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Abstract

Motivation: Reconstructing the topology of gene regulatory networks (GRNs) from time series of

gene expression data remains an important open problem in computational systems biology.

Existing GRN inference algorithms face one of two limitations: model-free methods are scalable

but suffer from a lack of interpretability and cannot in general be used for out of sample predic-

tions. On the other hand, model-based methods focus on identifying a dynamical model of the sys-

tem. These are clearly interpretable and can be used for predictions; however, they rely on strong

assumptions and are typically very demanding computationally.

Results: Here, we propose a new hybrid approach for GRN inference, called Jump3, exploiting

time series of expression data. Jump3 is based on a formal on/off model of gene expression but

uses a non-parametric procedure based on decision trees (called ‘jump trees’) to reconstruct the

GRN topology, allowing the inference of networks of hundreds of genes. We show the good per-

formance of Jump3 on in silico and synthetic networks and applied the approach to identify regula-

tory interactions activated in the presence of interferon gamma.

Availability and implementation: Our MATLAB implementation of Jump3 is available at http://

homepages.inf.ed.ac.uk/vhuynht/software.html.

Contact: vhuynht@inf.ed.ac.uk or G.Sanguinetti@ed.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Computational reconstruction of gene regulation from expression

data is a central problem of systems biology (Alon, 2006). Gene regu-

lation is a complex process involving multiple control steps at the

chromatin, transcriptional and post-transcriptional level (Alberts

et al., 2008); given the difficulty in measuring and modelling all of

these individual processes, the identification of a suitable abstraction

and associated statistical inference methodology is vital. The gene

regulatory network (GRN) abstraction aims at explaining the joint

variability in the expression levels of a group of genes through a sparse

pattern of interactions; elucidating the topology of GRNs can provide

important insights in the fundamental biology of the system and sug-

gest possible intervention points in biomedical applications.

Inferring the topology of a GRN from gene expression time-

series data has been a subject of intense research in computational

biology over the last 15 years (Bansal et al., 2007; De Smet and

Marchal, 2010; Penfold and Wild, 2011). Current approaches can

be broadly divided into model-based and model-free approaches.

Model-based methods start by formulating a computational model

of the system, usually in the form of differential or difference equa-

tions and recast the network inference problem as learning the par-

ameters of such a model. To achieve a sparse pattern of interactions,

such methods usually employ sparsity-inducing priors in a Bayesian

setting or regularization penalties in an optimization-based scenario.

Model-based methods have many appealing qualities: the assump-

tions made are transparently stated and, most importantly,
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the generative perspective enables principled predictions of expres-

sion levels under perturbations. However, model-based methods are

not free from limitations: they tend to be computationally intensive,

particularly in a Bayesian setting, and their parametric nature usu-

ally implies very stringent assumptions about the dynamics (e.g. lin-

ear), which may be difficult to justify biologically. Model-free

methods avoid the pitfalls of model-based methods by greedily opti-

mizing information-theoretic measures of co-variation between pairs

of genes (Faith et al., 2007; Huynh-Thu et al., 2010; Margolin et al.,

2006). Such methods typically have good scalability, enabling recon-

structions of networks of hundreds of genes and have consistently

achieved state-of-the-art reconstruction performance in comparative

evaluations (Marbach et al., 2012). The lack of an underpinning

model also enables great flexibility, as the interactions between

genes are not constrained to follow a parametric functional repre-

sentation. Such flexibility comes at a cost though: model-free meth-

ods, by their very nature, do not have clearly defined semantics in

terms of dynamical systems and cannot be used for prediction in a

straightforward way. Furthermore, incorporation of side informa-

tion, which is natural in model-based methods, is generally challeng-

ing in model-free methods.

In this article, we aim to bridge the gap between model-based and

model-free methods by proposing a hybrid approach to the network

inference problem, called Jump3. Our approach starts from a well-

defined, biologically plausible model of gene expression, the on/off

model of gene expression (Ocone et al., 2013; Ptashne and Gann,

2002), which we use to model the dynamics of individual nodes.

