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Abstract

Significant progress in our understanding of Crohn’s disease (CD), an archetypal common, complex
disease, has now been achieved. Our ability to interrogate the deep complexities of the biological
processes involved in maintaining gut mucosal homeostasis is a major over-riding factor underpinning
this rapid progress. Key studies now offer many novel and expansive insights into the interacting roles
of genetic susceptibility, immune function, and the gut microbiota in CD. Here, we provide overviews
of these recent advances and new mechanistic themes, and address the challenges and prospects for
translation from concept to clinic.

“I am on the edge of mysteries and the veil is getting thinner
and thinner.”

Louis Pasteur

Introduction
CD is a debilitating and incurable chronic inflammatory
bowel disease (IBD) affecting more than 2.5 million
individuals in the Western world and has an increasing
incidence in the developing world [1]. CD is character-
ized by mucosal ulceration and inflammation, which
may occur anywhere along the gastrointestinal tract but
most commonly affect the distal small intestine. Distin-
guishing features include discontinuous, transmural
inflammation involving the whole thickness of the
bowel wall, and an inflammatory response associated
with lymphoid aggregates and granulomas [2]. Current
treatments include traditional anti-inflammatory agents
(corticosteroids), immunomodulators (thiopurines and
methotrexate), biological agents with antibodies directed
against tumor necrosis factor (anti-TNF), antibiotics, and
surgery. Approximately half of CD individuals will
require surgery within 10 years of diagnosis and most
will experience a disabling course requiring frequent
corticosteroids or escalation in immunosuppressive
treatment [3,4]. As the most optimal current medical
approach (combination of anti-TNF and thiopurines) is

effective in only approximately 50% [5], there remains a
significant unmet need for novel therapeutics to prevent,
alter the natural history of, and ultimately cure CD.

Although the etiology is complex, the most widely
accepted hypothesis purports CD as an immune-
mediated condition in genetically susceptible indivi-
duals, where disease onset is triggered by environmental
factors that perturb the mucosal barrier, alter the healthy
balance of the gut microbiota, and abnormally stimulate
gut immune responses. These three main factors (genet-
ics, gut immune response, and the microbiota) are
influenced by the individual’s environmental exposures
or triggers (the ‘exposome’) to engage different subme-
chanisms giving rise to ‘Crohn’s diseases’, a concept
which is increasingly replacing the traditional paradigm
of ‘Crohn’s disease’ as a singular clinical entity with one
dominant mechanism (Figure 1). Advances in these
fields have catalyzed a decade of spectacular progress in
our understanding of CD: a vast and rapidly expanding
field with over 18,000 publications in the last 10 years.
Here, we provide overviews on CD genetics, immunol-
ogy, and microbiology (each an enormous area on its
own), focus on the key studies which have underpinned
progress in our molecular understanding, set them into
context, and discuss how these concepts and biological
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pathways can be translated into direct clinical application
in CD.

Genetics
The successful genome-wide association studies
(GWASs) have provided a rational framework for new
mechanistic insights and directions for research in CD.

The most complete picture is from the recent meta-
analysis of 15 IBD scans (including ulcerative colitis, UC),
involving a combined total of more than 75,000
cases and controls [6]. Overall, 163 IBD loci that meet
genome-wide significance thresholds were discovered;
this is substantially more than other complex diseases.
Most genetic associations are shared between CD and

Figure 1. Crohn’s disease (CD): multi-layer interactions in pathogenesis and clinical translation

CD pathogenesis involves a complex interplay over time between genetic, epigenetic, immunological, and microbiological mechanisms affected by
exposure to triggering factors. Individual patients with CD have a unique pathogenic signature comprised of different contributions from each of these factors.
Stratification of patients on the basis of these signatures may lead to more focused, personalized, and successful therapies. Therapeutic translation is
grounded on a greater understanding of these genetic and molecular pathways (the focus of this review). Furthermore, correcting and avoiding triggering
factors related to the exposome are areas of considerable interest. ‘Smart’ clinical trials with simultaneous mechanistic studies may allow improved
understanding even in the case of therapeutic failures.
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UC (110 loci), and 30 loci were specifically associated
with CD (Figure 2A). These most strongly and consis-
tently implicate themes involving defective intracellular
bacteria killing and innate immunity (CARD15/NOD2,
IRGM, IL23R, LRRK2, and ATG16L1) and de-regulated
adaptive immune responses, namely the interleukin-23
(IL-23) and T helper 17 (Th17) cell pathway (IL23R,
IL12B (encoding IL-12p40), STAT3, JAK2, and TYK2)
[7]. Dendritic cells (DCs) followed by CD4 T, natural
killer (NK), and NKT cells showed the highest enrich-
ment of these susceptibility gene sets when tested in a
panel of immune cell subsets, indicating a major role for
these cells in CD pathogenesis [6]. It is noteworthy that
these GWASs were based predominantly on North
American and European populations; the International
IBD genetics consortium is in the advanced stages of an
expandedmeta-analysis of association studies involving
non-Caucasian populations together with the popula-
tions studied in Europe and North America [8].

