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Abstract—As many-to-one traffic patterns prevail in data 

center networks, TCP flows often suffer from severe unfairness 

in sharing bottleneck bandwidth, which is known as the TCP 

outcast problem. The cause of the TCP outcast problem is the 

bursty packet losses by a drop-tail queue that triggers TCP 

timeouts and leads to decreasing the congestion window. This 

paper proposes TCPRand, a transport layer solution to TCP 

outcast. The main idea of TCPRand is the randomization of TCP 

payload size, which breaks synchronized packet arrivals between 

flows from different input ports. We investigate how TCPRand 

reduces consecutive packet drops and demonstrate various 

benefits of TCPRand with extensive experiments and ns-3 

simulation. Our evaluation results show that TCPRand 

guarantees the superior enhancement of TCP fairness with 

negligible overheads in all of our test cases. 

Index Terms—Data center networks, TCP outcast, Fairness 

I. INTRODUCTION 

In recent years, the proliferation of data center applications 

with many-to-one traffic pattern has brought a body of new 

network research issues such as TCP incast [9,14,22], deadline-

awareness [15,16,17,18] and TCP outcast [1]. Among these 

issues, this paper focuses on the TCP outcast problem for 

which practical solutions have not successfully been proposed 

yet. The TCP outcast problem is observed easily in data center 

networks, where routers or switches are usually connected 

through a multi-rooted and hierarchical topology such as fat-

tree [5] and senders and receivers are leaves of the topology. 

As many-to-one traffic patterns emerge in such an environment, 

multiple flows arrive at different input ports of a receiver’s 

ingress switch and compete for the same outgoing queue. With 

excessive traffic flows, drop-tail queueing may drop a series of 

consecutive packets at each input port, and this is called port 

blackout [1]. Suppose that there are two input ports, A and B, 

and many flows arrive at A while a few flows do at B. If all 

these flows are destined to the same output port, the outcast 

flows (i.e., the flows arriving at B) lose the goodput 

substantially because TCP timeouts are triggered more easily. 

This is the essence of the TCP outcast problem [1] that has 

negative impacts on the TCP fairness among competing flows. 

It even leads to much higher goodput decrease in flows with a 

short RTT than in those with a long RTT in a fat-tree topology. 

Several solutions have been suggested for the TCP outcast 

problem. They can be categorized into link layer and network 

layer solutions. To our knowledge, none of them can be readily 

rolled out to the existing data center networks. The link layer 

solutions require a modification to the current switching 

architecture [20] or are not widely supported in today’s 

switches [7]. Equal-length routing [1], one of network layer 

solutions, only works in non-oversubscribed networks. To 

overcome the shortcomings of these two approaches, a 

transport layer solution can be viable since it neither relies on 

any specific link layer supports nor assumes any particular 

network topology. However, existing rate-based transport layer 

approaches are not applicable to TCP outcast in data centers 

because they require the precise control of inter-packet spacing 

time [3, 21] which operating systems hardly guarantee and are 

inappropriate [21] for a multi-hop environment.  

In this paper, we propose a transport layer solution called 

TCPRand. To prevent the port blackout, we randomize each 

TCP packet’s payload size for arbitrating the arrival times of 

back-to-back packets. This can reduce the chance of burst 

packet drops per input port. At the sender side, the proposed 

solution makes the TCP payload size uniformly distributed 

between [rMin, MSS]. However, it may increase the packet 

header overhead due to the smaller payload size and curtail the 

total goodput. To achieve high fairness without loss of total 

goodput, the proposed solution calculates rMin by adapting to 

the changes of congestion window (cwnd). The method is 

based on the observation that for many-to-one applications (e.g., 

especially with a barrier synchronization  property [22]) as 

cwnd of a flow is growing, the network is more congested and 

the port blackout happens more frequently. Hence, if cwnd of a 

flow increases, the scheme decreases rMin for the flow. 

We implement TCPRand by modifying the sender side 

execution path of TCP protocol stack in the Linux kernel and 

perform extensive experiments in our testbed. We demonstrate 

that TCPRand reduces consecutive packet drops and TCP 

timeouts significantly, and as a result, it improves TCP fairness 

substantially with a small loss of the overall goodput and 

negligible additional retransmission overheads. We also show 

that TCPRand always guarantees the superior enhancement of 

TCP fairness to the regular TCP in various test cases. In 

addition, we use ns-3 [11] to evaluate TCPRand with a larger 

and more realistic topology (i.e., fat-tree [5]) and workloads of 

data center networks, and show that TCPRand substantially 

improves TCP fairness and rarely sacrifices flow completion 

times of flows, especially those of small flows. 

The remainder of this paper is organized as follows. In 

Section II, we discuss the limitations of existing solutions. In 



Section III, we briefly explain the port black out problem and 

why payload size randomization is its key solution. Section IV 

provides the details of the proposed solution. We outline our 

evaluation setup in Section V. Evaluation results are presented 

in Sections VI and VII before we conclude in Section VIII. 

