

Edinburgh Research Explorer

Generating Performance Portable Code using Rewrite Rules
Citation for published version:
Steuwer, M, Fensch, C, Lindley, S & Dubach, C 2015, Generating Performance Portable Code using
Rewrite Rules: From High-Level Functional Expressions to High-Performance OpenCL Code. in The 20th
ACM SIGPLAN International Conference on Functional Programming (ICFP 2015). ACM, Vancouver, BC,
Canada, pp. 205-217, 20th ACM SIGPLAN International Conference on Functional Programming,
Vancouver, Canada, 31/08/15. DOI: 10.1145/2784731.2784754

Digital Object Identifier (DOI):
10.1145/2784731.2784754

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
The 20th ACM SIGPLAN International Conference on Functional Programming (ICFP 2015)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43714467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2784731.2784754
https://www.research.ed.ac.uk/portal/en/publications/generating-performance-portable-code-using-rewrite-rules(fec6df64-6c0e-4129-a367-0e8156e6c2b4).html

Generating Performance Portable Code using Rewrite Rules
From High-Level Functional Expressions to High-Performance OpenCL Code

Michel Steuwer
The University of Edinburgh (UK)
University of Münster (Germany)

michel.steuwer@ed.ac.uk

Christian Fensch
Heriot-Watt University (UK)

c.fensch@hw.ac.uk

Sam Lindley
The University of Edinburgh (UK)

sam.lindley@ed.ac.uk

Christophe Dubach
The University of Edinburgh (UK)
christophe.dubach@ed.ac.uk

Abstract
Computers have become increasingly complex with the emergence
of heterogeneous hardware combining multicore CPUs and GPUs.
These parallel systems exhibit tremendous computational power
at the cost of increased programming effort resulting in a tension
between performance and code portability. Typically, code is either
tuned in a low-level imperative language using hardware-specific
optimizations to achieve maximum performance or is written in a
high-level, possibly functional, language to achieve portability at
the expense of performance.

We propose a novel approach aiming to combine high-level pro-
gramming, code portability, and high-performance. Starting from a
high-level functional expression we apply a simple set of rewrite
rules to transform it into a low-level functional representation, close
to the OpenCL programming model, from which OpenCL code is
generated. Our rewrite rules define a space of possible implementa-
tions which we automatically explore to generate hardware-specific
OpenCL implementations. We formalize our system with a core
dependently-typed λ-calculus along with a denotational semantics
which we use to prove the correctness of the rewrite rules.

We test our design in practice by implementing a compiler
which generates high performance imperative OpenCL code. Our
experiments show that we can automatically derive hardware-
specific implementations from simple functional high-level al-
gorithmic expressions offering performance on a par with highly
tuned code for multicore CPUs and GPUs written by experts.

Categories and Subject Descriptors D3.2 [Programming Lan-
guages]: Language Classification – Applicative (functional) lan-
guages; Concurrent, distributed, and parallel languages; D3.4
[Processors]: Code generation, Compilers, Optimization

Keywords Algorithmic patterns, rewrite rules, performance porta-
bility, GPU, OpenCL, code generation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICFP ’15, August 31 – September 2, 2015, Vancouver, BC, Canada.
Copyright c© 2015 ACM 978-1-4503-3669-7/15/08. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

1. Introduction
In recent years, graphics processing units (GPUs) have emerged as
the power horse of high-performance computing. These devices of-
fer enormous raw performance but require programmers to have a
deep understanding of the hardware in order to maximize perfor-
mance. This means software is written and tuned on a per-device
basis and needs to be adapted frequently to keep pace with ever
changing hardware.

Programming models such as OpenCL offer the promise of
functional portability of code across different parallel processors.
However, performance portability often remains elusive; code
achieving high performance for one device might only achieve a
fraction of the available performance on a different device. Figure 1
illustrates this problem by showing how a parallel reduce (a.k.a.
fold) implementation, written and optimized for one particular de-
vice, performs on other devices. Three implementations have been
tuned to maximize performance on each device: the Nvidia_opt
and AMD_opt implementations are tuned for the Nvidia and AMD
GPU respectively, implementing tree-based reduce using an itera-
tive approach with carefully specified synchronization primitives.
The Nvidia_opt version utilizes the local (a.k.a. shared) memory to
store intermediate results and exploits a hardware feature of Nvidia
GPUs to avoid certain synchronization barriers. The AMD_opt
version does not perform these two optimizations but instead uses
vectorized operations. The Intel_opt parallel implementation, tuned
for an Intel CPU, also relies on vectorized operations. However, it
uses a much coarser form of parallelism with fewer threads, in
which each thread performs more work.

Nvidia opt AMD opt Intel opt

0.0

0.2

0.4

0.6

0.8

1.0

Nvidia

GPU

AMD

GPU

Intel

CPU

Failed

R
e

la
ti
ve

 P
e

rf
o

rm
a

n
c
e

Figure 1: Performance is not portable across devices. Each bar
represents the device-specific optimized implementation of a paral-
lel reduce implemented in OpenCL and tuned for an Nvidia GPU,
AMD GPU, and Intel CPU respectively. Performance is normalized
with respect to the best implementation on each device.

Figure 1 shows the performance achieved by each implementa-
tion on three different devices. Running an implementation which
has been optimized on a different device leads to suboptimal per-
formance in all cases. Consider the AMD_opt implementation, for
instance, where we see that the performance loss is 20% when run-
ning on the Nvidia GPU and 90% (i.e., 10× slower) when running
on the CPU. The CPU optimized version, Intel_opt, achieves less
than 20% (i.e., 5× slower) when run on a GPU. Finally, it is worth
noting that the Nvidia_opt version, which performs quite badly on
the AMD GPU, actually fails to execute correctly on the CPU. This
is due to a low-level optimization which removes synchronization
barriers which can be avoided on the GPU, but are required on the
CPU for correctness.

This lack of performance portability is mainly due to the low-
level nature of the programming model; the dominant programming
interfaces for parallel devices such as GPUs exposes programmers
to many hardware-specific details. As a result, programming be-
comes complex, time-consuming, and error prone.

Several high-level programming models have been proposed
to tackle the programmability issue and shield programmers from
low-level hardware details. High-level dataflow programming lan-
guage such as StreamIt [25] and LiquidMetal [19] allow the pro-
grammer to easily express different implementations at the algo-
rithm level. Nvidia’s NOVA [12] language takes a more functional
approach in which higher-order functions such as map and reduce
are expressed as primitives recognized by the backend compiler.
Similarly, Accelerate [9] allows the programmer to write high-level
functional code in a DSL embedded in Haskell, and automatically
generate CUDA code for the GPU. For instance, the parallel reduce
discussed earlier would be written in Accelerate as:

sum xs = fold (+) 0 (use xs)
These kind of approaches hide the complexity of parallelism

and low-level optimizations from the user. However, they rely on
hard-coded device-specific implementations or heuristics to drive
the optimization process. When targeting different devices, the li-
brary implementation or backend compiler has to be re-tuned or
even worst re-engineered. In order to address the performance
portability issue, we aim to develop mechanisms that can effec-
tively explore device-specific optimizations. The core idea is not
to commit to a specific implementation or set of optimizations but
instead to let a tool automate the process.

In this paper we present an approach which compiles a high-
level functional expression – similar to the one written in Accel-
erate – into highly optimized device-specific OpenCL code. We
show that we achieve performance on a par with expert-written
implementations on an Intel multicore CPU, an AMD GPU, and
an Nvidia GPU. Central to our approach is a set of rewrite rules
that systematically translate high-level algorithmic concepts into
low-level hardware paradigms, both expressed in a functional style.
The rewrite rules are based on the kind of algebraic reasoning
well-known to functional programmers, and pioneered by Bird [5]
and others in the 1980s. They are used to systematically transform
programs into a low-level representation, from which high perfor-
mance code is generated automatically.

The power of our technique lies in the rewrite rules, written once
by an expert system designer. These rules encode the different al-
gorithmic choices and low-level hardware specific optimizations.
The rewrite rules play the dual role of enabling the composition
of high-level algorithmic concepts and enabling the mapping of
these onto hardware paradigms, but also critically provide correct-
ness preserving exploration of the implementation space. The rules
enable a clear separation of concerns between high-level algorith-
mic concepts and low-level hardware paradigms while using a uni-
fied framework. The defined implementation space is automatically
searched to produce high performance code.

High-level Expression

OpenCL Program

OpenCL Primitives

Algorithmic Primitives

Low-level Expression

Algorithmic choices &
Hardware optimizations

map

reduce

iterate

split

join

vectorize toLocal

map-local

map-workgroup

vector units

workgroups

local memory

barriers

...Dot product Vector reduce

Hardware Paradigms

Code generation

High-level
programming

reorder...

...

...

Exploration with
rewriting rules

BlackScholes

Figure 2: The programmer expresses the problem with high-level
algorithmic primitives. These are systematically transformed into
low-level primitives using a rule rewriting system. OpenCL code
is generated by mapping the low-level primitives directly to the
OpenCL programming model representing hardware paradigms.

