

Edinburgh Research Explorer

TCPRand: Randomizing TCP Payload Size for TCP Fairness in
Data Center Networks

Citation for published version:
Lee, S, Lee, M, Lee, D, Jung, H & Lee, B-S 2015, TCPRand: Randomizing TCP Payload Size for TCP
Fairness in Data Center Networks. in Proceedings of IEEE Infocom. IEEE, Kowloon, Hong Kong, pp. 1697-
1705, 2015 IEEE Conference on Computer Communications , Kowloon, Hong Kong, 26/04/15. DOI:
10.1109/INFOCOM.2015.7218550

Digital Object Identifier (DOI):
10.1109/INFOCOM.2015.7218550

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of IEEE Infocom

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43714484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/INFOCOM.2015.7218550
https://www.research.ed.ac.uk/portal/en/publications/tcprand-randomizing-tcp-payload-size-for-tcp-fairness-in-data-center-networks(0d1cbc73-d06e-4489-84e8-24fc4de3d7df).html

TCPRand: Randomizing TCP Payload Size for TCP

Fairness in Data Center Networks

Soojeon Lee*
‡
, Myungjin Lee

†
, Dongman Lee

‡
, Hyungsoo Jung

§
, Byoung-Sun Lee*

*Electronics and Telecommunications Research Institute (ETRI)
†
University of Edinburgh

‡
Korea Advanced Institute of Science and Technology (KAIST)

§
Seoul National University

Abstract—As many-to-one traffic patterns prevail in data

center networks, TCP flows often suffer from severe unfairness

in sharing bottleneck bandwidth, which is known as the TCP

outcast problem. The cause of the TCP outcast problem is the

bursty packet losses by a drop-tail queue that triggers TCP

timeouts and leads to decreasing the congestion window. This

paper proposes TCPRand, a transport layer solution to TCP

outcast. The main idea of TCPRand is the randomization of TCP

payload size, which breaks synchronized packet arrivals between

flows from different input ports. We investigate how TCPRand

reduces consecutive packet drops and demonstrate various

benefits of TCPRand with extensive experiments and ns-3

simulation. Our evaluation results show that TCPRand

guarantees the superior enhancement of TCP fairness with

negligible overheads in all of our test cases.

Index Terms—Data center networks, TCP outcast, Fairness

I. INTRODUCTION

In recent years, the proliferation of data center applications

with many-to-one traffic pattern has brought a body of new

network research issues such as TCP incast [9,14,22], deadline-

awareness [15,16,17,18] and TCP outcast [1]. Among these

issues, this paper focuses on the TCP outcast problem for

which practical solutions have not successfully been proposed

yet. The TCP outcast problem is observed easily in data center

networks, where routers or switches are usually connected

through a multi-rooted and hierarchical topology such as fat-

tree [5] and senders and receivers are leaves of the topology.

As many-to-one traffic patterns emerge in such an environment,

multiple flows arrive at different input ports of a receiver’s

ingress switch and compete for the same outgoing queue. With

excessive traffic flows, drop-tail queueing may drop a series of

consecutive packets at each input port, and this is called port

blackout [1]. Suppose that there are two input ports, A and B,

and many flows arrive at A while a few flows do at B. If all

these flows are destined to the same output port, the outcast

flows (i.e., the flows arriving at B) lose the goodput

substantially because TCP timeouts are triggered more easily.

This is the essence of the TCP outcast problem [1] that has

negative impacts on the TCP fairness among competing flows.

It even leads to much higher goodput decrease in flows with a

short RTT than in those with a long RTT in a fat-tree topology.

Several solutions have been suggested for the TCP outcast

problem. They can be categorized into link layer and network

layer solutions. To our knowledge, none of them can be readily

rolled out to the existing data center networks. The link layer

solutions require a modification to the current switching

architecture [20] or are not widely supported in today’s

switches [7]. Equal-length routing [1], one of network layer

solutions, only works in non-oversubscribed networks. To

overcome the shortcomings of these two approaches, a

transport layer solution can be viable since it neither relies on

any specific link layer supports nor assumes any particular

network topology. However, existing rate-based transport layer

approaches are not applicable to TCP outcast in data centers

because they require the precise control of inter-packet spacing

time [3, 21] which operating systems hardly guarantee and are

inappropriate [21] for a multi-hop environment.

In this paper, we propose a transport layer solution called

TCPRand. To prevent the port blackout, we randomize each

TCP packet’s payload size for arbitrating the arrival times of

back-to-back packets. This can reduce the chance of burst

packet drops per input port. At the sender side, the proposed

solution makes the TCP payload size uniformly distributed

between [rMin, MSS]. However, it may increase the packet

header overhead due to the smaller payload size and curtail the

total goodput. To achieve high fairness without loss of total

goodput, the proposed solution calculates rMin by adapting to

the changes of congestion window (cwnd). The method is

based on the observation that for many-to-one applications (e.g.,

especially with a barrier synchronization property [22]) as

cwnd of a flow is growing, the network is more congested and

the port blackout happens more frequently. Hence, if cwnd of a

flow increases, the scheme decreases rMin for the flow.

We implement TCPRand by modifying the sender side

execution path of TCP protocol stack in the Linux kernel and

perform extensive experiments in our testbed. We demonstrate

that TCPRand reduces consecutive packet drops and TCP

timeouts significantly, and as a result, it improves TCP fairness

substantially with a small loss of the overall goodput and

negligible additional retransmission overheads. We also show

that TCPRand always guarantees the superior enhancement of

TCP fairness to the regular TCP in various test cases. In

addition, we use ns-3 [11] to evaluate TCPRand with a larger

and more realistic topology (i.e., fat-tree [5]) and workloads of

data center networks, and show that TCPRand substantially

improves TCP fairness and rarely sacrifices flow completion

times of flows, especially those of small flows.

The remainder of this paper is organized as follows. In

Section II, we discuss the limitations of existing solutions. In

Section III, we briefly explain the port black out problem and

why payload size randomization is its key solution. Section IV

provides the details of the proposed solution. We outline our

evaluation setup in Section V. Evaluation results are presented

in Sections VI and VII before we conclude in Section VIII.

II. LIMITATIONS OF RELATED WORK

Link layer solutions: Random early detection (RED) [6]

and stochastic fair queueing (SFQ) [7] have been tested to

solve the TCP outcast problem. Prakash et al. [1] point out that

RED shows RTT bias while SFQ makes flows have throughput

fairly and achieves RTT fairness but uncommon in commodity

switches. More importantly, both solutions cannot be easily

deployed for ToR switches in data centers for cost reasons [1].

