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Abstract 

Subduction zones, such as the Andean convergent margin of South America, are sites of active 

continental growth and crustal recycling. The composition of arc magmas, and therefore new 

continental crust, reflects variable contributions from mantle, crustal and subducted reservoirs. 

Temporal (Ma) and spatial (km) variations in these contributions to southern Central Andean arc 

magmas are investigated in relation to the changing plate geometry and geodynamic setting of the 

southern Central Andes (28 - 32 °S) during the Cenozoic. The in-situ analysis of O and Hf isotopes in 

zircon, from both intrusive (granitoids) and extrusive (basaltic andesites to rhyolites) Late Cretaceous – 

Late Miocene arc magmatic rocks, combined with high resolution U-Pb dating, demonstrates distinct 

across-arc variations. Mantle-like δ18O(zircon) values (+5.4 ‰ to +5.7 ‰ (±0.4 (2σ))) and juvenile initial 
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ƐHf(zircon) values (+8.3 (±0.8 (2σ)) to +10.0 (±0.9 (2σ))), combined with a lack of zircon inheritance suggests 

that the Late Cretaceous (~73 Ma) to Eocene (~39 Ma) granitoids emplaced in the Principal Cordillera of 

Chile formed from mantle-derived melts with very limited interaction with continental crustal 

material, therefore representing a sustained period of upper crustal growth. Late Eocene (~36 Ma) to 

Early Miocene (~17 Ma) volcanic arc rocks present in the Frontal Cordillera have ‘mantle-like’ δ18O(zircon) 

values (+4.8 ‰ (±0.2 (2σ) to +5.8 ‰ (±0.5 (2σ))), but less radiogenic initial ƐHf(zircon) values (+1.0 (±1.1 (2σ)) 

to +4.0 (±0.6 (2σ))) providing evidence for mixing of mantle-derived melts with the Late Paleozoic – 

Early Mesozoic basement (up to ~20 %). The assimilation of both Late Paleozoic – Early Mesozoic 

Andean crust and a Grenville-aged basement is required to produce the higher than ‘mantle-like’ 

δ18O(zircon) values (+5.5 ‰ (±0.6 (2σ) to +7.2 ‰ (±0.4 (2σ))) and unradiogenic, initial ƐHf(zircon) values (-3.9 

(±1.0 (2σ)) to +1.6 (±4.4 (2σ))), obtained for the Late Oligocene (~23 Ma) to Late Miocene (~9 Ma) 

magmatic rocks located in the Argentinean Precordillera, and the Late Miocene (~6 Ma) volcanic rocks 

present in the Frontal Cordillera. The observed isotopic variability demonstrates that the assimilation 

of pre-existing continental crust, which varies in both age and composition over the Andean Cordillera, 

plays a dominant role in modifying the isotopic composition of Late Eocene to Late Miocene mantle-

derived magmas, implying significant crustal recycling. The interaction of arc magmas with distinct 

basement terranes is controlled by the migration of the magmatic arc due to the changing geodynamic 

setting, as well as by the tectonic shortening and thickening of the Central Andean crust over the latter 

part of the Cenozoic. 

Introduction 

Arc magmas, and hence new crust, potentially contain components derived from a number of different 

reservoirs (e.g., the mantle, subducted sediments, the subducting oceanic lithosphere, continental crust 

from subduction erosion, and the overlying crust). The proportions of these various contributions must 

be investigated and determined in order to quantify net crustal growth and the long-term recycling of 

crustal material. Resolving mantle and subduction components is more straight-forward in oceanic arcs 

than continental arcs because there is limited interaction with existing continental crust (e.g., Gill, 

1981). The task is more challenging for arcs built on continental crust as the addition of subducting 

components is notoriously difficult to resolve from the contamination of magmas with the overlying 
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crust (e.g., Davidson et al., 1991). However, as continental margins are considered the principal site for 

the growth of the continental crust, determining these contributions is key to understanding the 

generation, evolution and reworking of continental crust over time. 

