HAPs and applica-

tion sessions using an empirical measurement study. Our study
is conducted using a 13-hour packet trace collectedwithin a cam-
pus network (see §4 for details regarding the trace). �e trace
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contains full payload data, which enables us to identify the appli-
cations correctly using deep-packet inspection techniques (we
use an open-source tool called tstat [25] for analysis). We use
a τ value of 30 seconds for both the application session as well
as HAP de�nitions for this study. Small values of τ could result
in splitting application sessions (or HAPs) in a too �ne-grained
fashion, while large values could cause �ows frommany applica-
tions to be present in the sameHAP.We have varied τ between 3
and 600 seconds, and found that the 30 second duration allowed
us to have the least number of application sessions per one HAP
without creating too many HAPs. We summarize our key �nd-
ings:
● HAPs can have a large number of �ows: Figure 2(a) shows the
distribution of number of �ows that constitute a HAP (for all
HAPs that have at least two �ows). As can be observed from the
�gure, only 22% of HAPs consist of two �ows. Out of the re-
maining HAPs, more than 50% of them have at least 10 �ows. A
small percentage of HAPs (about 15%) consisted of greater than
100 �ows (with amaximumaround 75,000 �ows) indicating that
host activity can be quite intensive.
● Most HAPs have a small number of applications: Figure 2(b)
shows the distribution of number of applications per HAP. We
can observe that amajority of HAPs consist of a very small num-
ber of applications, with almost 50% of HAPs consisting of only
one application. For such cases, HAPs are identical to the ap-
plication sessions. About 85% of HAPs consist of less than two
applications. Some HAPs consist of all the way up to 12 appli-
cations. We suspect this is because of applications that run in
the background within a host that constantly generate �ows. A
HAP is delineated only if there is a gap of greater than τ between
two �ows, which may not have occurred in these cases because
of the background activity.
● For HAPs with more than one application, there typically ex-
ists one dominant application. Finally, among those HAPs which
have more than one application, we plot the dominance of HAP
in characterizing an application session in Figure 2(c). We de-
�ne the dominance of a HAP as the percentage of �ows that be-
long to the application that has the most �ows in the HAP, i.e.,
m/t where m is the maximum number of �ows among all ap-
plications and t is the total number of �ows within the HAP.We
observe from Figure 2(c) that more than 80% of the HAPs have
a dominance of greater than 70%. Of course, this includes those
HAPs trivially which have only one application for which the

dominance is 100%. �us, if we discard those single application
HAPs that contain only one application, we can still observe that
more than 50% of the HAPs have a dominance of greater than
70%.
Implications for RelSamp design: Our results based on this
measurement study indicate that the notion of HAP captures
application sessions quite e�ectively. Further, given that HAPs
(application sessions) can have a large number of �ows, the re-
sults indicate the importance of capturing related �ows to get
representative characterizations of applications. Note that the
existence of a few instances when a HAPmay contain many dif-
ferent application sessions, does not pose explicit problems in
our measurement framework. �is is since, we can post-process
the collected �ow records within a HAP by applying classi�ca-
tion approaches such as BLINC [14] to split a HAP into multiple
application sessions. Given these results, our focus in designing
RelSamp is to capture as many �ows per HAP as possible.

3. Architecture of RelSamp

Sampled NetFlow is the most commonly used solution for
monitoring �ows in the Internet. Sampled NetFlow works by
sampling each packet with a pre-con�gured sampling probabil-
ity (e.g., 1 in 1024). For each sampled packet, if a �ow record al-
ready exists for the �ow (identi�ed by the 5-tuple) that the packet
belongs to in the �ow cache, the �ow record is updated (e.g.,
packet and byte counters are incremented). Otherwise, a new
�ow record is created with the �ow key of the packet. Unfor-
tunately, because of its random packet selection process, it cap-
tures very few �ows per HAP, which our RelSamp architecture
attempts to solve.

3.1. Design
�e key idea of RelSamp is to create �ow records by sampling

�ows that are related to already sampled �ows with higher prob-
ability so that more �ows within a HAP are collected. �is small
bias, as we shall show later in our evaluation, is remarkably ef-
fective at collecting many more number of �ows per application
than with Sampled NetFlow, thus facilitating better application
classi�cation as well as continuous and ubiquitous characteriza-
tion of application tra�c.

�e basic design of RelSamp is shown in Figure 3, and is very
similar to NetFlow in terms of the �ow memory and the �ow
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record structure. It mainly di�ers from Sampled NetFlow in its
sampling mechanism. Conceptually, RelSamp consists of three
stages of sampling—host selection, �ow creation and �ow up-
date. �e purpose of the host selection stage is to select a HAP
for measurement. Once a HAP is probabilistically selected, the
�ow selection stage determines what percentage of the �ows
within the HAP to observe. Flows for which �ow records ex-
ist are then updated periodically with a �ow update probability.
�e accuracy of �ow statistics for each created �ow record is gov-
erned by the �ow update probability. Algorithm 1 presents the
pseudocode for the entire RelSamp packet sampling algorithm.
We now describe the individual stages in more detail.

Host sampling. �ere are many di�erent architectural op-
tions for sampling HAPs. One option is to maintain some
amount of state for active HAPs in the form of a hash-table (call
it HAP table). If the source IP address of a packet is not already
contained in theHAP table then, the host could be sampled with
some probability, ph and an entry could be created in the HAP
table. �e advantage of this approach is that, only HAPs with
su�cient volume will be sampled. Unfortunately, the above op-
tion has two problems. First, it requires extra state maintenance
to create and expire HAP table entries, that may be complicated.
Second, some number of packets would be missed before �ow
records are created, that need to be accounted for. �ese pack-
ets may belong to several �ows, and it is not clear how to create
unbiased estimators for �ow records.