This paper demonstrates that our approach yields high-performance
code with OpenCL as our target hardware platform. We compare
the performance of our approach with highly-tuned linear algebra
functions extracted from state-of-the-art libraries and with bench-
marks such as BlackScholes. We express them as compositions of
high-level algorithmic primitives which are systematically mapped
to low-level OpenCL primitives.

The primary contributions of our paper are as follows:

• a collection of high-level functional algorithmic primitives
for the programmer and low-level functional OpenCL primi-
tives representing the OpenCL programming model;

• a core dependently-typed calculus and denotational semantics;
• a set of rewrite rules that systematically express algorithmic

and optimization choices, bridging the gap between high-level
functional programs and OpenCL;

• proofs of the soundness of the rewrite rules with respect to the
denotational semantics;

• achieving performance portability by systematically applying
rewrite rules to yield device-specific implementations, with per-
formance on a par with the best hand-tuned versions.

The remainder of the paper is structured as follows. Section 2
provides an overview of our technique. Sections 3 and 4 present
our functional primitives and rewrite rules. Section 5 presents a
core language and denotational semantics, which we use to jus-
tify the rewrite rules. Section 6 explains our automatic search strat-
egy, while Section 7 introduces our benchmarks. Our experimental
setup and performance results are shown in Sections 8 and 9. Fi-
nally, Section 10 discusses related work and Section 11 concludes.

2. Overview
The overview of our approach is presented in Figure 2. The pro-
grammer writes a high-level expression composed of algorithmic
primitives. Using rewriting rules, we map this high-level expres-
sion into a low-level expression consisting of OpenCL primitives. In
the rewriting stage, different algorithmic and optimization choices
can be explored. The generated low-level expression is then fed
into our code generator that emits an OpenCL program compiled
to machine code by the vendor provided OpenCL compiler.

λ xs . map (λ x . x ∗ 3) xs

(a) High-level expression written by the programmer.

rewrite rules

λ xs . (join ◦ mapWorkgroup (joinVec ◦
mapLocal (mapVec (λ x . x ∗ 3))

◦ splitVec 4) ◦ split 1024) xs

(b) Low-level expression derived using rewrite rules and search.

code generator

1 int4 mul3(int4 x) { return x * 3; }
2 kernel vectorScal(global int* in,out, int len){
3 for (int i=get_group_id; i < len/1024;
4 i+=get_num_groups) {
5 global int* grp_in = in+(i*1024);
6 global int* grp_out = out+(i*1024);
7 for (int j=get_local_id; j < 1024/4;
8 j+=get_local_size) {
9 global int4* in_vec4 =(int4*)grp_in+(j*4);

10 global int4* out_vec4=(int4*)grp_out+(j*4);
11 *out_vec4 = mul3(*in_vec4);
12 } } }

(c) OpenCL program produced by our code generator.

Figure 3: Pseudo-code representing vector scaling. The user maps
a function multiplying an element by 3 over the input array (a). This
high-level expression is transformed into a low-level expression (b)
using rewrite rules in a search process. Finally, our code generator
turns the low-level expression into an OpenCL program (c).

We illustrate the mechanisms of our approach using a simple
vector scaling example shown in Figure 3. The user expresses
the computation by writing a high-level expression using the map
primitive as shown in Figure 3a. Our expressions are glued together
with lambda abstractions and function composition; we formally
define the syntax in Section 5.

Our technique first rewrites the high-level expression into a
low-level expression closer to the OpenCL programming model.
This is achieved by applying the rewrite rules presented later in
Section 4 possibly using an automatic search strategy discusses in
Section 6. Figure 3b shows one possible derivation of the original
high-level expression. Starting from the last line, the input (xs) is
split into chunks of 1024 elements. Each chunk is mapped onto a
group of threads, called workgroup, with the mapWorkgroup low-
level primitive. Within a workgroup, we group 4 elements into a
SIMD vector, each mapped to a local thread inside a workgroup
via the mapLocal primitive. Finally, the mapVec primitive applies
the vectorized form of the user defined function. The exact meaning
of our primitives will be given later in Section 3.

The last step consists of traversing the low-level expression
and generating OpenCL code for each low-level primitive encoun-
tered (Figure 3c). The two map primitives generate the for-loops
(line 3–4 and 7–8) that iterate over the input array assigning work
to the workgroups and local threads. The information of how many
chunks each workgroup and thread processes comes from the corre-
sponding split. In line 11 the vectorized version of the user defined
function (mul3 defined in line 1) is finally applied to the input array.

To summarize, our approach is able to generate OpenCL code
starting from a high-level program representation. This is achieved
by systematically transforming the high-level expression into a
low-level form suitable for code generation using an automated
search process.

mapA,B,I : (A→ B)→ [A]I → [B]I
zipA,B,I : [A]I → [B]I → [A×B]I

reduceA,I : ((A×A)→ A)→ A→ [A]I → [A]1
splitA,I : (n : size)→ [A]n×I → [[A]n]I

joinA,I,J : [[A]I]J → [A]I×J
iterateA,I,J : (n : size)→ ((m : size)→ [A]I×m → [A]m)→

[A]In×J → [A]J
reorderA,I : [A]I → [A]I

Figure 4: High-level algorithmic primitives.

3. Algorithmic and OpenCL Primitives
A key idea of this paper is to expose algorithmic choices and
hardware-specific program optimizations in a functional style. This
allows for systematic transformations using a collection of rewrite
rules (Section 4). The high-level algorithmic primitives can either
be used by the programmer directly, as a stand-alone language (or
embedded DSL), or be used as an intermediate representation tar-
geted by another language. Once a program is represented by our
high-level primitives, we can automatically transform it into low-
level hardware primitives. These represent hardware-specific fea-
tures in a programming model such as OpenCL, the target chosen
for this paper. Following the same approach, a different set of low-
level primitives might be designed to target other low-level pro-
gramming models such as MPI.

In this section we give a high-level account of the primitives;
Section 5 gives a more formal account. Figure 4 and 5 present our
algorithmic and OpenCL primitives. The type system we present
here is monomorphic (largely to keep the formal presentation in
Section 5 simple), however, we do rely on a restricted form of
dependent types. The only kind of type-dependency we allow is
for array types, whose size may depend on a run-time value. Type
inference is beyond the scope of this paper, but in the future we
intend to apply ideas from systems such as DML [45] to our setting.

We let I range over sizes. A size can be a size variable m,n, a
natural number i, or a product I × J or power IJ of sizes I and J .
We letA,B range over types. We writeA→ B for a function from
type A to type B and (n : size) → B for a dependent function
from size n to type B (where B may include array types whose
sizes depend on n). We write A × B for the product of types A
and B and 1 for the unit type. We write [A]I for an array of size
I with elements of type A. The primitives are annotated with type
and size subscripts. Thus, formally each one actually represents a
type-indexed family of primitives. We often omit subscripts when
they are not relevant or can be trivially inferred.

3.1 Algorithmic Primitives
As in Accelerate [9, 30], we deliberately restrict ourselves to a
set of primitives for which we know that high performance CPU
and GPU implementations exist. In contrast to Accelerate, we al-
low nesting of primitives to express nested parallelism. Nesting of
arrays is used to represent multi-dimensional data structures like
matrices. Figure 4 presents the high-level primitives used to define
programs at the algorithmic level. The map and zip primitives are
standard.

The reduce primitive is a special case of a fold returning a single
reduced element in an array of size 1. We assume the supplied
function is associative and commutative in order to admit efficient
parallel implementations. Returning the result as an array with a
single element allows for a more compositional design, in which
our primitives operate on arrays rather than scalar values.

mapWorkgroupA,B,I : (A→ B)→ [A]I → [B]I
mapLocalA,B,I : (A→ B)→ [A]I → [B]I

mapGlobalA,B,I : (A→ B)→ [A]I → [B]I
mapSeqA,B,I : (A→ B)→ [A]I → [B]I

toLocalA,B : (A→ B)→ (A→ B)
toGlobalA,B : (A→ B)→ (A→ B)

reduceSeqA,B,I : ((A×B)→ A)→ A→ [B]I → [A]1
reducePartA,I : ((A×A)→ A)→ A→ (n : size)→

[A]I×n → [A]n
reorderStrideA,I : (n : size)→ [A]n×I → [A]n×I

mapVecA,B,I : (A→ B)→ 〈A〉I → 〈B〉I
splitVecA,I : (n : size)→ [A]n×I → [〈A〉n]I

joinVecA,I,J : [〈A〉I]J → [A]I×J

Figure 5: Low-level OpenCL primitives used for code generation.

The split and join primitives transform the shape of array data.
The expression split n xs transforms array xs of size n × I , with
elements of type A, into an array of size I with elements that are
A arrays of size n; join is the inverse of split. (In practice A itself
may be an array type, in which case we can view split as adding a
dimension to and join as subtracting a dimension from a matrix.)