 

The Central Andes represents a type example of an ocean–continent convergent margin and is an active 

site of modern continental growth. Previous studies have identified an increased influence of crustal 

components on arc magmas from the southern Central Andes over the course of the Cenozoic on the 

basis of whole rock major and trace element geochemistry, and isotopic compositions (e.g., Goss et al., 

2013; Kay and Abbruzzi, 1996; Kay et al., 1991; Litvak et al., 2007). However, discriminating between 

the processes involved (i.e. contamination of the mantle wedge with subducted components and/or 

crustal material from subduction erosion, versus arc magmas assimilating existing continental crust en 

route to the surface) remains unresolved. 

 

The geodynamic setting of the Central Andean margin, specifically plate convergence rates and the 

angle of the subducting oceanic plate, as well as the thickness of the Central Andean continental crust, 

has changed significantly over the course of the Cenozoic (e.g., Goss et al., 2013; Kay et al., 2005; Kay et 

al., 1991; Pardo Casas and Molnar, 1987; Pilger, 1981, 1984; Somoza, 1998; Somoza and Ghidella, 2012; 

Yañez et al., 2002; Yañez et al., 2001). The Andean margin has also experienced high levels (50 

km3/km/Myr (Stern, 2011)) of subduction erosion (Rutland, 1971; Stern, 1991) and variable sediment 

flux from the oceans and continents (Von Huene and Scholl, 1991a). This study utilises the isotopic 

composition of the robust accessory mineral zircon to investigate how the changing geodynamic 

setting, crustal thickness, sediment flux and levels of subduction erosion along the southern Central 

Andean margin has affected the contamination of southern Central Andean arc magmas, and thus the 

extent of crustal recycling over time. 

Geodynamic and geological setting 

Subduction has been active along the western margin of South America since the earliest Jurassic, with 

subduction-related magmatism in the Central Andes initiated at ~185 Ma (e.g., Pichowiak et al., 1990; 

Stern, 2004). The study area is located within the Pampean (Chilean) flat-slab segment (~28° - 33°S) of 



  

4 

 

the southern Central Andes (Fig. 1). This segment of the Andean margin has been volcanically inactive 

since the Late Miocene (~6 Ma) (e.g., Bissig et al., 2003; Kay et al., 1999; Litvak et al., 2007) due to a 

decrease in the angle (<10° at 100km depth) at which the oceanic Nazca plate subducts beneath the 

South American continent (e.g., Pilger, 1981, 1984; Yañez et al., 2001). The present day, low angle of 

subduction has been attributed to the subduction of the Juan Fernandez Ridge (JFR) which began 

intersecting the Andean margin during the early Miocene (~18 Ma) (e.g., Jones et al., 2014; Yañez et al., 

2001). The shallowing of the Nazca plate caused the position of the volcanic arc to expand and migrate 

to the east (e.g., Kay et al., 1987; Kay and Mpodozis, 2002). Convergence rates and the relative plate 

motions between the oceanic (Farallon and Nazca) and South American plates have also changed 

during the course of the Cenozoic; in particular a major plate reconfiguration occurred in the Late 

Oligocene (~25 Ma) due to the break-up of the Farallon plate into the Nazca and Cocos plates 

(Lonsdale, 2005). This resulted in an increase in convergence rates (from ~8 cm/yr to ~15 cm/yr) 

between the Nazca and South American plates and a change from oblique (NE-SW) to orthogonal (ENE 

- WSW) convergence (Pardo Casas and Molnar, 1987; Somoza, 1998; Somoza and Ghidella, 2012). This 

increased convergence, combined with increased compression related to the subduction of the JFR, led 

to an increase in crustal thickness in the southern Central Andes from ~30 km to >45 km (Haschke et al., 

2002; Kay et al., 1991). 

 

The Andean tectonic cycle (Jurassic to recent) represents only the latest in a series of orogenic cycles to 

affect the western edge of the South American continent. Earlier tectonic cycles (e.g., the Gondwanan 

tectonic cycle, latest Devonian to early Permian) along with episodes of extension, subduction and 

accretion formed the distinctive basement on which the modern Andes are built (Charrier et al., 2007; 

Ramos et al., 1986). In the Pampean flat-slab segment, the Andean margin is divided from west to east 

into the Coastal Cordillera, the Principal Cordillera, the Frontal Cordillera, the Precordillera and the 

Sierras Pampeanas (Fig. 1). The age and origin of the underlying basement varies across the Andean 