On the basis of the GWAS data, the susceptible loci
reported so far contribute only 14% of total disease
variance [6], but this may be an underestimate. Targeted
deep sequencing of key genetic loci has so far shown a
negligible impact of rare genetic variants [9], although
more detailed and larger-scale whole-genome sequen-
cing studies will provide clearer insight. It is also
pertinent that more sophisticated studies involving
integrated multi-omics analysis (with profiling panels
such as transcriptomics, metabolomics, and epige-
nomics) are in progress and are likely to provide new
insights. Epigenetics is an emerging area of interest [10]
in which genome-wide methylation-association studies
have identified differential methylation in a number of
GWAS-identified susceptibility genes, including TNF,
MIR21, HLA, and NOD2, and the Th17 pathway [11,12].
The immediate challenge is to clarify how these genetic
variants influence disease-causative mechanisms in CD.
Here, we prioritize our review on NOD2, autophagy, and
Th17 immune responses as the three areas most strongly
implicated in CD pathogenesis.

NOD2
NOD2 is a cytosolic pattern recognition receptor (PRR)
that controls immunity against intracellular bacteria. Pre-
GWAS fine-mapping studies highlighted the NOD2 gene
[13,14] as one of the ‘lowest-hanging fruits’ in terms of
genetic susceptibility. Three polymorphisms in this gene
(amino-acid substitutions Arg702Trp and Gly908Arg
and the frameshift FS1007insC) are present in 40% of
Western patients with CD [15] and are all found within
the leucine-rich repeat region responsible for the
recognition of muramyl dipeptide (MDP), a peptidogly-
can component of the bacterial cell wall [16]. However,

they are absent in Eastern population groups and have
a varied prevalence in different Caucasian populations.
Of interest, mutations within the NOD2 gene are
causative of Blau syndrome, a granulomatous inflam-
matory disorder affecting the eyes, skin, and joints [17].

NOD2 is expressed in a limited number of tissues that
include intestinal epithelial cells (mainly Paneth cells)
and monocyte-derived immune cells residing in the
lamina propria [18,19]. In both human and murine
studies, defects in NOD2 function can affect microbial
sensing [20], Paneth cell function and anti-microbial
peptide (AMP) production [21], antigen presentation
[22], intracellular bacterial killing [23], and innate
immune signaling, such as Toll-like receptor (TLR) func-
tion [24] and its regulatory role in turning off IL-23-
driven Th17 responses [25]. In a recent study, NOD2
activated by microbiota-derived MDP could also pro-
mote intestinal stem cell viability and gut epithelial
restitution, thus adding a further dimension to its com-
plex role [26]. Overall, although the mechanisms by
which NOD2 CD variants contribute to disease remain
an enigmatic area, two major, non-mutually exclusive
theories have emerged: (1) NOD2 provides critical host
anti-bacterial defense and pro-inflammatory responses
(Figure 2D), and (2) NOD2 acts to regulate innate
immune responses (Figure 2E) [27]. NOD2 activation
after recognition of MDP triggers nuclear factor-
kappa-B (NF-kB)-dependent signaling [14] but is rela-
tively weak in this respect compared with other PRRs,
such as the TLRs [28]. NOD2 can synergize with other
PRRs in differential gene regulation, and this synergy is
lost in cells expressing CD variant NOD2 [28,29]. NOD2
plays a key role in amplifying the release of certain pro-
inflammatory cytokines in this context, particularly IL-1b,
IL-6, and IL-23, from DCs and macrophages [18,30]. In
contrast, in its regulatory role, deficiency in NOD2 results
in enhanced innate TLR signaling. In mice, TLR-mediated
IL-12 production is increased in macrophages and DCs
deficient in NOD2 [31]. MDP-mediated suppression of
TLR-2 responses is enhanced with the normal NOD2
transgene compared with a frameshift polymorphism [32].
Furthermore, pretreatment of monocyte-derived macro-
phages with MDP leads to inhibition of pro-inflamma-
tory responses to NOD2, IL-1b, and TLR2 and TLR4 in
normal individuals but not of TLR-2- and TLR-4-
induced responses in cells from CD patients with
frameshift polymorphisms [33,34].

In addition to the direct role in innate immunity,
several studies show that NOD2 indirectly modulates
the gut microbiota, perhaps linked to defective AMP
production by Paneth cells [21,35–38]. In mice, NOD2
deficiency does not result in colitis but in defective
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processing of intracellular bacteria such as Listeria
monocytogenes [18]. In humans, a cohort study found a
significant association between NOD2 risk alleles and
increased abundance of Enterobacteriaceae [39]. In
mice, NOD2 deficiency is also associated with ileal
dysbiosis [40–42] but this is not consistently replicated
[43,44]. NOD2 facilitates autophagic targeting of

bacterial pathogens via binding to the autophagy
protein ATG16L1, to be discussed later [22,45].

The NOD2 interactome is incredibly complex (Table 1),
and all respective network functions and interactions are
potentially important in CD, as they are potential novel
therapeutic or ‘druggable’ targets [12,27,46–50]. Overall,

Figure 2. Molecular mechanisms in the pathogenesis of Crohn’s disease (CD)