Zhang et al. [20] propose a cross-layer protocol that supports

bandwidth sharing by allocating switch buffer; the switch

determines the size of the congestion window of its passing

flow. However, all the switches in data centers must be

modified for supporting such a feature to make use of this

solution. Alizadeh et al. [25] propose DCTCP which may be

useful to solve the outcast problem by controlling a congested

port’s queue length properly. However, DCTCP must leverage

Explicit Congestion Notification (ECN) capability, which is

not yet widely supported by most commodity ToR switches

especially in small and medium data centers to our knowledge.

Network layer solutions: Equal-length routing [1] makes

all flows from senders routed up to the core switch regardless

of the senders’ locations. Then, all the flows take the same

downward path from the core to the destination which leads to

RTT fairness. It uses a detour path to increase the path

similarity instead of the shortest path. However, this approach

causes performance degradation if data center networks are

oversubscribed. Furthermore, it significantly lacks flexibility.

Transport layer solutions: The rate-based delivery (e.g.,

TCP pacing [3] and sending time randomization [21]) has also

been considered as a solution to the TCP outcast problem. TCP

pacing, combined with the window based congestion control,

avoids burst delivery by giving some interval between the

transmission times of two consecutive packets and shows

inverse RTT bias. However, the TCP outcast problem still

remains considerably in TCP pacing [1]. Chandrayana et al.

propose a scheme randomizing the sending times by adjusting

the inter-packet gap [21]. This, however, cannot retain the

initial randomness created by the sender throughout the routing

path mainly due to the bursty departure process at the first

bottleneck queue. This makes the approach ineffective in a

multi-hop environment. Moreover, the rate-based delivery has

a severe practical limitation because it is practically infeasible

to do (sub-)microsecond level packet spacing [2] (e.g., in

1/10Gbps link), quite strictly required to get better randomness

effects in data center networks (where RTT<1ms [14]). Even

though a high resolution timer (e.g., hrtimer in Linux) is

available, operating systems hardly guarantee the precise

control of inter-packet spacing time. Furthermore, frequent

timer interrupts lead to a large interrupt handling overhead [14].

Viewed in this light, practicality and easy deployment of a

solution do matter. The proposed approach—payload size

randomization—has two practical advantages compared to

these rate-based solutions. First, the shuffle effect is preserved

even by the departure process of the bottleneck queue. Thus,

our approach guarantees the random arrival times of back-to-

back packets for a multi-hop environment. Second, it does not

require packet spacing at a (sub-)microsecond level, which is

difficult to achieve in practice.

III. EFFECT OF RANDOMIZATION

In this section, we first explain why port blackout occurs in

detail. Next, we discuss the payload size randomization idea as

a solution to the phenomenon. Finally, through an experiment,

we quantitatively show that the randomization method

substantially mitigates the degree of the port blackout.

A. Port Blackout Problem

The port blackout phenomenon in data center networks is

well studied in [1]. Figure 1(a) illustrates how the port blackout

occurs at a bottleneck switch where a drop-tail queue

management policy is applied and there exist two input ports

(i.e., X and Y) and one output port (i.e., Z). Further, we assume

that TCP-based bulk data transfer application traffic arrives at

the switch through ports X and Y and leaves it via port Z.

In this setup, packets are almost of the same size (i.e., the

size of TCP/IP headers + MSS). Traffic is bursty and the inter-

frame gap between packets is constant (e.g., 0.096s for a

gigabit Ethernet) following the IEEE 802.3 specification. This

condition can create a situation where packets from port Y are

always stored in the output queue while packets from port X

are always discarded. This occurs because packets from port Y

always arrive ahead of competing packets from port X. For

instance, as shown in Figure 1(a), the arrival time of packet Y1

(denoted as A[Y1]) is ahead of that of packet X1 (i.e., A[X1]),

A[Y2] < A[X2], and so forth. Even though a series of packet

drops happen fairly on ports X and Y by turns, they damage

more seriously to the throughput of the incoming stream from

port X if the stream consists of less number of TCP flows. This

is the port blackout problem [1].

B. Avoiding Concurrent Packet Arrivals

The port blackout problem can be ameliorated by reducing

concurrent packet arrivals at two input ports. At the transport

layer, this can be achieved by the rate-based approach but it is

less practical as discussed in Section II. Our approach to the

(a) Fixed-size payload (b) Random-size payload

Fig. 1. Port blackout at a switch and effect of payload size randomization.

Port X Port Y

X1

X2

X3

X4

Y1

Y2

Y3

Y4

Y1

Y2 Y1

Y3 Y2 Y1

Y4 Y3 Y2

Port Z

Y1

Y1

Y2 Y1

Y3 Y2

Output

Queue

A[Y1]
A[X1]

A[Y2]
A[X2]

A[Y3]
A[X3]

A[Y4]
A[X4]

Time

X1

X2

X3

X4

Y1

Y2

Y3

Y4

Y1

X2 Y1

Y3 X2 Y1

X4 Y3 X2

Y1

Y1

X2 Y1

Y3 X2

Time

A[Y1]
A[X1]

A[Y2]
A[X2]

A[Y3]
A[X3]

A[X4]
A[Y4]

Port X Port Y Port ZOutput

Queue

problem is rather to randomize the size of each TCP payload.

The intuition behind this is, randomizing the size of TCP

payload can induce randomness in the arrival times of packets

and it finally breaks the synchronized arrival times of back-to-

back packets at each input port. This can reduce the chance of

having port blackout, and the initial randomness can be

preserved all the way down to the receiver in multi-hop

environments. For example, in Figure 1(b), X1 is dropped since

Y1 arrives slightly before X1. However, in the next phase, X2 is

inserted to the output queue since X2’s TCP payload size is

reduced after the randomization so that the arrival time of X2 is

ahead that of Y2, having Y2 dropped. After that, the arrival time

of Y3 is ahead that of X3 due to the randomization of the TCP

payload size. Thus, Y3 is enqueued while X3 is dropped.

Eventually, this procedure lets us have A[Y1] < A[X1], A[X2] <

A[Y2], A[Y3] < A[X3], and A[X4] < A[Y4]. Thus, Y1, X2, Y3

and X4 are inserted to the output queue while the rest are

discarded. Packet drops occur rather alternately in each port;

thus the frequency of the port blackout phenomenon decreases.