Cordillera depending on the extent of these north-south trending morphostructural units. The 

basement of the Principal and Frontal Cordillera is composed of highly deformed Paleozoic sediments 

which have been intruded and covered by extensive Late Palaeozoic – Early Mesozoic plutons and 

volcanic rocks (Kay et al., 1989). In the Argentinean Precordillera (Fig. 1) a Grenville-aged basement 
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(1200 – 1000 Ma), which is not exposed at the surface and has been identified through various 

geochemical studies, is overlain by Cambrian – Ordovician strata (Kay and Abbruzzi, 1996; Kay et al., 

1996; Ramos, 2010; Thomas et al., 2004). As a result of both the regional geology and the migration of 

the volcanic arc to the east there is a unique opportunity for a distinctive spatial relationship in the 

contamination of mantle-derived magmas, via assimilation and crustal reworking en route to the 

surface, to be revealed.  

Insights from the isotopic composition of zircon 

In continental arcs, the relative contributions to arc magmas, from mantle, crustal and subducted 

components can be difficult to constrain from whole rock geochemistry alone as it often reflects a 

complex history of fractional crystallisation and late stage alteration (e.g., Marfil and Maiza, 2012; 

McCarthy and Hasty, 1976). This is a particular problem in the southern Central Andes where some of 

the arc magmatic rocks (e.g., the Tilito Formation) have been affected by hydrothermal alteration 

(Bissig et al., 2003; Bissig et al., 2001; Charchaflié et al., 2007; Kay and Mpodozis, 2001; Litvak et al., 

2007). A solution is to conduct high resolution, in-situ oxygen and hafnium isotopic analysis of the 

robust accessory mineral zircon and combine this with high resolution U-Pb dating and detailed 

cathodoluminescence imaging. Zircon grains also potentially preserve information about the nature of 

the contaminant (e.g., through the presence of xenocrystic cores), which are not apparent from whole 

rock geochemistry. The analysis of individual zircon grains, which unlike whole rocks can be readily 

dated and reliably analysed for 18O (robust to recent alteration), by in-situ techniques, enables a much 

more detailed picture of the relative contributions to arc magmas to be achieved. 

 

Specifically, the combination of oxygen and hafnium isotopic variations in zircon can be used to 

investigate the interactions between mantle-derived melts and older crustal material (e.g., 

Hawkesworth and Kemp, 2006; Kemp et al., 2007). Assuming zircon crystallisation is cogenetic (i.e. the 

zircon has not been inherited from elsewhere), zircon will retain the oxygen isotope composition of the 

melt from the time of crystallisation (Peck et al., 2003). Zircons which crystallise in equilibrium with 

melts derived from an uncontaminated mantle source have a narrow range of δ18O values (5.3 ±0.6‰ 

(Valley, 2003; Valley et al., 1998)). As oxygen isotopes are sensitive to water-rock interactions and the 
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fractionation of oxygen isotopes increases with decreasing temperature (Clayton et al., 1972), the 

interaction of magmas with sediments and/or low temperature altered crust leads to elevated δ18O(zircon) 

values. Thus, higher than ‘mantle like’ δ18O(zircon) values suggests the incorporation of a 18O enriched 

supracrustal component, such as sediment, into the magma from which the zircon crystallised (e.g., 

Eiler, 2001). 

 

Hafnium (Hf) is more incompatible than lutetium (Lu) during the melting of spinel and garnet 

peridotite. Thus crust is formed with low Lu/Hf and with time the radioactive decay of 176Lu to 176Hf 

results in the crust evolving with a less radiogenic 176Hf/177Hf composition relative to the mantle from 

which it separated (Kinny and Maas, 2003; Patchett et al., 1982). Therefore, the mixing of new mantle-

derived melts with older, and hence less radiogenic crust (e.g., a Grenville-aged basement), will lead to 

lower epsilon Hf values (i.e., the 176Hf/177Hf expressed in parts per ten thousand difference relative to a 

chondritic reservoir) in the zircon crystallising from the magma. In addition to this, where there is no 

evidence for mixing with older crustal material (i.e., high initial εHf(zircon) values, ‘mantle-like’ δ18O(zircon) 

values and no zircon inheritance) Hf model ages can be used to identify when a primary melt 

differentiated from the primitive mantle (e.g., Hawkesworth and Kemp, 2006). Combining zircon U-Pb 

crystallisation ages with Hf model ages therefore has the potential to reveal periods of new crustal 

growth (e.g., Belousova et al., 2010; Dhuime et al., 2011). 