Instead, in RelSamp, we sample HAPs using a hash-based se-
lection on IP addresses similar to �ow-sampling in [20]. In other
words, we focus only on a subset of source IP addresses that
are selected by hashing these source IP addresses2 and checking
whether the hash lies within a pre-con�gured range (see line 7
in Algorithm 1). For instance, let us assume that hash value 0x10
is obtained by hashing IP address 1.0.0.1, ph is set to 0.1 andU is
0xFF. Because 0x10 is less than ph ⋅U (i.e., 0x19), the host IP is se-
lected. �us, �ows that clear this stage are likely to belong to the
same application (thus they are related and will be further con-
sidered for sampling in subsequent stages). By controlling the
hash range to the total hash space, we can control the host sam-
pling rate. Because hosts are either selected on the �rst packet
or not at all, no packets are missed before a host is selected at

2At a router, tra�c destined to both clients and servers is observable. �us,
using dstIP may be able to e�ectively collect related �ows. Another possibility is
to selectively use srcIP or dstIP based on the origin of �ows. Although not ex-
plored yet, thesemethodsmaymarginally improve the performance of capturing
related �ows because our method already works well (see §5.1).

Algorithm 1 Packet selection process
1: procedure Select-Packet(ph , p f , pp , P)
2: ▷ U : a maximum number presented by a hash space
3: ▷ r f ∈ [0, 1): a random no. for �ow selection
4: ▷ rp ∈ [0, 1): a random no. for packet selection
5: ▷ F: �ow memory
6: (srcIP, srcPort, dstIP, dstPort, Proto)← key(P)
7: if hash(srcIP) > ph ⋅U then
8: return
9: if r f > p f and rp > pp then
10: return
11: if key(P) ∉ F then
12: if r f ≤ p f then
13: create �ow(F, P)
14: else if rp ≤ pp then
15: update �ow(F, P)

the �ow-level. �us, unbiased estimators are easy to create in
this framework, as we shall describe in §3.2. Further, it does not
require any additional HAP table state for maintaining HAP en-
tries. HAPs could be easily constructed by post-processing the
sampled �ow records that contain the start and end timestamps
anyway (by checking whether the �ows are separated by more
than τ). A potential concern with hash-based selection is that,
only certain hosts will be selected, while others may not be sam-
pled at all. We can easily solve this by changing the hash func-
tion periodically3. Alternately, we can choose higher sampling
probabilities for ph to minimize its impact.
Flow creation. Once a particular host is selected based on the

hash-based host selection, the packet is handed to the next stage
where a �ow is created for the packet, if it does not exist already,
with a probability p f .�is stage presents network operatorswith
the �exibility to choose what percentage of �ows for a given host
are selected. At this stage, again one can choose either hash-
based or packet-based selection. Packet based selection creates
�ow records for heavy-hitter �ows, while hash-based selection
will create �ow records for all types of �ows. We pick packet-
based selection since volume estimates are more accurate.

Flow update. �e �nal stage in our RelSamp architecture is
the �ow update stage. Packets for �ows that are already existing
in the �ow cache are updated with probability pp . �is gives an
operator additional �exibility to specify the accuracywithwhich
individual �ow records are updated. In Sampled NetFlow, the
�ow creation and the �ow update probabilities, p f and pp are
equal to the con�gured sampling probability.�e reasonwe split
this base probability into two parts is to provide network op-
erators the ability to trade-o� accuracy of each �ow with more
number of �ows per host. �us, for a given e�ective sampling
rate pe (that dictates how many e�ective packets are sampled),
we can choose to provide a higher p f that allows creating more

3�is can be also useful to make our mechanism robust against adversarial
tra�c patterns such as DDoS attack. For instance, if an attacker somehow knows
the hash function used in RelSamp, he can make all the attack �ows always
pass the host selection stage by carefully assigning source IP addresses to bot
machines. Changing hash functions regularly can mitigate this kind of issue.
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number of �ows, each of which is updatedwith a lower sampling
probability pp .

For the purposes of increasing related application �ows,
which is the main goal of our architecture, we need to increase
the number of �ows that share common source IP address (by
setting p f to be high). Of course, we still need to ensure that
the total number of packets lies within a given packet sampling
budget, pe , which naturally requires con�guring the value of ei-
ther pp or ph to be small. �e e�ect of reducing the pp value
is that, individual �ow statistics may su�er from higher errors.
�e e�ect of reducing the ph value is that aggregate volume esti-
mates become more inaccurate, as scaling the volumes from the
observed hosts to the actual hosts becomes skewed as number of
hosts decreases. �us, there is a natural trade-o� between these
three variables, that need to be con�gured according to the ob-
jectives and dependent on the particular location at which sam-
pling is being performed. We demonstrate how to set up the
three parameters in §4.

3.2. Unbiased Estimators
We now show how to construct unbiased estimators for

packet and byte counts per-�ow. Unbiased estimators are criti-
cal mainly for volume estimation tasks without which errors can
be really high, especially for aggregates constructed from indi-
vidual �ow records. We begin our discussion by providing an
estimator of per-�ow packet counts. Note that since host selec-
tion process is hash-based, no packets are lost before selecting
a host; thus, the packet count estimate is dependent only on the
p f and pp probabilities.
Estimation of per-�ow packet counts. Let s be the actual num-
ber of packets for a �ow f and c be the total number of packets
sampled in the counter. �e unbiased estimator ŝ for the num-
ber of packets is given by the following equation.

ŝ = 1
p f

+ c − 1
pp

(1)

Proof: Intuitively, packet selection process for a given �ow
packet counter can be thought of as a sequence of rounds,
with each round involving a sequence of unsampled packets �-
nally terminating with a sampled packet. �e �nal value of the
counter c indicates the total number of rounds. Let us suppose
ŝ i be the random variable indicating the set of packets compris-
ing the round i. Assuming packets are sampled with probability
p i within the ith round. �e unbiased estimator ŝ i is given by
ŝ i = 1/p i , which is the standard unbiased estimator for a geo-
metric random variable.

