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ABSTRACT

Acoustic models based on Gaussian mixture models (GMMs)
typically use short span acoustic feature inputs. This does not
capture long-term temporal information from speech owing to
the conditional independence assumption of hidden Markov
models. In this paper, we present an implicit approach that
approximates the joint distribution of long span features by
product of factorized models, in contrast to deep neural net-
works (DNNs) that model feature correlations directly. The
approach is applicable to a broad range of acoustic models.
We present experiments using GMM and probabilistic linear
discriminant analysis (PLDA) based models on Switchboard,
observing consistent word error rate reductions.

Index Terms— Acoustic modelling, long span features,
multi-frame factorisation

1. INTRODUCTION

Hidden Markov model (HMM) based speech recognition [1]
typically uses acoustic feature vectors that are extracted from
a short temporal window of context at a fixed frame rate.
These acoustic feature vectors are assumed conditionally
independent given the HMM state sequence, which allows
efficient acoustic model training and decoding. However, this
has been viewed as one of major weaknesses of HMM-based
acoustic models [2], because there is significant temporal
dependence between neighbouring acoustic frames – a de-
pendency that cannot be captured efficiently by conventional
HMM-based acoustic models.

Conventional HMM systems, using Gaussian mixture
model (GMM) output distributions, do incorporate some
acoustic context, for example through the use of dynamic
features [3] or through the projection of multiple acoustic
frames using linear discriminant analysis [4]. These ap-
proaches work well in practice, although they violate the
dependence assumptions of the HMM. Since the additional
dynamic features are arrived at through a linear transform of
the original feature vector sequence, it is possible to interpret
the resultant acoustic models as defining a probability over
the complete observation sequence. This may be considered

Funded by EPSRC Programme Grant EP/I031022/1 (Natural Speech
Technology).

as a different model, referred to as the trajectory HMM, and
the training and decoding algorithms can be derived accord-
ingly [5].

Segment-based acoustic models [6, 7] aim to model sub-
word units – such as phones or sub-phones – directly. These
approaches model the joint distribution of variable-length ob-
servation sequences (with or without the conditional indepen-
dence assumption) and the segment models are used as the
basic building blocks, rather than HMM states. More re-
cently segmental conditional random fields (CRFs) [8] have
been proposed. Segmental CRFs differ from the previously
proposed models through the use of multi-scale detectors to
extract segmental-level features, using different CRF feature
functions which are integrated to predict the state sequence.

Neural network (NN) acoustic models have achieved
considerable success using concatenated acoustic vectors
from wider windows of context to take advantage of the
long temporal acoustic information for classification. These
approaches have resulted in improvements in accuracy in
both hybrid NN/HMM systems [9, 10, 11, 12, 13] and in
GMM-based systems using tandem or bottleneck features ob-
tained from NNs trained for context-independent or context-
dependent phone classification [14, 15, 16]. In the case
of tandem or bottleneck features, the HMM independence
assumptions are again violated (and accuracy is again im-
proved).

In this paper, we investigate generative acoustic models
which directly model multiframe context. Modelling the joint
distribution of concatenated features is normally prohibitive
for generative models owing to the high dimensionality, and
applying explicit dependency between multiple frames – such
as in the autoregressive HMM [1] and linear dynamic systems
[17] – makes efficient inference difficult. We consider a sim-
ple approach which factorizes the joint distribution of multi-
ple frames by a product of the probabilities of the individual
frames. This can be viewed as a type of segment model that
uses a fixed length segmentation, thus avoiding the need to
estimate latent segmentation variables. This approach is very
general and is applicable to a wide range of acoustic mod-
els. In this paper, probabilistic linear discriminant analysis
(PLDA) [18] (cf. Section 4) is used as an example. Our exper-
iments on Switchboard demonstrate that the approach results
in reductions in word error rate (WER).



2. HIDDEN MARKOV MODEL AND
LONG-SPAN ACOUSTIC MODELLING

2.1. Hidden Markov Model

Given a sequence of acoustic observations of length T , O =
(o1, · · · ,oT ), the optimal word sequence Ŵ is obtained by
the maximum a posteriori (MAP) decoding rule as

Ŵ = arg max
W

p(O|M,W)P (W) (1)

whereM denotes the acoustic model parameters, and P (W)
is the prior probability obtained from a language model. Us-
ing HMMs, the acoustic likelihood score is computed as

p(O|M,W) =
∑

q∈ΦW

p(O|q,M)P (q) (2)

where q = (q0, q1, · · · , qT , qT+1) denotes an HMM state se-
quence corresponding to the observations, and ΦW denotes
the set of all the possible HMM state sequences of W. q0

and qT+1 are non-emitting entry and exit states that are not
considered in the following for simplicity. Equation (2) can
be solved efficiently if we apply the first-order Markov and
conditional independence assumptions:

P (q) ≈
T∏
t=1

P (qt|qt−1), p(O|q,M) ≈
T∏
t=1

p(ot|q,M)

(3)

Given that, we can rewrite equation (2) as

p(O|M,W) ≈
∑

q∈ΦW

T∏
t=1

p(ot|qt,M)P (qt|qt−1) (4)

which is behind the HMM-based acoustic models.

2.2. Long-span acoustic modelling

To capture long term dependence, one way is to address the
conditional independence assumption of HMMs directly. For
instance, some Bayesian models introduce an explicit depen-
dency between observations in equation (3), e.g.

p(O|q,M) ≈
T∏
t=2

p(ot|ot−1,q,M)p(o1|q,M) (5)

Typical examples include autoregressive HMM [1] and
switching linear dynamic systems [17]. However, these mod-
els are usually expensive to train, and do not work well in
practice.

Another approach is to use long span features directly by
concatenating the observations of certain context size without
formulating the internal dependence explicitly. If we define

yt := (ot−k, . . . ,ot, . . . ,ot+k) (6)

and if we do not consider the effect of feature overlapping
when computing the state transition probability, this model
may be represented as

p(O|M,W) ≈
∑

q∈ΦW

T∏
t=1

p(yt|qt,M)P (qt|qt−1) (7)

where 2k + 1 is the context size. Though it is not very pre-
cise theoretically, this approach works well for DNN-based
acoustic models [11, 12]. In practice, the short span features
{ot+n, n ∈ [−k, k]} may overlap with each other in the time
domain, and if ot+n is beyond the utterance length, the empty
elements can be padded by the first or last frames.

Using long span features such as yt is impractical for
GMM-based acoustic models due to the expansion of model
size and diagonalisation of covariance. DNNs, however, do
not have this difficulty, and the scaled likelihood can be com-
puted efficiently as

p(yt|qt,M) ∝ P (qt|yt,M)/P (qt) (8)

Previously, we studied the use of PLDA to estimate the joint
probability distribution p(yt|qt,M) directly which is able
capture feature correlations and is more scalable to higher
dimensional features [18]. However, this approach does not
work well for very high dimensional features. In this paper,
we investigate an implicit approach which approximates this
joint distribution by product of factorized models.

3. MULTI-FRAME FACTORISATION

The idea of factorizing the distribution of p(yt|qt,M) is not
new. For instance, the semi-parametric trajectory model [19],
rewrites the joint distribution as

p(yt|qt,M) = p(τ t|ot, qt,Mτ )p(ot|qt,Mo) (9)

where τ t := (ot−k, . . . ,ot−1,ot+1, . . . ,ot+k), and we have
usedMτ , andMo to show that the two distributions may be
modelled by different sets of model parameters. In [19], the
model is simplified by dropping the dependency on ot as

p(τ t|ot, qt,Mτ ) ≈ p(τ t|qt,Mτ ) (10)

In this case the factorisation is performed on each Gaussian
component for a GMM-based acoustic model; here we do not
introduce a Gaussian component index, in order to clarify the
presentation of the basic idea.

In this paper, we present a multi-frame model which fac-
torizes the joint probability distribution into a product of prob-
abilities of each individual frames. This can be written as

p(yt|qt,M) ≈
k∏

n=−k

pγn(ot+n|qt,Mn) (11)

s.t.
∑
n

γn = 1 (12)



where Mn denotes the parameters that model the distribu-
tion of the individual frames ot+n, and γn is the scaling fac-
tor which normalises the distribution and compensates for
any factorisation error. Compared to standard HMMs (equa-
tion (7)), this approach predicts the states by averaging scores
from a wider context. Note that the factorisation can be per-
formed at the state level or the Gaussian component level [19].

This approach does not rely on a particular type of acous-
tic model, and a similar approach may be applied to DNNs
[20], where the state posterior probability is obtained as

p(qt|yt,M) ≈
k∏

n=−k

pγn(qt|ot+n,Mn) (13)

where γn = 1
2k+1 , and here ot−n itself is a long span feature

vector, as normally used in DNNs. The authors report con-
siderably improved accuracy using this approach [20]. In this
paper, we show that the multi-frame factorisation approach
is also applicable to generative models. Note that in (11)
some model parameters for each short span features Mn

may be shared: for instance, the hidden layers of DNNs may
be shared across all the factorized models as in [20] , while
for structured generative models such as the subspace GMM
(SGMM) [21] and PLDA [22], the state-independent model
parameters can be tied across all the factorized models, which
is similar to multilingual training.

