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Formalising the π-calculus is an illuminating test of the expressiveness of logical frameworks and
mechanised metatheory systems, because of the presence of name binding, labelled transitions with
name extrusion, bisimulation, and structural congruence. Formalisations have been undertaken in a
variety of systems, primarily focusing on well-studied (and challenging) properties such as the theory
of process bisimulation. We present a formalisation in Agda that instead explores the theory of
concurrent transitions, residuation, and causal equivalence of traces, which has not previously been
formalised for the π-calculus. Our formalisation employs de Bruijn indices and dependently-typed
syntax, and aligns the “proved transitions” proposed by Boudol and Castellani in the context of CCS
with the proof terms naturally present in Agda’s representation of the labelled transition relation.
Our main contributions are proofs of the “diamond lemma” for residuation of concurrent transitions
and a formal de�nition of equivalence of traces up to permutation of transitions.

1 Introduction

The π-calculus [18, 19] is an expressive model of concurrent and mobile processes. It has been investi-
gated extensively and many variations, extensions and re�nements have been proposed, including the
asynchronous, polyadic, and applied π-calculus (among many others). The π-calculus has also attracted
considerable attention from the logical frameworks and meta-languages community, and formalisations
of its syntax and semantics have been performed using most of the extant mechanised metatheory
techniques, including (among others) Coq [13, 12, 15], Nominal Isabelle [2], Abella [1] (building on Miller
and Tiu [26]), CLF [6], and Agda [21]. These formalisations have overcome challenges that tested the
limits of these systems (at least at the time), particularly relating to the encoding of name binding, scope
extrusion and structural congruence. Indeed, some early formalisations motivated or led to important
contributions to the understanding of these issues in di�erent systems, such as the Theory of Contexts,
or CLF’s support for monadic encapsulation of concurrent executions.

Prior formalisations have typically considered the syntax, semantics (usually via a variation on
labelled transitions), and bisimulation theory of the π-calculus. However, as indicated above, while
these aspects of the π-calculus are essential, they only scratch the surface of the properties that could
be investigated. Most of these developments have been carried out using informal paper proofs, and
formalising them may reveal challenges or motivate further research on logical frameworks.

One interesting aspect of the π-calculus that has not been formally investigated, and remains to
some extent ill-understood informally, is its theory of causal equivalence. Two transitions t1, t2 that can
be taken from a process term p are said to be concurrent (t1 ^ t2) if they could be performed “in either
order” — that is, if after performing t1, there is a natural way to transform the other transition t2 so that
its e�ect is performed on the result of t1, and vice versa. The translation of the second transition is said
to be the residual of t2 after t1, written t2/t1. The key property of this operation, called the “diamond
lemma”, is that the two residuals t1/t2 and t2/t1 of transitions t1 ^ t2 result in the same process. Finally,
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2 Proof-relevant π-calculus

permutation of concurrent transitions induces a causal equivalence relation on pairs of traces. This is the
standard notion of permutation-equivalence from the theory of traces over concurrent alphabets [17].

Our interest in this area stems from previous work on provenance, slicing and explanation (e.g. [22]),
which we wish to adapt to concurrent settings. Ultimately, we would like to formalise the relationship
between informal “provenance graphs” often used informally to represent causal relationships [7] and
the semantics of concurrent languages and traces. The π-calculus is a natural starting point for this
study. We wish to understand how to represent, manipulate, and reason about π-calculus execution
traces safely: that is, respecting well-formedness and causality.

In classical treatments, starting with Lévy [16], a transition is usually considered to be a triple(e,t,e′) where e and e′ are the terms and t is some information about the step performed. Boudol and
Castellani [4] introduced the proved transitions approach for CCS in which the labels of transitions
are enriched with more information about the transition performed. Boreale and Sangiorgi [3] and
Degano and Priami [11] developed theories of causal equivalence for the π-calculus, building indirectly
on the proved transition approach; Danos and Krivine [10] and Cristescu, Krivine and Varacca [8]
developed notions of causality in the context of reversible CCS and π-calculus respectively. However,
there does not appear to be a consensus about the correct de�nition of causal equivalence for the
π-calculus. For example, Cristescu et al. [8] write “[in] the absence of an indisputable de�nition of
permutation equivalence for [labelled transition system] semantics of the π-calculus it is hard to assert
the correctness of one de�nition over another.” In their work on reversible π-calculus, they noted that
some previous treatments of causality in the π-calculus did not allow permuting transitions within the
scope of a ν-binder, and showed how their approach would allow this. Moreover, none of the above
approaches has been formalised.

In this paper, we report on a new formalisation of the π-calculus carried out in the dependently-
typed programming language Agda [20]. Our main contributions include formalisations of concurrency,
residuation, the diamond lemma, and causal equivalence. We do not attempt to formalise the above
approaches directly, any one of which seems to be a formidable challenge. Instead, we have chosen
to adapt the ideas of Boudol and Castellani to the π-calculus as directly as we can, guided by the
hypothesis that their notion of proved transitions can be aligned with the proof terms for transition
steps that arise naturally in a constructive setting. For example, we de�ne the concurrency relation
on (compatibly-typed) transition proof terms, and we de�ne residuation as a total function taking two
transitions along with a proof that the transitions are concurrent, rather than having to deal with a
partial operation.

Our formalisation employs de Bruijn indices [5], an approach with well-known strengths and
weaknesses compared, for example, to higher-order or nominal abstract syntax techniques employed in
existing formalisations. For convenience, we employ a restricted form of structural congruence called
braiding congruence, and we have not formalised as many of the classical results on the π-calculus as
others have, but we do not believe there are major obstacles to �lling these gaps. To the best of our
knowledge, ours is the �rst mechanised proof of the diamond lemma for any process calculus.

The rest of the paper is organised as follows. §2 presents our variant of the (synchronous) π-
calculus, including syntax, renamings, transitions and braiding congruence. §3 presents our de�nitions
of concurrency and residuation for transitions, and discusses the diamond lemma. §4 presents our
de�nition of causal equivalence. §5 discusses related work in greater detail and §6 concludes and
discusses prospects for future work. Appendix A summarises the Agda module structure; the source
code can be found at https://github.com/rolyp/proof-relevant-pi, release 0.1. Appendix B contains
graphical proof-sketches for some lemmas, and Appendix C some further examples of residuation.

https://github.com/rolyp/proof-relevant-pi
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2 Synchronous π-calculus
We present our formalisation in the setting of a �rst-order, synchronous, monadic π-calculus with
recursion and internal choice, using a labelled transition semantics. The syntax of the calculus is
conventional (using de Bruijn indices) and is given below.

Name x,y,z ::= 0 | 1 | · · ·
Action a ::= x input

x〈y〉 output
x bound output
τ silent

Process P,Q,R,S ::= 0 inactive
x.P input
x〈y〉.P output
P+Q choice
P |Q parallel
νP restriction!P replication

Names are ranged over by x , y and z. An input action is written x . Output actions are written x〈y〉
if y is in scope and x if the action represents the output of a name whose scope is extruding, in which
case we say the action is a bound output. Bound outputs do not appear in user code but arise during
execution.

To illustrate, the conventional π-calculus term (νx) x(z).y〈z〉.0 | x〈c〉.0 would be represented using
de Bruijn indices as ν(0.n+1〈0〉.0 | 0〈m+1〉.0), provided that y and c are associated with indices n
and m. Here, the �rst 0 represents the bound variable x , the second 0 the bound variable z, and the third
refers to x again. Note that the symbol 0 denotes the inactive process term, not a de Bruijn index.