The iterate primitive repeatedly applies a given function. The
expression iteraten f applies the function f repeatedly n times.
The type of iterate is instructive. The function f may change the
length of the processed array at each iteration step. We currently
restrict the length to stay the same or shrink in each iteration by a
fixed factor (given by the implicit subscript I), which is sufficient
to express, e.g., iterative reduce (see Section 4). We intend to lift
this restriction in the future, which will probably require a richer
type system. Given n the type of iterate expresses that the input
array will shrink by a factor of In.

Finally, the reorder primitive allows the programmer to express
that the order of elements in an array is unimportant, allowing
a number of useful optimizations—as we will see in Section 4.
This primitive bares obvious similarities to the unordered operation
of the Ferry query language [21], which asserts that the order of
elements in a list is unimportant.

3.2 OpenCL-specific Primitives
In order to achieve high performance on manycore CPUs and
GPUs, programmers often use a set of rules of thumb to drive
the optimization of their application. Each hardware vendor pro-
vides optimization guides [1, 31] that extensively cover hardware
idiosyncrasies and optimizations. The main idea behind our work
is to identify common optimization patterns and express them with
the help of low-level primitives coupled with a rewrite system. Fig-
ure 5 lists the OpenCL-specific primitives we have identified.

Maps Each mapX primitive has the same high-level semantics
as plain map, but represents a specific way of mapping computa-
tions to the hardware and exploiting parallelism in OpenCL. The
mapWorkgroup primitive assigns work to a group of threads, called
workgroup in OpenCL, with every workgroup applying the given
function on an element of the input array. Similarly, the mapLocal
primitive assigns work to a local thread inside a workgroup. As
workgroups are optional in OpenCL mapGlobal assigns work to a
thread not organized in a workgroup. This allows us to map com-
putations in different ways to the thread hierarchy. The mapSeq
primitive performs a sequential map within a single thread.

Generating OpenCL code for all of these primitives is simi-
lar; we describe this using mapWorkgroup as an example. A loop
is generated, where the iteration variable is determined by the

workgroup-id function from the OpenCL API. Inside the loop, a
pointer is generated to partition the input array, so that every work-
group calls the given function f on a different chunk of data. An
output pointer is generated similarly. We continue with the body of
the loop by generating the code for the function f recursively. Fi-
nally, an appropriate synchronization mechanism is added for the
given map primitive. For instance, after a mapLocal we add a bar-
rier synchronization for the threads inside the workgroup.

Local/Global The toLocal and toGlobal primitives are used to
determine where the result of the given function f should be
stored. OpenCL defines two distinct address spaces: global and
local. Global memory is the commonly used large but slow mem-
ory. On GPUs, the small local memory has a high bandwidth with
low latency and is used to store frequently accessed data or for effi-
cient communication between local threads (shared memory). With
these two primitives, we can in effect exploit the memory hierar-
chy defined in OpenCL. These primitives act similarly to a typecast
(their high-level semantics is that of the identity function) and are
in fact implemented as such, so that no code is emitted directly. We
check for incorrect use of these primitives in our implementation.
For example, the implementation checks that a toLocal primitive is
eventually followed by a toGlobal primitive to ensure that the final
result is copied back into global memory, as required by OpenCL.
We plan to extend our type system in the future to track the memory
location of arrays using an effect system.

In our design, every function reads its input and writes its output
using pointers provided by the callee function. As a result, we can
force a store to local memory by wrapping any function with the
toLocal function. In the code generator, this will simply change the
output pointer of function f to an area in local memory.

Sequential Reduce The reduceSeq primitive performs a sequen-
tial reduce within a single thread. The generated code consists of
an accumulation variable which is initialized with the given initial
value. A loop is generated iterating over the array and calling the
given function which stores its intermediate result in the accumu-
lation variable. Note, that we require the function passed to reduce
to be associative and commutative in order to enable an efficient
parallel implementation. We do not impose the same restriction for
the reduceSeq function, as here we guarantee a sequential order of
execution; thus reduceSeq has a more general type.

Partial Reduce The reducePart primitive performs a partial re-
duce, i.e., an array of n elements is reduced to an array of m el-
ements where 1 ≤ m ≤ n. While not directly used to generate
OpenCL code, reducePart is useful as an intermediate representa-
tion for deriving different implementations of reduce as we will see
in the next section.

Reorder Stride The high-level semantics of reorderStrideA,I n
is just like reorderA,I . The low-level implementation actually per-
forms a specific reordering in which the array is reordered with a
stride n, that is, element i is mapped to element i/I+n∗ (i%I). In
the generated OpenCL code this primitive ensures that after split-
ting the workload, consecutive threads access consecutive mem-
ory elements (i.e., coalesce memory access), which is beneficial on
modern GPUs as it maximizes memory bandwidth.

Our implementation does not produce code directly, but gener-
ates instead an index function, which is used when accessing the
array the next time. While beyond the scope of this paper, our de-
sign supports user-defined index functions as well.

Vectorization The OpenCL programming model supports SIMD
vector data types such as int4 where any operations on this type
will be executed in the hardware vector units. In the absence of
vector units in the hardware, the OpenCL compiler scalarizes the
code automatically.

iterate (I + J) M → iterate I M ◦ iterate J M
(a) Iterate decomposition rule

map M ◦ reorder → reorder ◦ map M
reorder ◦ map M → map M ◦ reorder

(b) Reorder commutativity rules

mapA,B,I×J M → joinB,I,J ◦ map (map M) ◦ splitA,J I
(c) Split-join rule

reduceA,I×JM N →
reduceA,JM N ◦ reducePartA,IM N J

reducePartA,IM N 1 → reduceA,IM N

reducePartA,IM N J → reducePartA,IM N J ◦ reorder
reducePartA,IK M N J →

iterateA,I,J K (reducePartA,IM N)

reducePartA,IM N (J ×K) →
join ◦ map (reducePartM N J) ◦ splitA,K (I × J)

(d) Reduce rules

join ◦ split I | splitA,J I ◦ joinA,I,J → id

joinVec ◦ splitVec I | splitVecA,J I ◦ joinVecA,I,J → id

(e) Cancellation rules

map M ◦ map N → map (M ◦ N)

reduceSeq M N ◦mapSeq P →
reduceSeq (λ(acc, x).M (acc, P x)) N

(f) Fusion rules

Figure 6: Algorithmic rules. Bold functions are known to the code
generator.

At a high-level, vectors are just a special case of arrays. We
write 〈A〉I for the type of a vector of size I with elements of type
A. The mapVec, splitVec, and joinVec primitives behave just like the
corresponding operations on arrays, though at a low-level they are
of course compiled differently. Concretely, the mapVec primitive
vectorizes a function by simply converting all of its operations that
apply to vector types into vectorized operations. Our current im-
plementation can only vectorize functions containing simple arith-
metic operations such as + or −. For more complex functions, we
rely on external tools [27] for vectorizing the operations, without
performing further analysis.

4. Rewrite Rules
This section presents our rewrite rules, which transform high-level
expressions written using the algorithmic primitives into semanti-
cally equivalent expressions. One goal of our approach is to keep
each rule as simple as possible and only express one fundamental
concept at a time. For instance the vectorization rule, as we will
see, is the only place where we express vectorization. This con-
trasts with many prior approaches that provide special vectorized
versions of different algorithmic primitives such as map and reduce.
Many rules can be applied successively to produce expressions that
compose hardware concepts or optimizations. In Section 5 we show
that the rules are sound. The rules are only valid given that they re-
spect the types involved.

As with the primitives, we distinguish between algorithmic and
low-level rules. Algorithmic rules produce derivations that repre-
sent the different algorithmic choices and are shown in Figure 6.

map M → mapWorkgroup M | mapLocal M
| mapGlobal M | mapSeq M

(a) Map rules

reduceA,I M N → reduceSeqA,A,I M N

(b) Reduce rule

reorderA,I×J → reorderStrideA,J I | id

(c) Stride accesses or normal accesses rules

mapLocal M → toGlobal (mapLocal M)
mapLocal M → toLocal (mapLocal M)

(d) Local/Global memory rules

mapA,B,I×J M →
joinVecB,I,J ◦ mapA,B,J (mapVecA,B,I M) ◦ splitVecA,J I

(e) Vectorization rule

Figure 7: OpenCL-specific rules. Bold functions are known to the
code generator.

Figure 7 shows our OpenCL-specific rules which map expressions
to OpenCL primitives. Once an expression is in its lowest-level
form, it is possible to produce OpenCL code for each single prim-
itive easily with our code generator as described in the previous
section.

4.1 Algorithmic Rules
Iterate Decomposition Rule The rule 6a expresses the fact that
an iteration can be decomposed into several iterations.

Reorder Commutativity Rule Figure 6b shows that if the data can
be reordered arbitrarily it does not matter if we apply a function f
to each element before or after the reordering.

Split-Join Rule The split-join rule in Figure 6c partitions a map
into two maps. This allows us to nest map primitives in each other
and, thus, maps the computation to the thread hierarchy of the
OpenCL programming model.

Reduce Rules The reduce rules of Figure 6d decompose applica-
tions of the reduce function and the partial reduce function.

• A reduce can be decomposed into a partial reduce combined
with a full reduce.

• A partial reduce can be turned back into a full reduce if it yields
a single element.

