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ABSTRACT
The increasing amount of available Linked Data resources is
laying the foundations for more advanced Semantic Web ap-
plications. One of their main limitations, however, remains
the general low level of data quality. In this paper we focus
on a measure of quality which is negatively affected by the
increase of the available resources. We propose a measure of
semantic richness of Linked Data concepts and we demon-
strate our hypothesis that the more a concept is reused, the
less semantically rich it becomes. This is a significant scala-
bility issue, as one of the core aspects of Linked Data is the
propagation of semantic information on the Web by reusing
common terms. We prove our hypothesis with respect to
our measure of semantic richness and we validate our model
empirically. Finally, we suggest possible future directions to
address this scalability problem.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods—Semantic networks

1. INTRODUCTION
Recent years have seen a constant increase in the amount
of available Linked Data resources. While the problem of
data availability is gradually reducing, data quality remains
one of the main limiting factors of Linked Data applica-
tions. At the root of this problem lies the open nature of
the Web, where knowledge can be erroneous, incomplete,
and where concepts can be used in different ways between
different sources. In this paper we focus on a particular mea-
sure of quality, namely the semantic richness of Linked Data
concepts. Following a number-of-features approach [10], we
define our measure of semantic richness as the amount of
facts that we can expect to infer from a concept.

Web-scale reuse of semantic formalisations, such as con-
cepts and relations, is an essential aspect of Linked Data [2].
However the openness of Linked Data results in the paradox
that, while the reuse of terms is considered a good practice,
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it also progressively decreases the semantic richness of the
reused terms. This trend of diminishing semantics as the
usage of a term increases is a severe limitation to the scal-
ability of Linked Data. In fact, the less semantically rich a
concept becomes the less assumptions can be safely made
about its entities, thus reducing its potential applications.

For example, the concept of Person in a restricted do-
main, such as an individual organisation, might follow some
particular conventions, such as having an office number and
an address. However, if we extend the usage of this concept
to more and more entities outside the organisation, then it
might not be possible to assume that a Person has an office
number, or maybe even an address. In the Semantic Web,
by virtue of the fact that anybody can say anything about
anything, an entity of type Person could be anything. This
problem affects any Linked Data term, including relations.
A notable example is the owl:sameAs1 relation, originally
intended to represent strict equality between two entities,
which is frequently misused to represent a wide range of
weaker similarity relations [5].

The main contributions of this work are two. The first
is the validation of our hypothesis that the more datasets
reuse a Linked Data concept, the less semantically rich it
becomes. The second is a measure of semantic richness that
can be used to compare the usage of Linked Data concepts
between different datasets. This problem will be discussed
in more detail in Section 2 and it will be contextualised with
previous research in Section 3. In Section 4 we define our
measure of semantic richness and we prove our hypothesis
with respect to this measure. In Section 5 we validate our
hypothesis empirically to provide insights on the extent of
this problem. We will then suggest possible future directions
to address this problem in Section 6.

2. PROBLEM DEFINITION
We define a measure of semantic richness Γ as a function
that takes a concept α, such as foaf:Person2 and a Linked
Data graph S, such as the DBpedia graph [1], and returns
a positive real number. This number quantifies the amount
of information conveyed by the concept α within the graph
S. In other words, it is a measure of how many facts we
can expect to infer about the instances of that concept that
are found in the graph. If Γ(α, S1) > Γ(α, S2) then knowing
that an entity is of type α entails more facts in the context
of the graph S1 rather than S2.

1http://www.w3.org/2002/07/owl#sameAs
2http://xmlns.com/foaf/0.1/Person
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When creating such measure it is important to consider
scalability and robustness, as there is large variability in
the size and quality of Linked Data resources. It should
be possible to compute this measure effectively over large
amounts of Linked Data. Moreover, this measure should be
applicable to any dataset, even when taxonomic information
is not available or when all the available entities are of a
single type. These requirements prevent the applicability of
existing semantic measures such as the Information Content.

Being based on the usage of a concept, rather than on its
position within a conceptual framework such as a taxonomy,
this notion differs from the notion of semantic specificity.
For example, while a concept is less semantically specific (or
less informative) than its sub-concepts, it might be more se-
mantically rich. This situation occurs when the probability
of an entity being a member of a sub-concept depends on
the other sub-concepts it is a member of, such as in case
of mutual exclusivity of sub-concepts. For example, in a
dataset S a semantically rich concept α might contain a
small set of entities s of which nothing is known. If we con-
sider those entities as members of concept β, we will have
that Γ(β, S) < Γ(α, S) although β is a sub-concept of α.