As the packet sequence length is the sum of the lengths of
individual rounds, ŝ = ∑c

k=1 ŝ i . �e probability for the �rst
round p1 = p f , and for all other rounds, p j = pp , 1 < j ≤ c.
Also, these individual random variables are independent of each
other. �us, the unbiased estimator for the packet count for a
�ow can be computed as follows.

ŝ = 1
p f

+
c−1
∑
k=1

1
pp

= 1
p f

+ c − 1
pp

(2)

∎
Variance estimate. �e variance of this estimator can be com-
puted similarly as follows. First we compute the variance of the
individual s is as follows.

Var[ŝ i] = 1 − p i
p2i

(3)

�e above expression is the variance estimate of a standard geo-
metric random variable. Similar to the mean estimates, we can
sum the individual variances to obtain the total variance of the
estimate.

Var[̂s] = Var[
c
∑
k=1

ŝ i] =
c
∑
k=1

Var[ŝ i]

=
1 − p f

p2f
+ (c − 1)

1 − pp

p2p
(4)

Estimation of per-�ow byte counts. Let b i (1 ≤ i < l) represent
the byte size of individual packets for a given �ow. �e total byte
count of a �ow is represented by b = ∑l

i=1 b i . Let Sc be the set of
indices of sampled packets with probability, pp , and c (1 ≤ c ≤ l)
denotes the cardinality of the set, (∣Sc ∣). Let, b f irst represent the
size of the �rst packet sampled. �e following equation is an
unbiased estimator b̂ of per-�ow byte count b.

B̂ =
b f irst

p f
+∑

i∈Sc

b i
pp

(5)

We can prove that this estimator is unbiased in a similar fash-
ion to the packet count estimator. Essentially, the byte count
estimators for each of the s i sequence of packets is given by
B̂ i = b i/p i , where b i is the byte count of the sampled packet in
round i. We can compute the estimate for byte count B̂ trivially
by adding up the individual B̂ is. Variance of the byte count esti-
mate, on the other hand, is hard to compute this way, unless we
assume packet sizes are distributed uniformly. �is assumption
is not true in general; we have not yet been able to compute a
general formula for estimating this and consider it part of future
work.

4. Experimental Setup

In this section, we �rst lay outmain criteria to evaluate our ar-
chitecture followed by a brief discussion about sampling meth-
ods including RelSamp. We then explain the datasets that we
collected for the experiments.
Evaluation objectives. We answer the following questions
throughout the next two sections (§5 and §6):

1. How e�ective isRelSamp in sampling related �ows that be-
long to an application session?

2. Are the estimators in RelSamp unbiased ? What is the rel-
ative inaccuracy in estimating �ow volumes ?

3. What are the limitations of using random packet sampling
in enabling applications such as tra�c classi�cation?

4. How e�ective is RelSamp in ensuring better classi�cation
accuracy as compared to random packet sampling?
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Sampling methods. We implement three sampling methods—
�ow sampling, sampled NetFlow, and RelSamp by extending an
open-source NetFlow called YAF [26]. In �ow sampling, a �ow
sampling rate is determined by controlling a hash range to the
the total hash space. A packet is hashed using a 5-tuple �ow key,
and if the hash value falls in the hash range, the packet is then
selected. In this manner, the �ow sampling can consistently up-
date all the packets of selected �ows. On the other hand, ran-
dom packet sampling employed by NetFlow selects packets uni-
formly with a speci�ed sampling probability. We implement this
method by generating a randomnumber between 0 and 1 and se-
lecting the packet if the randomnumber is less than the speci�ed
probability. RelSamp is implemented in the same way described
in §3. Note that RelSamp and �ow sampling are di�erent in that
our schemehas a host bias stagewhile �ow sampling does not. In
addition, our scheme can control the number of packets that are
sampled in a �ow whereas �ow sampling shows all-or-nothing
nature in the process. �us, as we will show shortly, because of
these di�erences, �ow sampling should capture evenmore num-
ber of packets than our scheme so that it can obtain the same
number �ows per HAP as our scheme does.

Datasets. Wemake use of two datasets. �e �rst dataset, CAM-
PUS, is anOC-192 (10Gbps) packet-header trace collected at the
edge of a large university campus. �e trace is an hour long, and
consists of about 140million �ows and 1,293million packets.�e
purpose of using this trace is to answer questions about how to
choose the parameters of RelSamp in edge network settings.
Our second dataset, DORM, is a packet trace with full pay-

loads collected from a router on a large dormitory building in
the campus. A full-payload trace allows us to evaluate the im-
plications of RelSamp for tra�c classi�cation by enabling deep
packet inspection (DPI) techniques to establish ground truth,
i.e., determine the actual application (see §6). �e trace is about
13 hours long. We �lter out tra�c local to the university, and the
resulting trace consists of around 214million packets distributed
over 8.5million �ows and carrying around 139GBytes of volume.
Since we had access to the packet payload from DORM trace
only andnot from theCAMPUS trace, we use this trace to obtain
application ground truth in order to evaluate the classi�cation
accuracy using BLINC and statistical methods. Note that �ows
are di�erent as long as the typical 5-tuple (i.e., srcIP, srcPort,
dstIP, dstPort, protocol) �ow keys of �ows in comparison are not
same. �us, even if the �ow keys of two �ows can be identical
by reordering them (because their directions are opposite), they
are two separate �ows (i.e., two uni-directional �ow records) re-
gardless of sampling techniques used in our work. �at is, sam-
pled �ow records represent uni-directional �ows that originate
at either clients or servers.

Setting parameters of RelSamp. We discuss how the parame-
ters of RelSamp should be chosen so as to enable the most de-
sirable sampling schemes. We begin by discussing the impact of
each of the parameters. Recall that the host selection probability
ph controls the total number of hosts, and thus the total number
of packets, directly impacting the aggregate volume estimation
accuracy. On the other hand, �ow selection probability p f gov-
erns application awareness, while packet selection probability pp
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Figure 4: Relationship among host selection probability ph and e�ective packet
sampling rate pe for di�erent random runs. CAMPUS trace is used in this ex-
periment. For the setting, while both p f and pp are �xed as 1.0, the parameter
ph is varied from 0.01 to 1.0.

dictates the accuracy of per-�ow statistics. �us, there exists a
clear tradeo� in con�guring these three parameters depending
on the needs of the network operator, measurement location,
link capacity, and router resource constraints.