(A) A number of CD susceptibility genes have been identified (see text). Of these, NOD2 has the strongest association. (B) Microbial dysbiosis is
characterized by decreased diversity and changes in abundance of particular bacterial species. Increased levels of AIEC with adherent (via CEACAM6)
and invasive properties are resistant to subsequent phagocytic killing, leading to cytokine responses and inflammation. (C) Environmental (and genetic)
factors affect microbial dysbiosis and lead to epithelial barrier dysfunction, including affecting the secreted barrier. (D) One major theory of how
defective NOD2 leads to CD: normally, NOD2 senses MDP activating a number of innate immune responses and bacterial killing; defective NOD2 leads
to defects in these pathways, resulting in persistence of intracellular bacteria and effects on antimicrobial functions in the lumen. (E) Another major
theory on NOD2: activation via MDP leads to modulating effects on the innate immune system, including suppression of cytokine effects (for example,
IL-23-driven Th17 responses), suppression of other PRRs (for example, TLR-2 and TLR-4 responses), and induction of tolerance (via IL-10 and decreased
TGF-b). (F) Increased IL-23 production can lead to increased Th17 responses through a number of pathways, including ILC and CD4+ T cells via the
IL-12Rb1/IL-23R receptor. IL-23 inhibits Treg cell/IL-10 responses, which are responsible for mucosal homeostasis as well as suppressive effects on
B cells, T cells, and monocytes. NOD2 may suppress IL-23-driven Th17 responses, but in defective NOD2 these may be unrestrained; see (E).
(G) Specific microbes (such as SFB and Clostridium) as well as microbial products (such as butyrate and PSA) can induce particular innate immune
responses. SFB preferentially induces Th17 responses; Clostridium (reduced in CD), butyrate, and PSA (produced by Firmicutes and Bacteroidetes, which
are reduced in CD) potently induce Treg cell responses. (H) NOD2 recruits ATG16L1 to the plasma membrane to initiate xenophagy. Normal PC
function, including release of AMP, relies on autophagy; the T300A variant in ATG16L1 seen in some CD patients leads to increased cleavage and
defective autophagy. (I) UPR and autophagy help regulate ER stress as compensatory mechanisms. Excessive ER stress can overwhelm autophagy, leading
to defective PC function. Arrows ↑ and ↓ indicate findings in CD. AMP, anti-microbial peptide; ATG16L1, autophagy-related 16-like 1 gene; CD, Crohn’s
disease; CEACAM6, carcinoembryonic antigen-related cell adhesion molecule 6 (non-specific cross-reacting antigen); ER, endoplasmic reticulum;
IL, interleukin; ILC, innate lymphoid cell; MDP, muramyl dipeptide; NOD2, nucleotide-binding oligomerization domain containing 2; PC, plasma cell;
PRR, pattern recognition receptor; PSA, polysaccharide A; SFB, segmental filamentous bacteria; TGFb, transforming growth factor-beta; Th17, T helper
17; TLR, Toll-like receptor; Treg, regulatory T; UPR, unfolded protein response.
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NOD2 occupies a strategic hub at the host-microbial
level involving autophagy, IL-23/Th17 responses, and
gut homeostasis. Current data show that NOD2 CD
variants disrupt these pathways, although we still need to
understand their relative importance (for example,
which pathway is dominant) in order to rationalize the
translational potential of this knowledge.

Autophagy
Following on from NOD2, the discovery of polymorph-
isms in the autophagy genes (ATG16L1, IRGM, and
LRRK2) from GWASs in CD has triggered significant
research in this hitherto unknown area in IBD. Autophagy
is a lysosomal degradation pathway that is essential for
cellular survival, differentiation, development, and home-
ostasis [51]. Autophagy principally serves an adaptive role
to protect organisms against diverse pathologies, including
infections, cancer, neurodegeneration, and aging. During
macroautophagy (herein autophagy), cytoplasmic mate-
rial, including organelles, protein aggregates, and bacteria
(xenophagy), is sequestered into doublemembrane-coated
autophagosomes that subsequently fuse with endosomes
and lysosomes where degradation can occur.

Loss of autophagy function appears to be a fundamental
driver (Figure 2H), and, of the autophagy genes [52],
studies into ATG16L1 provide the clearest insight into
the pathogenic sequelae. The ATG16L1 protein plays an
essential role in triggering all forms of autophagy involving
the recruitment of microtubule-associated protein 1 light
chain 3 (LC3) to membranes. Complex formation of
ATG16L1 with ATG12-ATG5 defines the site of LC3 PE
conjugation during autophagosome formation. Virtually
all the risk of this locus is exerted by the rs2241880 single-
nucleotide polymorphism (SNP) coding for a T300A
substitution (present in approximately 50% of the general

population with twofold increased risk). Recently, Murthy
and colleagues [53] showed that amino acids 296 to 299
constitute a caspase cleavage motif in ATG16L1, and that
the T300A variant (T316A in mice) significantly increases
ATG16L1 sensitization to caspase-3-mediated processing.
Here, death-receptor activation or starvation-induced
metabolic stress in human and murine macrophages
increased the degradation of the T300A or T316A variants
of ATG16L1, resulting in diminished autophagy [53].

Two recent complementary studies demonstrate how a
defective autophagic response to bacteria can contribute
to CD. Cooney and colleagues [22] showed that autop-
hagy cooperates with NOD2: in response to MDP,
NOD2 induces autophagy via receptor-interacting serine/
threonine-protein kinase 2 (RIPK2), ATG5, ATG7, and
ATG16L1 inDCs. This initiates bacterial handling by direct
engulfment and subsequent generation of major histo-
compatibility complex (MHC) class II for antigen-specific
CD4+ T-cell responses in DCs [22]. In the second study,
by Travassos and colleagues [45], NOD2 (and NOD1)
was shown to recruit ATG16L1 to the plasma membrane
at the bacterial entry site to initiate xenophagy. In mice,
genetic knock-in of the T300A mutation results in altered
cytokine signaling and decreased anti-bacterial response
[54]. In a more recent study, ATG16L1 has been shown
to negatively regulate NOD1 and NOD2 inflammatory
signaling; interestingly, this occurs independently of its
role in autophagy [55]. Hence, ATG16L1 may yet have
a more complex role in gut inflammatory response.