We define Sα1 and Sα2 as the sets of entities of type α
contained, respectively, in datasets S1 and S2. Our hypoth-
esis is that the reuse of a Linked Data concept results in a
decrease of its semantic richness. Assuming that the sets
of entities of type α in two different datasets are disjoint
(Sα1 ∩ Sα2 = ∅), we express this hypothesis as follows:

Γ(α, S1 ∪ S2) ≤ |S
α1 |Γ(α, S1) + |Sα2 |Γ(α, S2)

|Sα1 |+ |Sα2 | (1)

Intuitively, this inequation states that the semantic richness
of a concept with respect to the union of two graphs is at
most equal to the average semantic richness of the graphs.
The difference between these values represents the amount
of information about a concept that is lost when merging
two datasets. In Section 5 we will show how, in practice, the
union of two graphs typically results in a significant decrease
of semantic richness.

3. BACKGROUND
The notion of Information Content (IC) has been proposed
to measure the informativeness of concepts within a tax-
onomy in the field of Information Theory [11]. This mea-
sure has been shown to be effective not only with respect
to concepts, but also to measure the informativeness of re-
sources and relations within a knowledge base [8]. The IC of
a concept α within a knowledge base is defined as IC(α) =
−log(p(α)), where p(α) is the probability of an entity be-
longing to concept α. One limitation to the applicability of
this measure is that the probability p(α) might not be mean-
ingful when considering domain specific datasets. For exam-
ple, several existing datasets contain only instances of type
foaf:Person. The IC of this concept computed over these
datasets will always be equal to 0 since p(foaf:Person) = 1.
The IC measure would not distinguish between the different
datasets although they might have a different semantic in-
terpretation of the concept foaf:Person. A different measure
is therefore necessary to compare the amount of information
conveyed by the concept in each dataset.

In the field of Cognitive Neuroscience several measures of
semantic richness have been proposed [10]. These measures
have been used to explain why certain concepts can be pro-

cessed better or faster by humans to perform certain tasks.
We adopt one such measure, called number-of-features (NF),
by measuring the number of facts that characterise a Linked
Data concept. The basic intuition behind the NF measure
is that semantically rich concepts tend to be characterised
with more attributes than less semantically rich ones.

Our metric to compute the semantic richness of a con-
cept does not assume the availability of pre-existing infer-
ence rules. In order to calculate how many facts we can
infer about the entities of a given concept we adopt an In-
ductive Learning approach. For example, if all the entities
of concept α from a graph S share property i, then we can
induce the rule that if an entity belongs to α then it will
have property i. The applications of Inductive Learning
for Linked Data have received considerable attention in the
recent years thanks to an increasing availability of Linked
Data resources. The main advantages of Inductive Learn-
ing approaches are scalability and robustness to errors and
uncertainty [4].

Schema information can be inferred from a knowledge base
by considering the frequency of certain patterns in the data,
such as the common properties shared by the entities of the
same type [3]. This schema information can then be used to
evaluate the quality of the knowledge base. For example, it
is possible to evaluate how well a Linked Data graph matches
a set of schema rules by using SPARQL query patterns [7].

When considering data from multiple sources, the de-
crease of semantic richness of a concept can be alleviated
by annotating data with contextual information. Several
approaches have been proposed to represent contextual in-
formation about Linked Data, in particular with respect to
Provenance [9]. For example, we might be able to infer more
knowledge about a set of entities of a concept if we know
that they all originate from DBpedia. One limitation of
this approach is the difficulty of creating and maintaining
contextual information. Moreover, contextual information
does not explicitly describe how a concept is used within a
dataset.

4. THE SEMANTIC RICHNESS MEASURE
Given a concept α, such as foaf:Person, we define a mea-
sure of its semantic richness G which quantifies the amount
of information conveyed by the concept. Unlike IC-based
measures [6], our measure is not proportional to the prob-
ability of an entity being a member of the concept. This
probability cannot be estimated reliably for Linked Data
due to its open nature and partial observability. When eval-
uating the semantic richness of a concept we only assume the
availability of a representative subset of entities of that con-
cept obtained from a finite number of sources. Taxonomical
information about the concept is not required.