We �rst investigate the impact of the host selection probabil-
ity ph . �eoretically speaking, as we increase the host sampling
probability, we expect that the total number of packets should
increase roughly linearly. Figure 4 plots the e�ective sampling
rate pe as a function of ph for the CAMPUS trace for di�erent
random runs, while �xing p f = pp = 1.0. Here, the e�ective
sampling rate pe is just the fraction of packets sampled. As ex-
pected, pe increases almost linearly with the host selection prob-
ability ph . However, packets are slightly over- or under-sampled
(for di�erent runs) when ph ≤ 0.02 because as the ph value re-
duces, the number of e�ective hosts considered reduces causing
the sampled hosts’ tra�c pro�le to deviate farther away from the
overall population. Although not a strict requirement, it is de-
sirable not to set ph value too low (∼ 0.03 for this trace) so that
the sampled tra�c volume is not signi�cantly higher or lower
than the desired sample size (ph × T , where T is the total traf-
�c), and the application characteristics of su�cient number of
unique hosts are factored in the measurements.

Given ph , con�guring p f and pp can be slightly tricky. �e
complexity comes from the fact that �ow size distribution is
non-uniform. �us, a slight increase in p f may require a large
decrease in pp to meet a given e�ective sampling rate pe . Our
investigation with the CAMPUS trace revealed this non-linear
relationship between p f and pp . We mitigate this issue by em-
pirically calibrating these two parameters.

Given pe , we �rst choose ph (ph >= pe) and a target �ow sam-
pling probability ptf depending on monitoring purposes. �en,
we set both p f and pp as pe/ph , which guarantees an e�ective
sampling probability of pe . Our scheme iteratively does binary
search for p f and pp over the incoming stream until we get a
con�guration where p f gets close to ptf without violating the
budget of pe . Until we obtain a stable set of the three parame-
ters, intermediate �ow records are discarded.

We sketch this search scheme as follows: p f is set to (p f +
ptf )/2 and pp to (pp + δ)/2, (δ (= 10−5) is a minimum sam-
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Setting ph p f pp

RelSamp1 0.03 0.76 0.0001
RelSamp2 0.005 1.0 0.3

Table 1: Di�erent settings of RelSamp probabilities optimized for di�erent ob-
jectives while keeping the e�ective sampling rate the same at pe = 0.001.

pling probability that can be set) and the achieved packet sam-
pling rate pa is tested. If pa is larger than pe , pp is further re-
duced by setting it as (pp + δ)/2. If pa is smaller than pe , pp
increases by setting it as (pp + 1.0)/2. Once pa becomes close to
pe , we stop adjusting pp and continue to calibrate p f by setting
p f as (p f + ptf )/2. As a consequence, this may result in readjust-
ment of pp . We obtain two settings shown in Table 1 using this
heuristic. Note that the heuristic may cause temporal instability
in terms of accuracy and overhead against the sampling budget,
but once a setting settles down, further calibration is unneces-
sary for long term monitoring tasks.

5. Basic Evaluation

We in this section answer the �rst two questions presented in
§4. In particular, we investigate how e�ectively RelSamp cap-
tures related �ows that belong to an application session, and
evaluate its accuracy in estimating �ow volumes.

5.1. Sampling related �ows
We explore the e�ectiveness of RelSamp in sampling �ows

corresponding to the same HAP, and the sensitivity of the re-
sults to the parameters of RelSamp using the two con�gura-
tions shown in Table 1. �e two settings result in similar e�ec-
tive sampling rate of 0.001, but have di�erent proportion of ph
and pp . Higher ph essentially chooses higher number of hosts
for consideration, while lower pp results in slightly higher er-
ror for individual �ows. Depending on the importance of di�er-
ent objectives, one could choose di�erent settings. For compari-
son, we use two other sampling schemes, sampled NetFlow with
0.001 sampling rate and �ow sampling (with probability such
that 0.001 fraction of packets are sampled).

Our primary evaluation metrics are �ow coverage, which we
de�ne as the fraction of the �ows captured by Sampled NetFlow
or RelSamp per HAP, and volume estimate de�ned as the total
number of packets per HAP captured by these algorithms. Fig-
ure 5(a) plots the CDF of the �ow coverage obtained across the
HAPs. OnlyHAPswith at least two�ows are considered; consid-
ering HAPs with one �owwill shi� the curves slightly to the le�.
Each curve corresponds to results with a particular sampling al-
gorithm (NetFlow, as well as two settings of RelSamp). From
the �gure, we can make several observations. First, Flow Sam-
pling (topmost curve) is the least e�ective in ensuring �ow cov-
erage. Second, NetFlow is slightly better than Flow Sampling—
only 10% of the HAPs see a �ow coverage of 50% or more, with a
median �ow coverage of only 10%. �ird, as we move from Rel-
Samp1 to RelSamp2, the �ow coverage curve moves to the right.
We can see that RelSamp2 performs better than RelSamp1 due
to the fact that p f is higher in RelSamp2 setting than RelSamp1.
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Figure 5: Flow coverage and volume estimate of a HAP. We use τ = 30s and use
the CAMPUS trace for this experiment.

Our most aggressive setting RelSamp2 achieves more than
90%�ow coverage for over 90%of �ows. Our RelSamp1 andRel-
Samp2 curves clearly indicate almost 5-10x increase in the me-
dian �ow coverage compared to sampled NetFlow and almost
10x increase compared to the �ow sampling curve, which per-
forms the worst in all the experiments due to its inability to pre-
serve any application semantics. As an aside, we note that with
the RelSamp2 setting, even though p f = 1.0, the �ow coverage
can be observed to be less than 1 in Figure 5(a). �is is because
of NetFlow’s (in)active timeouts andmultiple normal �ows with
the same �ow key that makes it di�cult to match the NetFlow’s
output with HAPs exactly.