• A partial reduce can be reordered, exploiting the restriction of
reducePart to commutative functions.

• A partial reduce can be decomposed into an iteration of a
smaller instance of the same partial reduce. This idea is impor-
tant when considering how the reduce function is commonly
implemented on a GPU (iteratively reducing within a work-
group using the local memory).

• A partial reduce can split the input elements, reduce them inde-
pendently, and then join them back together. This final case is
actually the only place where parallelism is made explicit in the
reduce rules. It exploits the restriction of reducePart to associa-
tive functions.

Cancellation Rules Figure 6e shows our cancellation rules. They
express the fact that consecutive split-join pairs and splitVec-
joinVec pairs are equivalent to the identity.

Fusion Rules Finally, our fusion rules are shown in Figure 6f.
The first rule fuses the functions applied by two consecutive maps.
The second rule fuses the map-reduce pattern by creating a lambda
abstraction that is the result of merging functions f and g from
the original reduce and map respectively. This rule only applies
to the sequential version since this is the only implementation not
requiring the associativity property required by the more generic
reduce primitive. When generating code, these rules in effect allow
us to fuse the implementation of different functions and avoid hav-
ing to store temporary results. The functional programming com-
munity has studied more sophisticated and generic rules for fu-
sion [13, 26, 30]. However, for our current restricted set of bench-
marks our simpler fusion rules have proven to be sufficient. We
intend to incorporate related work into our approach in the future.

4.2 OpenCL-Specific Rules
Figure 7 shows our OpenCL-specific rules that are used to apply
OpenCL optimizations and to lower high-level concepts down to
OpenCL-specific ones. Primitives that are known to the code gen-
erator are shown in bold.

Map Rules The rule in Figure 7a is used to produce OpenCL-
specific map implementations that match the OpenCL thread hier-
archy. Our implementation maintains context information to ensure
the OpenCL thread hierarchy is respected. For instance, it is only
legal to nest a mapLocal inside a mapWorkgroup and it is not legal
to nest two mapLocal in each other.

Reduce Rule There is only one low-level rule for reduce (Fig-
ure 7b), which expresses the fact that the only implementation
known to the code generator is a sequential reduce. Parallel im-
plementations are defined at a higher level by composition of other
algorithmic primitives. Most existing approaches treat the reduce
directly as a fixed primitive operation. With our approach it is pos-
sible to explore different implementations for reduce by simply ap-
plying different rules.

Reorder Rule Figure 7c presents the rule that reorders elements
of an array. In our current implementation, we support two types
of reordering: no reordering, represented by the id function, and
reorderStride, which reorders elements with a certain stride n. As
described earlier, the major use case for the stride reorder is to
enable coalesced memory accesses.

Local/Global Rules Figure 7d shows two rules that enable GPU
local memory usage. They express the fact that the result of a
mapLocal can always be stored in local memory or back in global
memory. This holds since a mapLocal always exists within a
mapWorkgroup for which the local memory is defined. These rules
allow us to determine how the data is mapped to the GPU memory
hierarchy and encode the common optimization to load frequently
used data from the slow global into the fast local memory. The
search strategy, discussed in Section 6, applies this rule to explore
opportunities for this optimization.

Vectorization Rule Figure 7e shows the vectorization rule. SIMD
vectorization is a key aspect of modern hardware architectures.
In our approach vectorization is achieved by using the splitVec
and corresponding joinVec primitives, which changes the element
type of an array and adjust the length accordingly. This rule is
only allowed to be applied once to a given map f primitive. This
constraint can easily be checked by looking at the function’s type.

4.3 Summary
In our approach the power of composition allows our rules to pro-
duce complex low-level expressions from simple high-level expres-
sions. Looking back at our example in Figure 3, we see how a sim-
ple algorithmic pattern can effectively be derived into a low-level

expression by applying the rules. This expression matches hard-
ware concepts expressible with OpenCL such as mapping compu-
tation and data to the thread and memory hierarchy. Each single rule
encodes a simple, easy to understand, and provable fact. By com-
position of the rules we systematically derive low-level expressions
which are semantically equivalent to the high-level expressions by
construction. This results in a powerful mechanism to safely ex-
plore the space of possible implementations.

5. Core Language
In this section we formalize a core language for programming
with the primitives of Section 3. We specify a type system and
a denotational semantics for the core language, which we use to
justify the correctness of the rewrite rules of Section 4.

5.1 Typing Rules
Figure 8 presents the typing rules for the core language. The type
schemas for constants are given in Figure 4 in Section 3. A size
environment ∆ is a set of size variables. A type environment Γ is
a map from term variables to types. The judgement ∆ ` I SIZE
states that in size environment ∆ the size I is well-formed. The
judgement ∆ ` A states that in size environment ∆ the type A is
well-formed. The typing judgement ∆; Γ ` M : A states that in
size environment ∆ and type environment Γ, the term M has type
A. The typing rules are straightforward.

5.2 Semantics
We give a set-theoretic denotational semantics for the core lan-
guage. It is presented in Figure 9. Sizes are interpreted straightfor-
wardly as natural numbers. Types are interpreted as sets. We write
F for the set of floating point numbers in the meta language. We
overload some of the type constructors in the object language as the
corresponding set constructors in the meta language, for instance,
X → Y denotes the set of functions from the set X to the set Y .
Size-dependent functions are interpreted as size-dependent func-
tions in the meta language. Arrays are interpreted in the obvious
way as functions from sizes to elements.

Size environments are interpreted as size maps, partial maps
from size variables to natural numbers. Type environments are
interpreted as type maps, partial maps from term variables to sets.

Sizes, types, type environments, terms and primitives are all
interpreted with respect to a partial map ι from size variables to
natural numbers (that is, the interpretation of a size environment).
Similarly, terms are interpreted with respect to a partial map ρ from
term variables to values. We overload λ-abstraction, pairing, and
unit in the obvious way in the meta language.

The interpretation of terms is standard. The interpretations of
the primitives are also quite straightforward. Note that for sim-
plicity we here ascribe a fixed evaluation order to the operation of
reduce, but when we actually apply the rewrite rules we ensure that
the operation is associative and commutative, allowing it to be re-
ordered. The iterate operation supplies a successively smaller size
for each iteration.

We define function composition in the standard way, both in the
object and meta language:

M ◦N ≡ λx.M (N x) f ◦ g ≡ λv.f (g v)

Theorem 1 (Type soundness).

∆; Γ `M : A⇒ JMKJ∆K,(JΓKJ∆K) ∈ JAKJ∆K

Proof. By induction on the derivation ∆; Γ `M : A.

Our core language can be naturally extended to include all of
the primitives of Figures 4 and 5. One can model reorder by lifting
the entire semantics to model non-determinism by returning sets of

∆ ` I SIZE

IVAR
n ∈ ∆

∆ ` n SIZE
ITIMES

∆ ` I SIZE ∆ ` J SIZE

∆ ` I × J SIZE

INAT
∆ ` i SIZE

IPOWER
∆ ` I SIZE ∆ ` J SIZE

∆ ` IJ SIZE

∆ ` A

TINT
∆ ` int

TFLOAT
∆ ` float

TUNIT
∆ ` 1

TPRODUCT
∆ ` A ∆ ` B

∆ ` A×B TFUN
∆ ` A ∆ ` B

∆ ` A→ B

TFUNI
∆, n ` B

∆ ` (n : size)→ B

TARRAY
∆ ` A ∆ ` I SIZE

∆ ` [A]I

∆; Γ `M : A

VAR
x : A ∈ Γ ∆ ` A

∆; Γ ` x : A
UNIT

∆; Γ ` () : 1

PAIR
∆; Γ `M : A ∆; Γ ` N : B

∆; Γ ` (M,N) : A×B

PROJECT
∆; Γ ` (M,N) : A1 ×A2

∆; Γ `M.i : Ai

LAM
∆; Γ, x : A `M : B ∆ ` A

∆; Γ ` λxA.M : A→ B

APP
∆; Γ `M : A→ B ∆; Γ ` N : A

∆; Γ `M N : B

LAMI
∆, n; Γ `M : B

∆; Γ ` λn.M : (n : size)→ B

APPI
∆; Γ `M : (n : size)→ B ∆ ` I SIZE

∆; Γ `M I : B

Figure 8: Typing Rules for the Core Language

Sizes
JnKι = ι n
JiKι = i

JI × JKι = JIKι × JJKι
JIJKι = JIKJIKι

ι

Types

JintKι = Z
JfloatKι = F

J1Kι = 1
JA×BKι = JAKι × JBKι

JA→ BKι = JAKι → JBKι
J(n : size)→ BKι = (i : N)→ JBKι[n 7→i]

J[A]IKι = [0..JIKι)→ JAKι
Size environments

J·K = ∅
J∆, nK = J∆K[n 7→ N]

Type environments

J·Kι = ∅
JΓ, x : AKι = JΓK[x 7→ JAKι]

Terms
JxKι,ρ = ρ x
J()Kι,ρ = ()

J(M,N)Kι,ρ = (JMKι,ρ, JNKι,ρ)
JM.iKι,ρ = (JMKι,ρ).i

JλxA.MKι,ρ = λv.JMKι,ρ[x 7→v]

JM NKι,ρ = JMKι,ρ JNKι,ρ
Jλn.MKι,ρ = λi.JMKι[n 7→i],ρ

JM IKι,ρ = JMKι,ρ JIKι
Primitives

JmapA,B,IKι,ρ = λf x i. f (x i)
JreduceA,IKι,ρ = λ(⊕) e x i.