II. LIMITATIONS OF RELATED WORK 

Link layer solutions: Random early detection (RED) [6] 

and stochastic fair queueing (SFQ) [7] have been tested to 

solve the TCP outcast problem. Prakash et al.  [1] point out that 

RED shows RTT bias while SFQ makes flows have throughput 

fairly and achieves RTT fairness but uncommon in commodity 

switches. More importantly, both solutions cannot be easily 

deployed for ToR switches in data centers for cost reasons [1]. 

Zhang et al. [20] propose a cross-layer protocol that supports 

bandwidth sharing by allocating switch buffer; the switch 

determines the size of the congestion window of its passing 

flow. However, all the switches in data centers must be 

modified for supporting such a feature to make use of this 

solution. Alizadeh et al. [25] propose DCTCP which may be 

useful to solve the outcast problem by controlling a congested 

port’s queue length properly. However, DCTCP must leverage 

Explicit Congestion Notification (ECN) capability, which is 

not yet widely supported by most commodity ToR switches 

especially in small and medium data centers to our knowledge. 

Network layer solutions: Equal-length routing [1] makes 

all flows from senders routed up to the core switch regardless 

of the senders’ locations. Then, all the flows take the same 

downward path from the core to the destination which leads to 

RTT fairness. It uses a detour path to increase the path 

similarity instead of the shortest path. However, this approach 

causes performance degradation if data center networks are 

oversubscribed. Furthermore, it significantly lacks flexibility. 

Transport layer solutions: The rate-based delivery (e.g., 

TCP pacing [3] and sending time randomization [21]) has also 

been considered as a solution to the TCP outcast problem. TCP 

pacing, combined with the window based congestion control, 

avoids burst delivery by giving some interval between the 

transmission times of two consecutive packets and shows 

inverse RTT bias. However, the TCP outcast problem still 

remains considerably in TCP pacing [1]. Chandrayana et al. 

propose a scheme randomizing the sending times by adjusting 

the inter-packet gap [21]. This, however, cannot retain the 

initial randomness created by the sender throughout the routing 

path mainly due to the bursty departure process at the first 

bottleneck queue. This makes the approach ineffective in a 

multi-hop environment. Moreover, the rate-based delivery has 

a severe practical limitation because it is practically infeasible 

to do (sub-)microsecond level packet spacing [2] (e.g., in 

1/10Gbps link), quite strictly required to get better randomness 

effects in data center networks (where RTT<1ms [14]). Even 

though a high resolution timer (e.g., hrtimer in Linux) is 

available, operating systems hardly guarantee the precise 

control of inter-packet spacing time. Furthermore, frequent 

timer interrupts lead to a large interrupt handling overhead [14].  

Viewed in this light, practicality and easy deployment of a 

solution do matter. The proposed approach—payload size 

randomization—has two practical advantages compared to 

these rate-based solutions. First, the shuffle effect is preserved 

even by the departure process of the bottleneck queue. Thus, 

our approach guarantees the random arrival times of back-to-

back packets for a multi-hop environment. Second, it does not 

require packet spacing at a (sub-)microsecond level, which is 

difficult to achieve in practice. 

III. EFFECT OF RANDOMIZATION  

In this section, we first explain why port blackout occurs in 

detail. Next, we discuss the payload size randomization idea as 

a solution to the phenomenon. Finally, through an experiment, 

we quantitatively show that the randomization method 

substantially mitigates the degree of the port blackout. 

A. Port Blackout Problem 

The port blackout phenomenon in data center networks is 

well studied in [1]. Figure 1(a) illustrates how the port blackout 

occurs at a bottleneck switch where a drop-tail queue 

management policy is applied and there exist two input ports 

(i.e., X and Y) and one output port (i.e., Z). Further, we assume 

that TCP-based bulk data transfer application traffic arrives at 

the switch through ports X and Y and leaves it via port Z. 

In this setup, packets are almost of the same size (i.e., the 

size of TCP/IP headers + MSS). Traffic is bursty and the inter-

frame gap between packets is constant (e.g., 0.096s for a 

gigabit Ethernet) following the IEEE 802.3 specification. This 

condition can create a situation where packets from port Y are 

always stored in the output queue while packets from port X 

are always discarded. This occurs because packets from port Y 

always arrive ahead of competing packets from port X. For 

instance, as shown in Figure 1(a), the arrival time of packet Y1 

(denoted as A[Y1]) is ahead of that of packet X1 (i.e., A[X1]), 

A[Y2] < A[X2], and so forth. Even though a series of packet 

drops happen fairly on ports X and Y by turns, they damage 

more seriously to the throughput of the incoming stream from 

port X if the stream consists of less number of TCP flows. This 

is the port blackout problem [1].  

B. Avoiding Concurrent Packet Arrivals 

The port blackout problem can be ameliorated by reducing 

concurrent packet arrivals at two input ports. At the transport 

layer, this can be achieved by the rate-based approach but it is 

less practical as discussed in Section II. Our approach to the 

 
(a) Fixed-size payload                          (b) Random-size payload 

Fig. 1.  Port blackout at a switch and effect of payload size randomization. 
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problem is rather to randomize the size of each TCP payload. 