In Figure 5(b), we compare the relative error in estimating a
HAP’s volume for di�erent sampling schemes, i.e., we consider
the error in estimating the total volume across all �ows that con-
stitute a HAP compared to the ground truth. We can observe
once again that �ow sampling curve is signi�cantly worse than
the rest, with a relative error of almost 100% for more than 95%
of HAPs. Sampled NetFlow performs slightly better compared
to �ow sampling, but still, the median error is close to 100%
error. RelSamp1 performs better than both �ow sampling and
Sampled NetFlow, but because the individual �ow volume esti-
mates are not that accurate, it also su�ers from worse error. Rel-
Samp2 performs the best since it is the most aligned with our
goal, namely, higher �ow coverage and accurate �ow volume es-
timates ensured by the higher value of pp , which is set at 30%.
�is phenomenon is also shown in the scatter plots we draw to
show unbiasedness of our estimators in the next subsection.
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Figure 6: Scatter plot of actual and estimated packet counts using RelSamp1 and
RelSamp2 settings.

Actually, one could argue that RelSamp2 is actually strictly
better than RelSamp1 since it seems to outperform RelSamp1
in achieving less relative error of the HAP volume estimates as
well as in capturing more number of �ows per HAP. While this
is true, the advantage of RelSamp1 compared to RelSamp2 is in
using a larger fraction of hosts than RelSamp2. �is advantage
maymatter when one considers other application characteristics
where such a di�erence is important. Overall, our architecture
provides the �exibility to choose arbitrary settings depending on
the goals of a network operator.

5.2. Volume estimation

Unbiasedness of estimators. We empirically validate our un-
biased estimators next. Figure 6(a) �rst shows the scatter plot
of actual and estimated packet counts for �ows containing at
least 1,000 packets using the RelSamp1 setting. �e two-sided
errors from the �gure indicate the unbiased nature of our es-
timator4. As �ow size increases, the actual and estimated �ow
sizes converge and the relative error becomes smaller. We ob-
serve a similar trend for the scatter plot corresponding to the
RelSamp2 setting as shown in Figure 6(b), except that the esti-
mates are much more accurate than that of RelSamp1. �e rea-
son for this is quite obvious; the packet sampling probability pp
under the RelSamp2 setting is quite high (30%) compared to the
(0.01%) setting in RelSamp1. �is allows RelSamp2 to be more
accurate in the individual �ow volume estimates.
Per-application volume estimation. We evaluate whether Rel-
Samp preserves the relative volumes of applications. We ag-
gregate �ow records based on port numbers (for a few popu-
lar applications)—that is, when either port number (source or
destination)matches the port number of interest—and show the
histograms for the relative percentage estimates of both packet
and byte counts for each of these aggregates in Figure 7. We show
histograms for the true volume, Sampled NetFlow and the two
settings of RelSamp as described in Table 1.

4Note that in RelSamp1 setting, the pp is set 0.01%. �us, for �ows that have
less than 10,000 packets, our estimator tends to overestimate their sizes. On the
other hand, for �owswithmore than 10,000 packets, we observe that the number
of overestimated samples are roughly equal to that of underestimated samples.
�is kind of inaccuracy even occurs in case of the unbiased estimator of simple
random sampling when �ow sizes are less than 1/p where p is random sampling
probability

Flow size NetFlow RelSamp1 RelSamp2

pkt byte pkt byte pkt byte

> 10−2% 1.43% 0.94% 1.87% 2.06% 0.22% 4.85%
10−3-10−2% 0.55% 0.84% 7.25% 16.89% 10.00% 2.00%
10−4-10−3% 0.26% 0.71% 11.52% 7.74% 9.18% 6.63%

Table 2: Relative error of volume estimates by aggregating �ows by �ow size.

We observe the following from Figure 7. First, we can see that
the estimates of per-application volumes are reasonably close to
the true value. �e discrepancy is slightly more pronounced for
low volume applications, because they contain far fewer �ows
and if the right hosts are not sampled, they are likely to su�er
from under- or over-estimation. Second, as expected, RelSamp
is slightly less accurate than Sampled NetFlow, but this is the
price RelSamp pays for the more than 5-10x increase in the me-
dian �ow coverage as shown in Figure 5(a).

Aggregate volume estimation. We also consider a di�erent
form of aggregation, based on the �ow sizes. We consider three
di�erent groups of �ows similar to [27], that have a volume of
> 0.01% (large �ows), between 0.001% to 0.01% (medium �ows)
and �nally, 0.0001% to 0.001% (small �ows) as shown in Table 2.
We compute our results on the hash space and re-normalize ac-
cording to the empirically determined re-normalization factor
we described in §3. Again, as expected, the relative error of Sam-
pled NetFlow is very low compared to di�erent instances of Rel-
Samp that have di�erent degrees of inaccuracies depending on
the particular choice of parameters. Overall, the errors are still
within 10% for RelSamp2, and within 17% for RelSamp1 despite
the clear adversarial setting for packet count estimates.

6. Impact on Tra�c Classi�cation

Network operators need to classify tra�c to enable services
such as tra�c di�erentiation and estimating volumes of indi-
vidual applications. Due to the increasing inadequacy of port-
number classi�cation— p2p applications (e.g., BitTorrent) rou-
tinely use non-standard ports, emerging applications (e.g., Ajax-
based Web services [2], embedded video [28]) all run on port
80—it is important to usemore sophisticated classi�cation tech-
niques. While researchers have proposed several approaches
based on host-behavior [14, 19] and machine-learning tech-
niques [15, 13, 16, 17] for classi�cation, pretty much all of this
work assumes unsampled data. Our focus, in contrast, is to study
the impact of sampling on tra�c classi�cation.