(x 0)⊕ ((x 1)⊕ (. . .⊕ (x (JIKι − 1))⊕ e) . . .))
JzipA,B,IKι,ρ = λx y i. (x i, y i)

JsplitA,I,JKι,ρ = λnx i j. x ((i× n) + j)
JjoinA,I,JKι,ρ = λx i. (x (i/JIKι)) (i%JIKι)

JiterateA,I,JKι,ρ = λn f. f in ◦ . . . ◦ f i2 ◦ f i1
where ij = (JIKι)n−j × JJKι

Figure 9: Denotational Semantics for the Core Language

values rather a single value. Many of the low-level primitives have
the same denotation as the corresponding high-level primitives:

JmapWorkgroupK = JmapLocalK = JmapGlobalK =
JmapSeqK = JmapWorkgroupK = JmapVecK = JmapK

JreduceSeqK = JreduceK
JtoLocalK = JtoGlobalK = λx.x
JsplitVecK = JsplitK
JjoinVecK = JjoinK

The semantics of the remaining two primitives is as follows:

JreducePartA,IKι,ρ = λ(⊕) e n x i.
(x j)⊕ ((x (j + 1))⊕ (. . .⊕ ((x (j + JIKι − 1))⊕ e) . . .))

where j = i× JIKι
JreorderStrideA,IKι,ρ = λnx i. x (i/JIKι + n× (i%JIKι))

asumI : [float]I → [float]1
asumI×J = reducefloat,I×J (+) 0 ◦ map abs

6d→ reducefloat,J (+) 0 ◦ reducePartfloat,I (+) 0 J ◦ map abs (1)
6d→ reduce (+) 0 ◦ join ◦ map (reducePart (+) 0 1) ◦ splitfloat,J I ◦ map abs (2)
6c→ reduce (+) 0 ◦ join ◦ map (reducePart (+) 0 1) ◦ split I ◦ join ◦ map (map abs) ◦ split I (3)
6e→ reduce (+) 0 ◦ join ◦ map (reducePart (+) 0 1) ◦ map (map abs) ◦ split I (4)
6f→ reduce (+) 0 ◦ join ◦ map (reducePart (+) 0 1 ◦ map abs) ◦ split I (5)
7a→ reduce (+) 0 ◦ join ◦ map (reducePart (+) 0 1 ◦ mapSeq abs) ◦ split I (6)

6d&7b→ reduce (+) 0 ◦ join ◦ map (reduceSeq (+) 0 ◦ mapSeq abs) ◦ split I (7)
6f→ reduce (+) 0 ◦ join ◦ map (reduceSeq (λ(acc, a).acc + (abs a)) 0) ◦ split I (8)

Figure 10: Derivation of a fused parallel implementation of absolute sum.

5.3 Correctness of Rewrite Rules
Using the denotational semantics along with a small amount of
equational reasoning, it is straightforward to prove the correctness
of the rewrite rules of Section 4. We illustrate the nature of these
proofs by giving a proof for the split-join rule (Figure 6c) as an
example. The proofs for all other rules can be found in [40].

Jjoin ◦ map (map f) ◦ splitnKι,ρ
(definition of J−K and ◦)
= λx i. (x (i/JIKι)) (i%JIKι)

(
λf x i. f (x i) (λx i. (ρ f) (x i)) (λx i j. x (i× (ι n) + j))

)
(β-reduction)
= λx.

(
λi j. (ρ f) (x (i× (ι n) + j)) (i/JIKι) (i%JIKι)

)
(β-reduction)
= λx i. (ρ f) (x (((i/JIKι)× (ι n)) + (i%JIKι)))

(i < JIKι)
= λx i. (ρ f) (x i)

(definition of J−K)
= Jmap fKι,ρ

5.4 Example Use of Rewrite Rules
We now illustrate how the rewrite rules can be applied to derive
optimized implementations. To achieve good performance it is in
general beneficial to avoid storing intermediate results. Our rewrite
rule 6f allows us to apply this principle and fuse two primitives
into one, thus, avoiding intermediate results. Figure 10 shows the
derivation of a fused version of the code for calculating the absolute
sum of an array of numbers, asum, from a high-level expression
written by the programmer. The derivation consists of a sequence
of rewrites. The annotations on rewrites refer to the rules from
Figure 6 and Figure 7.

We begin by applying reduce rules 6d twice: first to decom-
pose reduce into reduce ◦ reducePart (1) and second to expand
reducePart (2). Next we expand map abs (3), deforest the adjacent
split and join (4), and fuse the adjacent maps (5). We now realize
the inner map as a sequential mapSeq (6), and the inner reducePart
as a seqential reduceSeq (7). Finally, we fuse the inner reduceSeq
and mapSeq (8). The resulting expression yields a more efficient
implementation than the original code as the intermediate result
does not need to be materialized.

6. Searching for Good Derivations
We now present an automatic search strategy to find good expres-
sions by applying the rules presented in Section 4.

6.1 Automatic Search
The rules presented earlier define a search space of possible imple-
mentations. In order to find the best possible low-level expressions
for a given target device, we have developed a simple automatic
search strategy based loosely on Bandit-based optimization [17].
Our current search strategy is rather basic and just designed to
prove that it is possible to find good implementations automati-
cally. We envision replacing this exploration strategy in the future
by using machine-learning techniques to avoid having to search the
space at all. However, this is orthogonal to the work presented in
this paper.

Our search strategy starts with the high-level expression and de-
termines all the valid rules that can be applied. We use a Monte-
Carlo method for evaluating the potential impact of each rule by
randomly walking down the search tree. We execute the code gener-
ated from the randomly chosen expressions and measure its perfor-
mance. The rule that promises the best performance following the
Monte-Carlo descent is chosen and the resulting derivation fixed
and used as a starting point for the next random walk. This process
is repeated until we reach a terminal expression. In addition to se-
lecting the rules, we also search at the same time for the parameters
controlling our primitives such as the parameter for the split n. We
limit the choices for these numerical parameters to a reasonable set
appropriate for our test hardware.

In order to speed up the search process, we incorporate macro
rules to guide the optimization process more efficiently. Macro
rules are rules which perform multiple small steps at once by
applying a set of rules in a predefined order. One example of
such a macro rule is the fusion of map and reduce as discussed in
Figure 10. While not strictly necessary, these macro rules provide
shortcuts for the most commonly used sequences of derivations.

6.2 Found Expressions
Figure 11 shows several low-level expressions found by applying
the automatic search technique described in Section 6.1. We started
from the high-level expression for the sum of absolute use-case
(asum) and tested it on two GPUs and one CPU (described later
in Section 8). We can make several important observations. First,
in all of the expressions the fusion macro rule merging map and
reduce was applied. The second observation is that none of the

(a) Nvidia
GPU

λx.(reduceSeq ◦ join ◦ join ◦ mapWorkgroup (

toGlobal
(
mapLocal (reduceSeq (λ(a, b). a+ (abs b)) 0)

)
◦ reorderStride 2048

) ◦ split 128 ◦ split 2048) x

(b) AMD
GPU

λx.(reduceSeq ◦ join ◦ joinVec ◦ join ◦ mapWorkgroup (

mapLocal (reduceSeq (mapVec (λ(a, b). a+ (abs b))) 0 ◦ reorderStride 2048

) ◦ split 128 ◦ splitVec 2 ◦ split 4096) x

(c) Intel
CPU

λx.(reduceSeq ◦ join ◦ mapWorkgroup (join ◦ joinVec ◦ mapLocal (

reduceSeq (mapVec (λ(a, b). a+ (abs b))) 0

) ◦ splitVec 4 ◦ split 32768) ◦ split 32768) x

Figure 11: Low-level expressions performing the sum of absolute values. These expressions are automatically derived by our system from
the high-level expression asum = reduce (+) 0 ◦ map abs .