 

We have applied these techniques to zircons separated from representative samples of both intrusive 

(diorites to granites) and extrusive (basaltic andesites to rhyolites) Late Cretaceous – Late Miocene arc 

rocks. These samples were collected from an W - E transect across the Andean Cordillera from Chile 

into Argentina, between 29 and 31 °S (Fig. 1 and Table 1). All the major plutonic and volcanic 

formations, which had previously been mapped as between Late Cretaceous – Late Miocene in age 

(Cardó and Díaz, 1999; Cardó et al., 2007; Emparan and Pineda, 1999; José Frutos et al., 2004; Maksaev 

et al., 1984; Mpodozis and Cornejo, 1988; Nasi et al., 1990; Pineda and Calderón, 2008; Pineda and 

Emparan, 2006), were sampled from this region. The arc rocks sampled from the Principal Cordillera of 

Chile, which are primarily plutonic and belong to the Cogotí Supergroup, range in age from the Late 

Cretaceous (72.6 ±0.8 Ma) to the Eocene (38.9 ±1.0 Ma), as determined by the U-Pb dating conducted as 



  

7 

 

part of this study (Table 1). The samples collected from the Frontal Cordillera range in age from the 

Early Paleocene (61.9 ±9.1 Ma) to the Late Miocene (6.2 ±0.3 Ma) and are primarily extrusive, and the 

plutonic and volcanic rock samples collected from the Precordillera of Argentina (i.e. furthest east) 

range in age from the Late Oligocene (22.6 ±0.3 Ma) to the Late Miocene (9.4 ±0.2 Ma) (Table 1). Zircons 

were also separated from a number of plutonic and volcanic rocks from the Late Palaeozoic – Early 

Mesozoic basement, which were collected in order to characterise potential contaminants of the Late 

Cretaceous - Late Miocene arc magmas. These samples range in age from 280.2 ±3.5 Ma to 221.0 ±4.4 Ma 

(Table 1). 

 

Detailed petrographic analysis and cathodoluminescence imaging (Fig. 2) of individual zircon grains 

was conducted in order to identify the magmatic origin of the zircon grains, and suitable grains and 

specific locations for isotopic analysis (refer to Section 2 of the Appendix). This included the 

identification of magmatic zircon grains with simple histories and those with distinct xenocrystic cores 

which may reveal the nature and age of the contaminating crustal material (Fig. 2). Oxygen isotope 

compositions and U-Pb crystallisation ages were determined from the same zircon growth zones using 

a Cameca ims 1270 secondary ion mass spectrometer (SIMS) at the NERC Ion Microprobe Facility, 

University of Edinburgh (Fig. 2 and Appendix). Subsequently, hafnium isotope analysis was conducted 

on a multi-collector inductively-coupled plasma mass spectrometer combined with a laser ablation 

system (LA-MC-ICPMS), at the University of Bristol. Full details of analytical methods and data 

correction are presented in the Appendix. 

Results 

Sample summary information is presented in Table 1. Full results are presented in Figures 3 and 4, and 

Table A1 and A2 of the Appendix. 

Oxygen isotopes 

No correlation is apparent between the δ18O(zircon) values and the whole rock SiO2 content as shown in 

Figure 3a. The δ18O values obtained for individual zircon grains from the Late Cretaceous (72.6 Ma) to 

Eocene (38.9 Ma) plutonic rocks located in the Principal Cordillera of Chile, range between 4.96 ‰ (± 
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0.33 (2σ)) and 6.13 ‰ (± 0.33 (2σ)) (Fig. 4). These values are all within analytical uncertainty of those 

expected for zircon crystallising in isotopic equilibrium with mantle-derived melts (5.3 ‰ ± 0.6 (Valley 

et al., 1998)). With the exception of the most easterly sample of the Tilito Formation (PC14), the majority 

of δ18O(zircon) values obtained for the Early Paleocene (61.9 Ma) to Late Miocene (6.2 Ma) arc rocks 

located in the Frontal Cordillera, also lie within analytical uncertainty of ‘mantle-like’ values. Oxygen 