The intuition behind this is, randomizing the size of TCP 

payload can induce randomness in the arrival times of packets 

and it finally breaks the synchronized arrival times of back-to-

back packets at each input port. This can reduce the chance of 

having port blackout, and the initial randomness can be 

preserved all the way down to the receiver in multi-hop 

environments. For example, in Figure 1(b), X1 is dropped since 

Y1 arrives slightly before X1. However, in the next phase, X2 is 

inserted to the output queue since X2’s TCP payload size is 

reduced after the randomization so that the arrival time of X2 is 

ahead that of Y2, having Y2 dropped. After that, the arrival time 

of Y3 is ahead that of X3 due to the randomization of the TCP 

payload size. Thus, Y3 is enqueued while X3 is dropped. 

Eventually, this procedure lets us have A[Y1] < A[X1], A[X2] < 

A[Y2], A[Y3] < A[X3], and A[X4] < A[Y4]. Thus, Y1, X2, Y3 

and X4 are inserted to the output queue while the rest are 

discarded. Packet drops occur rather alternately in each port; 

thus the frequency of the port blackout phenomenon decreases. 

C. Understanding the Effect of Payload Size Randomization 

To take a closer look at the port blackout phenomenon, we 

investigate how much a series of packet drops from each input 

port can be alleviated with the payload size randomization at a 

switch under congestion. Let Q (0 ≤ Q ≤ Qmax) be the output 

queue length. A packet drop occurs at a drop-tail queue if a 

packet arrives when Q=Qmax. To quantitatively measure the 

effect of the payload size randomization, we focus on the 

enqueue probability of two packets X2 and Y2 after Y1 is 

enqueued and X1 is dropped (see Figure 1(b)).  

More formally, the probability of packet pkt to be enqueued 

at A[pkt], is acquired by: 
 

Pq(pkt)=1−P(Q=Qmax at A[pkt]).                                       (1) 
 

Based on the notion of Eq. 1, we experimentally measure 

the enqueue probabilities of i) X2 (Pq(X2)), ii) Y2 (Pq(Y2)), iii) 

both X2 and Y2 (Pq(X2∩Y2)), and iv) neither X2 nor Y2 

(Pq(~X2∩~Y2)) while randomizing payload sizes. To do so, we 

write an offline test code generating two virtual back-to-back 

flows (from X and Y). We randomly select a payload size of 

each packet within the range of [rMin, MSS]. We vary the 

degree of randomness by changing rMin from 1B to 1448B at 

the interval of 1B. We construct a simple experimental setup as 

follows: First, nodes are connected with 1Gbps links. Second, 

there are two input ports X and Y, and one output port Z. Third, 

back-to-back packets arrive continuously at each input port and 

the inter-frame gap is 0.096s (i.e., 8B in a gigabit Ethernet). 

Last, Y1 is enqueued to the output queue while X1 is dropped.  

By tracing all the packet arrivals and departures since 

A[Y1], we measure Pq(X2) and Pq(Y2). We conduct this test 

1000 times per each rMin. Figure 2 shows the four types of 

probabilities of interest. If the regular TCP (i.e., the payload 

size is not randomized at all and rMin=1448B) is used, X2 

never be enqueued. Of course, this simple experimental result 

may not hold in real network environments since the packet 

arrival time can be distorted due to some random factors (e.g., 

variations in sending patterns or other unpredictable random 

behaviors) [1, 4] and TCP does not generate endless bursty 

traffic unlike we did for the test. However, Figure 2 clearly 

indicates why the port blackout is hard to be prevented with the 

regular TCP at a drop-tail queueing switch.  

As rMin decreases (i.e., from the right of the x-axis to the 

left in Figure 2), Pq(X2) increases and Pq(Y2) decreases. Pq(X2) 

and Pq(Y2) approach to 0.63 and 0.58, respectively when 

rMin=1B. One interesting observation is that Pq(X2∩Y2) also 

increases by decreasing rMin. However, the payload size 

randomization can make both X2 and Y2 dropped (e.g., with the 

probability of 0.11 when rMin=1B). Nevertheless, the 

advantages far outweigh this disadvantage since the probability 

of consecutive packet drops reduces significantly by the 

randomization mechanism. 

Another implication from the above result is that it is 

unnecessary to reduce rMin overmuch. There are two reasons. 

First, the enqueue probability of X2 grows up more slowly as 

    
(a) CUBIC’s cwnd(t). In CUBIC, when a packet drop is detected, the cwnd 

decreases by a factor of  (=717/1024 in Linux kernels). Then, a new CUBIC 

epoch begins at t=0, and the initial cwnd of the epoch  is set to cwnd(0). Wmax 
(called the current maximum or the origin point) is the cwnd where packet 

losses occurred previously. Refer to [13] for more details on C and K. 

  
(b) : Normal Distribution CDF 

Fig. 3.  Adaptive selection of  based on CUBIC’s cwnd. 
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rMin approaches to 1B. Second, the lower rMin, the larger the 

header overhead. It results in bandwidth waste. 