C. Understanding the Effect of Payload Size Randomization

To take a closer look at the port blackout phenomenon, we

investigate how much a series of packet drops from each input

port can be alleviated with the payload size randomization at a

switch under congestion. Let Q (0 ≤ Q ≤ Qmax) be the output

queue length. A packet drop occurs at a drop-tail queue if a

packet arrives when Q=Qmax. To quantitatively measure the

effect of the payload size randomization, we focus on the

enqueue probability of two packets X2 and Y2 after Y1 is

enqueued and X1 is dropped (see Figure 1(b)).

More formally, the probability of packet pkt to be enqueued

at A[pkt], is acquired by:

Pq(pkt)=1−P(Q=Qmax at A[pkt]). (1)

Based on the notion of Eq. 1, we experimentally measure

the enqueue probabilities of i) X2 (Pq(X2)), ii) Y2 (Pq(Y2)), iii)

both X2 and Y2 (Pq(X2∩Y2)), and iv) neither X2 nor Y2

(Pq(~X2∩~Y2)) while randomizing payload sizes. To do so, we

write an offline test code generating two virtual back-to-back

flows (from X and Y). We randomly select a payload size of

each packet within the range of [rMin, MSS]. We vary the

degree of randomness by changing rMin from 1B to 1448B at

the interval of 1B. We construct a simple experimental setup as

follows: First, nodes are connected with 1Gbps links. Second,

there are two input ports X and Y, and one output port Z. Third,

back-to-back packets arrive continuously at each input port and

the inter-frame gap is 0.096s (i.e., 8B in a gigabit Ethernet).

Last, Y1 is enqueued to the output queue while X1 is dropped.

By tracing all the packet arrivals and departures since

A[Y1], we measure Pq(X2) and Pq(Y2). We conduct this test

1000 times per each rMin. Figure 2 shows the four types of

probabilities of interest. If the regular TCP (i.e., the payload

size is not randomized at all and rMin=1448B) is used, X2

never be enqueued. Of course, this simple experimental result

may not hold in real network environments since the packet

arrival time can be distorted due to some random factors (e.g.,

variations in sending patterns or other unpredictable random

behaviors) [1, 4] and TCP does not generate endless bursty

traffic unlike we did for the test. However, Figure 2 clearly

indicates why the port blackout is hard to be prevented with the

regular TCP at a drop-tail queueing switch.

As rMin decreases (i.e., from the right of the x-axis to the

left in Figure 2), Pq(X2) increases and Pq(Y2) decreases. Pq(X2)

and Pq(Y2) approach to 0.63 and 0.58, respectively when

rMin=1B. One interesting observation is that Pq(X2∩Y2) also

increases by decreasing rMin. However, the payload size

randomization can make both X2 and Y2 dropped (e.g., with the

probability of 0.11 when rMin=1B). Nevertheless, the

advantages far outweigh this disadvantage since the probability

of consecutive packet drops reduces significantly by the

randomization mechanism.

Another implication from the above result is that it is

unnecessary to reduce rMin overmuch. There are two reasons.

First, the enqueue probability of X2 grows up more slowly as

(a) CUBIC’s cwnd(t). In CUBIC, when a packet drop is detected, the cwnd

decreases by a factor of  (=717/1024 in Linux kernels). Then, a new CUBIC

epoch begins at t=0, and the initial cwnd of the epoch  is set to cwnd(0). Wmax
(called the current maximum or the origin point) is the cwnd where packet

losses occurred previously. Refer to [13] for more details on C and K.

(b) : Normal Distribution CDF

Fig. 3. Adaptive selection of  based on CUBIC’s cwnd.

Wmax=cwnd(K)

 t

=cwnd(0)

t

cwnd(t)=C(t-K)
3
+Wmax

x=(cwnd-)/(Wmax-)

cwnd

w

2*Wmax+



(x,μ s2)

x

1

0.5

Fig. 2. Enqueue probability of X2 and Y2 at congestion.

X2

Y2

Both X2 and Y2

Neither X2 nor Y2

rMin approaches to 1B. Second, the lower rMin, the larger the

header overhead. It results in bandwidth waste.

IV. PROPOSED SCHEME

In this section, we focus on the design of our proposed

scheme that we call TCPRand. As mentioned in Section III.C,

for each packet, we determine its payload size via generating a

uniform random number in the range of [rMin, MSS]. Since

rMin is a configurable variable (1 ≤ rMin ≤ MSS), we can

diversify randomly generated payload sizes by selecting one

rMin value. However, it is unclear what value to set. Moreover,

the degree of port blackout can vary depending on several

factors such as background traffic, changes in traffic patterns,

etc. Due to these reasons, we consider a scheme that can

adaptively select rMin value and effectively react to changes in

such factors. Thus, our design choice for the adaptation

method lies not only in maximizing the fairness, but also in

minimizing the loss of total goodput in any circumstances. We

design our adaptation method on top of TCP CUBIC [13], the

default congestion control algorithm in Linux.

A. Modeling Adaptive Selection of rMin in CUBIC

We focus on CUBIC’s cwnd growth function for designing

an adaptive rMin selection method as variation in cwnd value

can be indicative of the probability of packet loss, which is a

necessary condition of the port blackout.

Let us first take a look at how the CUBIC’s window growth

function (i.e., cwnd(t)), depicted in Figure 3(a), works. We

classify a CUBIC epoch into 4 stages and present our adaptive

rMin selection strategy for each stage based on its functional

characteristics.

Stage 1) Fast growth of cwnd (when cwnd < Wmax): At the

initial phase of a CUBIC epoch, the cwnd grows very fast. The

rationale here is that the fast cwnd growth is unlikely to cause a

packet drop since the cwnd is already reduced by a factor of 

just before the start of this epoch. Therefore, as Strategy 1, we

propose to not reduce rMin aggressively.

Stage 2) Slow growth of cwnd (when cwnd < Wmax):

CUBIC slows down the growth of cwnd as approaching to

Wmax since packet losses occurred at Wmax previously. The

CUBIC’s heuristic indicates that the probability of packet loss

is increasing fast at this stage. To counter the port blackout

actively, Strategy 2 is to reduce rMin aggressively.

Stage 3) Slow growth of cwnd (when cwnd ≥ Wmax): If the

cwnd grows past Wmax, CUBIC enters a max probing phase

[13]. At the beginning of the max probing phase, the cwnd

grows slowly to find out a new maximum point nearby as the

CUBIC’s heuristic expects that the probability of packet loss

becomes higher when cwnd ≥ Wmax. Thus, as Strategy 3, rMin

must decrease aggressively again to prevent the port blackout.