Reconstruction of the edges is instead based on a non-parametric,

tree-based method modelled on the state-of-the-art GENIE3 method

(Huynh-Thu et al., 2010). Adapting the tree-based method to the

probabilistic setting is a novel challenge in machine learning and in-

volves devising a novel decision function for learning the tree. Here,

we introduce the ‘jump tree’, which uses the marginal likelihood of

the node’s dynamical model as a decision function. This choice has

several benefits: it embeds the tree-based learning procedure in the

probabilistic model, effectively grounding it as a greedy solution to

structure learning in a large latent-variable model. Furthermore, the

use of the marginal likelihood means our method inherits the ease

with which side information can be incorporated in probabilistic mod-

els. Our experiments with both synthetic and real data show that

Jump3 has good scalability and achieve competitive or better results

than state-of-the-art alternatives.

2 Model and methods

Here, we describe Jump3, a hybrid approach for GRN inference

that is based on a formal dynamical model of the expression of each

gene of the GRN and that employs a greedy, non-parametric,

method for reconstructing the topology of the GRN. Exploiting time

series of expression data, Jump3 assigns a confidence score to each

putative regulatory link of the GRN. Note that in this article, we

leave open the problem of choosing a threshold on the weights to

obtain a practical network and focus on providing a ranking of the

regulatory links.

2.1 Gene expression model
At the heart of our framework, we use the on/off model of gene ex-

pression (Ptashne and Gann, 2002), a simple, yet plausible, model

where the rate of transcription of a gene can vary between two levels

depending on the activity state l of the promoter of the gene.

The expression x of a gene is modelled through the following sto-

chastic differential equation (SDE):

dxi ¼ ðAiliðtÞ þ bi � kixiÞdt þ rdwðtÞ; (1)

where subscript i refers to the ith target gene. Here, the promoter state

liðtÞ is a binary variable (the promoter is either active or inactive),

which depends on the expression levels of the transcription factors

(TFs) that bind to the promoter (see Fig. 1). Hi ¼ fAi;bi; kig is the set

of kinetic parameters. Ai represents the efficiency of the promoter in re-

cruiting polymerase when being in the active state, bi denotes the basal

transcription rate and ki is the exponential decay constant of xi. The

term rdwðtÞ represents a white noise-driving process with variance r2.

For a given trajectory of the promoter state, i.e. when we are given

the states liðtÞ;8t, the SDE (1) is linear and its solution xiðtÞ is equiva-

lent to a Gaussian Markov process, i.e. an Ornstein–Uhlenbeck (OU)

process (Gardiner, 1996). The mean miðtÞ and covariance ciðt; t0Þ
functions of this OU process are given by:

miðtÞ ¼ xið0Þe�ki t þAi

ðt

0

e�kiðt�sÞliðsÞdsþ bi

ki
ð1� e�ki tÞ

ciðt; t0Þ ¼
r2

2ki
ðe�ki jt�t0 j � e�kiðtþt0 ÞÞ

Note that the covariance function contains two terms, one that is

stationary (e�ki jt�t0 j) and one that is non-stationary (e�kiðtþt0 Þ). The

second term is typically much smaller than the first one and thus

could be neglected in practice. We, however, assume that a perturb-

ation is applied to the network at t¼0, and we use the covariance

function with its non-stationary term to take into account the initial

transient behaviour of the network.

Let us assume that the gene expression xi is observed with i.i.d.

Gaussian noise at a finite number N of time points:

x̂i;k ¼ xiðtkÞ þ �i;k;

�i;k � Nð0; s2
i;kÞ; k ¼ 1; . . . ;N;

where s2
i;k is the variance of the observation noise at time point tk. As

a consequence, the observed expression levels follow a multivariate

normal distribution:

x̂i � Nðmi;Ci þDiÞ;

where mi ¼ ½miðt1Þ;miðt2Þ; . . . ;miðtNÞ�>; Ci 2 R
N�N denotes the co-

variance matrix, with Ci½k; l� ¼ ciðtk; tlÞ and Di 2 R
N�N is a diag-

onal matrix with the values s2
i;k along the diagonal. One can

Fig. 1. Example of GRN. Circles represent the observed gene expressions,

and squares represent the latent promoter states. Thick arrows model the

promoter activations and show the network topology

Combining tree-based and dynamical systems 1615
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therefore compute the marginal log likelihood of the observations,

given by:

L ¼ logpðx̂iÞ ¼ �
N

2
logð2pÞ � 1

2
logjCi þDij

� 1

2
ðx̂ i �miÞ>ðCi þDiÞ�1ðx̂i �miÞ:

(2)

Notice that this probabilistic formulation allows for a natural in-

corporation of replicate information by simply multiplying the like-

lihoods of replicate profiles.