IV. PROPOSED SCHEME 

In this section, we focus on the design of our proposed 

scheme that we call TCPRand. As mentioned in Section III.C, 

for each packet, we determine its payload size via generating a 

uniform random number in the range of [rMin, MSS]. Since 

rMin is a configurable variable (1 ≤ rMin ≤ MSS), we can 

diversify randomly generated payload sizes by selecting one 

rMin value. However, it is unclear what value to set. Moreover, 

the degree of port blackout can vary depending on several 

factors such as background traffic, changes in traffic patterns, 

etc. Due to these reasons, we consider a scheme that can 

adaptively select rMin value and effectively react to changes in 

such factors. Thus, our design choice for the adaptation 

method lies not only in maximizing the fairness, but also in 

minimizing the loss of total goodput in any circumstances. We 

design our adaptation method on top of TCP CUBIC [13], the 

default congestion control algorithm in Linux. 

A. Modeling Adaptive Selection of rMin in CUBIC 

We focus on CUBIC’s cwnd growth function for designing 

an adaptive rMin selection method as variation in cwnd value 

can be indicative of the probability of packet loss, which is a 

necessary condition of the port blackout. 

Let us first take a look at how the CUBIC’s window growth 

function (i.e., cwnd(t)), depicted in Figure 3(a), works. We 

classify a CUBIC epoch into 4 stages and present our adaptive 

rMin selection strategy for each stage based on its functional 

characteristics. 

Stage 1) Fast growth of cwnd (when cwnd < Wmax): At the 

initial phase of a CUBIC epoch, the cwnd grows very fast. The 

rationale here is that the fast cwnd growth is unlikely to cause a 

packet drop since the cwnd is already reduced by a factor of  

just before the start of this epoch. Therefore, as Strategy 1, we 

propose to not reduce rMin aggressively. 

Stage 2) Slow growth of cwnd (when cwnd < Wmax): 

CUBIC slows down the growth of cwnd as approaching to 

Wmax since packet losses occurred at Wmax previously. The 

CUBIC’s heuristic indicates that the probability of packet loss 

is increasing fast at this stage. To counter the port blackout 

actively, Strategy 2 is to reduce rMin aggressively. 

Stage 3) Slow growth of cwnd (when cwnd ≥ Wmax): If the 

cwnd grows past Wmax, CUBIC enters a max probing phase 

[13]. At the beginning of the max probing phase, the cwnd 

grows slowly to find out a new maximum point nearby as the 

CUBIC’s heuristic expects that the probability of packet loss 

becomes higher when cwnd ≥ Wmax. Thus, as Strategy 3, rMin 

must decrease aggressively again to prevent the port blackout. 

Stage 4) Fast growth of cwnd (when cwnd ≥ Wmax): If no 

packet loss is detected for some period of time after stage 3, 

CUBIC performs a fast increase of cwnd since it guesses the 

new maximum is far away. Thus, Strategy 4 is to not reduce 

rMin actively at this stage. 

B. Adaptive Algorithm to Calculate rMin  

We adopt the proposed strategies discussed in Section IV.A 

and propose the TCPRand’s adaptation method (Algorithm 1) 

to calculate rMin before sending a packet. 

1) How to decide rMin? 

rMin is calculated based on which is the 

normal distribution CDF
1
 shown in Figure 3(b). As the first 

parameter of , x is a normalized distance between cwnd and  

as shown at the line 3 of Algorithm 1. For instance, if 

cwnd=Wmax, x=1. The second and third parameters of ,  and 

s2
 are the mean and the variance, respectively and they are 

configurable. rMin is determined by the line 5 of Algorithm 1 

based on  and the other two parameters
 2
, ν and θ. ν is a scale 

factor adjusting the effect of . The lower bound of rMin is set 

by a parameter θ, to prevent rMin from decreasing overmuch.  

The normal distribution CDF supports our strategy for each 

of the 4 stages well as follows. Assume that =1. At stage 1,  

increases very slowly and it leads to the gradual reduction of 

rMin as Strategy 1. At stage 2,  increases fast and finally 

converged to 0.5; it causes the fast reduction of rMin as 

Strategy 2. At stage 3,  grows quickly so that the reduction 

of rMin is still fast as Strategy 3. At stage 4,  grows leisurely 

and leads to the slow reduction of rMin as Strategy 4. 

2) When to turn TCPRand on/off? 

Trigger point: Based on Strategy 1, we activate TCPRand 

only when the t ≤ cwnd. The trigger point τ shown in Figure 

3(a) is acquired by: 

,                                                         (2) 

where ντ is a scale factor tuning τ. If ντ=1, τ=. If ντ→∞, 

τ=Wmax.  

End point: With Strategy 4, TCPRand can also set the end 

point w, as shown in Figure 3(a). TCPRand is deactivated if 

cwnd grows above w, which is set by: 

                                                           
1 To reduce the  calculation overhead (not trivial) at kernel, we pre-

calculated  for various input parameters and stored the result in a 

table. Thus,  is acquired by a simple table lookup. 
2 We set ν=1 and θ=200B.  
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,                                                        (3) 

where νw is a scale factor tuning w. If νw→0, w→∞. If νw=1, 

w=  max2 W . Preventing w from growing too much is useful 

to avoid unnecessary payload size randomization in case of 

large cwnd (e.g., when the competing flows finish). Note that 

Eq. 2 and Eq. 3 are implemented at the line 2 of Algorithm 1.  

V. EVALUATION SETUP 

We evaluate the proposed solution in two ways: ns-3 

simulator and real testbed. We first describe our evaluation 

environments, enumerate parameters for TCP and TCPRand, 

and finally outline evaluation metrics and test scenarios before 

presenting our results in Sections VI and VII. 