In this section, we shed light on (i) the e�ect of sampling on
tra�c classi�cation techniques; and (ii) the e�ectiveness of Rel-
Samp in aiding tra�c classi�cation when compared to NetFlow
andFlow Sampling [20]. In our study, we analyze BLINC, a host-
behavior based classi�er, and twomachine-learning algorithms:
C4.5 and Support VectorMachine (SVM).We start by a brief de-
scription of each, followed by the methodology used to evaluate
them, and end with detailed results.
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Figure 7: Comparison of relative volume estimates for di�erent ports (of popular application types). Note that this port-based grouping does not serve for classi�cation
purpose; it is merely used for convenience to depict how accurate RelSamp’s volume estimation can be depending on port numbers.

6.1. Approaches to tra�c classi�cation
Two key approaches have emerged for tra�c classi�cation:

Host-behavior based classi�cation.�is approach shi�s the fo-
cus from classifying individual �ows to associating hosts with
applications, and then classifying their �ows accordingly [14,
29]. �e intuition behind it is that observing the activity and so-
cial interactions of the hosts provides more information and can
reveal the nature of the applications of the host. BLINC [14, 29],
one of the most well-known classi�ers, captures host pro�les by
looking into each host’s interactions with other hosts. �e in-
teractions of a certain application is captured through an em-
pirically derived signature, called a graphlet. A graphlet re�ects
the “most common” behavior for a particular application. It cap-
tures the relationship between the use of source and destination
ports, the relative cardinality of the sets of unique destination
ports and IPs as well as the magnitude of these sets. A host
is classi�ed by identifying the closest matching behavior in the
built-in library of graphlets. More details can be found in [14].
Supervised machine learning techniques. �ese classi�ers re-
quire training with data that is labeled in advance with the
ground truth. �e learning algorithm has to generalize using
the presented training data over unseen situations in the test-
ing data. We test the e�ect of our sampling scheme on two
well-known algorithms: C4.5 and SVM.�e C4.5 algorithm [29]
builds a decision tree based on training data, which can then be
used for tra�c classi�cation. SVM [30, 29] constructs a hyper-
plane or set of hyperplanes in a high-dimensional space which
can be used for tra�c classi�cation. Intuitively, a good separa-
tion is achieved by the hyperplane that has the largest distance
to the nearest training data points of any class. SVM is proposed
as a robust classi�er in [29] which consistently outperformed all
other classi�ers tested across all traces.

6.2. Methodology
Our evaluations are conducted using packet traces collected

with full packet payload required to establish the ground truth.
Figure 8 illustrates the data�ow used to evaluate classi�cation
techniques. Four di�erent methodologies are parallel applied to
the packet-level trace: a DPI-based classi�er (to obtain ground
truth), RelSamp, Sampled NetFlow, and Flow Sampling. �ere
have been several approaches/tools [31, 32, 25] that obtain the
ground truth on �ows’ application types. Among others, we use

Packet
Trace

RelSamp

DPI-based
Classifier

Sampled
NetFlow

Flow
Sampling

Ground
Truth

Flow
Record1

Flow
Record2

Flow
Record3

Annotator

Annotated
Flow

Record1

Annotated
Flow

Record2

Annotated
Flow

Record3

C
la

ssifica
tio

n
 A

lg
o

rith
m

(B
LIN

C
, SV

M
, C

4
.5

)

Report

Figure 8: Data�ow used for evaluation of classi�cation techniques.

a deep packet inspection (DPI) tool called tstat [25] and an-
notate raw unsampled �ows with application types. tstat pro-
vides ground truth by annotating each �ow with its application
type a�er parsing its content searching for signatures of appli-
cations it can recognize. In our evaluations, we ignore �ows for
which tstat is unable to determine their application type (e.g.,
encrypted �ows). In our trace, less than 8% of the total �ows
were unable to be classi�ed by tstat. �e �ows generated by
RelSamp, Sampled NetFlow and Flow Sampling are annotated
by correlating them with the unsampled �ows. Sampled �ows
are then fed to the di�erent classi�cation techniques.

Tra�c �ows conforming to well-known standard ports are
easy to classify using a simple classi�er that takes port number
information for classi�cation. However, classi�cation of �ows
that do not use their well-known standard ports is farmore chal-
lenging. We therefore dissect tra�c into three categories de-
pending on their use of standard ports: (i) std-ports �ows which
are �ows that use any of the standard well-known ports for that
�ow type (e.g., port 80 for Web, 110 for POP3, and 443 for SSL)5;
(ii) non-std-ports �ows which are �ows that do not use the stan-
dard knownport for the �ow’s application type; and (iii) all-ports
�ows which include all �ows independent of their ports. In the
DORM trace, we found that 42% of the total �ows were std-ports
�ows and the remaining 58% of the �ows were of the non-std-
ports �ows type. In the rest of the analysis, we mainly focus on
the second category.

We employ Reverse BLINC [29], an extension of original
BLINC, with the default values of con�guration parameters. Re-
verse BLINC overcomes the limitation of misclassi�cation of

5Note that this categorization of �ows is not about classi�cation. For in-
stance, some �ows using port 80 are std-ports �ows but their application type
may not be Web; the ground truth is obtained from tstat.
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Figure 9: BLINC’s classi�cation accuracy results.

non-bidirectional tra�c which existed in the original BLINC
version. For machine learning classi�cation, we use a well-
known data mining so�ware suite called WEKA [33]. We use
Sequential Minimal Optimization (SMO) [34], a well known al-
gorithm for training SVM, andused parameter settings that have
been shown to work well in prior work [17, 29]. For the machine
learning algorithms, we use the following �ow features: proto-
col, source and destination port numbers, average packet size, and
TCP�ags: RST, ACK, SYN, and FIN (these �ags are set to zero for
UDP �ows). �ese features have been shown to work well [29].
We note that [29] derived this subset from an exhaustive list of
features using the Correlation-based Filter (CFS) algorithm [35]
to �lter out irrelevant and redundant features.