Let Γ and ∆ range over contexts, which are �nite initial segments of the natural numbers. The
function which extends a context with a new element is written as a post�x ·+1. A context Γ closes P
if Γ contains the free variables of P . We denote by Proc Γ the set of processes closed by Γ, as de�ned
below. We write Γ ` P to mean P ∈ Proc Γ. Similarly, actions are well-formed only in closing contexts;
we write a : Action Γ to mean that Γ is closing for a, as de�ned below.Γ ` P

Γ ` 0
Γ+1 ` PΓ ` x.P x ∈ Γ Γ ` PΓ ` x〈y〉.P x,y∈ Γ Γ ` P Γ `QΓ ` P+Q

Γ ` P Γ `QΓ ` P |Q
Γ+1 ` PΓ ` νP Γ ` PΓ ` !P

a : Action Γ
x : Action Γ x ∈ Γ

x : Action Γ x ∈ Γ
x〈y〉 : Action Γ x,y∈ Γ

τ : Action Γ
To specify the labelled transition semantics, it is convenient to distinguish bound actions b from

non-bound actions c. A bound action b : Action Γ is of the form x or x , and shifts a process from Γ to a
target context Γ+1, freeing the index 0. A non-bound action c : Action Γ is of the form x〈y〉 or τ , and
has a target context which is also Γ. Meta-variable a ranges over all actions, bound and non-bound.
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2.1 Renamings

A de Bruijn indices formulation of π-calculus makes extensive use of renamings. A renaming ρ : Γ−→∆
is any function (injective or otherwise) from Γ to ∆. The labelled transition semantics makes use of the
lifting of the successor function ·+1 on natural numbers to renamings, which we call push to avoid
confusion with the ·+1 operation on contexts; pop y which undoes the e�ect of push, replacing 0 by y;
and swap, which transposes the roles of 0 and 1. This de Bruijn treatment of π-calculus is similar to that
of Hirschko�’s asynchronous µs calculus [14], except that we give a late rather than early semantics;
other di�erences are discussed in §5 below.

pushΓ : Γ−→ Γ+1
push x = x+1

popΓ : Γ−→ Γ+1−→ Γ
pop y 0 = y

pop y (x+1) = x

swapΓ : Γ+2−→ Γ+2
swap 0 = 1
swap 1 = 0

swap (x+2) = x+2
The Γ subscripts that appear on pushΓ, popΓ x and swapΓ are shown in grey to indicate that they may
be omitted when their value is obvious or irrelevant; this is a convention we use throughout the paper.

2.1.1 Lifting renamings to processes and actions

The functorial extension ρ∗ : Proc Γ−→ Proc ∆ of a renaming ρ : Γ−→ ∆ to processes is de�ned in the
usual way. Renaming under a binder utilises the action of ·+1 on renamings, which is also functorial.
Syntactically, ρ∗ binds tighter than any process constructor.

·∗ : (Γ−→ ∆)−→ Proc Γ−→ Proc ∆
ρ∗0 = 0

ρ∗(x.P) = ρx.(ρ+1)∗P
ρ∗(x〈y〉.P) = ρx〈ρy〉.ρ∗P
ρ∗(P+Q) = ρ∗P+ρ∗Q
ρ∗(P |Q) = ρ∗P | ρ∗Q
ρ∗(νP) = ν(ρ+1)∗P
ρ∗(!P) = !ρ∗P

·∗ : (Γ−→ ∆)−→ Action Γ−→ Action ∆
ρ∗ x = ρx
ρ∗ x = ρx
ρ∗ τ = τ

ρ∗ x〈y〉= ρx〈ρy〉

·+1 : (Γ−→ ∆)−→ Γ+1−→ ∆+1
(ρ+1) 0 = 0(ρ+1) (x+1) = ρx+1

2.1.2 Properties of renamings

Several equational properties of renamings are used throughout the development; here we present
the ones mentioned elsewhere in the paper. Diagrammatic versions of the lemmas, along with string
diagrams that o�er a graphical intuition for why the lemmas hold, are given in Appendix B.
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Lemma 1. pop x ◦push = id
Freeing the index 0 and then immediately substituting x for it is a no-op.
Lemma 2. pop 0◦push+1 = id
Lemma 3. swap+1◦ swap ◦ swap+1 = swap ◦ swap+1◦ swap
The above are two equivalent ways of swapping indices 0 and 2.
Lemma 4. pop 0◦ swap = pop 0
Lemma 5. swap ◦push+1 = push, swap ◦push = push+1
Lemma 6. push ◦ρ = ρ+1◦push
Lemma 7. ρ ◦pop x = pop ρx ◦ρ+1
Lemma 8. swap ◦ρ+2 = ρ+2◦ swap
These last two lemmas assert various naturality properties of push, pop x and swap.

2.2 Labelled transition semantics

An important feature of our semantics is that each transition rule has an explicit constructor name. This
allow derivations to be written in a compact, expression-like form, similar to the proven transitions used
by Boudol and Castellani to de�ne notions of concurrency and residuation for CCS [4]. However, rather
than giving an additional inductive de�nition describing the structure of a “proof” that P a−−−−→ R ,
we simply treat the inductive de�nition of −−−−→ as a data type. This is a natural approach in a
dependently-typed setting.

The rule names are summarised below, and have been chosen to re�ect, where possible, the structure
of the process triggering the rule. The corresponding relation P a−−−−→ R is de�ned in Figure 1, for
any process Γ ` P , any a : Action Γ with target ∆ ∈ {Γ,Γ+1}, and any ∆ ` R .

Transition E,F ::= x.P input on x
x〈y〉.P output y on x
E+Q P+F choose left or right branch
E a|Q P |a F propagate a through parallel composition on the left or right
E |τy F E τ

y|F rendezvous (receiving y on the left or right)
νE initiate name extrusion
E |τν F E τ

ν |F extrusion rendezvous (receiving 0 on the left or right)
νaE propagate a through binder!E replicate

The constructor name for each rule is shown to the left of the rule. There is an argument position,
indicated by ·, for each premise of the rule. Note that there are two forms of the transition constructors
· a| · and νa· distinguished by whether they are indexed by a bound action b or by a non-bound action
c. Moreover there are additional (but symmetric) rules of the form P+ ·, P |b · and P |b · where the
sub-transition occurs on the opposite side of the operator, and similarly · τν | · and · τy| · rules in which the
positions of sender and receiver are transposed. These are all straightforward variants of the rules shown,
and are omitted from Figure 1 for brevity. Meta-variables E and F range over transition derivations; if
E : P a−−−−→ R then src(E) denotes P and tgt(E) denotes R .

Although a de Bruijn formulation of pi calculus requires a certain amount of housekeeping, one
pleasing consequence is that the usual side-conditions associated with the π-calculus transition rules
are either subsumed by syntactic constraints on actions, or “operationalised” using the renamings above.
In particular:
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P a−−−−→ R

x.P
x.P x−−−−−→ P

x〈y〉.P
x〈y〉.P x〈y〉−−−−−→ P

·+Q
P a−−−−−→ R

P+Q a−−−−−→ R

· c|Q
P c−−−−−→ R

P |Q c−−−−−→ R |Q
· b|Q

P b−−−−−→ R

P |Q b−−−−−→ R | push∗Q
· |τy ·

P x−−−−−→ R Q x〈y〉−−−−−→ S
P |Q τ−−−−−→ (pop y)∗R | S

ν·
P (x+1)〈0〉−−−−−→ R

νP x−−−−−→ R
· |τν ·

P x−−−−−→ R Q x−−−−−→ S
P |Q τ−−−−−→ ν(R | S) νc·

P push∗c−−−−−→ R
νP c−−−−−→ νR

νb·
P push∗b−−−−−→ R

νP b−−−−−→ ν(swap∗R ) !· P | !P a−−−−−→ R!P a−−−−−→ R

............................................................................................................................................................................................
Figure 1: Labelled transition rules (P+ ·, P |b ·, P |c ·, · τν | · and · τy| · variants omitted)

1. The use of push in the · b|Q rule corresponds to the usual side-condition asserting that the binder
being propagated by P is not free in Q. In the de Bruijn setting every binder “locally” has the
name 0, and so this requirement can be operationalised by rewiring Q so that the name 0 is
reserved. The push will be matched by a later pop which substitutes for 0, in the event that the
action has a successful rendezvous.

2. The ν· rule requires an extrusion to be initiated by an output of the form x+1〈0〉, capturing the
usual side-condition that the name being extruded on is distinct from the name being extruded.