Within this context, our goal is, for each target gene i:

1. To identify the promoter state trajectory li over the time interval

½0; tN � that maximizes the log likelihood L;

2. To identify the regulators of the target gene, i.e. the genes whose

expression levels influence li.

Both problems are jointly addressed by using a non-parametric

approach described in the next section and illustrated in Figure 2.

2.2 Network reconstruction with jump trees
In our model, we make the assumption that the state of the pro-

moter of a target gene i is a function of the expression levels of the

genes that are direct regulators of gene i, i.e. the genes that are dir-

ectly connected to gene i in the targeted network (Fig. 1). Denoting

by xreg;iðtÞ the vector containing the expression levels at time t of the

regulators of gene i, we can write:

liðtÞ ¼ fiðxreg;iðtÞÞ þ nt; 8t;

where nt is a random noise with zero mean. Recovering the regula-

tory links pointing to gene i thus amounts to finding the genes whose

expression is predictive of the promoter state li. To achieve this

goal, we propose a procedure based on decision trees, which

computes confidence scores wj;i; 8j 6¼ i, measuring the importance of

each gene j in the prediction of the state li.

2.2.1 Decision trees with a latent output variable

Tree-based methods have been applied successfully in the inference

of GRNs (Huynh-Thu et al., 2010) and have appealing properties

(Geurts et al., 2009). First, they are non-parametric and hence do

not make any assumption about the nature of the function fi, which

can be non-linear. Another advantage of tree-based methods is their

ability to detect multivariate interacting effects between features.

This is a non-negligible advantage when inferring GRNs, since the

regulation of gene expression is expected to be combinatorial, i.e. to

involve several regulators. Tree-based methods are also essentially

parameter-free, and since their computational complexity is at most

linear in the number of features, they can deal with high-

dimensionality.

The basic idea of our GRN inference procedure is to learn for

each target gene i a model fi in the form of a decision tree (or an en-

semble of decision trees), which predicts the promoter state li at any

time t from the expression levels of the candidate regulators at the

same time t. However, standard tree-based methods cannot be

applied here since the output liðtÞ is a latent variable. We therefore

propose a new decision tree algorithm called ‘jump tree’. (In sto-

chastic process theory, the discrete variable liðtÞ is called a jump

process. The term ‘jump tree’ thus refers to a tree that predicts such

a jump process.) Briefly, a jump tree is constructed top-down using a

greedy algorithm and partitions the set of observation time points

into different subsets based on tests on the expression levels of the

candidate regulators. Each terminal node (or leaf) of the jump tree

then corresponds to a subset of time points at which li is either 0 or

1. While in a standard decision tree the observations are split based

on the minimization of the entropy of the output variable, in a jump

tree the split is performed based on the maximization of the likeli-

hood of the observations x̂i.

Fig. 2. The Jump3 framework. For each target gene i ¼ 1; . . . ;p, a function fi in the form of an ensemble of jump trees is learned from the time series of expression

data. The trajectory of the state of the promoter of gene i (li ) is predicted from the jump tree model and an importance score is computed for each candidate

regulator. The score of a candidate regulator j is used as weight for the regulatory link directed from gene j to gene i

1616 V.A.Huynh-Thu and G.Sanguinetti
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More formally, the different steps for learning a jump tree pre-

dicting the latent variable li are the following:

1. Initialization. Start with the simplest tree, which is only composed

of one leaf. This leaf contains the whole set of N observation time

points, and liðtÞ ¼ 0; 8t, with a corresponding log likelihood L.

2. Creation of a split node. Each iteration of the greedy algorithm

consists in creating a split node from a leaf N and updating the

promoter state trajectory and the likelihood. Given the current

jump tree, the current promoter state trajectory li and the cur-

rent log likelihood L (obtained after the previous iteration), the

set TN of observation time points of the leaf N is partitioned

using the following procedure:

a. Definition of a split. Given the observed expression x̂j of a can-

didate regulator j 6¼ i and a threshold value c, a candidate pro-

moter state trajectory lj;c
i is obtained by setting:

lj;c
i ðtkÞ ¼

0; if x̂jðtkÞ < c;

1; if x̂jðtkÞ�c;

(

for each time point tk 2 TN . For the time points that do not

belong to TN , the promoter states are kept the same:

lj;c
i ðtkÞ ¼ liðtkÞ; 8tk 62 TN :

Between two observation time points tk and tkþ1, the states

lj;c
i ðtÞ; tk < t < tkþ1; are merely set to the state obtained at

time point tk. Note that the condition j 6¼ i can be relaxed to

incorporate autoregulation; however, in our experiments we

have kept it to improve identifiability.

b. Evaluation of the split. The best candidate regulator j� and

threshold c� are selected, i.e. those ones that yield the max-

imum likelihood:

L� ¼ max j;cLðlj;c
i Þ;

ðj�; c�Þ ¼ arg max j;cLðlj;c
i Þ;

where Lðlj;c
i Þ is the likelihood obtained with the trajectory

lj;c
i .

c. Decision and update. If the likelihood is increased, i.e.