We test classi�cation techniques using one hour of packet
data from the DORM trace. �e same trace is used as input
for all classi�cation techniques. Supervised machine learning
techniques also require training so we use another hour from
the same trace to train both SVM and C4.5. For each sampling
algorithm and sampling rate, we train and test SVM and C4.5
with data sampled using those settings. For example, if we are to
test SVM on tra�c sampled with rate 0.001, the same sampling
rate of 0.001 is also used for training. We take this approach to
ensure features are used in a consistent fashion during training
and testing, which in turn, can ensure accuracy of the classi�ers.
Consider a feature such as the number of packets in a �ow, for in-
stance. Clearly, the values obtained for this feature are impacted
under sampling. Training and testing with the same sampling
rate can ensure consistent use of the feature.

For the parameter setting of RelSamp, while we �x ph = 0.2
and pp = 0.0001, we varied p f from 0.1 to 0.9. We set parameter
values which are higher than ones in Table 1 because host pop-
ulation and �ow sizes in DORM trace are smaller than those in
CAMPUS trace. In addition, because we wish to investigate the
in�uence of p f on tra�c classi�cation, we do not �x any given
pe , but let it vary freely by varying p f values. �us, pe resulted
by the three parameters is higher than 1 in 1024 typically used in
OC-192 link, and ranged between 1 in 200 to 600.

6.3. Results
Figure 9(a) studies the impact of sampling on classi�cation

accuracy with BLINC on the DORM trace. We de�ne accuracy
as accuracy = c/t, where c is the total number of correctly

classi�ed �ows, and t is the total number of �ows. �e x-axis
shows the sampling rate used and the y-axis shows the accu-
racy of BLINC for the three categories of �ows mentioned ear-
lier. �e overall accuracy for all �ows reduced from around 95%
down to 85% as the sampling rate was reduced from 1 to 0.001,
whichmight mislead one to conclude that sampling does not af-
fect classi�cation accuracy. �e overall accuracy includes both
std-ports �ows as well as non-std-ports �ows, on which BLINC
performs di�erently. Whenonly std-ports �owswere considered,
the accuracy was high (almost 100%) across the range of sam-
pling rates as we expected. However, when only non-std-ports
�owswere considered—arguably, the regime where the need for
sophisticated classi�ers is most critical—the accuracy decreased
signi�cantly from 90% over unsampled data all the way down to
30% with a 1 in 1000 sampling.

Figure 9(b) compares the accuracy of BLINC when RelSamp
is used compared to when Sampled NetFlow and Flow Sampling
are used, focusingmainly on non-std-ports �ows. To ensure a fair
comparison, we require that the packets are sampled at the same
e�ective rate with both schemes. Compared to Sampled Net-
�ow, the bene�ts of using RelSamp are signi�cant for all sam-
pling rates considered—for instance, for an e�ective sampling
rate of 0.002, the accuracy is 70% with RelSamp and only 30%
for Sampled NetFlow.

While RelSamp outperforms Flow Sampling from 0.002 to
0.004, the accuracy gap between RelSamp and Flow Sampling
only becomes about 8% a�er that range. To understand this re-
sult better, we investigated how much accuracy Flow Sampling
achieved for std-ports �ows. Interestingly, the classi�cation re-
sults were worse than those of RelSamp and Sampled NetFlow
(not shown for brevity). Both of them approximately achieve
over 97% accuracy, but Flow Sampling only achieves about 80%
accuracy. Further, we checked total number of std-ports �ows as
well as non-std-ports �ows for Sampled NetFlow and Flow Sam-
pling. It turned out that while Sampled NetFlow over-samples
std-ports �ows rather than non-std-ports �ows, the ratio between
two is similar in case of Flow Sampling. �is is because Flow
Sampling is unbiased in �ow size whereas random sampling in
NetFlow is biased towards large �ows which are found more
among std-ports �ows in our trace. Note that classi�cation in
BLINC is triggered by a threshold in number of �ows and pack-
ets constituting a graphlet. �us, while the accuracies of both
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categories of �ows were in�uenced in case of Flow Sampling
because it balances the number of sampled �ows in both cate-
gories, Sampled NetFlow had worse accuracy in non-std-ports
�ows classi�cation because it less samples those �ows.

We also looked at the actual number of correctly classi�ed
�ows for each sampling schemes. At the right-most data point in
Figure 9(c), while RelSamp classi�es about twenty eight thou-
sand �ows correctly, other two methods successfully classi�es
only about two thousand �ows. On the whole, RelSamp has
roughly 10 times more number of accurately classi�ed �ows
than Sampled NetFlow and Flow Sampling. �erefore, our Rel-
Samp outperforms the other two sampling methods in terms of
accuracy as well as the absolute number of correctly classi�ed
�ows.

15628

.
.
.

dstIPsrcIP dstPortsrcPort

.
.
.

(a) RelSamp

15628

dstIPsrcIP dstPortsrcPort

(b) Sampled NetFlow

Figure 10: Graphlets of p2p �ows byRelSamp and Sampled NetFlow. �ey have
same source IP and port, but di�erent fanout cardinality.

We now discuss the reasons for the signi�cantly improved
accuracy with RelSamp. Host-behavior based classi�ers such
as BLINC work by observing communication patterns of hosts.
Sampling a�ects BLINC by providing distorted hosts’ pro�les
that do not re�ect the actual social communication between
them. For example, consider a p2p graphlet. �e collection of
�ows matching a graphlet with unsampled data may not match
anymore under sampling. Figure 10 shows an actual example
from our dataset for the p2p graphlet. Figure 10(a) shows the
�ows initiated from a certain host as captured by RelSamp, and
Figure 10(b) shows �ows captured by Sampled Net�ow for the
same host during the same time period. In this case, RelSamp
was able to capture 55 �ows which exceeds BLINC’s thresh-
old (fanout cardinality) for the p2p graphlet. Sampled Net�ow,
on the other hand, captured only 3 �ows which is signi�cantly
below the threshold leading to BLINC classifying them as un-
known.