Stage 4) Fast growth of cwnd (when cwnd ≥ Wmax): If no

packet loss is detected for some period of time after stage 3,

CUBIC performs a fast increase of cwnd since it guesses the

new maximum is far away. Thus, Strategy 4 is to not reduce

rMin actively at this stage.

B. Adaptive Algorithm to Calculate rMin

We adopt the proposed strategies discussed in Section IV.A

and propose the TCPRand’s adaptation method (Algorithm 1)

to calculate rMin before sending a packet.

1) How to decide rMin?

rMin is calculated based on which is the

normal distribution CDF
1
 shown in Figure 3(b). As the first

parameter of , x is a normalized distance between cwnd and 

as shown at the line 3 of Algorithm 1. For instance, if

cwnd=Wmax, x=1. The second and third parameters of ,  and

s2
 are the mean and the variance, respectively and they are

configurable. rMin is determined by the line 5 of Algorithm 1

based on  and the other two parameters
 2
, ν and θ. ν is a scale

factor adjusting the effect of . The lower bound of rMin is set

by a parameter θ, to prevent rMin from decreasing overmuch.

The normal distribution CDF supports our strategy for each

of the 4 stages well as follows. Assume that =1. At stage 1, 

increases very slowly and it leads to the gradual reduction of

rMin as Strategy 1. At stage 2,  increases fast and finally

converged to 0.5; it causes the fast reduction of rMin as

Strategy 2. At stage 3,  grows quickly so that the reduction

of rMin is still fast as Strategy 3. At stage 4,  grows leisurely

and leads to the slow reduction of rMin as Strategy 4.

2) When to turn TCPRand on/off?

Trigger point: Based on Strategy 1, we activate TCPRand

only when the t ≤ cwnd. The trigger point τ shown in Figure

3(a) is acquired by:

, (2)

where ντ is a scale factor tuning τ. If ντ=1, τ=. If ντ→∞,

τ=Wmax.

End point: With Strategy 4, TCPRand can also set the end

point w, as shown in Figure 3(a). TCPRand is deactivated if

cwnd grows above w, which is set by:

1 To reduce the  calculation overhead (not trivial) at kernel, we pre-

calculated  for various input parameters and stored the result in a

table. Thus,  is acquired by a simple table lookup.
2 We set ν=1 and θ=200B.

),,,(2sx

t


t


 max

max

W
W

Algorithm1: Adaptation Method to Select rMin

1: Input: w,t, cwnd ,,s2
,θ

2: if t ≤ cwnd and cwnd ≤ w then

3: ;
max 








W

cwnd
x /* normalized distance from  */

4: ;
1

1
2

1
),,(2

)
2

(

2 2














 






s



s




s

x

x

t dtex

5:);),),,(1(max(2 s  xMSSrMin

6: else

7: rMin=MSS;

8: end if

, (3)

where νw is a scale factor tuning w. If νw→0, w→∞. If νw=1,

w=  max2 W . Preventing w from growing too much is useful

to avoid unnecessary payload size randomization in case of

large cwnd (e.g., when the competing flows finish). Note that

Eq. 2 and Eq. 3 are implemented at the line 2 of Algorithm 1.

V. EVALUATION SETUP

We evaluate the proposed solution in two ways: ns-3

simulator and real testbed. We first describe our evaluation

environments, enumerate parameters for TCP and TCPRand,

and finally outline evaluation metrics and test scenarios before

presenting our results in Sections VI and VII.

A. NS-3 simulation environment

We incorporate TCPRand with the packet-level simulator

ns-3 to experiment it in a full-blown topology (i.e., fat-tree [5])

of a data center network. We choose ns-3 because it enables

high performance simulation. We adopt most of the

configuration parameters suggested in [1] (including link

capacity (=1Gbps), TCP minRTO value (=2ms), MSS value

(=1460B), routing policy, etc.). The processing delay of each

switch is set to 25 microseconds as suggested in [8]. We

integrate TCPRand to both NewReno and CUBIC. We use

CUBIC source code for ns-3 obtained from [10].

B. Testbed environment

To make our testbed realistically reflect a fat-tree topology

shown in Figure 4, we use a topology illustrated in Figure 5.

All the machines, on which TCPRand is running, are equipped

with an Intel Core i7-3770K CPU @3.50GHz, 32GB of main

memory and Intel 82579 Gigabit Ethernet NIC. For the

switches, we use Cisco catalyst 2970 which adopts the drop-tail

queue management policy. We implement TCPRand by

modifying the TCP output engine in the Linux kernel 3.2.39.

All the offload options including TCP segmentation offload

(TSO), generic segmentation offload (GSO) and generic

receive offload (GRO) are disabled because they use the

offload engine in NIC and make TCPRand not work as

expected.

C. TCP Parameters

TCPRand randomizes the payload size, which in most cases

becomes smaller than MSS, and as a result it may generate

more packets compared to the regular TCP. Due to its unique

characteristics, we consider the following factors that can affect

the performance of TCPRand as follows:

Appropriate Byte Counting (ABC): Even though TCP

output engine in Linux increases cwnd based on the “number”

of acks (which works well with the MSS-sized payload), by

enabling ABC [23] option, cwnd can be increased based on the

“bytes” acked. In Linux kernels, ABC is implemented only in

Reno but we also implement it in CUBIC to observe its effects.

However, for the scenarios where TCP outcast happens (e.g.,

many flows and a few flows are arriving at two input ports and

destined to the same output port), the use of ABC did not

change the overall test result. It is because the effect of ABC is

far smaller than that of the port blackout in the TCP outcast

scenarios. Thus, in this paper, we only show the results

experimented without ABC.

Nagle’s Algorithm and Congestion Control: To observe

how TCPRand cooperates with different congestion control

mechanisms, we choose Reno, BIC and CUBIC [13] and test

them with or without the Nagle’s algorithm [12]. However, for

the TCP outcast scenarios, there is no noticeable difference

among the six combinations since the port blackout

overwhelms their effect. Thus, we only address the case with

CUBIC and the Nagle’s algorithm since CUBIC is the default

congestion management protocol in Linux today and most bulk

transfer applications enable the Nagle’s algorithm.

SACK: By default, SACK3 is enabled for the fast recovery

from multiple packet losses in today’s Linux. However we also

conduct experiments without SACK to see its role in TCP

outcast scenarios when combined with TCPRand.