A. NS-3 simulation environment  

We incorporate TCPRand with the packet-level simulator 

ns-3 to experiment it in a full-blown topology (i.e., fat-tree [5]) 

of a data center network. We choose ns-3 because it enables 

high performance simulation. We adopt most of the 

configuration parameters suggested in [1] (including link 

capacity (=1Gbps), TCP minRTO value (=2ms), MSS value 

(=1460B), routing policy, etc.). The processing delay of each 

switch is set to 25 microseconds as suggested in [8]. We 

integrate TCPRand to both NewReno and CUBIC. We use 

CUBIC source code for ns-3 obtained from [10].  

B. Testbed environment  

To make our testbed realistically reflect a fat-tree topology 

shown in Figure 4, we use a topology illustrated in Figure 5. 

All the machines, on which TCPRand is running, are equipped 

with an Intel Core i7-3770K CPU @3.50GHz, 32GB of main 

memory and Intel 82579 Gigabit Ethernet NIC. For the 

switches, we use Cisco catalyst 2970 which adopts the drop-tail 

queue management policy. We implement TCPRand by 

modifying the TCP output engine in the Linux kernel 3.2.39. 

All the offload options including TCP segmentation offload 

(TSO), generic segmentation offload (GSO) and generic 

receive offload (GRO) are disabled because they use the 

offload engine in NIC and make TCPRand not work as 

expected. 

C. TCP Parameters 

TCPRand randomizes the payload size, which in most cases 

becomes smaller than MSS, and as a result it may generate 

more packets compared to the regular TCP. Due to its unique 

characteristics, we consider the following factors that can affect 

the performance of TCPRand as follows: 

Appropriate Byte Counting (ABC): Even though TCP 

output engine in Linux increases cwnd based on the “number” 

of acks (which works well with the MSS-sized payload), by 

enabling ABC [23] option, cwnd can be increased based on the 

“bytes” acked. In Linux kernels, ABC is implemented only in 

Reno but we also implement it in CUBIC to observe its effects. 

However, for the scenarios where TCP outcast happens (e.g., 

many flows and a few flows are arriving at two input ports and 

destined to the same output port), the use of ABC did not 

change the overall test result. It is because the effect of ABC is 

far smaller than that of the port blackout in the TCP outcast 

scenarios. Thus, in this paper, we only show the results 

experimented without ABC. 

Nagle’s Algorithm and Congestion Control: To observe 

how TCPRand cooperates with different congestion control 

mechanisms, we choose Reno, BIC and CUBIC [13] and test 

them with or without the Nagle’s algorithm [12]. However, for 

the TCP outcast scenarios, there is no noticeable difference 

among the six combinations since the port blackout  

overwhelms their effect. Thus, we only address the case with 

CUBIC and the Nagle’s algorithm since CUBIC is the default 

congestion management protocol in Linux today and most bulk 

transfer applications enable the Nagle’s algorithm. 

SACK: By default, SACK3 is enabled for the fast recovery 

from multiple packet losses in today’s Linux. However we also 

conduct experiments without SACK to see its role in TCP 

outcast scenarios when combined with TCPRand. 

D. TCPRand Parameters 

TCPRand has four parameters (i.e., s2
, , t, w), thus 

allowing many possible combinations of these parameters. For 

instance, we can vary parameter values as follows: 

s2
={0.2,1,5}, ={1,0}, t={∞,1}, w={0,1}. A larger s2

 

causes faster growth of  when x< but  grows slowly when 

x≥. With a smaller , more aggressive increase of  can be 

observed. τ= if ντ=1, while τ=Wmax if ντ→∞. w=  max2 W  if 

νw=1, while w→∞ if νw=0. Out of many configurations 

possible, we conduct evaluation with the three sets of 

configurations denoted in the form of (s2
, , t, w). One 

configured as (1, 1, 1, 1) represents a moderate setting, which 

is our default setting. The other is set as  (1, 1, ∞, 1) which 

represents the most conservative setting. The third is the most 

aggressive setting that is configured as (1, 0, 1, 0). Unless 

                                                           
3 SACK is not supported by the current version of ns-3. 
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Fig. 5. Abstracted subset topology of fat-tree in Fig.4. 
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otherwise mentioned, we use the default setting while we mix 

and match the configurations when necessary. 

E. Evaluation metrics 

We are primarily interested in evaluating TCPRand with 

two key metrics: fairness and goodput across both real testbed 

and simulation cases. We shortly define each of them next. 

Fairness: We use Jain’s fairness index [24] defined as 

follows: 

,                               (4) 

where gi is the average goodput of flows sent by Si . 

Goodput: As typically defined, we obtain goodput by 

dividing the amount of application-level data by the total time 

taken until the completion of its delivery. 

F. Test Scenarios 

i) The typical TCP outcast scenario: A total of 15 senders 

(S1-S15) generate one TCP flow per sender to receiver R in the 

fat-tree topology in Figure 4. We check how TCPRand 

mitigates the TCP outcast problem. In doing so, we analyze 

how TCPRand interacts with varying the maximum length of 

the drop-tail queue (Qmax) and background traffic values. 