In the case of another autophagy gene IRGM, a 20-kb
deletion polymorphism immediately upstream is asso-
ciated with CD [56]. Its mouse ortholog Irgm1 contributes
to bacterial killing, and Irgm1-deficient mice exhibit
increased susceptibility to infections with Toxoplasma
gondii, Salmonella typhimurium, L. monocytogenes, and
Mycobacterium tuberculosis [57–59]. Human macrophages
infected with mycobacteria show increased bacterial
survival when transfected with IRGM small interfering
RNA (siRNA), indicating a role in the control of intra-
cellular mycobacteria [60]. Interestingly, another variant
associated with CD (c.313C>T) results in stronger
microRNA-196 binding to IRGM and concomitant
decrease in IRGM expression, leading to defective
autophagy-mediated control of intracellular replication
of CD-associated adherent-invasive Escherichia coli (AIEC)
[61]. Irgm1 knockout leads to exaggerated colonic and
ileal inflammation after dextran sulfate sodium (DSS)
administration [62]. Of interest, ileitis is not usually a
feature of DSS colitis, which suggests a selective function
for Irgm1 here [63]. A role for Irgm1 in interferon (IFN)-
dependent cellular homeostasis has been proposed by
which Irgm1 provides a feedback signal to protect CD4+

Table 1. NOD2 interactome and functional networks

• Activation
○ Muramyl dipeptide entry into cells (bacterial secretion systems
and direct transportation into cytosol)

○ Ligand-NOD2 interaction
○ Cellular localization (for example, recruitment to the plasma
membrane)

• Signaling (for example, RIPK2 interaction and nuclear factor-
kappa-B signaling)

•Regulation (for example, cytoskeleton regulation, epistatic interactions,
autoinhibition, and degradation)

• Effects
○ Innate inflammatory responses
○ Adaptive immune responses
○ Antimicrobial functions
○ Facilitating autophagy and xenophagy
○ Gut homeostasis (barrier function, microbiota, and gut
epithelial restitution)

NOD2, nucleotide-binding oligomerization domain containing 2; RIPK2,
Receptor-interacting serine/threonine-protein kinase 2
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lymphocytes from IFN-g-mediated death [64], and similar
mechanisms may apply to other IFN-g-responsive cell
lineages [65]. Collectively, these findings implicate mouse
Irgm1 in the regulation of intracellular pathogens or
cellular homeostasis; understanding how human IRGM is
regulated will be important in order to apply these
findings to CD because IRGM is not known to be IFN-g-
responsive [66].

Of note, the role of hypoxia in autophagy (and indeed
other mucosal homeostatic systems) has received much
interest. Hypoxia is of particular relevance at the gut
epithelium-luminal interface, where a unique steep
oxygen gradient from the anaerobic lumen to the richly
perfused mucosal layer exists. Hypoxia-inducible factors
(HIFs) are transcription factors which regulate the
induction of genes responsible for cellular adaptation
and survival during hypoxia (reviewed in depth by
Colgan and Taylor [67]). Pertinently, gut inflammation
is associated with increased levels of hypoxia [68] and
with high levels of HIFs in murine colitis [69] and IBD
[70]. The HIF response is generally considered protective
and recently was shown to drive autophagy via HIF1a
[71] and increase xenophagic degradation of AIECs [72].
However, there are complexities as HIF1a has a key role
in CEACAM6 expression and thus AIEC invasion
(discussed in detail later), suggesting that these CD-
associated bacteria may take advantage of hypoxic
conditions to colonize the intestinal mucosa [73].
HIF1a regulates many genes involved in epithelial
barrier function [74–76], including involvement in
mucous [77] and AMP production [78]. In murine colitis
models, loss of HIF1a expression had a more severe
phenotype whereas increased HIF1a levels were protec-
tive [69]. The hypoxia response can be modulated by
hydroxylase inhibitors (via activation of HIF) [79–81],
hyperbaric oxygen [82], and potentially adjustments of
lifestyle factors (for example, cigarette smoking). How-
ever, this area is complex as heme oxygenase-1 (HO-1)
and its metabolic by-product, carbon monoxide, are
protective against inflammation and are induced by gut
microbiota [83,84].

Beyond xenophagy, autophagy regulates quality-control
apparatus, including those involved in control of cell
growth, the cell cycle, DNA and membrane repair, and
intracellular organelles, such as mitochondria [85].
Defective autophagy can influence cellular homeostasis
at the epithelial barrier level in particular and therefore
represents a crucial component of disease initiation. Loss
of autophagy leading to Paneth cell dysfunction has been
a strong focus [86]; these cells are highly metabolically
active and specialized enterocytes in the small bowel
responsible for AMP production. Individuals with T300A

mutation and mice with knocked down/out ATG16L1
and Irgm1 have abnormal Paneth cell morphology
lacking in AMP-containing secretory granules [62,86].
The persistence of apoptotic stimuli in the form of
metabolic stress, death-receptor activation, or pathogen
infection significantly enhances ATG16L1 cleavage,
thereby diminishing basal autophagy. Cadwell and
colleagues [87] conceptually demonstrated, in this sett-
ing and downstream from this, how ‘triggers’ (in this
case, murine norovirus infection) may provoke Paneth
cell dysfunction and alter response to DSS colitis toward
a CD-like phenotype in mice with hypomorphic
ATG16L1 function, exemplifying the host-environment
interaction in CD.