D. TCPRand Parameters

TCPRand has four parameters (i.e., s2
, , t, w), thus

allowing many possible combinations of these parameters. For

instance, we can vary parameter values as follows:

s2
={0.2,1,5}, ={1,0}, t={∞,1}, w={0,1}. A larger s2

causes faster growth of  when x< but  grows slowly when

x≥. With a smaller , more aggressive increase of  can be

observed. τ= if ντ=1, while τ=Wmax if ντ→∞. w=  max2 W if

νw=1, while w→∞ if νw=0. Out of many configurations

possible, we conduct evaluation with the three sets of

configurations denoted in the form of (s2
, , t, w). One

configured as (1, 1, 1, 1) represents a moderate setting, which

is our default setting. The other is set as (1, 1, ∞, 1) which

represents the most conservative setting. The third is the most

aggressive setting that is configured as (1, 0, 1, 0). Unless

3 SACK is not supported by the current version of ns-3.

w


w


 max

max

W
W

Fig. 5. Abstracted subset topology of fat-tree in Fig.4.

N3+N2

flows

N1

flow(s)

Switch

S1

N3+N2+N1

flows

N3

flow(s)

N2

flow(s)

Switch

S2

N3

flow(s)

Switch

S4

R

E1

R S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

E2 E3 E4 E5 E6 E7 E8

A1 A2 A3 A4 A5 A6 A7 A8

C1 C3C2 C4

Fig. 4. Fat-tree topology composed of switches (Cn: Core, An:

Aggregation, and En: Edge) and end-nodes (R: Receiver and Sn: Sender).

otherwise mentioned, we use the default setting while we mix

and match the configurations when necessary.

E. Evaluation metrics

We are primarily interested in evaluating TCPRand with

two key metrics: fairness and goodput across both real testbed

and simulation cases. We shortly define each of them next.

Fairness: We use Jain’s fairness index [24] defined as

follows:

, (4)

where gi is the average goodput of flows sent by Si .

Goodput: As typically defined, we obtain goodput by

dividing the amount of application-level data by the total time

taken until the completion of its delivery.

F. Test Scenarios

i) The typical TCP outcast scenario: A total of 15 senders

(S1-S15) generate one TCP flow per sender to receiver R in the

fat-tree topology in Figure 4. We check how TCPRand

mitigates the TCP outcast problem. In doing so, we analyze

how TCPRand interacts with varying the maximum length of

the drop-tail queue (Qmax) and background traffic values.

Specifically, all 15 senders (S1-S15) simultaneously generate

only one flow per sender for 10 seconds. Each flow sent from

sender Sn is denoted by Fn. Thus, in the fat-tree, E1 is the most

bottlenecked switch and F1 is the most outcast flow since it

competes with F2:15 for the output queue at E1.

To demonstrate that TCPRand works well in the real world,

we construct a testbed which simplifies the fat-tree topology in

Figure 4 but still preserves its essential nature for creating TCP

outcast. The testbed topology is shown in Figure 5. Using this

topology, one can create many TCP outcast cases with

different combinations of (N1, N2, N3)
4
. In fact, we tested

TCPRand in many TCP outcast events and found in all cases

TCPRand achieves similar fairness and goodput. Thus, out of

them, we choose two combinations: i) (2, 4, 26) for mimicking

the observation [1] that more flows come from distant senders

while less flows come from close senders in the fat-tree and ii)

4 N1, N2 and N3 are the number of flows generated by S1, S2 and S4,

respectively in Figure 5.

(26, 4, 2) as an opposite case of the above to show that

TCPRand can solve the TCP outcast problem even in unusual

situations.

ii) Realistic data center workload scenario: Since

TCPRand tends to reduce the payload size less than MSS, one

may wonder whether it increases flow completion time (FCT),

in particular that of short flows which in general originate from

latency-sensitive applications. To answer that question, we

trace the effect of TCPRand to FCT using two realistic data

center workloads (i.e., web search and data mining) [19] that

consist of a mix of short and long flows. Flow arrivals follow a

Poisson process and the sender and receiver for each flow are

chosen randomly among all the 16 end-nodes (i.e., R, S1, …,

S15). The flow arrival rate (i.e., load in the fabric) is varied

from 0.2 to 0.8 as suggested in [19].

iii) Microscopic view on TCPRand: To further understand

what effects TCPRand brings to TCP flows in detail, we

conduct a microscopic analysis with a simplest topology

exhibiting the TCP outcast. We do this in our testbed instead of

ns-3 simulator. It is because the testbed environment can best

reflect the microscopic behaviors caused by the temporal port

blackout that happens at an output queue of commodity

hardware switches.

VI. NS-3 SIMULATION RESULTS

We first evaluate TCPRand in an ns-3 environment. The

evaluation focus lies on the two metrics—fairness and

goodput—while we vary network conditions such as switch

queue size (Qmax) and the amount of background traffic. In

addition to that, we conduct simulation with data center

workloads [19] to show that TCPRand in general supports

flows with different sizes well. More details on test scenarios

are found in Section V.F.

A. Fairness and Goodput Analysis

In this analysis, we additionally plot the results of TCPRand

with static settings (i.e., fixed rMin) alongside TCPRand

(denoted as CTD in Figure 6) to demonstrate why the adaptive

rMin selection method is better than configuring rMin statically.

Impact of Qmax on fairness and goodput: To see the effect

of Qmax to TCPRand, we set Qmax={20, 60, 100} packets.

Notations for transport schemes are given in the caption of

Figure 6. As shown in Figure 6(a), the regular TCP (i.e., N and

C) suffers from the unfairness caused by the TCP outcast. As












n

i
i

n

i

i

n

gn

g

gggFariness

1

2

1

2

21

)(

),...,,(

0
0.2
0.4
0.6
0.8

1

N

N
T1

0
0

0

N
T6

0
0

N
T2

0
0 C

C
T1

0
0

0

C
T6

0
0

C
T2

0
0

C
TD

Fa
ir

n
e

ss
 In

d
e

x

Transport Scheme

Qmax=20 Qmax=60 Qmax=100

0.7

0.8

0.9

1

N
T1

0
0

0

N
T6

0
0

N
T2

0
0

C
T1

0
0

0

C
T6

0
0

C
T2

0
0

C
TD

N
o

rm
al

iz
e

d
 G

o
o

d
p

u
t

R
at

io

Transport Scheme

Qmax=20 Qmax=60 Qmax=100

0
0.2
0.4
0.6
0.8

1

N

N
T1

0
0

0

N
T6

0
0

N
T2

0
0 C

C
T1

0
0

0

C
T6

0
0

C
T2

0
0

C
TD

Fa
ir

n
e

ss
 In

d
e

x

Transport Scheme

None 150Mbps 300Mbps 450Mbps

(a) Fairness by different Q
max

 (b) Total goodput by different Q
max

Fig. 6. Effect of Q
max

 and background traffic. N: NewReno, NTx: NewReno+TCPRand(rMin=x bytes), C: CUBIC, CTx: CUBIC+TCPRand(rMin=x bytes),

and CTD: CUBIC+ Adaptive TCPRand with (s2,,t,w)=(1, 1, 1, 1).