3. The rules of the form νa require that the action being propagated has the form push∗a, ensuring
that it contains no uses of index 0. This corresponds to the usual requirement that an action can
only propagate through a binder that it does not mention.

The use of swap in the νb case follows Hirschko� [14] and has no counterpart outside of the de
Bruijn setting. As a propagating binder passes through another binder, their local names are 0 and 1.
Propagation transposes the binders, and so to preserve naming we rewire R with a “braid” that swaps 0
and 1. Since binders are also reordered by permutations that relate causally equivalent executions, the
swap renaming will also play an important role when we consider concurrent transitions (§3).

The following schematic derivation shows how the compact notation works. Suppose E : P z+2〈0〉−−−−→
R takes place immediately under a ν-binder, causing the scope of the binder to be extruded. Then
suppose the resulting bound output propagates through another binder, giving the partial derivation on
the left:

νz ·

ν·

E
⋮

P z+2〈0〉−−−−−→ R

νP z+1−−−−−→ R

ννP z−−−−−→ νR
νz ·

νE
⋮

νP z+1−−−−−→ R

ννP z−−−−−→ νR
νzνE

⋮

ννP z−−−−−→ νR

with E standing in for the rest of the derivation. The blue constructors annotating the left-hand side of
the derivation tree can be thought of as a partially unrolled “transition term” representing the proof. The
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· placeholders associated with each constructor are conceptually �lled by the transition terms annotating
the premises of that step. We can “roll up” the derivation by a single step, by moving the premises into
their corresponding placeholders, as shown in the middle �gure.

By repeating this process, we can write the whole derivation compactly as νzνE , as shown on the
right. Thus the compact form is simply a �attened transition derivation: similar to a simply-typed
lambda calculus term written as a conventional expression, in a (Church-style) setting where a term is,
strictly speaking, a typing derivation.

2.2.1 Residuals of transitions and renamings

A transition survives any suitably-typed renaming. As alluded to already, this will be essential to
formalising causal equivalence. First we de�ne the (rather trivial) residual of a renaming ρ : Γ−→ ∆
after an action a : Action Γ.
De�nition 1 (Residual of ρ after a).

ρ/b
def= ρ+1

ρ/c
def= ρ

The complementary residual a/ρ is also de�ned and is simply the renamed action ρ∗a de�ned earlier in
§2.1.1. We use the latter notation.
Lemma 9. Suppose E : P a−−−−→ Q and ρ : Γ −→ ∆, where Γ ` P . Then there exists a transition E/
ρ : ρ∗P ρ∗a−−−−→ (ρ/a)∗Q such that tgt(E/ρ) = ρ/a∗Q.

P

ρ∗P

Q

(ρ/a)∗Q
E

E/ρ

ρ∗ (ρ/a)∗

The proof is the obvious lifting of a renaming to a transition, and is given in Appendix C.
We would not expect E/ρ to be derivable for arbitrary ρ in all extensions of the π-calculus. In

particular, the mismatch operator [x 6= y]P that steps to P if x and y are distinct names is only stable
under injective renamings.

2.2.2 Structural congruences

We believe our semantics to be closed under the usual π-calculus congruences, but have not attempted
to formalise this. The “braiding” congruence ≅ introduced in §3.2.1 is in fact a standard π-calculus
congruence, which we use to track changes in the relative position of binders under permutations
of traces. This could be generalised to include more congruences, but at a corresponding cost in
formalisation complexity.

3 Concurrency and residuals

We now use the compact notation for derivations to de�ne a notion of concurrency for transitions with
the same source state, following the work of Boudol and Castellani for CCS [4]. Concurrent transitions
are independent, or causally unordered: they can execute in either order without signi�cant interference.
Permutation of concurrent transitions induces a congruence on traces, which is the topic of §4.
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3.1 Concurrent transitions

Transitions P a−−−−→ R and Q a′−−−−→ S are coinitial i� P = Q. We now de�ne a symmetric and
irre�exive relation ^ over coinitial transitions. If E ^E ′ we say E and E ′ are concurrent. The relation
is de�ned as the symmetric closure of the rules given in Figure 2, again with trivial variants of the rules
omitted. For the transition constructors of the form · a|Q and νa· which come in bound and non-bound
variants, we abuse notation a little and write a single ^ rule quanti�ed over a to mean that there are
two separate (but otherwise identical) cases.

E ^E ′

P |a F ^ E a′ |Q
E ^E ′

E a|Q ^E ′ |τy F
F ^ F ′

P |a F ^ E |τy F ′
E ^E ′

E a|Q ^E ′ |τν F
F ^ F ′

P |a F ^ E |τν F ′

E ^E ′

E+Q ^E ′+Q
F ^ F ′

P |aE ^P |a′ E ′
E ^E ′

E a|Q ^E ′ a′ |Q
E ^E ′ F ^ F ′

E |τy F ^ E ′ |τz F ′

E ^E ′ F ^ F ′

E |τy F ^ E ′ τz |F ′
E ^E ′ F ^ F ′

E |τy F ^ E ′ |τν F ′
E ^E ′ F ^ F ′

E |τy F ^ E ′ τν |F ′
E ^E ′ F ^ F ′

E |τν F ^ E ′ |τν F ′

E ^E ′ F ^ F ′

E |τν F ^ E ′ τν |F ′
E ^E ′

νE ^ νE ′
E ^E ′

νE ^ νaE ′
E ^E ′

νaE ^ νa′E ′
E ^E ′!E ^ !E ′

............................................................................................................................................................................................
Figure 2: Concurrent coinitial transitions (P+ ·, and some · τy| · and · τν | · variants omitted)

The �rst rule, P |a F ^ E a′ |Q, says that two transitions E and F are concurrent if they take
place on opposite sides of the same parallel composition. The remaining rules propagate concurrent
sub-transitions up through ν, choice, parallel composition, and replication. Note that there are no
rules allowing us to conclude that a left-choice step is concurrent with a right-choice step: choices
are mutually exclusive. Likewise, there are no rules allowing us to conclude that an input or output
transition is concurrent with any other transition; since both E and E ′ are required to be coinitial, if
one of them is an input or output step then they are equal and hence not concurrent.

The E |τyF ^ E ′ |τz F ′ rule says that a rendezvous is concurrent with another rendezvous under the
same parallel composition, as long as the two inputs are concurrent on the left, and the two outputs
are concurrent on the right. The E |τyF ^ E ′ τz |F ′ variant is similar, but permits concurrent input and
output on the left, with their rendezvous partners concurrent on the right. The E |τyF ^ E ′ τν |F ′ rule
and variants permit a regular rendezvous and an extrusion-rendezvous to be concurrent.

3.2 Residuals of concurrent transitions

Intuitively, if E ^E ′ then E and E ′ are “parallel moves” in the sense of Curry and Feys [9]: if either
execution step is taken, the other remains valid, and if both are taken, one ends up in (essentially) the
same state, regardless of which step is taken �rst.

However, concurrent transitions are not completely independent: the location and nature of the
redex identi�ed by one transition may change as a consequence of the earlier transition. This intuition
is captured by the notion of the residual E/E ′, explored notably by Lévy in the lambda calculus [16],
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and later considered by Stark for concurrent transition systems [25] and in the speci�c setting of CCS
by Boudol and Castellani [4]. The residual speci�es how E must be adjusted to take into account the
fact that E ′ has taken place.
De�nition 2 (Residual). Suppose E ^ E ′. Then the residual of E after E ′, written E/E ′, is given by
the least function satisfying the equations in Figure 3.

The operator ·/· has higher precedence than any transition constructor. The de�nition makes use of
the renaming lemmas in §2.1.2, and is rather tricky; Appendix C.1 gives several examples which illustrate
some of the subtleties that arise in the π-calculus setting, in particular relating to name extrusion.