Unfolded protein response and endoplasmic
reticulum stress
Following on from autophagy-related epithelial dysfunc-
tion, unresolved endoplasmic reticulum (ER) stress in
intestinal epithelial cells (IECs) has also emerged as an
important factor that initiates gut inflammation relevant
to CD (Figure 2I). ER stress-related genes have been
implicated by both GWAS (ORMDL3 [88]) and candi-
date (XBP1 [89] and AGR2 [90]) gene approaches. ER
stress is induced by the accumulation of unfolded
proteins, and cellular adaptation to ER stress is achieved
by the activation of the unfolded protein response
(UPR), which is an integrated signal transduction path-
way that modulates many aspects of ER physiology [91].
Unresolved ER stress is a hallmark of many chronic
diseases, and, at the mucosal interphase, UPR is
particularly important for highly secretory cells such as
Paneth and goblet cells for AMP and secreted mucous
barrier, respectively. Kaser and colleagues [89] showed
that genetic deletion of UPR transcription factor XBP1 in
the intestinal epithelium resulted in loss of Paneth cell
function and, interestingly, the development of small-
bowel inflammation in mice. This was associated with
substantial ER stress and increased inflammatory respon-
siveness toward microbial and cytokine stimuli. IECs in
IBD generally experience unresolved ER stress, even in
the absence of overt mucosal inflammation [92]. Of
note, UPR is under the influence of primary (genetic)
and secondary (environmental) factors and therefore is
pivotal in regulating cellular homeostasis [93].

Interestingly, autophagy also cooperates very closely
with UPR: autophagy is induced to counter ER stress
[94,95] and thus defective autophagy can similarly result
in ER stress [96]. The precise interplay between autop-
hagy and ER stress is complex [97,98] and yet to be fully
elucidated. Impairment in either of these processes in
IECs results in each other’s compensatory engagement
and in severe spontaneous CD-like transmural ileitis if
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both mechanisms are compromised in mice [99]. Over-
all, distinct factors can impair autophagy (increased
cleavage of ATG16L1) or overwhelm autophagy (ER
stress), and subsequent secondary triggers initiate gut
inflammation. These data linking three closely related
pathways (NOD2, autophagy, and ER stress) clearly
demonstrate how disease causation requires specific and
critical interaction(s) between host defects and distinct
triggers. Independently, these factors may confer only
limited risk.

Immune response: IL-23/Th17 pathway and IL-10
The dynamic crosstalk between the gut microbiota, IECs,
and mucosal immune cells is essential to maintain
intestinal homeostasis [100,101]. In CD, the CD4+ T-cell
compartment is the most influential and includes Th1,
Th17, and Foxp3+ regulatory T (Treg) cells [102]. The first
IBD GWAS shifted the focus from the traditional Th1
paradigm to IL-23/Th17 responses in CD. Here, Duerr
and colleagues [103] demonstrated that carriage of the
glutamine allele of Arg381Gln variant of the IL23R gene
confers protection against CD, and associations with
several SNPs in IL-23/Th17 genes have been consistently
shown.

IL-23 has a key role in both innate and T cell-dependent
experimental mouse models of colitis [104,105]. IL-23R
signaling in T cells leads to enhanced Th17 response,
reduced differentiation of Treg cells, and anti-
inflammatory IL-10 production [106] (Figure 2F). IL-23
is not indispensable to Th17 differentiation but rather
modulates Th17 effector function and pathogenicity
[106–108]. IL-23 signaling is mediated through the
engagement of heterodimeric IL-23 (composed of the
p19 and shared IL-12p40 subunits) with its heterodi-
meric receptor (comprising IL-23R and IL-12Rb1), and
signals predominantly through JAK2-STAT3 (both with
genetic associations with CD) but can also weakly
activate STAT1, STAT4, and STAT5 [109]. IL-12 and
IL-23 drive differentiation of CD4+ T cells into Th1 and
Th17 cells, respectively. IL-23, secreted by macrophages
and DCs, together with IL-6 and transforming growth
factor-beta (TGFb), sustains Th17 responses [110].

The gut microbiota regulates both Th17 and Treg cell
responses, which appear to be reciprocally related. Th17
cells are absent in germ-free mice, and human fecal
transplant into germ-free mice triggers a Th17 response
but not with killed-bacteria extracts [111–113]. In
health, intestinal Th17 cells are abundant and likely are
important components of mucosal host defense. How-
ever, the Th17 signature cytokines (IL-17A, IL-17F, IL-22,
and IL-26) [114] are particularly elevated in the intestine
and serum of patients with IBD, and Th17 cells with an

activated phenotype are present in the gut mucosa and
blood of patients with CD [115–118]. Therefore, an
unrestrained rather than a primarily pathogenic function
for Th17 cells is the likely mediator of CD inflammation.