●
●●●

●
●

●

●

●●●
●●

●

●

●

●

●●●
●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●●

●

●●

●

●●●●

●
●

●

●

●

●

●

●

●
●

●●

0 10 20 30 40 50 60 70

0
2

0
4

0
6

0
8

0
1

2
0

Number of evaluated expressions

A
b
s
o
lu

te
 p

e
rf

o
rm

a
n
c
e
 i
n
 G

B
/s

(a) Nvidia GPU

●

●

●●

●●●
●
●

●

●●
●

●

●●

●

●●

●●

●

●●●●●●
●

●●

●
●

●

●●●

●●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80

0
5

0
1

0
0

1
5

0
2

0
0

Number of evaluated expressions

A
b
s
o
lu

te
 p

e
rf

o
rm

a
n
c
e
 i
n
 G

B
/s

(b) AMD GPU

●
●●●

●●

●

●

●●

●
●

●●

●●●

●

●●
●

●
●

●●●●●●

●●

●●●
●

●

●
●●●

●●●
●●

●●●

●

●●

●

●●
●

●●

●

●

●

●●

●●
●
●

●●●●

●
●

●●
●
●

●

●●●

●

●

●●●

●

●

●●●●●

●

●●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●●

●

●●

●

●

●
●

●●

●

●
●

●

●

●
●

●

0 20 40 60 80 100 120

0
5

1
0

1
5

Number of evaluated expressions

A
b
s
o
lu

te
 p

e
rf

o
rm

a
n
c
e
 i
n
 G

B
/s

(c) Intel CPU

Figure 12: Search efficiency. Each point shows the performance of the OpenCL code generated from a tested expression. The horizontal
partitioning visualized using vertical bars represents the number of fixed derivations in the search tree. The red line connects the fastest
expressions found so far.

versions make use of the local memory (although our systems
fully support it). It is common wisdom that using local memory
on the GPU enables high performance and indeed the highly tuned
hand-written implementation of asum does use local memory on
the GPU. However, as we will see later in the results section, our
automatically derived version is able to perform as well without
using local memory. The third key observation is that each thread
performs a large sequential reduce independent of all other threads,
which does not require thread synchronization, avoiding overheads.

While these observations are the same for all platforms, there
are also crucial differences between the different low-level expres-
sions. Both GPU versions make use of the reorderStride primitive,
allowing for coalesced memory accesses. The AMD and Intel ver-
sions are vectorized with a vector length of two and four respec-
tively. The Nvidia version does not use vectorization since this
platform does not benefit from vectorized code. On the CPU, the
automatic search picked numbers for partitioning into work groups
and then into work items in such a way that inside each work group
only a single work item is active. This corresponds to the fact that
there is less parallelism available on a CPU compared to GPUs.

6.3 Search Efficiency
We now present some evidence that our search strategy is effective.
Figure 12 shows how many expressions were evaluated during the
search to achieve the best performance on two GPUs and one CPU
for the asum application. The performance of the best expression

found is discussed in Section 9, here we focus on the search effi-
ciency. Each evaluated expression is represented as a point grouped
from left to right by the number of fixed derivations in the search
tree. The red line connects the fastest expression found so far.

The performance improves steadily for all three platforms be-
fore reaching a plateau. For both GPUs the best performance is
reached after testing ≈ 40 expressions. At this point we have fixed
five derivations and found a subtree offering good performance
for some expressions. Nevertheless, even in the later stages of the
search many expressions offer bad performance, which is partly
due to the sensitivity of the GPU to the particular numerical pa-
rameters. On the CPU performance converges quicker and more
expressions offer good performance. This shows that the CPU is
easier to optimize for an not as sensitive when selecting numerical
parameters.

Overall the search took less than an hour to complete on all plat-
forms, with an average execution time per expression of around 1/2
of a second, including OpenCL code generation, compilation, data
transfers, and execution. We believe an implementation optimized
for fast code generation could significantly reduce the search time.

7. Benchmarks
We now discuss how applications can be represented as expressions
composed of our high-level algorithmic primitives using a set of
easy to understand benchmarks from the fields of linear algebra,
mathematical finance, and physics.

7.1 Linear Algebra Kernels
We choose linear algebra kernels as our first set of benchmarks,
because they are well known, easy to understand, and used as
building blocks in many other applications. Figure 13 shows how
we express vector scaling, sum of absolute values, dot product
of two vectors and matrix vector multiplication using our high-
level primitives. While three benchmarks perform computations on
vectors, matrix vector multiplication illustrates a computation using
a 2D data structures, where we exploit nested parallelism.

For scaling (scal), the map primitive applies a function to each
element which multiplies it with a constant a. The sum of absolute
values (asum) and the dot product (dot) applications both produce
scalar results by performing a summation, which we express us-
ing the reduce primitive combined with addition. For dot product,
a pair-wise multiplication of the two input vectors is performed be-
fore reducing the result using addition.

The gemv benchmark performs matrix vector multiplication as
defined in BLAS: ~y = αA~x + β~y. To multiply matrix A with ~x,
we map the computation of the dot-product with the input vector ~x
over each row of the matrixA. Notice how we are reusing the high-
level expressions for dot-product and scaling as building blocks
for the more complex matrix-vector multiplication. Expressions
describing algorithmic concepts can be reused, without committing
to a particular low-level implementation. After optimisation, the
dot-product from gemv might be implemented in a completely
different way from a stand-alone dot-product.

7.2 Mathematical Finance Application
The BlackScholes application uses a Monte-Carlo method for op-
tion pricing and computes for each stock price a pair of call and put
options. Figure 13 shows the BlackScholes implementation, where
the function compCallPut computes the call and put option for a
single stock price. It is applied to all stock prices using the map
primitive. A detailed discussion of a similar financial benchmark
can be found in [2], which is also parallelized using map.

7.3 Physics Application
Another application we consider is the molecular dynamics (md)
application from the SHOC benchmark suite [15]. It calculates the
sum of all forces acting on a particle from its neighbors. Figure 13
shows the implementation using our high-level primitives.

The function updateF updates the force f of particle p by
computing and adding the force between a single particle and one
of its neighbors, based on the neighbor’s index nId and the vector
storing all particles p. It only updates the force if the computed
distance between the two particles is below a given threshold t.

For computing the force for all particles ps , we use the zip
primitive to build a vector of pairs, where each pair combines a
single particle with the indices of all of its neighboring particles.
Computing the resulting force exerted by all the neighbors on
one particle is done by applying reduce on vector ns storing the
neighboring indices and using updateF as the reduce operation.

7.4 Limitations
In our experimental evaluation, we have chosen to mainly focus
on linear algebra kernels; these kernels have been studied in depth
and have specialized high-performance libraries implementations
on many devices. While our approach is currently limited by the
small number of high-level primitives we support, it can be easily
extended to support more complex applications found in bench-
mark suites such as Rodinia [10] or SHOC [15]. However, the two
larger applications already demonstrate the applicability of our ap-
proach beyond linear algebra kernels. In the future, we intend to
extend our set of primitives to support additional patterns found in
more complex benchmarks such as stencil applications.

scal = λa. map (∗a)

asum = reduce (+) 0 ◦ map abs

dot = λxs ys. (reduce (+) 0 ◦ map (∗)) (zip xs ys)

gemv = λmat xs ys αβ. map (+)
(

zip (map (scal α ◦ dot xs) mat) (scal β ys)
)

blackScholes = map compCallPut

md = λps nbhs t. map
(
λ(p,ns).

reduce (λf nId. updateF f nId p ps t) 0 ns
)

(zip ps nbhs)

Figure 13: Our benchmarks expressed using our high-level algo-
rithmic primitives. The operators (+) and (∗) operate on a single
pair instead of two scalar values.

8. Experimental Setup
8.1 Implementation Details
Our system is implemented in C++11 using the LLVM/Clang com-
piler infrastructure and making heavy use of C++ templates. Our
primitives are expressed as C++ functions and expressions as com-
positions of those. When generating code two basic steps are per-
formed: First, the Clang compiler library parses the input expres-
sion and produces an abstract syntax tree for it. Second, we traverse
the tree and emit code for every function call representing one of
our low-level hardware primitives.

As part of the first step, we have developed our own type sys-
tem which plays a dual role. First, it prevents the user producing
incorrect expressions. Secondly, the type system encodes informa-
tion for code generation, such as the array size information used to
allocate memory.

The design of our code generator is straightforward since no
optimization decisions are made at this stage. We avoid perform-
ing complex code analysis which makes our design very different
compared to traditional optimizing compilers.

8.2 Hardware Platforms and Evaluation Methodology
The experiments were performed on three different hardware plat-
forms: an Nvidia GeForce GTX 480 GPU, an AMD Radeon HD
7970 GPU and a dual socket Intel Xeon E5530 server, with 8 cores
in total. The OpenCL runtimes from Nvidia (CUDA-SDK 5.5),
AMD (AMD-APP 2.8.1), and Intel (XE 2013 R3) were used. The
GPU drivers installed were 310.44 for Nvidia and 13.1 for AMD.

The profiling APIs from OpenCL and CUDA were used to
measure kernel execution time and the gettimeofday function for
the CPU implementation. Following the Nvidia benchmarking
methodology [23], the data transfer time to and from the GPU
is excluded from the results. Each experiment was repeated 1000
times and we report median runtimes.

The experiments were performed with multiple input sizes. For
scal, asum and dot, the small input size corresponds to a vector size
of 16M elements (64MB). The large input size uses 128M elements
(512MB, the maximum OpenCL buffer size for our platforms).
For gemv, an input matrix of 4096×4096 elements (64MB) and
a vector size of 4096 elements (16KB) were used for the small
input size. For the large input size, the matrix size was 8192×16384
elements (512MB) and the vector size 8192 elements (32KB). For
BlackScholes, the problem size is fixed to 4 million elements and
for MD it is 12288 particles.