(c) Fairness by different background

traffic amount

decreasing rMin statically, the outcast flows recover quickly

and the fairness index approaches to 1 regardless of Qmax.

However, more aggressive reduction of rMin triggers more loss

of total goodput as shown in Figure 6(b) (goodput ratio

normalized to that of N or C). For instance, when rMin=200B,

CT200 loses 14.5% of total goodput compared to C. In contrast,

CTD efficiently strikes a balance between the fairness and total

goodput. For example, it always keeps both the fairness and

total goodput higher than CT600, a seemingly best static setting.

Impact of background traffic on fairness: For this

simulation, given 15 senders, we make each sender additionally

generate, to the receiver, 10, 20 and 30Mbps UDP CBR traffic,

accounting for 150, 300 and 450Mbps aggregate background

traffic, respectively. Figure 6(c) shows the effect of background

traffic to the fairness where Qmax=20. We clearly observe that

TCPRand always achieves higher fairness than the regular TCP.

However, the larger the background flows, the smaller the

additional fairness gain of TCPRand to the regular TCP. Note

that the payload size of the background flows is not

randomized at all. Thus the effect of the payload size

randomization to the port blackout is restricted more as the

amount of background traffic increases. However, even with

the largest background traffic (i.e., 450Mbps), TCPRand still

achieves a noticeable fairness improvement.

B. Analysis on real data center workloads with TCPRand

Figure 7 shows the normalized FCT of TCPRand to CUBIC

per flow size. Two trends are observed. First, TCPRand does

not increase the average FCT of short flows noticeably (see

Figure 7(a)). It is because many short flows are extremely

small in real (especially in data mining) workloads and many of

them finish before TCPRand performs the aggressive reduction

of rMin. Second, the CUBIC (especially long) flows often

experience timeout due to TCP outcast under high traffic load

but TCPRand successfully curtails the outcast of the flows (see

Figure 7(b)).

VII. EXPERIMENTAL RESULTS

Now we evaluate TCPRand in a real testbed. The main

purpose of this evaluation in the testbed is to truly confirm that

TCPRand in practice improves fairness without compromising

goodput in the presence of TCP outcast. Next, we conduct

microscopic analysis to shed light on how several aspects

(packet drops, timeouts, and retransmissions) in TCP

congestion control are affected by TCPRand. Finally, we

discuss CPU overhead caused by TCPRand.

A. Fairness and Goodput Analysis

As explained in Section V.F, we test TCPRand using an

abstracted subset topology of a fat-tree in Figure 5. We tested

tens of different TCP outcast events and found that regardless

of the test cases, the performance of TCPRand is quite similar.

Thus, we only show the most interesting results obtained from

two configurations (N1=2, N2=4, N3=26) and (26, 4, 2).

Fairness: Figure 8(a) shows that regardless of the parameter

(s2
,,t,w) configurations, TCPRand always achieves a higher

fairness index than CUBIC. We observe that higher fairness is

achieved as configurations become more aggressive (i.e., with

smaller , smaller τ or larger w) in randomizing the payload

size. For instance, the largest increase of TCP fairness is

accomplished with (s2
=1, =0, t=1, w=0), which is the most

aggressive setting and guarantees fairness index superior to 0.9

in all the scenarios we experimented. However, even with the

most conservative setting (i.e., s2
=1, =1, t→∞, w=1), the

fairness is enhanced significantly compared to CUBIC.

Loss of total goodput: If =1, TCPRand always keeps the

additional loss of total goodput to CUBIC low (mostly < 1%)

as shown in Figure 8(b). Although we do not show the exact

picture for brevity, even for the case where the TCP outcast

does not happen (i.e., the same number of flows compete) and

the total number of competing flow is small (i.e., 3), TCPRand

minimizes the total goodput loss (~1%) effectively. This

indicates that even though TCPRand is mainly designed to

pursue more fairness for TCP outcast scenarios, it causes only a

trivial amount of additional goodput loss for non-outcast

scenarios; this is possible since the proposed adaptive

randomization scheme in Algorithm 1 avoids or minimizes

unnecessary payload size randomization as much as possible.

Of course, as expected, the most aggressive setting (i.e., with

s2
=1, =0, t=1, w=0) leads to the largest (i.e.,~2.3%)

decrease of total goodput compared to CUBIC. However, even

for this worst case, we believe the additional goodput loss

caused by TCPRand is low and reasonable (depending on

0

0.2

0.4

0.6

0.8

1

(2, 4, 26) (26, 4, 2)

Fa
ir

n
e

ss
 In

d
e

x

(N₁, N₂, N₃)

(1,0,1,0) (1,1,∞,1) CUBIC

0.9

0.92

0.94

0.96

0.98

1

(2, 4, 26) (26, 4, 2)G
o

o
d

p
u

t
R

ai
o

 o
f

TC
P

R
an

d
to

 C
U

B
IC

(N₁, N₂, N₃)

(1,0,1,0) (1,1,∞,1)

Fig. 8. Fairness and goodput of TCPRand and CUBIC under testbed

with the topology in Fig. 5., respectively. The 4-tuple in legend

corresponds to (s2, , t, w) of TCPRand. (1, 0, 1, 0) is the most

aggressive setting while (1, 1, ∞, 1) is the most conservative

configuration.

(a) Fairness index (b) Goodput ratio
0.6

0.7

0.8

0.9

1

1.1

Short Mid. Long

N
o

rm
al

iz
e

d
 F

C
T

to
 C

U
B

IC

Flow Size

0.6

0.7

0.8

0.9

1

1.1

Short Mid. Long
N

o
rm

al
iz

e
d

 F
C

T
to

 C
U

B
IC

Flow Size

0.61.1

Mining, L=0.2 Mining, L=0.8 Web, L=0.2 Web, L=0.8

Fig. 7. Normalized FCT of TCPRand to CUBIC for different workloads
and traffic loads. Sizes of short, mid and long flows are [0,100KB),

[100KB,10MB), and [10MB,∞), respectively.