isotope values obtained for individual zircon grains from these primarily extrusive rocks, range 

between 4.57 ‰ (± 0.27 (2σ)) and 6.47 ‰ (± 0.27 (2σ)), displaying more variation than the plutonic 

samples from the Principal Cordillera (Fig. 4). The Late Oligocene (22.6 Ma) to Late Miocene (9.4 Ma) 

intrusive and extrusive arc rocks located in the Precordillera, along with the most easterly sample of 

the Tilito Formation (PC14, 23.6 Ma), have higher than ‘mantle-like’ δ18O(zircon) values, with values 

ranging from 5.57 ‰ (± 0.29 (2σ)) to 7.92 ‰ (± 0.22 (2σ)) (Fig. 4). Analysis of zircons obtained from 

plutonic and volcanic rocks comprising the Late Palaeozoic to Early Mesozoic basement produced 

varied δ18O(zircon) values ranging between 4.59 ‰ (±0.29 (2σ)) and 7.16 ‰ (±0.29 (2σ)) (Table A1, 

Appendix). 

Hafnium isotopes 

Initial εHf(zircon) values obtained for individual zircon grains from the plutonic rocks located in the 

Principal Cordillera, are distinctly positive and range between +7.7 (±1.0 (2σ)) and +10.8 (±0.8 (2σ)) (Fig. 

4). These values lie close to the values projected for mantle-derived melts (i.e., new crust (NC) (Dhuime 

et al., 2011)), and yield hafnium model ages (T(NC)) ranging between 190 and 416 Ma (Fig. 5 and Table 

A1, Appendix). With the exception of the Paleocene (61.9 Ma) sample of the Los Elquinos Formation, 

which has εHfT(zircon) values within the range of values obtained for samples of similar age located in the 

Principal Cordillera (Fig. 4), the initial εHf(zircon) values of the Late Eocene (35.6 Ma) – Late Miocene (6.2 

Ma) volcanic rocks present in the Frontal Cordillera range between -3.4 (±0.9 (2σ)) and +4.8 (±1.0 (2σ)), 

with the lowest values obtained for the youngest sample (DI095, Vacas Heladas Ignimbrites) (Fig. 4). 

The initial εHf(zircon) values produced for individual zircon grains from the Precordillera are generally 

lower than those obtained for the Principal and Fontal Cordillera and range between -3.9 (±0.6 (2σ)) 

and +4.1 (±0.8 (2σ)) (Figs. 4 and 5). The initial εHf(zircon) values obtained from sample PC14, the most 

easterly sample of the Tilito Formation (23.6 Ma), lie within this range and are lower than the εHfT(zircon) 
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values obtained for other samples of the Tilito Formation located in the Frontal Cordillera (Fig. 4). 

Analyses of zircons obtained from plutonic and volcanic rocks comprising the Late Palaeozoic to Early 

Mesozoic basement produced initial εHf(zircon) values ranging between -2.2 (±1.0 (2σ)) and +3.0 (±1.0 

(2σ)) (Fig. 5 and Table A1 of the Appendix). No correlation is observed between the initial εHf(zircon) 

values and the whole rock SiO2 content (Fig. 3b). 

Inherited, xenocrystic zircon cores 

Devonian to Cretaceous inherited zircon cores, with 206Pb/238U ages ranging between 138.1 ±5.2 Ma and 

388.1 ±10.5 Ma, were obtained from Late Eocene to Late Miocene plutonic and volcanic rocks from the 

Frontal Cordillera and Precordillera (Fig. 4). These inherited cores produced varied δ18O(zircon) values 

ranging between 4.70 ‰ (±0.36 (2σ)) and 9.78 ‰ (±0.29‰ (2σ)) and initial ƐHf(zircon) values ranging 

between -4.3 (±1.6 (2σ)) and +4.5 (±0.8 (2σ)) (Fig. 5 and Table A1, of the Appendix). These values are 

more varied than those obtained for zircons from samples of the Late Palaeozoic – Early Mesozoic 

basement (Fig. 5). Mesoproterozoic inherited cores, with 206Pb/238U ages ranging between 1249.4 ±21.9 

Ma and 1039.6 ±29.0 Ma, were obtained from Late Miocene dacites and trachydacites (the Tertiary 

Intrusives) present in the Precordillera (Fig. 4). Oxygen isotope values ranging between 6.05 ‰ (±0.27 

(2σ)) and 7.23 ‰ (±0.22 (2σ)) and initial ƐHf(zircon) values of between +7.0 (±0.6 (2σ)) and +8.4 (±0.9 (2σ)) 

were obtained for these inherited cores (Fig. 5 and Table A1, of the Appendix). These initial ƐHf(zircon) 

values lie close to the projected values for mantle-derived melts (i.e., new crust (NC) (Dhuime et al., 

2011)) and the corresponding hafnium model ages (T(NC)) range between 1391 and 1200 Ma (Fig. 5).  