L� > L, then:

• Replace the leaf N with a split node containing the opti-

mal test ‘xj� < c�’;

• Split TN into two subsets T0 and T1 according to this test;

• The child nodes of the new split node are two leaves, con-

taining, respectively, T0 and T1;

• Update the promoter state trajectory: li  lj� ;c�
i ;

• Update the log likelihood: L  L�:

3. Selection of the leaf. The order in which the leaves are turned

into split nodes change the final value of the likelihood L. In our

procedure, the jump tree is grown using a best-first strategy, i.e.

at each iteration, steps 2a and 2b are repeated for each leaf of

the current tree and the leaf that yields the highest maximum

likelihood L� is selected. Step 2c is then applied to this leaf. This

procedure is illustrated in Figure 3.

4. Stop. The algorithm stops when L cannot be increased anymore,

i.e. when L��L for each leaf of the current tree. The algorithm

then outputs the current jump tree and the current trajectory of

the promoter state li.

The jump tree pseudo-code can be found in Section 1 of the

Supplementary Information.

2.2.2 Ensemble of decision trees

A fully grown decision tree typically overfits the observed data, and

significant improvements can be obtained with ensemble methods

that average the predictions of several randomized trees, e.g. Random

Forests (Breiman, 2001) or Extra-Trees (Geurts et al., 2006).

In Jump3, we use the Extra-Trees procedure, which randomizes

the test at each split node of a tree (in step 2 of the jump tree algo-

rithm). Rather than testing all the possible combinations of candi-

date regulator j and threshold c, the best split is determined among

K random splits, each obtained by randomly selecting one candidate

regulator (without replacement) and a threshold value. The predic-

tion of liðtÞ is then averaged over the different trees of the ensemble,

yielding a probability for the promoter state to be active at time t.

2.2.3 Importance measure

The learned tree-based model is used to derive an importance score

for each candidate regulator, quantifying the relevance of that candi-

date regulator for the prediction of liðtÞ. The importance wj;i of a

candidate regulator j is then used as weight for the putative regula-

tory link of the network that is directed from gene j to gene i.

We propose a measure that, at each split node N , computes the

increase of the likelihood due to the split:

IðN Þ ¼ Lðlj� ;c�
i Þ � LðliÞ;

where LðliÞ and Lðlj� ;c�
i Þ are the log likelihoods, respectively, obtained

before and after the split on N . For a single tree, the overall import-

ance wj;i of one candidate regulator j is then computed by summing

the I values of all tree nodes where this regulator is used to split:

wj;i ¼
Xn

k¼1

IðN kÞgðN k; jÞ;

where n is the number of split nodes in the tree and N k denotes the

kth split node. gðN k; jÞ is function that is equal to one if the candi-

date regulator j is the one selected at node N k and zero otherwise.

The candidate regulators that are not selected at all thus obtain an

importance score of zero and those ones that are selected close to

the root node of the tree typically obtain high scores. Importance

measures can be easily extended to ensembles of trees, by simply

averaging the importances scores over all the trees of the ensemble.

2.2.4 Regulatory link ranking

Each tree-based model fi yields a separate ranking of the genes as po-

tential regulators of a target gene i in the form of importance scores

wj;i. For a single tree, the sum of the importance scores of all candi-

date regulators is equal to the total increase of likelihood yielded by

the tree: X
j6¼i

wj;i ¼ LðliÞ � Lð0Þ;

where Lð0Þ is the initial log likelihood obtained with liðtÞ ¼ 0; 8t
and LðliÞ is the final log likelihood obtained after the tree has been

grown. As a consequence, if we trivially order the regulatory links

according to the scores wj;i, this is likely to introduce a positive bias

for the regulatory links that are directed towards the genes for which

the overall likelihood increase is high. To avoid this bias, we nor-

malize the importance scores obtained from each tree, so that they

sum up to one:

wj;i  
wj;i

LðliÞ � Lð0Þ
:

Combining tree-based and dynamical systems 1617
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2.3 Computational complexity
Since the value of the parameter ki is not optimized (see the details

in the Supplementary Information), the computation of the covari-

ance matrix Ci and the inversion of the matrix Ci þDi, which are

required for the computation of the log likelihood L, are done only

once for each target gene. Therefore, the runtime complexity of

Jump3 comes mainly from the optimization of the parameters Ai

and bi and the matrix multiplication in the last term of Equation (2),

which are iteratively repeated during tree growing. Both parameter

optimization and matrix multiplication have a complexity that is on

the order of OðN2Þ, where N is the number of observations. Let us

assume for simplicity that each tree that is learned contains S splits.

It can be shown that the complexity for growing an ensemble of

jump trees using the Extra-Trees procedure is OðTKS2N2Þ, where T

is the number of trees and K is the number of randomly chosen can-

didate regulators when searching for the optimal split at a node. The

complexity of Jump3 is thus OðpTKS2N2Þ since it requires to build

an ensemble of trees for each of the p genes of the network. At

worst, the complexity of the algorithm is thus quadratic with respect

to the number of genes (when K ¼ p� 1) and OðN4Þ with respect to

the number of observations (when S ¼ N � 1, i.e. each tree is fully

developed with each leaf corresponding to one time point).

However, this worst case scenario never happens in practice; S is

usually much lower than N.

Table 1 gives an idea of the computing times, using our

MATLAB implementation with K set to the number of candidate

regulators and 100 trees per ensemble. These computing times were

measured on an 8-GB RAM, 1.7 GHz Intel core i7 computer. Note

that the large amount of time required to infer a DREAM4 size-100

network is due to the high number of observations. Such a high

number is usually not encountered in real datasets, where the num-

ber of observations is typically much lower than the number of

genes.

The Jump3 algorithm can be easily parallelized over the p genes,

as well as over the different trees of an ensemble.

2.4 Performance metrics
Jump3 provides a ranking of the regulatory links from the most con-

fident to the least confident. To evaluate such a ranking independ-

ently of the choice of a specific threshold, we use the precision-recall

(PR) curve and the area under this curve (AUPR). The PR curve

plots, for different thresholds on the weights of the links, the propor-

tion of true positives among all predictions (precision) versus the

percentage of true positives that are retrieved (recall). A perfect

ranking, i.e. a ranking where all the positives are located at the top

A

B

C

Fig. 3. Growing a jump tree predicting the state of the promoter of gene 1 (l1). (A) Each iteration of the jump tree algorithm results in a new tree and a new trajec-

tory l1 (dashed line) yielding a likelihood L. In this example, the current tree splits the set of observation time points in two subsets TA and TB, each one corres-

ponding to a leaf of the tree. The plot also shows the posterior mean m1 of the expression of gene 1 (solid line), with confidence intervals (shaded area), and the

observed expression levels of gene 1 (dots). (B) For each leaf of the current tree, the optimal split of the corresponding set of time points is identified. (C) The leaf

for which the optimal split yields the highest likelihood is replaced with a split node

Table 1. Running times for varying network sizes and

numbers of observations

Network No. Genes No. Observations Time

DREAM4 10 105 3 min

DREAM4 100 210 48 h

IFNc 1000 25 4 h

1618 V.A.Huynh-Thu and G.Sanguinetti
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of the list, yields an AUPR equal to one, while a random ranking re-

sults in an AUPR close to the proportion of positives (i.e. close to

zero since the proportion of true links among all possible links in a

network is usually very low).

3 Results

We evaluated the proposed Jump3 procedure on several in silico net-

works as well as one synthetic network (IRMA). As a case study, we

applied the procedure to expression data from macrophages treated

with interferon gamma (IFNc), to identify IFNc-activated regulatory

interactions. In all our experiments, ensembles of 100 trees were

grown and the main parameter K of the Extra-Trees was set to the

number of input candidate regulators. For the in silico and IRMA

networks, K ¼ p� 1, where p is the number of genes in the network

and K¼40 in the case of the IFNc network (see later for the descrip-

tion of that experiment).