Our measure of semantic richness G is defined as a func-
tion of the number of facts that we can infer about its in-
stances, and about their probability of being correct. These
facts are represented as graph patterns. For example, the
fact that persons have a birth date can be represented by
the graph pattern: { ?person a foaf:Person . ?person

foaf:birthday ?date . } here represented as a SPARQL3

graph pattern using the FOAF4 ontology. We define the
probability of an entity of type α from dataset S matching

3http://www.w3.org/TR/rdf-sparql-query/
4http://xmlns.com/foaf/spec/

http://www.w3.org/TR/rdf-sparql-query/
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pattern i as p(i, α, S). The average number of patterns that
we can observe in the entities of type α is the expected value
µ of a Poisson binomial distribution of the probabilities p.
We only need to compute this value over the finite set of pat-
terns I that have been observed among the entities of the
dataset, namely when p(i, α, S) > 0. The expected value of
this distribution can then be computed as follows:

µ =
X
i∈I

p(i, α, S) (2)

Equation 2 gives us a measure of how many patterns, in av-
erage, we can observe from the entities of type α in dataset
S. This measure, however, does not tell us how well we
can characterize a concept with a set of common features.
In fact, a high value of µ could be equally a result of a
large number of infrequent patterns or of a small number
of frequent patterns. However, frequent patterns are more
useful than infrequent ones for the purpose of characterising
a concept, for example to learn schema information using
Inductive Learning. Taking this into consideration, we de-
fine our measure of semantic richness with respect to a set
of characteristic patterns Y ⊆ I that define which patterns
we can expect entities of type α to have.

If a pattern i belongs to Y , then whenever we observe an
entity ε of type α we can infer that it would match pattern
i. We base our measure of semantic richness on the correct-
ness of such inferences. If an entity ε really matches pattern
i then we count it as a correct inference, we count it as in-
correct otherwise. For example, we might consider including
the pattern “has a dedicated Wikipedia page” in the set of
characteristic patterns of concept foaf:Person. Whenever we
observe an entity of type foaf:Person which has a dedicated
Wikipedia page we say that inferring this pattern is correct;
we say it is incorrect otherwise.

Our measure of semantic richness G(α, S) of a concept
α with respect to a dataset S and a set of characteristic
patterns Y is the difference between the expected number
of correct inferences and the expected number of incorrect
ones that we can make about an entity:

G(α, S) =
P
i∈Y p(i, α, S)−

P
i∈Y (1− p(i, α, S))

G(α, S) =
P
i∈Y 2p(i, α, S)− 1

(3)

From equation 3 it follows that, in order to maximize the
value of G(α, S), Y should be the set of patterns which oc-
cur in the majority of the entities (∀i ∈ Y.p(i, α, S) > 0.5).
Therefore equation 4 can be rewritten as follows:

G(α, S) =
P
i∈I

(
2p(i, α, S)− 1 if p(i, α, S) > 0.5

0 otherwise
(4)

The particular threshold of 0.5 is a result of the fact that
in this measure, which aims at being generic, correct and
wrong inferences carry the same (absolute) weight. Simi-
larly, all patterns carry equal weight. This formulation of
semantic richness is not meant to be unique and variations
are possible. For example, equation 4 could be modified
to penalize wrong inferences more. Also, different patterns
could be given different weights to represent how important
or informative they are for a specific application.

In this work we use use our generic measure of semantic
richness to analyse our hypothesis, namely that as we con-
sider more entities as members of a concept, the semantic
richness of that concept decreases. In fact, assuming that

the two sets of entities are disjoint (Sα1 ∩ Sα2 = ∅) the se-
mantic richness of the union of two sources of data is always
inferior or equal to the average individual semantic richness
of the sources:

G(α, S1 ∪ S2) ≤ |S
α1 |G(α, S1) + |Sα2 |G(α, S2)

|Sα1 |+ |Sα2 | (5)

4.1 Proof of Semantic Richness Decrease
Formula 5 can be proved according to our definition of se-
mantic richness defined in Formula 4. It can be observed
that the semantic richness of a concept is the sum of the
individual semantic richness of each pattern G′(α, S, i) =
(2p(i, α, S) − 1)[p(i, α, S) > 0.5]. Therefore Formula 5 can
be proved by proving that the inequation holds for every
individual pattern:

G′(α, S1 ∪S2, i) ≤
|Sα1 |G′(α, S1, i) + |Sα2 |G′(α, S2, i)

|Sα1 |+ |Sα2 | (6)

Having defined w1 = p(i, α, S1) and w2 = p(i, α, S2), then
the probability p(i, α, S1 ∪ S2) can be defined as ratio be-
tween the number of entities of each set which match pat-
tern i and the number of all the entities in the union of the
sets:

p(i, α, S1 ∪ S2) =
|Sα1 |wi + |Sα2 |w2

|Sα1 |+ |Sα2 | (7)

Formula 6 can then be written as follows:

(2 |S
α1 |wi+|Sα2 |w2
|Sα1 |+|Sα2 | − 1)[ |S

α1 |wi+|Sα2 |w2
|Sα1 |+|Sα2 | > 0.5] ≤

|Sα1 |(2w1−1)[w1>0.5]+|Sα2 |(2w2−1)[w2>0.5]
|Sα1 |+|Sα2 |

(8)

From Formula 8 it follows that in case w1 ≤ 0.5 and w1 ≤ 0.5
then p(i, α, S1∪S2) < 0.5 and therefore Formula 8 is reduced
to the tautology 0 ≤ 0. This matches the intuition that if a
pattern was not frequent in any of the original datasets, it
will not be frequent also in the union of the datasets.