4. PLDA-BASED ACOUSTIC MODEL

As discussed before, multi-frame factorisation is applicable to
general types of acoustic models including DNN hybrid mod-
els, e.g. [20]. In this paper, we apply the approach to a gener-
ative model based on PLDA. Our motivation is that the PLDA
acoustic model is more flexible with respect to higher dimen-
sional features compared to GMMs, allowing us to compare
the results of modelling the joint distribution p(yt|qt,M) di-
rectly to multi-frame factorisation.

The basic idea behind PLDA acoustic models is that the
distribution over acoustic feature vectors yt ∈ Rd from the
j-th HMM state at time t (i.e. qt = j) is expressed as [18]:

yt|j = Uxjt + Gzj + b + εjt, εjt ∼ N (0,Λ) . (14)

zj ∈ Rq is the state variable shared by the whole set of acous-
tic frames generated by the j-th state and xjt ∈ Rp is the
frame variable which explains the per-frame variability. Usu-
ally, the dimensionality of these two latent variables is smaller
than that of the feature vector yt, i.e. p, q ≤ d. U ∈ Rd×p
and G ∈ Rd×q are two low rank matrices which span the sub-
spaces to capture the major variations for xjt and zj respec-
tively. b ∈ Rd denotes the bias and εjt ∈ Rd is the residual
noise which is assumed to be Gaussian with zero mean and
diagonal covariance. By marginalising out εjt and xjt, we
obtain the following likelihood function:

p(yt|j) = N (yt;Gzj + b,UUT + Λ) (15)

To increase the modelling capacity, we presented a tied PLDA
mixture model [22], which computes the state likelihood as

p(yt|j) =
∑
mk

wjkmN
(
yt;Gmzjk + bm,UmUT

m + Λm
)

where k denotes the sub-state index, and zjk is the sub-state
variable, cjk is the sub-state weight, πjm is the component
weight which is shared for all the sub-state models, and
wjkm = cjk × πjm. This model is closely related to the
SGMM [21], and more details can be found in [22].

5. EXPERIMENTS AND DISCUSSION

We performed experiments using the Switchboard corpus
[23]. The Hub-5 Eval 2000 data [24] is used as the test
set, which contains the Switchboard (SWB) and CallHome
(CHM) evaluation subsets. The experiments were performed
using the Kaldi speech recognition toolkit [25], and we have
used GMM- and tied PLDA-based acoustic models. In the
following experiments, we used maximum likelihood estima-
tion without speaker adaptation. The pronunciation lexicon
was obtained from the Mississippi State transcriptions [26]
and a trigram language model was used for decoding.

5.1. Baseline systems

Table 1 shows the WERs of the baseline systems, trained us-
ing about 33 hours of Switchboard training data. The number
of tied HMM states is around 2,400 for each of the acous-
tic models shown in this table. The GMM system has about
30,000 Gaussian components. In the PLDA system, the state
and frame variables are both 40-dimensional, irrespective of
the acoustic feature dimensions. More details about this setup
can be found in [22]. Since the PLDA acoustic model is more
flexible with respect to feature vectors dimension, we evalu-
ated the effect of long span features by splicing 13-dimension
MFCC 0 of different context size. Table 1 shows that these
features can improve the accuracy of PLDA systems, how-
ever, no further improvement was achieved when the feature
length is longer than MFCC 0(±3), i.e. splicing 3 left/right
frames with the current one. Previously, we used spliced
MFCC 0 ∆ ∆∆ as features but did not obtain better results
[18]. As a comparison, we also show the WERs of GMM sys-
tems using the same long span features but with feature space
linear discriminant analysis (LDA) which reduces the feature
dimensionality to 40 and followed by semi-tied covariance
matrix (STC) modelling [27]. Table 1 shows that the PLDA
systems consistently outperform their GMM counterparts.

5.2. Results of using multi-frame factorisation

Based on our previous results, we use MFCC 0(±3) as the
basic feature unit ot in the following experiments to evaluate
the multi-frame factorisation using PLDA. Before presenting
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Fig. 1. WERs of systems p(ot+n|qt,M), n ∈ [−2, 2] on the
Switchboard and CallHome evaluation set.