3.1 In silico networks
We evaluated Jump3 on the networks of the DREAM4 In Silico

Network challenge (Marbach et al., 2012; Prill et al., 2010), which

are 5 networks of 10 genes and 5 networks of 100 genes. For each

network topology, two types of simulated expression data were

used:

• Toy data: we simulated the expression data using the on/off

model based on Equation (1). A network perturbation was simu-

lated through a switch in the promoter state of some genes and

given a set of parameters Hi ¼ fAi; bi; kig for each gene i, the

model was simulated to produce continuous time series for both

promoter states and gene expressions. Noisy observations at dis-

crete time points were obtained from the expression time series

by adding i.i.d. Gaussian noise. The toy data are available in the

Supplementary Material.
• DREAM4 data: we applied Jump3 to the time series data that

was provided in the context of the DREAM4 challenge. Each

time series experiment consisted in strongly increasing or

decreasing the initial expression of about one-third of the genes,

thereby simulating a physical or chemical perturbation. The per-

turbation was applied to the network at time t¼0 and was

removed after 10 time points, making the system return to its ori-

ginal state.

For each network of 10 (respectively 100) genes and each simulation

type, noisy observations were sampled at 21 time points under 5

(respectively 10) different network perturbations, for a total of 105

(respectively 210) observations per gene.

First, we checked the quality of the data modelling that is ob-

tained with Jump3. Results on the toy and DREAM4 data are, re-

spectively, shown in Figure 4 and Supplementary Figure S1 (in the

Supplementary Material), for one gene of a size-100 network. We

notice from a qualitative point of view that Jump3 returns a good

prediction of the promoter state and that the on/off model has suffi-

cient flexibility to provide a good fit of the gene expression, as

shown before (Ocone et al., 2013; Opper et al., 2010).

Next, we evaluated the performance of the method in terms of net-

work reconstruction and we compared it to other existing network in-

ference procedures: two model-free methods, which are time-lagged

variants of GENIE3 (Huynh-Thu, 2012) and CLR (Faith et al., 2007),

respectively; two model-based methods, namely Inferelator

(Greenfield et al., 2010) and TSNI (Bansal et al., 2006), and G1DBN

(Lèbre, 2009), a method based on dynamic Bayesian networks.

For TSNI, a separate network was inferred for each perturbation,

and a consensus network was computed as the average of the

different inferred networks. For all the remaining methods, net-

works were inferred using the complete dataset (all perturbations

simultaneously). GENIE3 was applied with the Extra-Trees,

the parameter K set to the number of candidate regulators, and en-

sembles of 100 trees. TSNI was used with two principal components.

The other methods were run using the default values of the

parameters.

AUPR values obtained for the size-100 networks are shown in

Tables 2 and 3, for the toy and DREAM4 data, respectively. Results

on the size-10 networks are shown in Supplementary Table S2.

In the case of the toy data, Jump3 yields the highest AUPR for each

network. As expected, its performance decreases when the networks

are inferred from the DREAM4 data, due to the mismatch between

the on/off model and the one used to simulate the data. For the small

networks of 10 genes, CLR, Inferelator and G1DBN have the best

performances, without a clear winner. Jump3 seems robust when

inferring large networks, since it outperforms the other methods on

the size-100 networks. Note that the official best methods of the

DREAM4 challenge obtained higher AUPR levels because they used

additional interventional (knockout and knockdown) data.

3.2 The synthetic IRMA network
The different GRN inference methods were applied to reconstruct

the IRMA (In vivo Reverse-engineering and Modeling Assessment)

network, a synthetic GRN embedded in the budding yeast

Saccharomyces cerevisiae (Cantone et al., 2009). This network is

composed of 5 genes and 6 regulatory interactions and can be acti-

vated and deactivated in the presence of galactose and glucose, re-

spectively. The expression levels of the five genes were measured

using quantitative RT-PCR during the transition from glucose to

galactose (‘switch-on’ time series of 16 time points), as well as dur-

ing the transition from galactose to glucose (‘switch-off’ time series

of 21 time points).

As shown in Table 4, Jump3 is competitive with the two model-

based methods (Inferelator and TSNI) when inferring the network

from the switch-on data. In the case of the switch-off data, Jump3

yields the best performance. Notice that while the model-free meth-

ods (GENIE3 and CLR) typically perform better than the model-

based methods on the in silico networks, the opposite is observed

here on the IRMA network. This shows that model-based methods

can be very powerful on very small networks, but their perform-

ances rapidly degrade as the number of genes in the network

increases.

Promoter state predictions and gene expression fits obtained

with Jump3 are shown in Supplementary Figures S2 and S3.