Specifically, all 15 senders (S1-S15) simultaneously generate 

only one flow per sender for 10 seconds. Each flow sent from 

sender Sn is denoted by Fn. Thus, in the fat-tree, E1 is the most 

bottlenecked switch and F1 is the most outcast flow since it 

competes with F2:15 for the output queue at E1. 

To demonstrate that TCPRand works well in the real world, 

we construct a testbed which simplifies the fat-tree topology in 

Figure 4 but still preserves its essential nature for creating TCP 

outcast. The testbed topology is shown in Figure 5. Using this 

topology, one can create many TCP outcast cases with 

different combinations of (N1, N2, N3)
4
. In fact, we tested 

TCPRand in many TCP outcast events and found in all cases 

TCPRand achieves similar fairness and goodput. Thus, out of 

them, we choose two combinations: i) (2, 4, 26) for mimicking 

the observation [1] that more flows come from distant senders 

while less flows come from close senders in the fat-tree and ii) 

                                                           
4 N1, N2 and N3 are the number of flows generated by S1, S2 and S4, 

respectively in Figure 5.  

(26, 4, 2) as an opposite case of the above to show that 

TCPRand can solve the TCP outcast problem even in unusual 

situations. 

ii) Realistic data center workload scenario: Since 

TCPRand tends to reduce the payload size less than MSS, one 

may wonder whether it increases flow completion time (FCT), 

in particular that of short flows which in general originate from 

latency-sensitive applications. To answer that question, we 

trace the effect of TCPRand to FCT using two realistic data 

center workloads (i.e., web search and data mining)  [19] that 

consist of a mix of short and long flows. Flow arrivals follow a 

Poisson process and the sender and receiver for each flow are 

chosen randomly among all the 16 end-nodes (i.e., R, S1, …, 

S15). The flow arrival rate (i.e., load in the fabric) is varied 

from 0.2 to 0.8 as suggested in [19].  

iii) Microscopic view on TCPRand: To further understand 

what effects TCPRand brings to TCP flows in detail, we 

conduct a microscopic analysis with a simplest topology 

exhibiting the TCP outcast. We do this in our testbed instead of 

ns-3 simulator. It is because the testbed environment can best 

reflect the microscopic behaviors caused by the temporal port 

blackout that happens at an output queue of commodity 

hardware switches. 

VI. NS-3 SIMULATION RESULTS 

We first evaluate TCPRand in an ns-3 environment. The 

evaluation focus lies on the two metrics—fairness and 

goodput—while we vary network conditions such as switch 

queue size (Qmax) and the amount of background traffic. In 

addition to that, we conduct simulation with data center 

workloads [19] to show that TCPRand in general supports 

flows with different sizes well. More details on test scenarios 

are found in Section V.F. 

A. Fairness and Goodput Analysis 

In this analysis, we additionally plot the results of TCPRand 

with static settings (i.e., fixed rMin) alongside TCPRand 

(denoted as CTD in Figure 6) to demonstrate why the adaptive 

rMin selection method is better than configuring rMin statically. 

Impact of Qmax on fairness and goodput: To see the effect 

of Qmax to TCPRand, we set Qmax={20, 60, 100} packets. 

Notations for transport schemes are given in the caption of 

Figure 6. As shown in Figure 6(a), the regular TCP (i.e., N and 

C) suffers from the unfairness caused by the TCP outcast. As 
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Fig. 6. Effect of Q
max

 and background traffic. N: NewReno, NTx: NewReno+TCPRand(rMin=x bytes), C: CUBIC, CTx: CUBIC+TCPRand(rMin=x bytes), 

and CTD: CUBIC+ Adaptive TCPRand with (s2,,t,w)=(1, 1, 1, 1). 

(c) Fairness by different background 
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decreasing rMin statically, the outcast flows recover quickly 

and the fairness index approaches to 1 regardless of Qmax. 

However, more aggressive reduction of rMin triggers more loss 

of total goodput as shown in Figure 6(b) (goodput ratio 

normalized to that of N or C). For instance, when rMin=200B, 

CT200 loses 14.5% of total goodput compared to C. In contrast, 

CTD efficiently strikes a balance between the fairness and total 

goodput. For example, it always keeps both the fairness and 

total goodput higher than CT600, a seemingly best static setting. 

Impact of background traffic on fairness: For this 

simulation, given 15 senders, we make each sender additionally 

generate, to the receiver, 10, 20 and 30Mbps UDP CBR traffic, 

accounting for 150, 300 and 450Mbps aggregate background 

traffic, respectively. Figure 6(c) shows the effect of background 

traffic to the fairness where Qmax=20. We clearly observe that 

TCPRand always achieves higher fairness than the regular TCP. 

However, the larger the background flows, the smaller the 

additional fairness gain of TCPRand to the regular TCP. Note 

that the payload size of the background flows is not 

randomized at all. Thus the effect of the payload size 

randomization to the port blackout is restricted more as the 

amount of background traffic increases. However, even with 

the largest background traffic (i.e., 450Mbps), TCPRand still 

achieves a noticeable fairness improvement.  