Table 1. WER(%) of GMM and PLDA baseline systems us-
ing 33 hours of training data.

System Feature CHM SWB Avg
GMM MFCC 0+∆+∆∆ 54.0 36.6 45.4
GMM MFCC 0(±2)+LDA STC 54.4 34.4 43.7
GMM MFCC 0(±3)+LDA STC 50.6 33.5 42.2
GMM MFCC 0(±4)+LDA STC 50.7 33.3 42.1
GMM MFCC 0(±5)+LDA STC 50.9 34.1 42.4
PLDA MFCC 0 (±2) 48.6 31.9 40.4
PLDA MFCC 0 (±3) 47.9 31.0 39.5
PLDA MFCC 0 (±4) 47.5 31.2 39.4
PLDA MFCC 0 (±5) 48.7 32.2 40.6

these results, we first evaluate the systems that use individual
feature frames, i.e. the state likelihood score is computed as
p(ot+n|qt,Mn), n ∈ [−k, k]. These systems were trained in
the usual way except that given the alignment, we used ot+n
instead of ot to accumulate statistics for qt to train model pa-
rameters. The aim is to study the effect of mismatch between
the alignments and feature inputs, and the correlations be-
tween the consecutive frames. In addition, these systems are
also baselines for the multi-frame factorisation system since
it averages the scores from those systems. These results are
shown in Figure 1. We observe that shifting the feature input
by 1 time step results in a marginal performance degradation,
otherwise the systems obtained much worse results. It will be
interesting to see if this trend holds for DNNs.

We then used multi-frame factorisation to integrate the
factorized models using (11), which is referred to as MF-State
in Table 2 because the factorisation is performed at the state
level. In this work, the scaling factors γn were simply set
to be 1

2k+1 . However, their values can either be tuned man-
ually or learned by Bayesian optimisation approach [28].
As a comparison, we also performed system combination
using minimum Bayes risk (MBR) decoding by combining
the word lattices from each sub-system [29], which is re-

Table 2. Results of using multi-frame factorisation for PLDA
systems using different feature context n ∈ [−k, k].

System k Decoding CHM SWB Avg
Baseline 0 MAP 47.9 31.0 39.5
MF-State 1 MAP 47.3 30.3 38.8
MF-State 2 MAP 48.4 30.8 39.7
Baseline 0 MBR 47.2 30.3 38.9
MF-State 1 MBR 46.6 29.7 38.3
MF-State 2 MBR 47.9 30.3 39.3
MF-Sequence 1 MBR 46.2 29.6 37.9
MF-Sequence 2 MBR 45.8 29.4 37.7

Table 3. Results of using 300 hours of training data.

System k Decoding CHM SWB Avg
Baseline 0 MAP 40.8 25.1 33.1
MF-State 1 MAP 40.2 24.6 32.5
MF-State 2 MAP 41.3 25.5 33.5
Baseline 0 MBR 40.2 24.6 32.6
MF-State 1 MBR 39.7 24.3 32.2
MF-State 2 MBR 40.8 25.2 33.2
MF-Sequence 1 MBR 39.2 24.2 31.8
MF-Sequence 2 MBR 39.1 24.1 31.7

ferred as MF-Sequence. Since MBR decoding itself may
perform better than MAP, we show both results for baseline
systems for strict comparison. Table 2 shows that although
the sub-systems in Figure 1 are worse than the baseline, both
state and sequence level integration result in lower WER.
The MF-State system does not achieve better results when
k = 2 because the sub-systems trained on ot−2 and ot+2

are very poor, and using equal scaling factors γn is not op-
timal. However, this system still works much better than
that without factorisation which corresponding to PLDA–
MFCC 0(±5) system in Table 1. These results indicate that
the factorisation approach can work better than directly es-
timate the joint distribution of long span features. A similar
trend was observed when using 300 hours of training data as
shown by Table 3. In future, we shall investigate using wider
feature context and factorisation approach (13) for DNNs.

6. CONCLUSION

In this paper, we study multi-frame factorisation for long-time
acoustic modelling where the distribution of long-span acous-
tic features is factorized into a product of short-time models.
Compared to approaches that apply explicit dependency be-
tween observation for long temporal modelling, this approach
is more efficient in model training, and is applicable to a
wide range of acoustic models. Experiments on Switchboard
demonstrate that this approach can improve speech recogni-
tion accuracy. The factorisation approach presented in this
paper is very simple. In the future, we shall investigate ap-
proaches to reduce the factorisation error and to approximate
the joint distribution more precisely.
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