(b) Max per flow size (a) Average per flow size

applications’ characteristics). It is because most many-to-one

applications are barrier synchronized [22] thus enhancing the

goodput of the slowest TCP connection is more important than

maximizing the total goodput.

B. Microscopic Analysis on TCPRand

We use the same testbed shown in Figure 5 where we only

use two senders (S1 and S2) and one receiver (R). S1 creates one

flow (denoted as F1) to R and S2 does M flows (from F2 to FM+1,

denoted as F2:M+1) to the same R. We vary M where M={5, 10,

15, 20, 25}. Out of these five cases, we only present the most

prominent results that are observed when M={5, 15, 25}. We

disable the adaptive rMin selection method and statically vary

rMin values. rMin of each flow is set to 1448, 1000, 600 or 200

bytes to make our analysis more tractable. For the

measurements, we use iperf and run it for 100 seconds per each

case. All flows (i.e., F1:M+1) start transmission simultaneously5.

Basically, SACK is enabled in our experiments as most

modern Linux distributions support SACK by default, but for a

broader analysis, we also present results while disabling SACK

as well. We examine consecutive packet drops, TCP timeouts,

and packet retransmission for the analysis.

Consecutive Packet Drops: Table I shows the distribution

of consecutive packet drops measured with or without SACK.

Both S1 and S2 use the same rMin. When SACK is enabled,

the number of consecutive packet drops decreases significantly

as rMin decreases. The largest reduction is observed with the

smallest rMin (i.e., 200B) across all M’s. More importantly, the

reduction of more than one consecutive packet drops drives the

reduction of the total packet drops. When SACK is off, the

5 Note that we also conducted experiments with delaying the start of

some flows and found that the arrival time difference of flows

changes the result little.

number of consecutive packet drops does decrease with

TCPRand up to M = 15, but the number does not decrease

much as M further increases.

TCP Timeouts: Figure 9(a) shows that TCPRand+SACK

prevents the outcast flow from experiencing any TCP timeout

(represented by the right y-axis of graphs with bars); although

omitted for brevity, when M=25, only one configuration caused

at most 4 timeouts. On the other hand, disabling SACK shows

two intriguing patterns in Figure 9(b). i) TCPRand reduces the

number of TCP timeouts enormously with smaller rMin values;

when M=15, TCP timeouts decrease from 204 (rMin=1448,

regular TCP) to 9 times. ii) However, when M grows to 25,

TCPRand fails to reduce TCP timeouts noticeably (not shown

for brevity). Even for the regular TCP, enabling SACK option

greatly helped in reducing the number of TCP timeouts (e.g.,

only one timeout when M=25).

Packet Retransmissions: Figure 9 shows the number of

packet retransmissions of flows (represented by the left y-axis

in each graph). In all cases, the outcast flow causes more

packet retransmissions than the non-outcast flows do as

expected. When SACK is on, TCPRand generates more

packets (smaller than MSS) than the regular TCP as decreasing

rMin. Thus, the number of packet retransmissions of the

outcast flow becomes larger as rMin of the flow decreases.

However if rMin of the non-outcast flows decreases, the

number of packet retransmissions in the outcast flow tends to

decrease while those in the non-outcast flows increase as

shown in Figure 9(a). In comparing Figures 9(a) and 9(b), we

see TCPRand without SACK makes the outcast flow generate

TABLE I. Distribution of F1’s consecutive packet drops.

 M
rMin

(Bytes)

consecutive packet drops Total

drops 1 2 3 4 5 6 7 8

S
A

C
K

 e
n

a
b

le
d

5

1448 341 144 53 26 16 5 2 1 1024
1000 401 115 39 11 5 2 1 1 844

600 394 86 31 7 1 0 0 0 692
200 430 94 26 4 0 1 0 0 718

15

1448 1983 791 230 40 13 5 1 0 4527
1000 1702 409 106 31 9 2 0 0 3019
600 1684 321 59 7 4 0 2 0 2565
200 1601 212 17 2 0 0 0 0 2084

25

1448 2549 1231 197 10 0 1 1 0 5666
1000 2468 627 163 39 11 3 0 0 4449
600 2635 456 99 11 2 0 0 0 3898
200 2618 303 27 9 1 0 0 0 3346

S
A

C
K

 d
is

a
b

le
d

5

1448 311 155 56 27 11 4 6 1 1135

1000 345 134 40 14 5 3 0 0 832

600 376 103 29 6 7 1 0 0 758

200 408 100 22 6 2 0 0 0 708

15

1448 880 430 207 58 76 35 43 29 5515

1000 1174 402 243 81 80 31 35 20 6252

600 1693 480 225 48 44 18 10 10 5035

200 1610 339 85 13 7 11 2 8 3085

25

1448 1492 839 211 43 49 15 24 10 5082

1000 1112 406 303 65 88 32 37 29 5440

600 1198 406 368 68 90 51 38 31 6960

200 1586 484 300 56 63 61 15 35 6782

1
4

4
8

1
0

0
0

6
0

0
2

0
0

1
4

4
8

1
0

0
0

6
0

0
2

0
0

1
4

4
8

1
0

0
0

6
0

0
2

0
0

1
4

4
8

1
0

0
0

6
0

0
2

0
0

0
50
100
150
200
250
300
350

0
2
4
6
8

10
12
14
16
18

1
4

4
8

1
4

4
8

1
4

4
8

1
4

4
8

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

6
0

0
6

0
0

6
0

0
6

0
0

2
0

0
2

0
0

2
0

0
2

0
0

rMin at S₁ (Bytes)

N
u

m
b

er
 o

f
 t

im
eo

u
ts

N
u

m
b

er
 o

f
re

tr
an

sm
is

si
o

n
s

(x
1

0
0

0
)

rMin at S₂ (Bytes)

1
4

4
8

1
0

0
0

6
0

0
2

0
0

1
4

4
8

1
0

0
0

6
0

0
2

0
0

1
4

4
8

1
0

0
0

6
0

0
2

0
0

1
4

4
8

1
0

0
0

6
0

0
2

0
0

0
2
4
6
8

10
12
14

1
4

4
8

1
4

4
8

1
4

4
8

1
4

4
8

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

6
0

0
6

0
0

6
0

0
6

0
0

2
0

0
2

0
0

2
0

0
2

0
0

rMin at S₁ (Bytes)

N
u

m
b

er
 o

f
re

tr
an

sm
is

si
o

n
s

(x
1

0
0

0
)

rMin at S₂ (Bytes)

(a) With SACK

Fig. 9. The number of TCP timeouts and retransmissions when M=15.
(b) Without SACK

Timeouts of F1 (Expressed by bars) Total(F2:M+1)
 F1 Avg(F2:M+1) Total(F1:M+1)

more unnecessary retransmissions than that with SACK due to

the lack of selective acknowledgement mechanism. However,

when M < 15, TCPRand without SACK shows the similar

pattern to that with SACK (the graph is omitted).