3.3 The IFNc network
Finally, we applied Jump3 to gene expression data from murine

bone marrow-derived macrophages (Blanc et al., 2011). The macro-

phages were treated with interferon gamma (IFNc) and gene expres-

sion levels were measured at 25 half-hourly time points over 12 h,

using Agilent microarray platform. We focused our analysis on the

1000 genes whose expression vary the most across the time series.

Forty of these genes were classified as TFs by Gray et al. (2004), and

we applied Jump3, GENIE3 and CLR to identify regulatory inter-

actions between these 40 TFs and all the 1000 genes.

The 500 top-ranked regulatory links predicted by each method

are shown in Figure 5A and supplementary Figure S4. (Cytoscape

files for these three predicted IFNc networks are also available in the
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Supplementary Material.) As can be seen in these figures, the pre-

dicted networks are highly modular with a few TFs acting as hubs

and regulating a large number of target genes (although the modules

of the CLR networks are less distinct). Figure 5B shows the (empir-

ical) node degree distribution of the Jump3 network. Although the

networks of GENIE3 and CLR share a relatively large number of

edges, Jump3 yields very different predictions (Fig. 5C), indicating

that the addition of a dynamical model significantly alters the net-

works found.

Several of the hub TFs (defined as TFs predicted as having

>10 targets and listed in Table 5) have biologically relevant anno-

tations: apart from the interferon responsive TFs Irf1 and Irf7,

we find Hoxc6 (associated with cytomegalovirus infection) and can-

cer-associated TFs such as Egr1, Bmyc and Pbx2, reinforcing the

deep connections of the immune response with cancer (de Visser

et al., 2006). Quantitative evaluations of these results in terms of en-

richment for known regulatory links are hampered by the absence of

large-scale gold standards for human regulatory networks. The

widely used TRANSFAC database (http://www.gene-regulation.

com/pub/databases.html) only reports information for a handful of

TFs included in this analysis, and the number of known targets

among the selected 1000 genes is usually very low (one or two at

maximum), precluding a systematic enrichment analysis. The human

homologues of three hub TFs (Egr1, Bmyc and Irf1) were assayed

using ChIP-Seq by the ENCODE consortium (The ENCODE Project

Consortium, 2012), providing a potentially much larger number of

putative targets. An analysis of this data is reported in the Section 2

of the Supplementary Material and shows considerably higher recall

for Jump3 (compared with GENIE3 and CLR) and a higher preci-

sion for two of the three TFs. Nevertheless, these numbers (only

three TFs) are still very small for an enrichment analysis, which is in

any case weakened by the data coming from a different organism in

different experimental conditions.

4 Discussion

Elucidating the topology of GRNs is a fundamental step towards

our understanding of how a cell or an organism can respond to its

environment. Despite years of concerted efforts by the computa-

tional biology community, this task is still far from complete and a

unified framework for GRN inference remains elusive. Here, we

presented Jump3, a novel approach to GRN inference, which at-

tempts to combine the interpretability of model-based methods with

the scalability of greedy, model-free methods, thus bridging the

gap between the two main classes of GRN inference approaches.

Experiments on simulated and synthetic data show that Jump3

is always competitive and often outperforms state-of-the-art

GRN inference procedures, while an experiment on a real dataset

shows its potential for biologically meaningful hypothesis

generation. It has good scalability with respect to the number of

genes and keeps its good performance when inferring large net-

works. From a modelling point of view, results show that Jump3

yields good predictions of promoter states and that, despite its sim-

plicity, the on/off model is flexible enough to allow good fits of the

data.

While we believe that Jump3 is a step in the right direction, we

also acknowledge that the complexity of gene regulation will pose a

strict limit to the potential of GRN inference from expression data

Fig. 4. Modelling results on the toy data, for one target gene. (A) Predicted promoter state li ðtÞ (solid line) versus true state (dashed line). (B) Posterior mean of

gene expression xi ðtÞ, with confidence intervals. Points show observed expression x̂ i

Table 2. AUPRs for the size-100 networks (toy data)

Net1 Net2 Net3 Net4 Net5

Jump3 0.342 0.179 0.299 0.275 0.264

GENIE3-lag 0.121 0.117 0.125 0.103 0.105

CLR-lag 0.092 0.084 0.099 0.088 0.078

Inferelator 0.063 0.071 0.075 0.073 0.062

TSNI 0.017 0.022 0.017 0.023 0.021

G1DBN 0.106 0.064 0.108 0.126 0.114

The highest AUPR is shown in bold for each network.