B. Analysis on real data center workloads with TCPRand 

Figure 7 shows the normalized FCT of TCPRand to CUBIC 

per flow size. Two trends are observed. First, TCPRand does 

not increase the average FCT of short flows noticeably (see 

Figure 7(a)). It is because many short flows are extremely 

small in real (especially in data mining) workloads and many of 

them finish before TCPRand performs the aggressive reduction 

of rMin. Second, the CUBIC (especially long) flows often 

experience timeout due to TCP outcast under high traffic load 

but TCPRand successfully curtails the outcast of the flows (see 

Figure 7(b)). 

VII. EXPERIMENTAL RESULTS 

Now we evaluate TCPRand in a real testbed. The main 

purpose of this evaluation in the testbed is to truly confirm that 

TCPRand in practice improves fairness without compromising 

goodput in the presence of TCP outcast. Next, we conduct 

microscopic analysis to shed light on how several aspects 

(packet drops, timeouts, and retransmissions) in TCP 

congestion control are affected by TCPRand. Finally, we 

discuss CPU overhead caused by TCPRand. 

A. Fairness and Goodput Analysis 

As explained in Section V.F, we test TCPRand using an 

abstracted subset topology of a fat-tree in Figure 5. We tested 

tens of different TCP outcast events and found that regardless 

of the test cases, the performance of TCPRand is quite similar. 

Thus, we only show the most interesting results obtained from 

two configurations (N1=2, N2=4, N3=26) and (26, 4, 2).  

Fairness: Figure 8(a) shows that regardless of the parameter 

(s2
,,t,w) configurations, TCPRand always achieves a higher 

fairness index than CUBIC. We observe that higher fairness is 

achieved as configurations become more aggressive (i.e., with 

smaller , smaller τ or larger w) in randomizing the payload 

size. For instance, the largest increase of TCP fairness is 

accomplished with (s2
=1, =0, t=1, w=0), which is the most 

aggressive setting and guarantees fairness index superior to 0.9 

in all the scenarios we experimented. However, even with the 

most conservative setting (i.e., s2
=1, =1, t→∞, w=1), the 

fairness is enhanced significantly compared to CUBIC. 

Loss of total goodput: If =1, TCPRand always keeps the 

additional loss of total goodput to CUBIC low (mostly < 1%) 

as shown in Figure 8(b). Although we do not show the exact 

picture for brevity, even for the case where the TCP outcast 

does not happen (i.e., the same number of flows compete) and 

the total number of competing flow is small (i.e., 3), TCPRand 

minimizes the total goodput loss (~1%) effectively. This 

indicates that even though TCPRand is mainly designed to 

pursue more fairness for TCP outcast scenarios, it causes only a 

trivial amount of additional goodput loss for non-outcast 

scenarios; this is possible since the proposed adaptive 

randomization scheme in Algorithm 1 avoids or minimizes 

unnecessary payload size randomization as much as possible. 

Of course, as expected, the most aggressive setting (i.e., with 

s2
=1, =0, t=1, w=0) leads to the largest (i.e.,~2.3%) 

decrease of total goodput compared to CUBIC. However, even 

for this worst case, we believe the additional goodput loss 

caused by TCPRand is low and reasonable (depending on 
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applications’ characteristics). It is because most many-to-one 

applications are barrier synchronized [22] thus enhancing the 

goodput of the slowest TCP connection is more important than 

maximizing the total goodput.  

B. Microscopic Analysis on TCPRand 

We use the same testbed shown in Figure 5 where we only 

use two senders (S1 and S2) and one receiver (R). S1 creates one 

flow (denoted as F1) to R and S2 does M flows (from F2 to FM+1, 

denoted as F2:M+1) to the same R. We vary M where M={5, 10, 

15, 20, 25}. Out of these five cases, we only present the most 

prominent results that are observed when M={5, 15, 25}. We 

disable the adaptive rMin selection method and statically vary 

rMin values. rMin of each flow is set to 1448, 1000, 600 or 200 

bytes to make our analysis more tractable. For the 

measurements, we use iperf and run it for 100 seconds per each 

case. All flows (i.e., F1:M+1) start transmission simultaneously5. 

Basically, SACK is enabled in our experiments as most 

modern Linux distributions support SACK by default, but for a 

broader analysis, we also present results while disabling SACK 

as well. We examine consecutive packet drops, TCP timeouts, 

and packet retransmission for the analysis. 

Consecutive Packet Drops: Table I shows the distribution 

of consecutive packet drops measured with or without SACK. 

Both S1 and S2 use the same rMin. When SACK is enabled, 

the number of consecutive packet drops decreases significantly 

as rMin decreases. The largest reduction is observed with the 

smallest rMin (i.e., 200B) across all M’s. More importantly, the 

reduction of more than one consecutive packet drops drives the 

reduction of the total packet drops. When SACK is off, the 

                                                           
5 Note that we also conducted experiments with delaying the start of 

some flows and found that the arrival time difference of flows 

changes the result little. 

number of consecutive packet drops does decrease with 

TCPRand up to M = 15, but the number does not decrease 

much as M further increases.  