Discussion 

Temporal and spatial variations in isotopic compositions 

The isotopic compositions of zircons, and the occurrence and age of inherited, xenocrystic zircon cores, 

vary as a function of sample age and across-arc position (i.e., location in the Chilean Principal 

Cordillera (most westerly), Frontal Cordillera or Argentinean Precordillera (most easterly)), as shown 

in Figure 4. Due to the eastward migration of the volcanic arc in the Pampean flat-slab segment, during 

the Cenozoic, the across arc position and sample age are also related. 
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Late Cretaceous – Eocene mantle derived melts 

The ‘mantle-like’ δ18O(zircon) values obtained for the Late Cretaceous to Eocene granitoids located in the 

Principal Cordillera, combined with the distinctly positive, initial εHf(zircon) values, which lie close to the 

values projected for mantle-derived melts (Figs. 4 and 5), suggests the Late Cretaceous to Eocene arc 

magmas experienced very little contamination from significantly older, upper continental crust, either 

in the melt source region or via crustal assimilation. This interpretation is consistent with the low 

strontium isotope values (initial 87Sr/86Sr ratios of between 0.7035 and 0.7045) obtained for these 

granitoid belts (Parada, 1990; Parada et al., 1988). The absence of any significantly older, xenocrystic 

zircon cores (Fig. 4) provides further evidence to indicate limited interaction of these arc magmas with 

old continental crust. During this time interval the southern Central Andean margin is thought to have 

been more extensional due to the highly oblique angle of convergence between the Farallon and South 

American plates and low rates of convergence (e.g., Charrier et al., 2007; Pardo Casas and Molnar, 

1987). Therefore, a more limited interaction between the ascending mantle-derived melts and the 

overlying Andean crust might be expected in comparison to later in the Cenozoic, when the continental 

crust became thicker due to increased compression (Kay et al., 1991). 

 

Devonian to Triassic hafnium models ages were obtained for zircons from the Late Cretaceous – 

Eocene magmatic belts (Fig. 5). During this time interval the western margin of South America was 

located along the western margin of Gondwana and formed part of the Gondwanan magmatic arc (e.g., 

Charrier et al., 2007; Kay et al., 1989). On the basis of the Hf model ages, combined with the oxygen and 

hafnium isotope data, and whole rock geochemistry (Jones, 2014), it is suggested that the Late 

Cretaceous to Eocene arc magmas were derived from the asthenospheric mantle wedge with a very 

minor addition from Paleozoic – Early Mesozoic crust. This crustal addition could be derived from the 

Gondwanan magmatic arc, either due to subduction erosion or the subduction of terrigenous sediment 

from the arc, and/or a lower crustal reservoir which separated from the mantle during the Gondwanan 

tectonic cycle. An addition of older crustal material is required to account for initial ƐHf(zircon) values 

which are slightly lower (i.e. less radiogenic) than those expected for melts derived directly from the 

mantle (Fig. 5). Sediments have high δ18O values, reflecting low temperature processes, and therefore 

the addition of sediment to the melt source region might be expected to raise the δ18O(zircon) values. Bulk 
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mixing models suggest that a maximum addition of 4% Late Paleozoic – Early Mesozoic sediments, 

derived from the Andean arc, to the source of the Late Cretaceous to Eocene arc magmas could account 

for their initial ƐHf(zircon) values, whilst retaining ‘mantle-like’ δ18O(zircon) values (Fig. 6). A lower crustal 

reservoir which separated from the mantle during the Gondwanan tectonic cycle is also likely to have 

‘mantle-like’ δ18O values and therefore a much greater addition from such a reservoir could account for 

the isotopic composition of the Late Cretaceous to Eocene arc magmas. Whichever mechanism is 

responsible, the evidence presented by this study suggests that during the early stages of Andean-type 

subduction (Late Cretaceous – Eocene) there was a sustained period (~35 Ma) of upper crustal growth, 

with extensive magmatic belts formed from melts derived from the mantle with little recycling of pre-

existing crustal material.  