In case w1 > 0.5 and w1 > 0.5 then p(i, α, S1 ∪ S2) > 0.5
and therefore equation 8 becomes:

2 |S
α1 |wi+|Sα2 |w2
|Sα1 |+|Sα2 | − 1 ≤ |S

α1 |(2w1−1)+|Sα2 |(2w2−1)
|Sα1 |+|Sα2 | (9)

This equation can be simplified to the tautology 0 ≤ 0. This
matches the intuition that a pattern which was frequent in
both of the original datasets will still be frequent in the
union of the datasets.

We then consider the last case in which a pattern is fre-
quent only in one of the original datasets: when w1 > 0.5
and w2 ≤ 0.5. This requires us to consider two sub-cases,
depending on the value of p(i, α, S1∪S2). If p(i, α, S1∪S2) ≤
0.5, then Formula 8 can be simplified to:

0 ≤ |S
α1 |(2w1−1)
|Sα1 |+|Sα2 | (10)

This formula can be further simplified to w1 > 0.5 which is
true by assumption. Finally, in case w1 > 0.5 and w2 ≤ 0.5
and p(i, α, S1 ∪ S2) > 0.5 Formula 8 can be simplified to:

2 |S
α1 |wi+|Sα2 |w2
|Sα1 |+|Sα2 | − 1 ≤ |S

α1 |(2w1−1)
|Sα1 |+|Sα2 | (11)

This equation can be simplified to w2 ≤ 0.5 which is true
by assumption. Having proved Formula 6, and therefore
Formula 5, we have proved our hypothesis (Formula 1) with
respect to our measure of semantic richness.



Figure 1: The DBpedia ontology tree represented
in function of the semantic richness of each concept.
Each segment represents a subclass relation.

5. EXPERIMENTAL EVALUATION
Having defined our model to measure semantic richness we
perform an empirical validation of this measure and of our
hypothesis. This experimental evaluation, performed over
several large datasets, also provides evidence of the scala-
bility of our measure. These experiments are based on an
implementation of a system that can sample entities from
a dataset and calculate the semantic richness of a concept
within the dataset.

5.1 Validation of the Semantic Measure
Our approach uses a numerical measure of the semantic rich-
ness of a concept using equation 4. But how well does this
measure actually capture the concept of semantic richness?
We evaluate this measure according to the intuition that
concepts are, in average, less semantically rich than their
sub-concepts. A similar property is also found in the IC
measure, as the IC of a concept is, by definition, always
inferior or equal to the IC of its sub-concepts.

We have evaluated how well our measure matches this in-
tuition on the concepts of the DBpedia ontology5 by calcu-
lating the semantic richness of the entities of each concept.6

To reduce the computational complexity, all concepts with
over 1000 entities have been replaced by a randomly sampled
set of 1000 entities. Also, we have considered only simple
graph patterns which involve a single triple. More specifi-
cally, we have considered patterns as pairs < p, o > which
match an entity ε if the triple < ε, p, o > is asserted in the
dataset. Improving the quality of this measure by consider-
ing more complex patterns is left for further research.

Figure 1 shows the change of semantic richness between
each concept and its sub-concepts. This graph shows a sig-
nificant tendency of concepts to be less semantically rich
than their sub-concepts. In fact, 90% of the subclass re-
lations resulted in an increase of semantic richness from a
concept to its sub-concepts. Also, in all cases concepts re-
sulted in a lower semantic richness than the average semantic
richness of their sub-concepts, thus supporting our hypoth-
esis. Only in 10% of the cases a subclass relation resulted
in a decrease of semantic richness from a concept to a sub-

5http://dbpedia.org/ontology/
6The entities were extracted from DBpedia version 3.5.1

Figure 2: Decrease of semantic richness of the con-
cept foaf:Person of ten different datasets as we add
more entities from the other datasets.

concept. This situation occurred because in the DBpedia
ontology, sibling concepts are mutually exclusive. There-
fore, the knowledge that an entity belongs to a certain con-
cept affects the probability of it being a member of another,
potentially more semantically rich, concept.