Figure 11(a) studies the impact of sampling by Sampled Net-
�ow on C4.5 and SVM for non-std-ports �ows. As sampling rate
was lowered, accuracy decreased from 90% down to 30% for
SVM, and 98% to 80% for C4.5. We believe the degradation with
SVM occurs because the algorithm lacks samples that it needs
in training phases; as the number of samples in a training set
increases in proportion to sampling probability, the accuracies
of SVM increases. In contrast, C4.5 appears relatively more ro-
bust to sampling. We hypothesize this may be very likely due to
C4.5’s entropy-based discretization capability as shown in [23].
�at said, a more extensive study using a wide range of traces is
required to draw de�nite conclusions regarding the relative ro-
bustness of di�erent classi�cation algorithms. We defer a more
detailed investigation of these issues to future work.

Figure 11(b) compares the classi�cation accuracy of C4.5 and
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Figure 11: C4.5 and SVM classi�cation results.

SVM for non-std-ports �ows obtainedwith SampledNet�ow and
RelSamp. �e �gure shows that RelSamp outperformed Net-
�ow by around 10% in C4.5 and 35% with SVM. We believe this
is because RelSamp captures more �ows than normal NetFlow
(even though the number of packets sampled in each scheme is
the same), which potentially provides better data for the training
phase.

7. RelatedWork

Due to the importance of measurements in several network
management tasks, there exists a lot of prior work [36, 37, 27,
38, 39, 40, 41, 42]) in architecting better sampling-based passive
measurement solutions. Despite their existence, to the best of
our knowledge, we are the �rst to introduce this notion of related
sampling that can be exploited to make sampled �ow records
preserve application structure. In this section, we outline some
of these solutions and discuss how they di�er from ourRelSamp
architecture.

Several researchers have observed glaring de�ciencies in
Sampled NetFlow and proposed solutions to address some of
them. For instance, Estan et al. in [36] propose Adaptive Net-
Flow to automatically change the sampling rate to better adapt
to adversarial tra�c patterns such as denial-of-service attacks.
Kompella et al. propose Flow Slices as a solution to allow bet-
ter tuning knobs for controlling memory and CPU utilization
in [27]. While Flow Slices shares some similarity with RelSamp
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in that, both have split stages, the notion of related sampling is
completely absent in Flow Slices. Sekar et al. have proposed
cSamp [42] for network-wide �ow monitoring with a goal to
minimize redundancies in routers sampling packets indepen-
dently. RelSamp, on the other hand, is designed to operate
within a router.

Beyond sampling frameworks, a few past works have fo-
cused on providing network operators with complete �exibility
in choosingwhich �ows theywant to sample. For example, Yuan
et al. devised ProgME [38] that provides operators the �exibil-
ity to con�gure hyper-spaces called �owsets, assuming operators
know what �ows they are interested in. While it o�ers operators
with great �exibility, it is not clear how to exactly de�ne these
�owsets to preserve application structure. A similar recent ef-
fort is FlexSample [39] by Ramachandran et al., in which they
provide a simple language to specify groups of �ows of interest
using tuples on speci�c packet header �elds, and build counter-
based predicates on them. It requires maintaining extra state
for approximate checking of the predicates and is designed to
provide sophisticated monitoring of tra�c subpopulations. Rel-
Samp, on the other hand, does not require any extra state; it is
designed to be simple for network operators to implement re-
lated sampling mainly geared toward application monitoring.
Counter Braids [37] proposed recently by Lu et al. proposes a
new architecture for sharing counters. �eir work is comple-
mentary to ours; we can utilize their counter braids in compress-
ing counters to reduce resource usage across �ows.

In�uence of sampled tra�c on anomaly detections has been
studied in the past [43, 44]. In [43], Mai et al. observed that
packet sampling schemes distort original tra�c features, and
the accuracy of anomaly detection algorithms they tested is im-
pacted by sampling techniques. Our work focused on studying
the bene�ts of RelSamp on tra�c classi�cation, but RelSamp
can bene�t anomaly detection and other attack detection as well,
by providingmore amount of information to construct anomaly
signatures.

Tra�c classi�cation is one of the main applications of Rel-
Sampwhichwe have studied in this paper. In general threemain
approaches emerged—deep packet inspection (DPI) [45, 25, 46],
behavior-based [14, 19], and �ow-feature based [15, 13, 16, 17, 18].
A recent work [24] demonstrates the possibility of high-speed
online classi�cation using a simple Bayes algorithm. However,
it is unclear whether the system can sustain when it is equipped
with other statistical classi�ers such as SVM and C4.5. �us,
while in high speed networks the use of packet sampling is gen-
erally inevitable, all previous works have mainly focused on
unsampled tra�c data. Two of these works [18, 16] have hy-
pothesized that the accuracy of their method will degrade fairly
quickly under packet sampling, but neither investigates it fur-
ther. Ourwork, in contrast, does not provide a new classi�cation
mechanism, but instead provides a sampling scheme that can
improve the accuracy of traditional classi�cation techniques.

8. Conclusion

While the wide availability of NetFlow across many modern
routersmake it an ideal candidate for continuous, low-costmon-

itoring of network application tra�c at enterprise edge routers,
the sampling algorithms employed by NetFlow today are inad-
equate to capture application behavior. In this paper, we have
presented RelSamp, an architecture based on the key idea that
related �ows part of the same application session are sampled
with higher probability.

Our evaluations on real traces show the importance and vi-
ability of a related sampling approach. RelSamp is capable of
obtaining 5-10x more �ows per application session compared to
Sampled NetFlow and �ow sampling. It increases the classi�ca-
tion accuracy of BLINC, SVMandC4.5 up to 50% in comparison
with the �ows output by Sampled NetFlow. We view RelSamp
as a �rst step towards enabling ubiquitous, continuous, low-cost
application monitoring. In the future, we hope to explore its
applications in detecting undesirable behavior of new applica-
tions, and in enabling what-if analysis frameworks that can help
network providers reason about the impact of future application
trends on the design of their networks.
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