0

1

2

small large small large small large small large

scal asum dot gemv

S
p

e
e

d
u

p
 o

ve
r

C
U

B
L

A
S

CUBLAS Generated

(a) Nvidia GPU

0

1

2
4.5 3.1

small large small large small large small large

scal asum dot gemv

S
p

e
e

d
u

p
 o

ve
r

c
lB

L
A

S

clBLAS Generated

(b) AMD GPU

0

1

2

small large small large small large small large

scal asum dot gemv

S
p

e
e

d
u

p
 o

ve
r

M
K

L

MKL Generated

(c) Intel CPU

Figure 15: Performance comparison with state of the art platform-specific libraries; CUBLAS for Nvidia, clBLAS for AMD, MKL for Intel.
Our approach matches the performance on all three platforms and outperforms clBLAS in some cases.

0

1

2

3

4
20 8.5 4.5

small large small large small large small large
scal asum dot gemv Black

Scholes MD

S
p

e
e

d
u

p

Nvidia GPU AMD GPU Intel CPU

Figure 14: Performance of our approach relative to a portable
OpenCL reference implementation (clBLAS).

9. Results
We now evaluate our approach compared to a reference OpenCL
implementations of our benchmarks on all platforms. Furthermore,
we compare the BLAS routines against platform-specific highly
tuned implementations.

9.1 Comparison vs. Portable Implementation
First, we show how our approach performs across three platforms.
We use the clBLAS OpenCL implementations written by AMD
as our baseline for this evaluation since it is inherently portable
across all different platforms. Figure 14 shows the performance of
our approach relative to clBLAS. We achieve better performance
than clBLAS on most platforms and benchmarks. The speedups
are highest for the CPU, with up to 20× for the asum benchmark
with a small input size. The reason is that clBLAS was written and
tuned specifically for an AMD GPU which usually exhibits a larger
number of parallel processing units. As we saw in Section 6, our
systematically derived expression for this benchmark is specifically
tuned for the CPU by avoiding creating too much parallelism,
which is what yields such a large speedup.

Figure 14 also shows the results we obtain relative to the Nvidia
SDK, BlackScholes, and SHOC molecular dynamics MD bench-
mark. For BlackScholes, we see that our approach is on a par with
the performance of the Nvidia implementation on both GPUs. On
the CPU, we actually achieve a 2.2× speedup due to the fact that
the Nvidia implementation is tuned for GPUs while our implemen-
tation generates different code for the CPU. For MD, we are on par
with the OpenCL implementation on all platforms.

9.2 Comparison vs. Highly-tuned Implementations
We compare our approach with a state of the art implementation
for each platform. For Nvidia, we pick the highly tuned CUBLAS
implementation of BLAS written by Nvidia. For the AMD GPU,
we use the same clBLAS implementation as before given that it
has been written and tuned specifically for AMD GPUs. Finally, for
the CPU we use the Math Kernel Library (MKL) implementation
of BLAS written by Intel, which is known for its high performance.

Similar to the high performance libraries our approach results
in device-specific OpenCL code with implementation parameters
tuned for specific data sizes. In contrast, existing library approaches
are based on device-specific manually optimized implementations
whereas our approach systematically and automatically generates
these specialized versions.

Figure 15a shows that we actually match the performance of
CUBLAS for scal, asum and dot on the Nvidia GPU. For gemv we
outperform CUBLAS on the small size by 20% while we are within
5% for the large input size. Given that CUBLAS is a proprietary
library highly tuned for Nvidia GPUs, these results show that our
technique is able to achieve high performance.

On the AMD GPU, we are surprisingly up to 4.5× faster than
the clBLAS implementation on gemv small input size as shown
in Figure 15b. The reason for this is found in the way clBLAS is
implemented; clBLAS performs automatic code generation using
fixed templates. In contrast to our approach, it only generates one
implementation since it does not explore different template compo-
sitions.

For the Intel CPU (Figure 15c), our approach beats MKL for one
benchmark and matches the performance of MKL on most of the
other three benchmarks. For the small input sizes for the scal and
dot benchmarks we are within 13% and 30% respectively. For the
larger input sizes, we are on a par with MKL for both benchmarks.
The asum implementation in the MKL does not use thread level
parallelism, whereas our implementation does; hence we achieve a
speedup of up to 1.78 on the larger input size.

9.3 Summary
We have demonstrated that our approach generates performance
portable code which is competitive with highly-tuned platform
specific implementations. Our systematic approach is generic and
generates optimized kernels for different devices and data sizes.
The results show that high performance is achievable for different
input sizes and for a range of benchmarks.

10. Related Work
Algorithmic Patterns Algorithmic patterns (or algorithmic skele-
tons [11]) have been around for more than two decades. Early work
already covers algorithmic skeletons in the context of performance
portability [16]. Patterns are parts of popular frameworks such as
Map-Reduce [18] from Google. Current pattern-based libraries for
platforms ranging from cluster systems [37] to GPUs [41] have
been proposed with recent extensions to irregular algorithms [20].
Lee et al. [28] discuss how nested parallel patterns can be mapped
efficiently to GPUs. Compared to our approach, most prior work
relies on hardware-specific implementations to achieve high per-
formance. Conversely, we systematically generate implementations
using fine-grain OpenCL patterns combined with rewrite rules.

Algebra of Programming Bird and Meertens, amongst others,
developed formalisms for algebraic reasoning about functional pro-
grams in the 1980s [5]. Our rewrite rules are in the same spirit and
many of our rules are similar to equational rules presented by Bird,
Meertens, and others. Skillicorn [38] describes the application of
the algebraic approach for parallel computing. He argues that it
leads to architecture-independent parallel programming — which
we call performance portability in this paper. Our work can be seen
as an application of the algebraic approach to the generation of ef-
ficient code for contemporary parallel processors.

Functional Approaches for GPU Code Generation Accelerate
is a Haskell embedded domain specific language aimed at gener-
ating efficient GPU code [9, 30]. Obsidian [42] and Harlan [24]
are earlier projects with similar goals. Obsidian exposes more de-
tails of the underlying GPU hardware to the programmer. Harlan
is a declarative programming language compiled to GPU code.
Bergstrom and Reppy [4] compile NESL, which is a first-order di-
alect of ML supporting nested data-parallelism, to GPU code. Re-
cently, Nvidia introduced NOVA [12], a new functional language
targeted at code generation for GPUs, and Copperhead [7], a data
parallel language embedded in Python. HiDP [46] is a hierarchical
data parallel language which maps computations to OpenCL. All of
these projects rely on code analysis or hand-tuned versions of high-
level algorithmic patterns. In contrast, our approach uses rewrite
rules and low-level hardware patterns to produce high-performance
code in a portable way.

Halide [35] is a domain specific approach that targets image pro-
cessing pipelines. It separates the algorithmic description from op-
timization decisions. Our work is domain agnostic and takes a dif-
ferent approach. We systematically describe hardware paradigms
as functional patterns instead of encoding specific optimizations
which might not apply to future hardware generations.

Rewrite-rules for Optimizations Rewrite rules have long been
used as a way to automate the optimization process of functional
programs [26]. Recently, rewriting has been applied to HPC ap-
plications [32] as well, where the rewrite process is driven by user
annotations on imperative code. Spiral [34] uses rewrite rules to op-
timize signal processing programs and was more recently adapted
to linear algebra [39]. One difference is that our rules and OpenCL
hardware patterns are expressed at a finer-grained level, allowing
for highly specialized and optimized code generation.

Automatic Code Generation for GPUs A large body of work
has explored how to generate high performance code for GPUs.
Dataflow programming models such as StreamIt [43] and Liq-
uidMetal [19] have been used to produce GPU code. Directive
based approaches such as OpenMP to CUDA [29], OpenACC to
OpenCL [36], and hiCUDA [22] compile sequential C code for
the GPU. X10, a language for high performance computing, can
also be used to program GPUs [14]. However, this remains low-
level since the programmer has to express the same low-level op-

erations found in CUDA or OpenCL. Recently, researchers have
looked at generating efficient GPU code for loops using the poly-
hedral framework [44]. Delite [6, 8], a system that enables the cre-
ation of domain-specific languages, can also target multicore CPUs
or GPUs. Alas, none of these approaches currently provides full
performance portability, as they assume a fixed platform and the
optimizations and implementations are targeted at a specific device.

Finally, Petabricks [3] takes an alternative approach by letting
the programmer specify different implementations of an algorithm.
The compiler and runtime choose the most suitable implementation
based on an adaptive mechanism, and produces OpenCL code [33].
Compared to our work, this technique relies on static analysis to
optimize code. Our code generator does not perform any analysis
since optimization happens at a higher level within our rewrite
rules.

11. Conclusion
In this paper, we have presented a novel approach based on rewrite
rules to represent algorithmic principles as well as low-level
hardware-specific optimization. We have shown how these rules
can be systematically applied to transform a high-level expression
into high-performance device-specific implementations. We pre-
sented a formalism, which we use to prove the correctness of the
presented rewrite rules. Our approach results in a clear separation
of concerns between high-level algorithmic concepts and low-level
hardware optimizations which pave the way for fully automated
high performance code generation.