Recently, two discoveries provided further insights into
IL-23-Th17 signaling in CD. Firstly, Buonocore and
colleagues [119] described a new subset of innate
lymphoid cells (ILCs), which rely on IL-23 to induce
Th17 responses and colitis [120]. ILCs are important
effectors of innate mucosal immunity and tissue remodel-
ing. These previously unknown cells have a lymphoid
morphology but lack antigen receptors and myeloid or
DC markers. This subset of ILCs (group 3) is defined by
their capacity to produce the cytokines IL-17A or IL-22 or
both [120]. ILCs possess the ability to regulate CD4-T
cell responses [121]. Secondly, a previously uncultivable
organism, segmental filamentous bacteria (SFB), was
found to markedly induce a small-bowel Th17 response
and promote Th17-dependent autoimmune disease in
mice [122]. These studies are exciting as they demonstrate
how other immune cells can contribute to Th17 responses.
Although the case for SFB in humans is not clearly estab-
lished, it is a cogent example of how specific microbial
stimuli (in this case, a singular microbe) can preferentially
induce a Th17 response and immune-mediated pathology.

On the other hand, Treg cells are constitutively present
(mostly in gut-associated lymphoid tissue) and maintain
mucosal homeostasis predominantly via IL-10. IL-10-
deficient mice develop spontaneous colitis in contact
with gut commensal microbiota with a Th1/17 pattern
but not in germ-free conditions [123]. Genetic variants of
the IL-10 gene are associated with IBD, and, intriguingly,
rare mutations resulting in complete loss of function in
the IL-10 receptor in humans result in extensive clinical
manifestations of CD [124]. Several lines of evidence
demonstrate the essential role for the microbiota in
regulating mucosal Treg cells relevant to CD (Figure 2G).
Specific clusters of the genus Clostridium, subsets of
which are reduced in CD and include Faecalibacterium
prausnitzii [125,126], are potent inducers of mucosal and
systemic Treg cell responses [127]. Metabolic products of
the microbiota, specifically short chain fatty acids [128]
(including from F. prausnitzii) and polysaccharide A
(PSA; from Bacteroides fragilis), can also promote Treg
cells and limit the Th17 response [129,130]. Recently,
T-cell immunology has indeed taken center stage,
although the upstream roles for IECs and antigen-
presenting cells (DCs and macrophages) converging on
the dialogue between the innate and adaptive immune
systems are clearly as important (reviewed in depth
[101,131]). Inclusively, the gut microbiota is indispen-
sable in educating and shaping the host immune system.

Page 7 of 18
(page number not for citation purposes)

F1000Prime Reports 2015, 7:44 http://f1000.com/prime/reports/b/7/44



Defining the role of microbiota in Crohn’s
disease: recent progress and emerging challenges
Advances in culture-free techniques, next-generation high-
throughput sequencing platforms, and the use of larger
and more sophisticated human cohorts have ushered in a
dramatic era in understanding the role of the gut
microbiota in IBD [132,133]. Progression from shallow
small-subunit rRNA gene analysis to whole-genome
shotgun sequencing and deep functional characterization
has been stimulated by a progressive reduction in the cost
of high-throughput technologies and provided unique
insights into the community structure, genetic repertoire,
metabolic products, and function of the complex gut
microbiota (total of 1012, which outnumbers somatic cells
10-fold and is an approximately 150-fold larger gene set
than the human complement; reviewed in depth
[131,134]). The importance of the gut microbiota in the
pathogenesis of CD is strikingly demonstrated clinically
where the diversion of fecal stream treats and prevents
recurrence of CD [135,136]. Several specific mechanistic
hypotheses are broadly based on the microbiota’s effects
(both general and specific) on mucosal health (for
example, epithelial barrier function) and immune system
(as antigenic stimuli, regulators of innate immune
function (for example, TLR signaling), and balance of
Th17/Treg cell function). Furthermore, mechanisms sus-
taining a healthy microbial composition (for example,
fucosylation [137,138]) and host-microbial symbiosis
and containment (barrier function, for example, AMP
and mucus; bacterial killing and mucosal immune
response - NOD2, autophagy) are increasingly understood
as pathogenetic factors in CD.

Determining the ‘high risk’ microbiota in CD thus
represents a major research priority. Reduced complexity
and diversity of the commensal gut microbiota are
consistently demonstrated in CD (and UC) [125,
139–142], although a causal effect for this is not yet
clear (Figure 2B). In health, shifts in gut microbial
composition can be influenced by a number of factors,
including host genetics [143]. In CD, earlier studies have
shown that host genetic factors (NOD2 and ATG16L1)
and disease location (ileal) are associated with mucosal
dysbiosis [144], where there is a decrease in Firmicutes,
in particular F. prausnitzii, and an increase in Enterobac-
teriaceae, especially E. coli. Of the phylum Firmicutes, as
discussed earlier, Clostridium subsets (including
F. prausnitzii) directly induce colonic Treg cells. Reduced
F. prausnitzii levels are found in CD and are associated
with risk of post-resection recurrence of ileal CD [126],
although a separate study in pediatric CD found increased
numbers [145]. E. coli, which has acquired specific
virulence or pathogenic factors leading to increased
adherence and invasive capability (AIEC, is more prevalent

in CD [146–149]. In one study, AIECs were isolated in
ileal specimens of 36.4% of CD and 6% of controls [146].
Most AIEC strains associated with CD express type 1 pili
variants that increase the interaction between AIEC and
ileal epithelial cells viaCEACAM6 [150] acting as a receptor
(Figure 2B). AIECs induce an epithelial inflammatory
response and, when phagocytosed by macrophages, are
more resistant to xenophagy and induce a persistent in-
flammatory response by releasing large amounts of TNFa
[151,152]. Several factors control AIEC-epithelial interac-
tion: CEACAM6 expression is associated with inflamma-
tion, smoking [153], and epigenetic regulation [73].