E/E ′

(P |a F )/(E c|Q) = tgt(E) |a F(P |a F )/(E b|Q) = tgt(E) |a push∗F(E a|Q)/(P |c F ) = E a| tgt(F )(E a|Q)/(P |b F ) = push∗E a| tgt(F )(E a|Q)/(E ′ |τy F ) = (pop y)∗(E/E ′) a| tgt(F )(P |a F )/(E |τy F ′) = (pop y)∗tgt(E) |a F/F ′(E |τy F )/(E ′ b|Q) = E/E ′ |τy push∗F(E |τy F )/(E ′ c|Q) = E/E ′ |τy F(E |τy F )/(P |b F ′) = push∗E |τy F/F ′(E |τy F )/(P |c F ′) = E |τy F/F ′(E x |Q)/(E ′ |τν F ) = νx (E/E ′ x+1| tgt(F ))(E x |Q)/(E ′ |τν F ) = ν(E/E ′ x+1〈0〉| tgt(F ))(E c|Q)/(E ′ |τν F ) = νc(E/E ′ push∗c| tgt(F ))(P |x F )/(E |τν F ′) = νx (tgt(E) |x+1 F/F ′)(P |x F )/(E |τν F ′) = ν(tgt(E) |x+1〈0〉 F/F ′)(P |c F )/(E |τν F ′) = νc(tgt(E) |push∗c F/F ′)(E |τν F )/(E ′ b|Q) = E/E ′ |τν push∗F(E |τν F )/(E ′ c|Q) = E/E ′ |τν F(E |τν F )/(P |x F ′) = push∗E |τν F/F ′(E |τν F )/(P |x F ′) = push∗E |τ0 F/F ′(E |τν F )/(P |c F ′) = E |τν F/F ′(E+Q)/(E ′+Q) = E/E ′(P |x F )/(P |b F ′) = push∗P |x F/F ′

(P |b F )/(P |x F ′) = push∗P |b F/F ′(P |x F )/(P |u F ′) = push∗P |x+1〈0〉 F/F ′(P |c F )/(P |b F ′) = push∗P |c F/F ′(P |a F )/(P |c F ′) = P |a F/F ′(E x |Q)/(E ′ b|Q) = E/E ′ x |push∗Q(E b|Q)/(E ′ x |Q) = E/E ′ b|push∗Q(E x |Q)/(E ′ u|Q) = E/E ′ x+1〈0〉|push∗Q(E c|Q)/(E ′ b|Q) = E/E ′ c|push∗Q(E a|Q)/(E ′ c|Q) = E/E ′ a|Q(E |τy F )/(E ′ |τz F ′) = (pop z)∗(E/E ′) |τy F/F ′(E |τy F )/(E ′ |τν F ′) = ντ (E/E ′ |τy F/F ′)(E |τν F )/(E ′ |τz F ′) = (pop z)∗(E/E ′) |τν F/F ′(E |τν F )/(E ′ |τν F ′) = ντ (E/E ′ |τν F/F ′)(νE)/(νE ′) = E/E ′(νE)/(νbE ′) = ν swap∗(E/E ′)(νE)/(νcE ′) = ν E/E ′(νbE)/(νE ′) = E/E ′(νcE)/(νE ′) = E/E ′(νbE)/(νbE ′) = νE/E ′(νcE)/(νbE ′) = νc swap∗(E/E ′)(νbE)/(νcE ′) = νb E/E ′(νcE)/(νcE ′) = νc E/E ′(!E)/(!E ′) = E/E ′

............................................................................................................................................................................................
Figure 3: Residual of E after E ′, omitting · τy| · and · τν | · cases

3.2.1 Co�nality of residuals

The idea that one ends up in the same state regardless of whether E or E ′ is taken �rst is called co�nality.
In CCS, where actions never involve binders, and in the lambda calculus, where binders do not move
around, co�nality simply means the target states are equivalent. Things are not quite so simple in late-
style π-calculus, because binders propagate during execution, as bound actions. Consider the process
x.P | z.Q with two concurrent input actions. Initiating one of the inputs (say x) starts propagating a
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binder. As this binder passes through the parallel composition, the transition rules use push to “reserve”
the free variable 0 in the right half of the process for potential use by a subsequent pop:

· x | z.Q
Γ ` x.P x−−−−−→ Γ+1 ` PΓ ` x.P | z.Q x−−−−−→ Γ+1 ` P | z+1.(push+1)∗Q

When the action (z+1) is performed, a push on the left leaves the �nal state with both 0 and 1 reserved:

P |z+1 · Γ+1 ` z+1.(push+1)∗Q z+1−−−−−→ Γ+2 ` (push+1)∗QΓ+1 ` P | z+1.(push+1)∗Q z+1−−−−−→ Γ+2 ` push∗P | (push+1)∗Q
Had these concurrent actions happened in the opposite order, the push on the left would have

been applied �rst. The �nal state would be (push+1)∗P | push∗Q, which is the image of push∗P |(push+1)∗Q in the permutation swap which renames 0 to 1 and 1 to 0. Instead of the usual co�nality
square, the �nal states are related by a “braid” (in the form of a swap) which permutes the free names:

Γ ` x.P | z.Q
Γ+1 ` P | z+1.(push+1)∗Q

Γ+1 ` x+1.(push+1)∗P |Q

Γ+2 ` push∗P | (push+1)∗Q
Γ+2 ` swap∗push∗P | swap∗(push+1)∗Q

Γ+2 ` (push+1)∗P | push∗Q

x

z

z+1

x+1

swap∗

α | β

Here α and β are equalities obtained from Lemma 5.
It is not just the reordering of bound actions which nuances π-calculus co�nality. When two τ

actions are reordered, which happen to be extrusion rendezvous of distinct binders, the resulting binders
exchange positions in the �nal process. In the standard π-calculus this would be subsumed by the
congruence (νxy) P ≅ (νyx) P . In the de Bruijn setting, where adjacent binders cannot be distinguished,
the analogous rule is ννP ≅ νν(swap∗P), which applies a swap braid under the two binders.

These two possibilities are subsumed by the following generalised notion of co�nality. First we
de�ne a braiding congruence ≅ just large enough to permit swap under a pair of binders. “Co�nality” is
then de�ned using a more general braiding relation which additionally permits swaps of free variables.
Examples showing reordered extrusions are given in Appendix C.1, including concurrent extrusions of
the same binder, an interesting case identi�ed by Cristescu et al. [8].
De�nition 3 (Braiding congruence). Inductively de�ne the binary relation ≅ over processes using the
rules given in Figure 4.

In Figure 4, rule names are shown to the left in blue, permitting a compact term-like notation for
≅ proofs similar to the convention we introduced earlier for transitions. The process constructors are
overloaded to witness compatibility; transitivity is denoted by ◦. It is easy to see that ≅ is also re�exive
and symmetric, and therefore a congruence. P≅ denotes the canonical proof that P ≅ P .

In what follows φ and ψ range over braiding congruences; src(φ) and tgt(φ) denote P and R , for
any φ : P ≅ R . As with transitions, braiding congruences are stable under renamings, giving rise to the
usual notion of residuation; however ρ/φ is always ρ. The proof is a straightforward induction.
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P ≅ R

νν-swapP νν(swap∗P) ≅ ννP νν-swap−1
P ννP ≅ νν(swap∗P) · ◦ ·

R ≅ S P ≅ R
P ≅ S

0
0 ≅ 0

x.·
P ≅ R

x.P ≅ x.R
x〈y〉.·

P ≅ R
x〈y〉.P ≅ x〈y〉.R

·+ · P ≅ R Q ≅ S
P+Q ≅ R+S

· | ·
P ≅ R Q ≅ S
P |Q ≅ R | S

ν·
P ≅ R
νP ≅ νR

!· P ≅ R!P ≅ !R
............................................................................................................................................................................................

Figure 4: Braiding congruence ≅

Lemma 10. For any Γ `P , suppose φ :P −→Q and ρ : Γ−→∆. Then there exists a braiding congruence
φ/ρ : ρ∗P −→ ρ∗Q.