Table 3. AUPRs for the size-100 networks (DREAM4 data)

Net1 Net2 Net3 Net4 Net5

Jump3 0.270 0.110 0.200 0.180 0.174

GENIE3-lag 0.228 0.096 0.230 0.157 0.168

CLR-lag 0.179 0.109 0.238 0.154 0.163

Inferelator 0.126 0.101 0.198 0.147 0.148

TSNI 0.050 0.055 0.041 0.036 0.030

G1DBN 0.089 0.055 0.155 0.153 0.117

The highest AUPR is shown in bold for each network.

Table 4. AUPRs for the IRMA network

Switch-on Switch-off

Jump3 0.685 0.682

GENIE3-lag 0.620 0.347

CLR-lag 0.423 0.372

Inferelator 0.718 0.649

TSNI 0.706 0.511

G1DBN 0.600 0.313

The highest AUPR is shown in bold in each case.
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alone. A first limitation comes from the assumption that the mes-

senger RNA level can be used as a proxy for the protein activity,

which is often not correct (Vogel and Marcotte, 2012). A simple

improvement of Jump3 would thus be the exploitation of protein

data, which are becoming less rare gradually, to predict the tar-

get promoter states. Another important direction is the integra-

tion in GRN inference algorithms of complementary data, such

as microRNA expression, chromatin, protein-protein interactions

or microbiomes and some promising initial steps in this direction

are being taken (e.g. Ellwanger et al., 2014; Greenfield et al.,

2013). The probabilistic generative model underlying Jump3

would allow the incorporation of additional information in a

natural way via a modification of the likelihood function, while

the non-parametric tree-based approach would ensure the scal-

ability of the whole procedure.

Using the method on large networks with relatively few observa-

tions may incur co-linearity problems, i.e. genes that have very simi-

lar profiles leading to confounding factors in the inference. A simple

fix to this would be to pre-process the data with some clustering al-

gorithm; this would further increase scalability, at the cost of some

interpretability.

Ultimately, a major limitation for many studies in computational

biology is the lack of systematic, large-scale gold standards on which

to evaluate the models; this generalized fact reinforces the need for a

tight coupling between experimental and theoretical research, and

we hope that inference methods such as Jump3 could be useful in

prioritizing experimental designs.
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Lèbre,S. (2009) Inferring dynamic bayesian networks with low order indepen-

dencies. Stat. Appl. Genet. Mol. Biol., 8, Article 9.

Marbach,D. et al. (2012) Wisdom of crowds for robust gene network infer-

ence. Nat. Methods, 9, 796–804.

Margolin,A.A. et al. (2006) ARACNE: an algorithm for the reconstruction of

gene regulatory networks in a mammalian cellular context. BMC

Bioinformatics, 7(Suppl. 1), S7.

Ocone,A. et al. (2013) Hybrid regulatory models: a statistically tractable ap-

proach to model regulatory network dynamics. Bioinformatics, 29, 910–916.

Opper,M. et al. (2010) Approximate inference in continuous time Gaussian-

jump processes. In: Lafferty,J.D. et al. (eds). Advances in Neural

Information Processing Systems (NIPS 2010), vol. 23, pp. 1831–1839,

Curran Associates, Inc.

Penfold,C.A. and Wild,D.L. (2011) How to infer gene networks from expres-

sion profiles, revisited. Interface Focus, 1, 857–870.

Prill,R.J. et al. (2010) Towards a rigorous assessment of systems biology mod-

els: the DREAM3 challenges. PLoS One, 5, e9202.

Ptashne,M. and Gann,A. (2002) Genes and Signals. Cold Harbor Spring

Laboratory Press, New York.

The ENCODE Project Consortium (2012) An integrated encyclopedia of

DNA elements in the human genome. Nature, 489, 57–74.

Vogel,C. and Marcotte,E.M. (2012) Insights into the regulation of protein abundance

from proteomic and transcriptomic analyses. Nat. Rev. Genet.,13, 227–232.

Wang,P.L. et al. (2012) A travel guide to cytoscape plugins. Nat. Methods, 9,

1069–1076.

1622 V.A.Huynh-Thu and G.Sanguinetti

 at E
dinburgh U

niversity on June 22, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/

	btu863-M1
	l
	btu863-M2
	l
	l
	btu863-T2
	btu863-T3
	btu863-T4
	btu863-TF1