5.2 Validation of the Hypothesis
We have run an experiment to quantify the decrease in se-
mantic richness as concepts are reused. In this experiment
we have considered the concept foaf:Person as it is used in
ten different datasets. The list of the endpoints used to ac-
cess the datasets is shown in Table 1. From each endpoint
we have extracted information about 1000 randomly selected
entities.

For each dataset, we have calculated its semantic richness
at different states. Starting from the semantic richness of
the original dataset, we have recalculated this measure after
adding progressively more entities from the other datasets.
Figure 2 shows the progressive decay of semantic richness
as we add new entities of the same type from other sources.
The semantic richness of each dataset quickly converges to a
value which is significantly inferior to the average measure.
While the average semantic richness of all the individual
sources is 9.6, the semantic richness of the merged set re-
sults is 1.3. This experiment validates our hypothesis since
the semantic richness of the union of a number of sources is
inferior to their average individual semantic richness. An-
other fact that can be observed is that different datasets
represent the same concept with significantly different levels
of semantic richness. In this case, the values ranged from
0.7 of services.data.gov.uk to 35.2 of dbpedia.org.

6. RETAINING SEMANTIC RICHNESS
Since Linked Data does not allow negation, it is not possible
to prevent an entity from becoming a member of a concept.
It is however possible to predict the effect that adding an
entity to a dataset would have on the semantic richness of a
concept. We define E as the set of patterns that are matched
by entity ε. The degree of typicality of an entity with respect
to a concept α can then be defined as δε = |E ∩ Y |/|Y |
where Y is the set of frequent patterns of α. Given two
entities ε and ε′, we can say that ε is more typical than ε′ if

http://dbpedia.org/ontology/
services.data.gov.uk
dbpedia.org


Table 1: SPARQL endpoints used in the experiment
(accessed on 7/3/2015)

http://dbpedia.org/sparql
http://data.nobelprize.org/sparql
http://data.archiveshub.ac.uk/sparql
http://dati.camera.it/sparql
http://data.utpl.edu.ec/ecuadorresearch/lod/sparql
http://lod.sztaki.hu/sparql
http://semantic.eea.europa.eu/sparql
http://data.open.ac.uk/query
http://semanticweb.cs.vu.nl/europeana/sparql
http://services.data.gov.uk/reference/sparql

δε > δε
′
. We define an entity to be atypical, meaning that

including it into a concept would result in a decrease of its
semantic richness, if δ < 0.5. If δ ≥ 0.5 we say that the
entity is typical, meaning that its inclusion in the concept
would maintain or increase its semantic richness.

This typicality measure is scalable and easily verifiable
because it can be computed automatically over a subset of
the data. In fact, any agent can calculate whether an en-
tity is a typical or an atypical member of a concept. In
a closed domain, this measure could be used to determine
which entities should be considered as members of a con-
cept, and which should not. In Linked Data, however, it
is not possible, nor desirable, to prevent entities from be-
coming members of a concept. It is however possible to add
more knowledge about the typical entities to preserve their
semantic richness. A possible approach to do this is to create
a sub-concept which groups together the typical entities.

For example, the particular way in which the concept
foaf:Person is used in DBpedia results in the property that
the majority of those entities have an associated Wikipedia
page. If we merge these entities with another source about
persons which are not related with a Wikipedia page, then
this property will no longer hold, thus reducing the semantic
richness of the concept. In order to preserve this property,
we can create a new sub-concept of foaf:Person that cap-
tures the particular interpretation of this concept adopted
by DBpedia.

7. CONCLUSION
In this paper we have proposed a measure of semantic rich-
ness of Linked Data concepts that quantifies the amount of
facts that can be inferred from a concept within the scope
a particular dataset. This measure differs from previous se-
mantic measures, such as Information Content, as it is meant
to compare the difference in semantic richness of the same
concept between different datasets. We have validated this
measure with respect to the DBpedia ontology by showing
that it captures the expected intuition that sub-concepts are,
in average, more semantically rich than their super-concepts.
We have used the mathematical formulation of this measure
to prove our hypothesis that the more a concept is reused,
the less semantically rich it becomes. To verify the extent
of this problem we have compared the semantic richness of
the concept foaf:Person from ten different existing datasets.
Our preliminary results show that the semantic richness of a
concept quickly decreases when merging entities of multiple
datasets together. We have also shown that the same con-

cept can be used in different datasets with significantly dif-
ferent levels of semantic richness. Since it is not desirable to
prevent concepts from being reused we propose to preserve
their semantic richness by organising their heterogeneous set
of entities in a number of sub-concepts. These sub-concepts
can be generated and populated automatically by consider-
ing the effect on their semantic richness that would result
after the inclusion of a new entity.
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