P

ρ∗P

Q

ρ∗Q

φ

φ/ρ

ρ ρ

De�nition 4 (Braiding). For any ∆ ∈ {0,1,2} de�ne the following family of bijective renamings
braidΓ,∆ : Γ+∆ −→ Γ+∆ and symmetric braiding relations onΓ,∆ over processes in Γ+∆.

braidΓ,0 = idΓ : Γ−→ Γ
braidΓ,1 = idΓ+1 : Γ+1−→ Γ+1
braidΓ,2 = swapΓ : Γ+2−→ Γ+2 P onΓ,∆ P ′ ⇐⇒ braidΓ,∆∗P ≅ P ′

Our key soundness result is that residuals of concurrent transitions E and E ′ are always co�nal
up to a braiding of type onΓ,∆ where ∆ ∈ {0,1,2} is the number of free variables introduced by E and
E ′/E . Rather than the usual parallel-moves square on the left, the residuals satisfy pentagons of the
form shown in the centre of Figure 5, where γ :Q onΓ,∆ Q′ is a braiding.

P

R

R ′

Q

E

E ′

E ′/E

E/E ′

Γ ` P
Γ′ ` R

Γ′′ ` R ′

Γ+∆ `Q

Γ+∆ `Q′

E

E ′

E ′/E

E/E ′

γ

Figure 5: Co�nality in the style of CCS (left); with explicit braiding (right)

Arranging for this to hold by construction introduces a certain amount of complexity, so we prove
co�nality as a separate theorem.
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Theorem 1 (Co�nality of residuals). Suppose E and E ′ are the transitions on the right of Figure 5, with
E ^E ′. Then there exists cofinE,E ′ :Q on∆ Q′.

The notion of concurrency extends into dimensions greater than two. Following Pratt’s higher-
dimensional automata [23], we can consider a proof χ : E ^ E ′ as a surface that represents the con-
currency of E and E ′ without committing to an order of occurrence. Every such χ : E ^ E ′ has a
two-dimensional residual χ/E ′′ with respect to a third concurrent transition E ′′. First we note that
concurrent transitions are closed under renamings.
Lemma 11. Suppose ρ : Γ−→∆ and E , E ′ are both transitions from Γ `P , with χ : E ^E ′. Then there
exists χ/ρ : E/ρ ^ E ′/ρ.

Proof. By induction on χ , using Lemma 9.

Theorem 2 (Residuation preserves concurrency).
Suppose χ : E ^E ′ with E ^E ′′ and E ^E ′′. Then there exists χ/E ′′ : E/E ′′^E ′/E ′′.

Proof. By induction on χ and inversion on the other two derivations, using Lemma 11.

Theorem 3. Suppose χ : E ^E ′, with E ′^E ′′ and E ′′^E . Then:

((E ′/E ′′)/(E/E ′′))/cofinE ′′,E = (E ′/E)/(E ′′/E)
The diagram below illustrates Theorems 2 and 3 informally. The three faces χ , χ ′ and χ ′′ with P as

a vertex witness the pairwise concurrency of E , E ′ and E ′′. Theorem 2 ensures that these have opposite
faces χ/E ′′, χ ′/E and χ ′′/E ′. Theorem 3 states that, up to a suitable braiding, there is a unique residual
of a one-dimensional transition after two-dimensional one, connecting the faces χ ′/E and χ ′′/E ′ via the
shared edge E ′′/χ . Analogous reasoning for E/χ ′ and E ′/χ ′′ yields a cubical transition with target P′.

P R ′′

R S3

R ′ S1

S2 P′

E

E ′

E ′′
E ′′/E ′

E/
E
′

E ′/E

E ′′/E

E′′/χ

The bold font for S1, S1 and S1 indicates that they represent not a unique process but a permutation
group of processes related by braidings. At P′ there are potentially 3! = 6 variants of the target process,
one for each possible interleaving of E , E ′ and E ′′. The notation E′′/χ is again informal, referring not
to a unique transition but to a permutation group related by braidings.
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4 Causal equivalence

4.1 Traces

De�ne Action∗ Γ to be the set of �nite sequences of composable actions starting at Γ. The empty
sequence at Γ is written []; extension to the left is written a :: ã. A trace t : P ã−−−−→ R is a �nite
sequence of composable transitions with initial state src(t) = P and �nal state tgt(t) = R . The empty
trace at P is written []P ; extension to the left of t : R ã−−−−→ S by E : P a−−−−→ R is written E :: t.
4.2 Residuals of traces and braidings

To de�ne the residual of a trace t with respect to a braiding γ, we �rst observe that a braiding congruence
φ :P ≅P ′ commutes (on the nose) with a transitionE :P a−−−−→Q, inducing the corresponding notions
of residual φ/E (the image of the braiding congruence in the transition) and E/φ (the image of the
transition in the braiding congruence).
Theorem 4. Suppose E : P a−−−−→ R and φ : P ≅ P ′. Then there exists a process R ′, transition E/
φ : P ′ a−−−−→ R ′ and structural congruence φ/E : R ≅ R ′.

P

P ′

R

R ′

E

E/φ

φ φ/E

Proof. By the de�ning equations in Figure 6.
Unlike residuals of the form E/E ′, the co�nality of E/φ and φ/E is by construction. Appendix C.2

illustrates co�nality for the cases where φ is of the form νν-swapP .
To extend this notion of residuation from braiding congruences to braidings requires a more general

notion of braiding which permits the renaming component of the braiding to be shifted under a binder.
First recall (from De�nition 4) that any braiding γ : P onΓ,∆ P ′ is of the form φ ◦ braidΓ,∆, where
braidΓ,∆ : Γ + ∆ −→ Γ + ∆ is the renaming id or swap, as determined by ∆ ∈ {0,1,2}, and φ is a
braiding congruence. We omit the Γ,∆ subscripts whenever possible. The more general form of braiding
allows the braid and φ components to be translated by an arbitrary context ∆′.
De�nition 5 (∆-shifted braiding). For any context ∆ de�ne

P on∆Γ,∆′ P ′⇐⇒ (braidΓ,∆′ +∆)∗P ≅ P ′
Now we de�ne the residual of a transition E : Γ ` P a−−−−→ Γ+∆ ` R , where ∆ ∈ {0,1}, and

coinitial braiding γ and show that the residual γ/E is γ shifted by ∆.
De�nition 6 (Residuals of transitions and braidings). For any transition E : P a−−−−→ R and braiding
γ : P on∆ P ′ with γ = φ ◦σ , de�ne E/γ and γ/E by the following equations.

E/(φ ◦σ ) = (E/σ )/φ (φ ◦σ )/E = (φ/(E/σ ))◦σ/a
Co�nality is immediate by composing the square obtained by applying Lemma 9 to E and σ with the
square obtained from Theorem 4 above to φ and E/σ . Closure of (∆-shifted) braidings under residuation
follows from the fact that σ/a= σ +∆′ for some ∆′ ∈ {0,1}.
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E/φ

νν-swapsrc(E)/(ννx+1〈0〉E) = νxν(swap∗E)
νν-swapsrc(E)/(νxνE) = ννx+1〈0〉(swap∗E)
νν-swapsrc(E)/(νcνc′E) = νcνc′ (swap∗E)
νν-swapsrc(E)/(νbνb′E) = νbνb′ (swap∗E)(x.P)/(x.φ) = x.tgt(φ)(x〈y〉.P)/(x〈y〉.φ) = x〈y〉.tgt(φ)(E+Q)/(φ+ψ) = E/φ+ tgt(ψ)(E b|Q)/(φ+ψ) = E/φ b| tgt(ψ)(E c|Q)/(φ+ψ) = E/φ c| tgt(ψ)(P |b F )/(φ+ψ) = tgt(φ) |b F/ψ(P |c F )/(φ+ψ) = tgt(φ) |c F/ψ(E |τy F )/(φ | ψ) = E/φ |τy F/ψ(E |τν F )/(φ | ψ) = E/φ |τν F/ψ(νE)/(νφ) = ν E/φ(νbE)/(νφ) = νbE/φ(νcE)/(νφ) = νcE/φ(!E)/(!φ) = !E/(φ | !φ)

E/(φ′ ◦φ) = (E/φ)/φ′

φ/E

νν-swapsrc(E)/(ννx+1〈0〉E) = ν tgt(E)
≅

νν-swapsrc(E)/(νxνE) = ν swap∗tgt(E)
≅

νν-swapsrc(E)/(νcνc′E) = νν-swap−1
tgt(E)