Throughout the analysis, we find out that TCPRand in

general decreases the number of consecutive drops, TCP

timeouts and packet retransmissions of the outcast flow.

Another interesting finding is that TCPRand alongside SACK

option is most effective in alleviating several adversary events

to TCP performance. However, even with SACK, statically

changing rMin value is insufficient to completely address the

TCP outcast problem, reassuring that our adaptive payload size

randomization method that we proposed is absolutely necessary.

C. CPU Overhead

By default in Linux, offload options such as TSO are

enabled to reduce CPU overhead if its NICs support them. In

our testbed, 4.6% of the resource of a CPU core is used in

sending a CUBIC flow when TSO is enabled whereas if TSO is

disabled, 12.5% of the resource is consumed. In addition, with

TSO disabled, TCPRand consumes more CPU cycles than

CUBIC since it generates more number of packets than CUBIC.

In our test, TCPRand uses at most 37.5% of the resource of one

core when rMin=200B and the number of flows, say n, is 25. In

an extreme case (e.g., rMin=200B and n=1,000), TCPRand

consumes 53% of the CPU core resource. However, this

amount of CPU clock consumption may be acceptable since

even commodity servers are equipped with multicore CPUs.

VIII. CONCLUSION

To address the TCP outcast problem in data center

networks, we proposed a payload size randomization scheme

called TCPRand which guarantees the superior enhancement of

TCP fairness while neither sacrificing the total goodput nor

incurring any noticeable network overhead. We believe that it

is the first practical, cheap, lightweight and efficient solution

that solves the TCP outcast problem. While we showcase the

efficacy of TCPRand in this work, we also see several avenues

for future work. One of such directions is to reduce the CPU

overhead of TCPRand. We envision that integrating TCPRand

into the TSO engine in NICs has a lot of promise for that.

ACKNOWLEDGEMENTS

This work was supported by the Space Core Technology

Development Program of NRF [NRF-

2014M1A3A3A03034729, Development of core S/W standard

platform for GEO satellite ground control system], ICT R&D

program of MSIP/IITP [B0101-14-0334, Development of IoT-

based Trustworthy and Smart Home Community Framework],

and a grant from the British Council.

REFERENCES

[1] P. Prakash, A. Dixit, Y. Hu, and R. Kompella, “The TCP outcast

problem: exposing unfairness in data center networks,” in

UNENIX NSDI, 2012.

[2] C. Lee, K. Jang, and S. Moon, “Reviving Delay-based TCP for

Data Centers,” in ACM SIGCOMM, 2012 (poster).

[3] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the

Performance of TCP Pacing,” in IEEE INFOCOM, 2000.

[4] R. Kapoor, A. Snoeren, G. Voelker, and G. Porter, “Bullet trains:

a study of NIC burst behavior at microsecond timescales,” in

ACM CoNEXT, 2013.

[5] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable

commodity datacenter network architecture,” in ACM

SIGCOMM, 2008.

[6] S. Floyd, and V. Jacobson, “Random early detection gateways

for congestion avoidance,” IEEE/ACM ToN, August 1993.

[7] P. E. McKenney, “Stochastic fairness queueing,” in IEEE

INFOCOM, pages733–740, 1990.

[8] Cisco, “Design Best Practices for Latency Optimization,

Financial Services Technical Decision Maker White Paper,”

http://www.cisco.com/application/pdf/en/us/guest/netsol/ns407/c

654/ccmigration_09186a008091d542.pdf.

[9] Y. Chen, R. Griffith, D. Zats, A. D. Joseph, and R.

Katz, “Understanding TCP Incast and Its Implications for Big

Data Workloads,” USENIX ;login: Magazine. Vol.37. No.3.

pp.24-38. June 2012.

[10] http://www.nsnam.org/wiki/Current_Development.

[11] http://www.nsnam.org/.

[12] J. Nagle, “Congestion control in IP/TCP internetworks,”

RFC896, Internet Engineering Task Force, Jan. 1984.

[13] I. Rhee and L. Xu, “CUBIC: A new TCP-friendly high-speed

TCP variant,” in Proc. of the PFLDNet Workshop, Feb. 2005.

[14] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D.

G.Andersen, G. R. Ganger, G. A. Gibson, and B. Mueller, “Safe

and effective fine-grained TCP retransmissions for data center

communication,” in ACM SIGCOMM, 2009.

[15] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail:

Reducing the Flow Completion Time Tail in Datacenter

Networks,” in ACM SIGCOMM, 2012.

[16] B. Vamanan, J. Hasan, and T. N. Vijaykumar, “Deadline-Aware

Datacenter TCP (D2TCP),” in ACM SIGCOMM, 2012.

[17] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron, “Better

never than late: Meeting deadlines in datacenter networks,” in

ACM SIGCOMM, 2011.

[18] C. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows

quickly with preemptive scheduling,” in ACM SIGCOMM, 2012.

[19] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B.

Prabhakar, and S. Shenker, “pFabric: Minimal Near-Optimal

Datacenter Transport,” in ACM SIGCOMM, 2013.

[20] J. Zhang, F. Ren, X. Yue, R. Shu, and C. Lin, “Sharing

Bandwidth by Allocating Switch Buffer in Data Center

Networks,” IEEE JSAC, Vol. 32, No. 1, 2014.

[21] K. Chandrayana, S. Ramakrishnan, B. Sikdar, and S.

Kalyanaraman, “On randomizing the sending times in TCP and

other window based algorithms,” Computer Networks. 50(3).

pp.422-447. Feb. 2006.

[22] H. Wu, Z. Feng, Ch. Guo, and Y. Zhang, “ICTCP: Incast

Congestion Control for TCP in Data Center Networks,” in ACM

CoNEXT, 2010.

[23] http://tools.ietf.org/html/rfc3465.

[24] R. Jain, A. Durresi, and G. Babic, “Throughput Fairness Index:

An Explanation,” ATM Forum/99-0045, February 1999.

[25] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B.

Prabhakar, S. Sengupta, and M. Sridharan, “Data Center TCP

(DCTCP),” in ACM SIGCOMM, 2010.