More recently, there has been considerable interest in
the relatively unexplored fields of the mycobiota (fungal
community) and virome in CD. Ott and colleagues [154]
found an altered fungal profile in the intestinal mucosa of
patients with CD andUC comparedwith healthy controls;
interestingly, in contrast to the microbiome, diversity was
increased in CD. Analysis of a de novo pediatric IBD cohort
by using next-generation sequencing found a distinct
difference in mycobiota composition compared with
controls with a Basidiomycota dominance [155]. The
potential importance of the virome in CD pathogenesis
was shown in animal models, whereby viruses in associa-
tion with gut bacteria affect intestinal biology, leading to
inflammation in genetically susceptible hosts [87]. Recent
metagenomic sequencing of virus-like particle prepara-
tions from fecal samples demonstrated disease-specific
viromes for CD and UC [156]. Fascinatingly, this study
found CD to be associated with significant expansion of
Caudovirales bacteriophages and a reduction in the
relative abundance of bacterial taxa, suggesting a poten-
tial role for the virome leading to bacterial dysbiosis.

With powerful molecular tools now at our disposal, a
number of challenges have emerged in study design and
its potential confounders (fecal versus mucosal micro-
biome, the effects of host genetics, disease activity/
duration/location, and drug treatment). Recent studies
have focused on combined approaches encompassing all
of these factors, including twin studies (to dissect the
relative importance of genetics versus environment)
[142,157]. Gevers and colleagues [158] analyzed the
mucosal and lumen-associated microbiota in treatment-
naïve CD. In this largest study to date (approximately
450 patients with CD), analysis of the mucosal-
associated microbiome confirmed previous findings
[126,159,160] of increases in Enterobacteriaceae and
decreases in Bacteroidales, Faecalibacterium, and Clostri-
diales as well as novel associations with other bacterial
species. In contrast to an earlier study [159], fecal analysis
was less useful and this will impact on how future studies
are conducted [158]. Ileal microbiome signatures were
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predictive of CD and were observed even in the absence
of overt inflammation [161]. Palm and colleagues [162]
adopted a creative approach by using the host immune
system (IgA-coated sorting followed by 16sRNA sequen-
cing) to home in on the ‘colitogenic’microbiota. When a
smaller cohort of IBD patients and controls was used, IgA
sorting revealed 35 species of bacteria that were
abundantly coated with IgA in the IBD samples. Several
species were found in both healthy and IBD patients but
were only highly coated by IgA in patients with IBD. Of
interest, gnotobiotic mice colonized with highly coated
IgA+ B. fragilis elicited more severe colitis compared with
those colonized with a B. fragilis strain that was IgA−.

Conceptually, mouse studies show that colitogenic
microbiota ‘caused’ or induced by host genetic defects
(in these cases, NLRP6 and T-bet deficiency, respectively)
can be transmissible in co-housing or cross-fostering
experiments, leading to increased susceptibility to induced
colitis in genetically intact mice [163,164]. It is concei-
vable that shared environmental factors—notably diet,
smoking, and antibiotic use—can result in a ‘high risk’
microbiota that influences susceptibility to CD, although
this has not yet been shown in humans [165–167]. This

brings in a new dimension, the ‘exposome’, as a factor in
modulating the gut microbiota (Figures 1 and 2C).

Clinical translation
In this concluding section, we discuss prospects and
challenges in clinical translation in CD, where there is a
rich seam of creative opportunities from multiple angles.
We briefly discuss mechanistic themes, targets, and
potential strategies for translation, which are highlighted
in detail in Figure 3.

There is an inexorable shift toward mechanistic and
molecular stratification that is likely to change current
historic clinical classification and eventually lead to better
personalized treatment (Figure 1). Rapid improvements
in technology now provide the scale, economy, and com-
putational power to allow multi-layered integrative
profiling at a metagenomic level (genomic, epigenomic,
microbiomic, metabolomic, and proteomic), and a
number of studies are already in progress. Furthermore,
previously poorly characterized factors such as time and
the exposome will now be incorporated [168]. This will
provide further novel insights into variability in major
clinical phenotypes (for example, early versus adult-onset

Figure 3. Summary of therapeutic targets, underlying mechanisms, and opportunities for translation in Crohn’s disease