νν-swapsrc(E)/(νbνb′E) = νν-swap−1
swap∗(swap+1)∗swap∗tgt(E)(x.φ)/(x.P) = φ(x〈y〉.φ)/(x〈y〉.P) = φ(φ+ψ)/(E+Q) = φ/E(φ+ψ)/(E b|Q) = φ/E | push∗ψ(φ+ψ)/(E c|Q) = φ/E | ψ(φ+ψ)/(P |b F ) = push∗φ | ψ/F(φ+ψ)/(P |c F ) = φ | ψ/F(φ | ψ)/(E |τy F ) = (pop y)∗φ/E(φ | ψ)/(E |τν F ) = ν(φ/E | ψ/F )(νφ)/(νE) = φ/E(νφ)/(νbE) = ν swap∗φ/E(νφ)/(νcE) = ν φ/E(!φ)/(!E) = (φ | !φ)/E(φ′ ◦φ)/E = (φ′/(E/φ))◦φ/E

............................................................................................................................................................................................
Figure 6: Residual of transition E and coinitial braiding congruence φ

P R

(σ +∆)∗P
P ′

(σ +∆′)∗R
R ′

E

σ +∆ σ +∆′
E/(σ +∆)

(E/(σ +∆))/φ
φ φ/(E/(σ +∆))

where both E/(σ +∆) and (E/(σ +∆))/φ have the action (σ +∆)∗a.
Finally, we extend the de�nition to traces.

De�nition 7 (Residuals of action sequences and renamings).
Suppose ρ : Γ−→ ∆ and ã : Action∗ Γ. De�ne the residuals ρ/ã and ã/ρ, writing the latter as ρ∗ã.

ρ/[]Γ = ρ
ρ∗[]Γ = []∆ ρ/(a :: ã) = (ρ/a)/ã

ρ∗(a :: ã) = (ρ∗a) :: (ρ/a)∗ã
Lemma 12 (Residuals of traces and braidings).
Suppose t : P ã−−−−→ R and γ = φ◦σ : P on∆ P ′. Then there exists a process R ′, trace P ′ σ∗ã−−−−→ R ′ and
braiding γ/t : R on R ′.

P

P ′

R

R ′

t

t/γ

γ γ/t



R. Perera and J. Cheney 15

Proof. By the following de�ning equations.

P

P ′

P

P ′

[]

[]/γ
γ γ/[]

P

P ′

R

R ′

S

S′

E t

E/γ t/(γ/E)
γ γ/E (γ/E)/t

[]P /γ = []P ′
γ/[]P = γ

(E :: t)/γ = (E/γ) :: t/(γ/E)
γ/(E :: t) = (γ/E)/t

4.3 Causal equivalence

We now de�ne causal equivalence, the congruence over traces induced by the notion of transition residual
from §3.2. A causal equivalence α : t ' u witnesses the reordering of one trace t into a coinitial trace u
by the permutation of concurrent transitions. Meta-variables α , β range over causal equivalences.
De�nition 8. Inductively de�ne the relation ' given by the rules in Figure 7, where syntactically '
has lower priority than · :: ·. If α : t ' u then src(α) and tgt(α) denote t and u respectively.

t ' u

[]P []P ' []P · :: · E : P a−−−−−→ R t ' u
E :: t ' E :: u src(t) = R · ◦ ·

t′ ' u t ' t′

t ' u

(· :
: ·) :: · E : P a−−−−−→ R E ′ : P a′−−−−−→ R ′ t ' u
E :: E ′/E :: t ' E ′ :: E/E ′ :: u/cofinE,E ′ E ^E ′

............................................................................................................................................................................................
Figure 7: Causal equivalence

The []P and E :: α rules are the congruence cases. The α ◦β rule closes under transitivity, which is a
form of vertical composition. The transposition rule (E :
:E ′) :: α extends an existing causal equivalence
α : t ' u with the two possible interleavings of concurrent steps E ^E ′. What is interesting about this
rule is that the trace u must be transported through the braiding cofinE,E ′ witnessing the co�nality of E
and E ′, in order to obtain a trace u/cofinE,E ′ composable with E ′/E . The following diagram illustrates.

P

R

R ′

Q

Q′

S

S′

S′′

E

E ′

E ′/E

E/E ′

t

u

u/cofinE,E ′

cofinE,E ′

cofinα

cofinE,E ′/u

As the diagram suggests, the transposition rule causes braidings to compose vertically. Here, cofinα
is a composite braiding relating S to S′, which is extended by the braiding cofinE,E ′/u to relate S to S′′.
We leave formalising this aspect of causal equivalence to future work.
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Theorem 5. ' is an equivalence relation.

Proof. Re�exivity is a trivial induction, using the []P and E :: α rules. Transitivity is immediate from the
α ◦β rule. Symmetry is trivial in the []P , E :: α and α ◦β cases. The (E :
:E ′) :: α case requires the
symmetry of ^ and that (u/cofinα )/cofin−1

α = u, where u= tgt(α).
5 Related work

Hirschko�’s µs calculus [14] has a similar treatment of de Bruijn indices. Its renaming operators 〈x〉, φ
and ψ are e�ectively our pop x , push and swap renamings, but fused with the ·∗ operator which applies
a renaming to a process. Hirschko�’s operators are also syntactic forms in the µs calculus, rather than
meta-operations, and therefore the operational semantics also includes rules for reducing occurrences
of the renaming operators that arise during a process reduction step.

Formalisations of the π-calculus have been undertaken in several theorem provers used for mecha-
nised metatheory. Due to space limits, we limit attention to closely-related formalisation techniques
based on constructive logics.

Coq. Hirschko� [13] formalised theπ-calculus in Coq using de Bruijn indices, and veri�ed properties
such as congruence and structural equivalence laws of bisimulation. Despeyroux [12] formalised the
π-calculus in Coq using weak higher-order abstract syntax, assuming a decidable type of names, and
using two separate transitions, for ordinary, input and output transitions respectively; for input and
output transitions the right-hand side is a function of type name−→ proc. This formalisation included
a simple type system and proof of type soundness. Honsell, Miculan and Scagnetto [15] formalised
the π-calculus in Coq, also using weak higher-order abstract syntax. The type of names name is a
type parameter assumed to admit decidable equality and freshness (notin) relations. Transitions are
encoded using two inductive de�nitions, for free and bound actions, which di�er in the type of the third
argument (proc vs. name−→ proc). Numerous results from Milner, Parrow and Walker [19] are veri�ed,
using the theory of contexts (whose axioms are assumed in their formalisation, but have been validated
semantically).

CLF. Cervesato, Pfenning, Walker and Watkins [6] formalise synchronous and asynchronous ver-
sions of π-calculus in the Concurrent Logical Framework (CLF). CLF employs higher-order abstract
syntax, linearity and a monadic encapsulation of certain linear constructs that can identify objects such
as traces up to causal equivalence. Thus, CLF’s π-calculus encodings naturally induce equivalences on
traces. However, a nontrivial e�ort appears necessary to compare CLF’s notion of trace equivalence
with others (including ours) due to the distinctive approach taken in CLF.

Agda. Orchard and Yoshida [21] present a translation from a functional language with e�ects to a
π-calculus with session types and verify some type-preservation properties of the translation in Agda.

6 Conclusions and future work

To the best of our knowledge, we are the �rst to report on a formalisation of the operational behavior of
the π-calculus in Agda. Compared to prior formalisations, ours is distinctive in two ways.

First, our formalisation employs an indexed family of types for process terms and uses the indices
instead of binding to deal with scope extrusion. Formalisations of lambda-calculi often employ this
technique, but to our knowledge only Orchard and Yoshida report a similar approach for a π-calculus
formalisation. This choice helps tame the complexity of de Bruijn indices, because many invariants are
automatically checked by the type system rather than requiring additional explicit reasoning.
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Second, our work appears to be the �rst to align the notion of “proved transitions” from Boudol and
Castellani’s work on CCS with “transition proofs” in the π-calculus. This hinges on the capability to
manipulate and perform induction or recursion over derivations, and means we can leverage dependent
typing so that residuation is de�ned only for concurrent transitions, rather than on all pairs of transitions.
It is worth noting that while CLF’s approach to encoding π-calculus automatically yields an equivalence
on traces, it is unclear (at least to us) whether this equivalence is the same as the one we propose, or
whether such traces can be manipulated explicitly as proof objects if desired.