Controls on Late Eocene – Late Miocene isotopic variability  

The contamination of arc magmas with older crustal material can occur either during magma ascent 

through the crust via crustal assimilation or via the subduction of upper crustal material (including that 

derived from subduction erosion) to depth. If the melt source was being contaminated, little intra- and 

inter- grain variation in isotopic values for samples of similar ages/from the same formations might be 

expected, compared to the variation which might be generated by a crystallising magma progressively 

assimilating continental crust (e.g., as demonstrated by core to rim changes). Temporal variations in 

δ18O(zircon) and εHf(zircon) values might also be anticipated, reflecting the subduction of different amounts 

of sediment and/or continental crust derived from subduction erosion, over time. Subduction erosion 

has been identified as an episodic process along the Central Andean margin (Kay et al., 2005; Stern, 

2011), and the JFR is thought to have acted as a barrier to the transport of sediments into the trench 

from farther south (e.g., Bangs and Cande, 1997), after its intersection with the margin at ~20 Ma (Yañez 

et al., 2002; Yañez et al., 2001). These changing dynamics might be expected to have affected the 

composition of the melt source region over time, by either starving or adding sediment/crustal material 

to the mantle wedge.  

 

However, the variability in δ18O(zircon) and εHf(zircon) values obtained for Late Eocene to Late Miocene arc 

magmatic rocks appears to be related to geographic position relative to the Chilean margin, rather than 
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sample age (Fig. 4). For example, sample PC14 (23.6 Ma) is contemporaneous with the Tilito Formation 

(Late Oligocene) and is located close to the boundary with the Precordillera. It displays distinctly 

different δ18O(zircon) and εHfT(zircon) values compared to samples of the Tilito Formation and of the same 

age located in the Frontal Cordillera (Fig. 4). Furthermore, the youngest samples (Vacas Heladas 

Ignimbrites), are located in the High Andes of the Frontal Cordillera and have δ18O(zircon) values which 

lie within the range of values obtained for other, older samples present in the Frontal Cordillera (Fig. 

4). Intra- and inter-grain variability, particularly in εHf(zircon) values (Fig. 4), is also displayed in a 

number of Late Eocene – Late Miocene samples, which suggests the isotopic composition of the magma 

was evolving during zircon crystallisation and was not solely determined in the melt source region. 

 

The basement underlying the Frontal Cordillera is composed of highly deformed Paleozoic sediments 

which have been intruded and covered by extensive Late Palaeozoic – Early Mesozoic plutons and 

volcanic rocks (e.g., Kay et al., 1989). The initial εHf(zircon) values obtained for the Late Eocene to Late 

Miocene volcanic rocks present in the Frontal Cordillera are significantly lower (i.e., less radiogenic), 

than those expected for a primary melt derived from the mantle wedge (i.e., new crust (NC)) (Fig. 5), 

suggesting the involvement of an older, less-radiogenic crustal component. The assimilation of 

Paleozoic sediments by Late Eocene to Late Miocene arc magmas would result in elevated δ18O(zircon) 

values relative to the mantle. However, the majority of δ18O(zircon) values obtained for the Late Eocene to 

Late Miocene samples from the Frontal Cordillera are ‘mantle-like’, suggesting the contaminant must 

have close to ‘mantle-like’ δ18O values which have not been affected by low temperature interaction 

with the hydrosphere at the Earth’s surface. Analyses of zircons from Permian – Triassic plutonic and 

volcanic rocks present in the Frontal Cordillera, sampled as part of this study, yielded average δ18O 

values ranging between 5.1‰ (±0.4‰, n=10) and 6.4‰ (±0.9‰, n=12) (Table A2). Bulk mixing models 

using the average δ18O(zircon) values obtained for the Permian - Triassic basement samples and the 

projected Permian - Triassic εHf(zircon) values (Fig. 5), suggests mixing of typically <20 % of this crust 

with new mantle-derived melts (i.e., new crust (NC) (Dhuime et al., 2011)) can produce the modest 

changes δ18O, but more marked Hf isotopic variability observed in the Late Eocene to Late Miocene 

samples from the Frontal Cordillera (Fig. 6). The presence of primarily Permian – Triassic inherited 

zircon cores in these samples (Fig. 4) supports the assimilation of continental crust of this age.  