TCP Timeouts: Figure 9(a) shows that TCPRand+SACK 

prevents the outcast flow from experiencing any TCP timeout 

(represented by the right y-axis of graphs with bars); although 

omitted for brevity, when M=25, only one configuration caused 

at most 4 timeouts. On the other hand, disabling SACK shows 

two intriguing patterns in Figure 9(b). i) TCPRand reduces the 

number of TCP timeouts enormously with smaller rMin values; 

when M=15, TCP timeouts decrease from 204 (rMin=1448, 

regular TCP) to 9 times. ii) However, when M grows to 25, 

TCPRand fails to reduce TCP timeouts noticeably (not shown 

for brevity). Even for the regular TCP, enabling SACK option 

greatly helped in reducing the number of TCP timeouts (e.g., 

only one timeout when M=25).  

Packet Retransmissions: Figure 9 shows the number of 

packet retransmissions of flows (represented by the left y-axis 

in each graph). In all cases, the outcast flow causes more 

packet retransmissions than the non-outcast flows do as 

expected. When SACK is on, TCPRand generates more 

packets (smaller than MSS) than the regular TCP as decreasing 

rMin. Thus, the number of packet retransmissions of the 

outcast flow becomes larger as rMin of the flow decreases. 

However if rMin of the non-outcast flows decreases, the 

number of packet retransmissions in the outcast flow tends to 

decrease while those in the non-outcast flows increase as 

shown in Figure 9(a). In comparing Figures 9(a) and 9(b), we 

see TCPRand without SACK makes the outcast flow generate 

TABLE I.  Distribution of F1’s consecutive packet drops. 

 M 
rMin 

(Bytes) 

# consecutive packet drops Total  

drops 1 2 3 4 5 6 7 8 

S
A

C
K

 e
n

a
b

le
d

 

5 

1448 341 144 53 26 16 5 2 1 1024 
1000 401 115 39 11 5 2 1 1 844 

600 394 86 31 7 1 0 0 0 692 
200 430 94 26 4 0 1 0 0 718 

15 

1448 1983 791 230 40 13 5 1 0 4527 
1000 1702 409 106 31 9 2 0 0 3019 
600 1684 321 59 7 4 0 2 0 2565 
200 1601 212 17 2 0 0 0 0 2084 

25 

1448 2549 1231 197 10 0 1 1 0 5666 
1000 2468 627 163 39 11 3 0 0 4449 
600 2635 456 99 11 2 0 0 0 3898 
200 2618 303 27 9 1 0 0 0 3346 

S
A

C
K

 d
is

a
b

le
d

 

5 

1448 311 155 56 27 11 4 6 1 1135 

1000 345 134 40 14 5 3 0 0 832 

600 376 103 29 6 7 1 0 0 758 

200 408 100 22 6 2 0 0 0 708 

15 

1448 880 430 207 58 76 35 43 29 5515 

1000 1174 402 243 81 80 31 35 20 6252 

600 1693 480 225 48 44 18 10 10 5035 

200 1610 339 85 13 7 11 2 8 3085 

25 

1448 1492 839 211 43 49 15 24 10 5082 

1000 1112 406 303 65 88 32 37 29 5440 

600 1198 406 368 68 90 51 38 31 6960 

200 1586 484 300 56 63 61 15 35 6782 
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more unnecessary retransmissions than that with SACK due to 

the lack of selective acknowledgement mechanism. However, 

when M < 15, TCPRand without SACK shows the similar 

pattern to that with SACK (the graph is omitted). 

Throughout the analysis, we find out that TCPRand in 

general decreases the number of consecutive drops, TCP 

timeouts and packet retransmissions of the outcast flow. 

Another interesting finding is that TCPRand alongside SACK 

option is most effective in alleviating several adversary events 

to TCP performance. However, even with SACK, statically 

changing rMin value is insufficient to completely address the 

TCP outcast problem, reassuring that our adaptive payload size 

randomization method that we proposed is absolutely necessary. 

C. CPU Overhead 

By default in Linux, offload options such as TSO are 

enabled to reduce CPU overhead if its NICs support them. In 

our testbed, 4.6% of the resource of a CPU core is used in 

sending a CUBIC flow when TSO is enabled whereas if TSO is 

disabled, 12.5% of the resource is consumed. In addition, with 

TSO disabled, TCPRand consumes more CPU cycles than 

CUBIC since it generates more number of packets than CUBIC. 

In our test, TCPRand uses at most 37.5% of the resource of one 

core when rMin=200B and the number of flows, say n, is 25. In 

an extreme case (e.g., rMin=200B and n=1,000), TCPRand 

consumes 53% of the CPU core resource. However, this 

amount of CPU clock consumption may be acceptable since 

even commodity servers are equipped with multicore CPUs.  

VIII. CONCLUSION 

To address the TCP outcast problem in data center 

networks, we proposed a payload size randomization scheme 

called TCPRand which guarantees the superior enhancement of 

TCP fairness while neither sacrificing the total goodput nor 

incurring any noticeable network overhead. We believe that it 

is the first practical, cheap, lightweight and efficient solution 

that solves the TCP outcast problem. While we showcase the 

efficacy of TCPRand in this work, we also see several avenues 

for future work. One of such directions is to reduce the CPU 

overhead of TCPRand. We envision that integrating TCPRand 

into the TSO engine in NICs has a lot of promise for that. 
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