In future work we may explore trace structures explicitly quotiented by causal equivalence, such as
dependence graphs [17] or event structures [4]. We are also interested in extending braiding congruence
to the fullπ-calculus structural congruence, and in understanding whether and how ideas from homotopy
type theory [24], such as quotients or higher inductive types, could be applied to ease reasoning about
or correct programming with π-calculus terms (modulo structural congruence) or traces (modulo causal
equivalence).
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A Agda module structure

Figure 8 summarises the module structure of the Agda formalisation.

Utilities
Common Useful de�nitions not found in the Agda standard library
SharedModules Common imports from standard library

Core modules
Action Actions a
Action.Concur Concurrent actions a^ a′; residuals a/a′
Action.Concur.Action Residual of a^ a′ after a′′
Action.Seq Action sequences ã
Name Contexts Γ; names x
Proc Processes P
Ren Renamings ρ : Γ−→ Γ′
StructuralCong.Proc Braiding congruence relation φ : P ≅ P ′
StructuralCong.Transition Residuals E/φ and φ/E
Transition Transitions E : P a−−−−−→ R
Transition.Concur Concurrent transitions χ : E ^E ′; residuals E/E ′
Transition.Concur.Cofinal Co�nality braidings γ
Transition.Concur.Cofinal.Transition Residuals E/γ and γ/E
Transition.Concur.Transition Residual χ/E
Transition.Seq Transition sequences
Transition.Seq.Cofinal Residuals t/γ and γ/t; permutation equivalence α : t ' u
Typical sub-modules
.Properties Additional properties relating to X
.Ren Renaming lifted to X

............................................................................................................................................................................................
Figure 8: Module overview

B Renaming lemmas

Each lemma asserts the commutativity of the diagram on the left; when a string diagram is also provided,
it should be interpreted as an informal proof sketch.

Lemma 1.

Γ Γ+1
Γ

push

pop x

Γ
0
1
⋮

Γ+1
0
1
2
⋮

Γ
0
1
2
⋮

x

push pop x

= Γ
0
1
⋮

Γ
0
1
⋮

id

Lemma 2.
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Γ+1 Γ+2
Γ+1

pushΓ +1
popΓ+1 0

Γ+1
0
1
2
⋮

Γ+2
0
1
2
3
⋮

Γ+1
0
1
2
⋮

push+1 pop 0
= Γ+1

0
1
2
⋮

Γ+1
0
1
2
⋮

id

Lemma 3.

Γ+3
Γ+3 Γ+3

Γ+3 Γ+3
Γ+3

swapΓ+1
swapΓ +1

swapΓ +1
swapΓ+1

swapΓ+1

swapΓ +1

Γ+3
0
1
2
⋮

Γ+3
0
1
2
⋮

Γ+3
0
1
2
⋮

Γ+3
0
1
2
⋮

swapΓ +1 swapΓ+1 swapΓ +1

=
Γ+3

0
1
2
⋮

Γ+3
0
1
2
⋮

Γ+3
0
1
2
⋮

Γ+3
0
1
2
⋮

swapΓ+1 swapΓ +1 swapΓ+1

Lemma 4.

Γ+2 Γ+2 Γ+1swap

id

popΓ+1 0 Γ+2
0
1
2
⋮

Γ+2
0
1
2
⋮

Γ+1
0
1
⋮

swap pop 0
= Γ+2

0
1
2⋮

Γ+1
0
1
⋮

pop 0

Lemma 5.

Γ+1 Γ+2
Γ+2

pushΓ +1
pushΓ+1 swapswap

Γ+1
0
1
⋮

Γ+2
0
1
2
⋮

Γ+2
0
1
2
⋮

pushΓ+1 swapΓ
= Γ+1

0
1
⋮

Γ+2
0
1
2
⋮

pushΓ +1

Γ+1
0
1
⋮

Γ+2
0
1
2
⋮

Γ+2
0
1
2
⋮

pushΓ +1 swapΓ
= Γ+1

0
1
⋮

Γ+2
0
1
2
⋮

pushΓ+1

Lemmas 6, 7 and 8.

Γ
∆

Γ+1
∆+1

Γ
∆

pushΓ

push∆ pop∆ ρx
ρ ρ+1

popΓ x
ρ

Γ+2
∆+2

Γ+2
∆+2

swapΓ

swap∆
ρ+2 ρ+2
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C Additional proofs

Proof of Lemma 9. By the following mutually recursive proofs-by-induction on the derivations. The
various renaming lemmas needed to enable the induction hypothesis in each case are omitted.

ρ∗Ec

ρ∗(x〈y〉.P) = ρx〈ρy〉.ρ∗P
ρ∗(E+F ) = ρ∗E+ρ∗F
ρ∗(P |c F ) = ρ∗P |ρ∗c ρ∗F
ρ∗(E c|Q) = ρ∗E ρ∗c|ρ∗Q
ρ∗(E |τy F ) = ρ∗E |τρ∗y ρ∗F
ρ∗(E |τν F ) = ρ∗E |τν ρ∗F
ρ∗(νcE) = νρ∗c(ρ+1)∗E
ρ∗(!E) = !ρ∗E

ρ∗Eb

ρ∗(x.P) = ρx.(ρ+1)∗P
ρ∗(E+F ) = ρ∗E+ρ∗F
ρ∗(P |b F ) = ρ∗P |ρ∗b ρ∗F
ρ∗(E b|Q) = ρ∗E ρ∗b|ρ∗Q
ρ∗(νE) = ν(ρ+1)∗E
ρ∗(νbE) = νρ∗b(ρ+1)∗E
ρ∗(!E) = !ρ∗E

C.1 Additional illustrative cases of Theorem 1

Example: permuting concurrent extrusions (di�erent binders). First, note that the residuals of
bound output transitions are not themselves necessarily bound. More speci�cally, the residuals of the
output transition on x with the output on z is bound only if the outputs represent extrusions of di�erent
ν-binders. In this section we consider only the case when the concurrent extrusions are of di�erent
ν-binders.

In this case, each binder is una�ected by the extrusion of the other, and the residuals remain bound
outputs, shifted into Γ+1 as usual. The general form of such residuals is:

Γ `Q
Γ+1 ` S′

Γ+1 ` S Γ+2 `Q′
Γ+2 ` swap∗Q′

Γ+2 `Q′′

F x

F ′u

(F ′/F )u+1

(F/F ′)x+1

swap∗

φ

where φ ranges over braiding congruence. Then the residual is able to handle the inner extrusion, with
the resulting τ action again propagated through the outer binder:

· |τν ·
E

⋮Γ ` P x−−−−−→ R
F

⋮Γ `Q x−−−−−→ SΓ ` P |Q τ−−−−−→ ν(R | S)
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Γ ` P |Q
Γ ` ν(R ′ | S′)

Γ ` ν(R | S) Γ ` νν(swap∗P ′ | swap∗Q′)
Γ ` νν(P ′ |Q′)
Γ ` νν(P ′′ |Q′′)

E |τν F

E ′ |τν F ′

ντ (E ′/E |τν F ′/F )

ντ (E/E ′ |τν F/F ′)

νν-swapP ′|Q′

νν(φ | ψ)

Example: permuting concurrent extrusions (same binder). Consider the process ν(x+1〈0〉.P |
z+1〈0〉.Q), as described in Cristescu et al. [8]. There are two concurrent outputs, both of which try to
extrude the top-level binder. Suppose we take the x+1〈0〉 action �rst:

ν·

· ·| ·
x+1〈0〉.P x+1〈0〉−−−−−→ P

Γ+1 ` x+1〈0〉.P | z+1〈0〉.Q x+1〈0〉−−−−−→ Γ+1 ` P | z+1〈0〉.QΓ ` ν(x+1〈0〉.P | z+1〈0〉.Q) x−−−−−→ Γ+1 ` P | z+1〈0〉.Q
If we then take the z+1〈0〉 action, the enclosing ν-binder no longer exists, and so z+1〈0〉 simply

propagates as a non-bound action.