AE, adverse effect; AIEC, adherent invasive Escherichia coli; AMP, anti-microbial peptide; APC, antigen-presenting cell; DAMP, damage-associated molecular
pattern; ER, endoplasmic reticulum; FMT, fecal microbiota transplantation; HIF1a, hypoxia-inducible factor 1a; NOD2, nucleotide-binding
oligomerization domain containing 2; Th17, T helper 17 (cells).
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CD and inflammatory versus stricturing) and, critically,
treatment response. Several recent studies illustrate
tantalizing prospects of how we can move from concept
to clinic. Haberman and colleagues [161] demonstrated
distinct ileal transcriptome and microbiome signature in
early-onset CD. In two different studies, Lee and
colleagues showed that CD8+ T-cell immune signatures
are better at predicting disease course than traditional
clinical or serological markers in IBD [169], and that a
genetic variant in the FOXO3A gene influences prognosis
rather than susceptibility bymodulating the inflammatory
response in CD [170]. Recently, pharmacogenetics in IBD
has seen novel discoveries, including associations at
genome-wide significance thresholds with thiopurine-
induced leukopenia and NUDT15 gene [171], and the
risk of thiopurine-induced pancreatitis with the HLA-
DQA1*02:01-HLA-DRB1*07:01 haplotype [172]. Major
advances in imaging [173] provide not only a realistic
prospect to further stratify CD but a molecular tool to
dissect the inflammatory process. Improved magnetic
resonance imaging cross-sectional imaging and endo-
scopic techniques, including video capsule endoscopy,
now provide better disease characterization and monitor-
ing [174,175]. Confocal laser endomicroscopy can detect
early epithelial dysfunction in predicting relapse [176] and
therapeutic response to biological therapy [177] in IBD.

In targeting the microbiota, antibiotic treatment for
AIECs, negating the adherence and invasive properties of
AIECs [178], manipulating microbial symbiosis factors
and metabolome, repopulating the gut habitat with a
healthy microbiota via probiotics, endogenous protec-
tive commensals (for example, F. prausnitzii) or fecal
microbiota transplantation (FMT) may be achievable
in the future [179]. A recent review by Sartor [180]
succinctly outlined the therapeutic challenges, including
posing the questions of whether commensal microbiota
can be permanently altered by our interventions and
whether endogenous protective commensals eventually
can be used as treatment.

As the ‘low-hanging fruits’, NOD2 and ATG16L1 provide
an important focus to identify novel ‘druggable’ bio-
logical pathways and targets. The identification of
vimentin as a NOD2-interacting protein with a role in
AIEC handling as a drug target is one of many examples
in CD [181]. Stimulating NOD2 and autophagy signal-
ing is another strategy, but perhaps more likely to be
successful in a stratified setting (for example, in those
patients with defective NOD2 or autophagy) [182,183].
Autophagy inducers (for example, rapamycin) have
been used successfully in case reports [184]. However,
a clinical trial has shown that everolimus, a mammalian

target of rapamycin (mTOR) inhibitor and autophagy
inducer, is not efficacious in CD, again highlighting the
case for stratification [185]. Paneth cell dysfunction as
a focal point provides targets for both upstream (for
example, ER stress and autophagy) and downstream (for
example, AMP production) factors. Such a platform is
highlighted by a recent study using histologic analysis of
Paneth cell phenotypes to divide patients with CD into
subgroups with distinct pathognomonic and clinical
features [36].

It is unsurprising that targeting or inhibition of the
immune/inflammatory response has seen the strongest
interest in drug development in CD. The success of anti-
TNF agents has provided the primer, although this is
likely to be the ‘high water mark’ in this area. Following
on closely from IBD genetic discoveries, targeting the
IL-23/Th17 pathway (and indeed activated T cells) has
had mixed success. Ustekinumab, a humanized immu-
noglobulin G1kmonoclonal antibody against the shared
p40 subunit of IL-12 and IL-23, had modest efficacy
[186,187], and briakinumab, another anti-IL-12/23
antibody, failed to show benefit. Targeting Th17
responses via secukinumab (anti-IL-17A) and brodalu-
mab (anti-IL-17 receptor) resulted in worse outcomes
[188]. Equally unsuccessful in CD were tofacitinib [189]
(a JAK inhibitor that is efficacious in UC [190]),
fontolizumab (anti-IFNg [191]), and abatacept (a CTL4
inhibitor [192]). A number of potential explanations are
offered, although more simply the heterogeneity of
immune response in CD may confound these ‘general’
clinical trials. It is clear that a re-evaluation is required.
Incorporating in-depth immunological analyses during
early-phase clinical development should be exploited to
gain important insights and this has been discussed in
some detail in the IBD research community [193–195].
Beyond this, major immune themes such as resetting the
mucosal immune response (autologous stem cell trans-
plantation or more specific cell-based therapies), exploit-
ing mucosal regulatory factors (for example, microbial,
helminthic proteins, and dietary factors), and correcting
the mucosal milieu, which favors the resolution of
inflammation, are likely to feature more prominently.

Conclusions
In the next 10 years, we envisage major progress in
(1) stratifying and addressing disease heterogeneity in
CD on the basis of dominant molecular mechanism(s);
(2) re-design of clinical trials that will follow from (1),
where the ‘one size fits all’ approach to new therapeutics
requires major re-thinking [193]; and (3) a shift of focus
to the causative factors to prevent disease onset and
maintain long-term remission in addition to inhibiting
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the abnormal immune/inflammatory response in CD.
This will almost certainly rely on simultaneous targeting
of genetic, environmental, microbial, and immune
factors. In this review, we have focused on the known/
established disease mechanisms, which are framed by
recent landmark studies in genetics, immunology, and
microbiology in CD. As discussed earlier, it is beyond the
scope of this review to cover CD pathogenesis in its
entirety. Pertinently, there remain many virtually unex-
plored concepts and scientific questions. We are at a
fascinating inflection point of discovery in CD research.
Ambitious goals, including long-term remission, perma-
nent alteration of natural history, and, indeed, curing
CD, are not inconceivable for all patients with CD.
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