To demonstrate our approach in practice, we have developed
OpenCL-specific primitives and rules together with an OpenCL
code generator. The design of the code generator is straightforward
given that all optimization decisions are made with the rules and
no complex analysis is needed. We achieve performance on a par
with highly tuned platform-specific BLAS libraries on three differ-
ent processors. For some benchmarks such as matrix vector multi-
plication we even reach a speedup of up to 4.5. We also show that
our technique can be applied to more complex applications such as
BlackScholes and molecular dynamics simulation.

Acknowledgments
This work was supported by a HiPEAC collaboration grant, EP-
SRC (grant number EP/K034413/1), the Royal Academy of En-
gineering, Google and Oracle. We are grateful to the anonymous
reviewers who helped to substantially improve the quality of the
paper. We would like to thank Sergei Gorlatch for his support of the
first author in the HiPEAC collaboration and the following people
for their involvement in the discussions on formalization: Robert
Atkey, James Cheney, Stefan Fehrenbach, Adam Harries, Shayan
Najd, and Philip Wadler.

References
[1] AMD Accelerated Parallel Processing OpenCL Programming Guide.

AMD, 2013.
[2] C. Andreetta, V. Begot, J. Berthold, M. Elsman, T. Henriksen, M.-

B. Nordfang, and C. Oancea. A financial benchmark for GPGPU
compilation. Technical Report no 2015/02, University of Copenhagen,
2015. Extended version of CPC’15 paper.

[3] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman,
and S. Amarasinghe. PetaBricks: a language and compiler for algo-
rithmic choice. PLDI. ACM, 2009.

[4] L. Bergstrom and J. H. Reppy. Nested data-parallelism on the GPU.
ICFP. ACM, 2012.

[5] R. S. Bird. An introduction to the theory of lists. In Logic of Program-
ming and Calculi of Discrete Design, Nato ASI Series. Springer New
York, 1987.

[6] K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Odersky,
and K. Olukotun. A heterogeneous parallel framework for domain-
specific languages. PACT. ACM, 2011.

[7] B. Catanzaro, M. Garland, and K. Keutzer. Copperhead: Compiling
an embedded data parallel language. PPoPP. ACM, 2011.

[8] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and
K. Olukotun. A domain-specific approach to heterogeneous paral-
lelism. PPoPP. ACM, 2011.

[9] M. M. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover.
Accelerating Haskell array codes with multicore GPUs. DAMP. ACM,
2011.

[10] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and
K. Skadron. Rodinia: A benchmark suite for heterogeneous comput-
ing. IISWC. IEEE, 2009.

[11] M. I. Cole. Algorithmic Skeletons: Structured Management of Parallel
Computation. MIT Press & Pitman, 1989.

[12] A. Collins, D. Grewe, V. Grover, S. Lee, and A. Susnea. NOVA: A
functional language for data parallelism. ARRAY. ACM, 2014.

[13] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion: from lists
to streams to nothing at all. ICFP. ACM, 2007.

[14] D. Cunningham, R. Bordawekar, and V. Saraswat. GPU programming
in a high level language: compiling X10 to CUDA. X10. ACM, 2011.

[15] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spaf-
ford, V. Tipparaju, and J. S. Vetter. The scalable heterogeneous com-
puting (SHOC) benchmark suite. GPGPU. ACM, 2010.

[16] J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp,
and Q. Wu. Parallel programming using skeleton functions. PARLE.
Springer, 1993.

[17] F. de Mesmay, A. Rimmel, Y. Voronenko, and M. Püschel. Bandit-
based optimization on graphs with application to library performance
tuning. ICML. ACM, 2009.

[18] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. Communication of the ACM, 51(1), 2008.

[19] C. Dubach, P. Cheng, R. Rabbah, D. F. Bacon, and S. J. Fink. Compil-
ing a high-level language for GPUs: (via language support for archi-
tectures and compilers). PLDI. ACM, 2012.

[20] C. H. González and B. B. Fraguela. An algorithm template for domain-
based parallel irregular algorithms. International Journal of Parallel
Programming, 42(6):948–967, 2014.

[21] T. Grust, M. Mayr, J. Rittinger, and T. Schreiber. FERRY: database-
supported program execution. SIGMOD. ACM, 2009.

[22] T. D. Han and T. S. Abdelrahman. hiCUDA: High-level GPGPU pro-
gramming. IEEE Transactions on Parallel and Distributed Systems,
22(1), Jan. 2011.

[23] M. Harris. Optimizing Parallel Reduction in CUDA. Nvidia, 2007.
[24] E. Holk, W. E. Byrd, N. Mahajan, J. Willcock, A. Chauhan, and

A. Lumsdaine. Declarative parallel programming for GPUs. PARCO.
IOS Press, 2011.

[25] A. H. Hormati, M. Samadi, M. Woh, T. Mudge, and S. Mahlke.
Sponge: Portable stream programming on graphics engines. ASPLOS.
ACM, 2011.

[26] S. P. Jones, A. Tolmach, and T. Hoare. Playing by the rules: Rewrit-
ing as a practical optimisation technique in GHC. In Haskell Work-
shop’01, 2001.

[27] R. Karrenberg and S. Hack. Whole-function vectorization. CGO.
IEEE, 2011.

[28] H. Lee, K. J. Brown, A. K. Sujeeth, T. Rompf, and K. Olukotun.
Locality-aware mapping of nested parallel patterns on GPUs. MICRO.
IEEE, 2014.

[29] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU: a compiler
framework for automatic translation and optimization. PPoPP. ACM,
2009.

[30] T. L. McDonell, M. M. Chakravarty, G. Keller, and B. Lippmeier.
Optimising purely functional GPU programs. ICFP. ACM, 2013.

[31] Nvidia OpenCL Best Practices Guide. Nvidia, 2011.

[32] A. Panyala, D. Chavarria-Miranda, and S. Krishnamoorthy. On the
use of term rewriting for performance optimization of legacy HPC
applications. ICPP. IEEE, 2012.

[33] P. M. Phothilimthana, J. Ansel, J. Ragan-Kelley, and S. Amaras-
inghe. Portable performance on heterogeneous architectures. ASP-
LOS. ACM, 2013.

[34] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen,
R. W. Johnson, and N. Rizzolo. SPIRAL: Code generation for DSP
transforms. IEEE special issue on “Program Generation, Optimiza-
tion, and Adaptation”, 93(2), 2005.

[35] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe. Halide: A language and compiler for optimizing par-
allelism, locality, and recomputation in image processing pipelines.
PLDI. ACM, 2013.

[36] R. Reyes, I. López-Rodríguez, J. Fumero, and F. de Sande. accULL: an
OpenACC implementation with CUDA and OpenCL support. Euro-
Par. Springer, 2012.

[37] C. Rodrigues, T. Jablin, A. Dakkak, and W.-M. Hwu. Triolet: A
programming system that unifies algorithmic skeleton interfaces for
high-performance cluster computing. PPoPP. ACM, 2014.

[38] D. B. Skillicorn. Architecture-independent parallel computation.
IEEE Computer, 23(12):38–50, 1990.

[39] D. G. Spampinato and M. Püschel. A basic linear algebra compiler.
CGO. ACM, 2014.

[40] M. Steuwer. Improving Programmability and Performance Portabil-
ity on Many-Core Processors. PhD thesis, University of Muenster,
Germany, 2015.

[41] M. Steuwer, P. Kegel, and S. Gorlatch. SkelCL - a portable skeleton
library for high-level GPU programming. HIPS Workshop. IEEE,
2011.

[42] J. Svensson, M. Sheeran, and K. Claessen. Obsidian: A domain
specific embedded language for parallel programming of graphics
processors. IFL. Springer, 2008.

[43] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A language
for streaming applications. CC. Springer, 2002.

[44] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez, C. Ten-
llado, and F. Catthoor. Polyhedral parallel code generation for CUDA.
ACM TACO, 9(4), 2013.

[45] H. Xi and F. Pfenning. Dependent types in practical programming.
POPL. ACM, 1999.

[46] Y. Zhang and F. Mueller. HiDP: A hierarchical data parallel language.
CGO. IEEE, 2013.

	Introduction
	Overview
	Algorithmic and OpenCL Primitives
	Algorithmic Primitives
	OpenCL-specific Primitives

	Rewrite Rules
	Algorithmic Rules
	OpenCL-Specific Rules
	Summary

	Core Language
	Typing Rules
	Semantics
	Correctness of Rewrite Rules
	Example Use of Rewrite Rules

	Searching for Good Derivations
	Automatic Search
	Found Expressions
	Search Efficiency

	Benchmarks
	Linear Algebra Kernels
	Mathematical Finance Application
	Physics Application
	Limitations

	Experimental Setup
	Implementation Details
	Hardware Platforms and Evaluation Methodology

	Results
	Comparison vs. Portable Implementation
	Comparison vs. Highly-tuned Implementations
	Summary

	Related Work
	Conclusion