P |z+1〈0〉 · Γ+1 ` z+1〈0〉.Q z+1〈0〉−−−−−→ Γ+1 `Q
Γ+1 ` P | z+1〈0〉.Q z+1〈0〉−−−−−→ Γ+1 ` P |Q

Example: permuting one extrusion-rendezvous with another. Now consider what happens
when the extrusions from the previous example eventually rendezvous with a compatible input.

E |τν F : Γ ` P |Q τ−−−−−→ Γ ` ν(R | S)
E ′ |τν F ′ : Γ ` P |Q τ−−−−−→ Γ ` ν(R ′ | S′)

Γ ` P
Γ+1 ` R ′

Γ+1 ` R Γ+2 ` P ′
Γ+2 ` swap∗P ′

Γ+2 ` P ′′

Ex

E ′u

(E ′/E)u+1

(E/E ′)x+1

swap∗

φ

When the extrusions are of the same ν-binder, and the residual outputs are not bound, then we have:

Γ `Q
Γ+1 ` S′

Γ+1 ` S Γ+1 `Q′

Γ+1 `Q′′

F x

F ′u

(F ′/F )u+1〈0〉

(F/F ′)x+1〈0〉

ψ
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and the residual of one extrusion-handling after another is a plain communication, with the resulting τ
action simply propagated through the second ν binder:

Γ ` P |Q
Γ ` ν(R ′ | S′)

Γ ` ν(R | S) Γ ` ν((pop 0)∗swap∗P ′ |Q′)
Γ ` ν((pop 0)∗P ′ |Q′)
Γ ` ν((pop 0)∗P ′′ |Q′′)

E |τν F

E ′ |τν F ′

ντ (E ′/E |τ0 F ′/F )

ντ (E/E ′ |τ0 F/F ′)

ν(α |Q′)
ν((pop 0)∗φ | ψ)

Here α is the equality (pop 0)◦ swap = pop 0 (Lemma 4) applied to P ′.

Example: permuting bound actions propagating through a binder. Now suppose we have a
process of the form νP which has two concurrent transitions propagating an input action through the
ν binder:

νx ·

E
⋮Γ+1 ` P x+1−−−−−→ Γ+2 ` RΓ ` νP x−−−−−→ Γ+1 ` ν(swap∗R ) νu·

E ′
⋮Γ+1 ` P u+1−−−−−→ Γ+2 ` R ′Γ ` νP u−−−−−→ Γ+1 ` ν(swap∗R ′)

(The derivations are valid because both x+1 and z+1 are of the form push∗b.) The residuals of E and
E ′ with respect to each other have the form:

Γ+1 ` P
Γ+2 ` R

Γ+2 ` R ′

Γ+3 ` P ′
Γ+3 ` swap∗P ′

Γ+3 ` P ′′

Ex+1

E ′u+1

(E ′/E)u+2

(E/E ′)x+2

swap∗

φ

We can use these residuals to de�ne the following composite residual (νuE ′)/(νxE):

ν··

swap∗·

E ′/E
⋮Γ+2 ` R u+2−−−−−→ Γ+3 ` P ′Γ+2 ` swap∗R u+2−−−−−→ Γ+3 ` (swap+1)∗P ′Γ+1 ` ν(swap∗R ) u+1−−−−−→ Γ+2 ` ν(swap∗(swap+1)∗P ′)

noting that swap∗(u+2) = u+2 by Lemma 8. The complementary residual (νxE)/(νuE ′) is similar,
with x instead of u and R ′ instead of R . It remains to show that the terminal states are swap-congruent:

swap∗ν(swap∗(swap+1)∗P ′)= ν((swap+1)∗swap∗(swap+1)∗P ′) (de�nition of ·∗)= ν(swap∗(swap+1)∗swap∗P ′) (Lemma 3)
≅ ν(swap∗(swap+1)∗P ′′) (ν(swap∗(swap+1)∗φ))
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Example: permuting extruding rendezvous and unhandled extrusion. Of course concurrent
transitions are not always as symmetric as the ones we have seen. Here a name extrusion which has a
successful rendezvous, resulting in a τ action, is concurrent with another which does not and which
therefore propagates as a bound output:

P |u F : Γ ` P |Q u−−−−−→ Γ+1 ` push∗P | S
E |τν F ′ : Γ ` P |Q τ−−−−−→ Γ ` ν(R | S′)

As before, it matters whether the extrusions F x ^F ′u are of the same or di�erent binders.
Sub-case: extrusions of same binders. In this case, the residuals F ′/F and F/F ′ become sends of index

0, the binder being extruded.

· |τ0 ·
push∗·

E
⋮Γ ` P x−−−−−→ Γ+1 ` RΓ+1 ` push∗P x+1−−−−−→ Γ+2 ` (push+1)∗R F ′/F

⋮

Γ+1 ` S x+1〈0〉−−−−−→ Γ+1 `Q′Γ+1 ` push∗P | S τ−−−−−→ Γ+1 ` (pop 0)∗(push+1)∗R |Q′
For the other residual, we can derive:

ν·

R |u+1〈0〉 ·
F/F ′

⋮

Γ+1 ` S′ u+1〈0〉−−−−−→ Γ+1 `Q′′
Γ+1 ` R | S′ u+1〈0〉−−−−−→ Γ+1 ` R |Q′′Γ ` ν(R | S′) u−−−−−→ Γ+1 ` R |Q′′

with Q′ ≅Q′′, and noting that pop 0 retracts push+1 (Lemma 2 below).
Sub-case: extrusions of di�erent binders. In this case the residuals F ′/F and F/F ′ remain bound

outputs. Then, with the push∗E derivation as before, we can derive:

push∗E |τν ·

F ′/F
⋮Γ+1 ` S x+1−−−−−→ Γ+2 `Q′Γ+1 ` push∗P | S τ−−−−−→ Γ+1 ` ν((push+1)∗R |Q′)

and for the other residual:

νu·

R |u+1 ·
F/F ′

⋮Γ+1 ` S′ u+1−−−−−→ Γ+2 `Q′′Γ+1 ` R | S′ u+1−−−−−→ Γ+2 ` push∗R |Q′′Γ ` ν(R | S′) u−−−−−→ Γ+1 ` ν(swap∗push∗R | swap∗Q′′)
with swap∗Q′ ≅ Q′′. It remains to establish a ≅-path between the two terminal processes. We have
Q′ ≅ swap∗Q′′ by functionality and involutivity of swap, and push+1 = swap◦push by Lemma 5 and
then the rest follows by re�exivity and congruence.
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C.2 Co�nality for Theorem 4

Γ ` νν(swap∗P)

Γ ` ννP

Γ+1 ` νR

Γ+1 ` νR

ννx+1〈0〉E
νν-swapP

νxν(swap∗E)

Γ ` νν(swap∗P)

Γ ` ννP

Γ ` ννR

Γ ` νν(swap∗R )

νcνc′E

νν-swapP νν-swap−1
R

νcνc′(swap∗E)
Γ ` νν(swap∗P)

Γ ` ννP

Γ+1 ` ν(swap∗R )

Γ+1 ` ν(swap∗R )

νxνE

νν-swapP

ννx+1〈0〉(swap∗E)

Γ ` νν(swap∗P)

Γ ` ννP

Γ+1 ` νν((swap+1)∗swap∗R )

Γ+1 ` νν(swap∗(swap+1)∗swap∗R )

νbνb′E

νν-swapP νν-swap−1(swap+1)∗swap∗R
νbνb′(swap∗E)

............................................................................................................................................................................................
Figure 9: Co�nality of φ/E and E/φ in the νν-swap cases

Figure 9 illustrates co�nality for the νν-swap cases, omitting the renaming lemmas used as type-level
coercions. The νν-swap−1 cases are symmetric.
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