  

13 

 

 

The Late Oligocene – Late Miocene granitoids, andesites and rhyolites, located in the Precordillera of 

Argentina have higher than ‘mantle-like’ δ18O(zircon) values and un-radiogenic values of εHfT(zircon) (Figs. 4 

and 5), which are quite distinct from the values obtained in the Principal and Frontal Cordillera. This 

suggests the interaction of these arc magmas with an ancient crustal reservoir (therefore with low εHfT 

values) which has experienced low temperature interaction with the near surface, accounting for the 

elevated δ18O values. Although no crystalline basement is exposed in the Precordillera, evidence from 

high-grade metamorphic, xenoliths present in the Miocene volcanic rocks indicates a Grenville-aged 

basement (Abbruzzi et al., 1993; Kay et al., 1996). It has been suggested that this basement forms part of 

a rifted fragment of Laurentian crust and passive margin cover which was accreted onto the margin of 

Gondwana during the Ordovician (e.g., Kay et al., 1996; Thomas and Astini, 2003). Convincing 

evidence for the contamination of the Late Oligocene – Late Miocene magmas with this Grenville-aged 

crust is provided by the presence of inherited Proterozoic cores in a number of the samples present in 

the Precordillera (Fig. 4). This contamination must have happened via crustal assimilation, rather than 

the recycling of sediments through the subduction zone, as Proterozoic crust is not exposed at the 

surface in the main Andean Cordillera and therefore is unlikely to have been eroded and transported 

into the Chilean trench. 

 

A Grenville-aged basement is likely to have unradiogenic, negative εHf values, as shown by projecting 

the εHf(zircon) values obtained for the Proterozoic cores to the Cenozoic (Fig. 5), and high δ18O values 

reflecting a sedimentary origin. Bulk mixing suggests that contamination of mantle-derived melts with 

up to 15% Proterozoic aged, sedimentary crust can account for the observed isotopic array displayed in 

zircons from the Late Oligocene – Late Miocene arc rocks of the Argentinian Precordillera (Fig. 6). This 

corroborates the work of Kay and Abbruzzi (1996), who suggest that mixing between melts derived 

from the mantle wedge and a Grenville-aged basement accounts for the distinct geochemistry of the 

Miocene arc magmatic rocks present in the Argentinean Precordillera. The presence of inherited cores 

of Permian to Cretaceous age in these Late Oligocene – Late Miocene arc rocks from the westernmost 

extent of the Precordillera (Fig. 4) suggests that the mantle-derived melts also assimilated Late 

Paleozoic – Mesozoic crust en route to the surface. Hence the O and Hf isotopic values are more likely 
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to reflect three way mixing processes between mantle-derived melts, a Grenville-aged basement and 

Late Paleozoic – Mesozoic Andean crust.  

 

The lower εHfT(zircon) values obtained for the youngest volcanic arc samples in the study area, the Vacas 

Heladas Ignimbrites (~6 Ma) located in the Frontal Cordillera, suggests that these arc magmas may also 

have interacted with an ancient portion of Andean continental crust in addition to the Late Paleozoic – 

Early Mesozoic crust. Structural models suggest that the Grenville-aged basement currently 

underthrusts the Frontal Cordillera (e.g., Gans et al., 2011; Gilbert et al., 2006; Ramos et al., 2004). 

Consequently the εHfT(zircon) values obtained for the Vacas Heladas Ignimbrites, which overlap those 

obtained for magmatic rocks present in the Precordillera, may reflect the arrival of the Grenville-aged 

basement under this region of the Frontal Cordillera due to increased compression and crustal 

shortening over the later part of the Miocene (e.g., Allmendinger et al., 1990; Kley and Monaldi, 1998; 

Ramos et al., 2002 and references therein). A similar argument has been made to explain evolving ƐNd 

values to the south of the study region in the southern volcanic zone (SVZ) (e.g., Muñoz et al., 2013). 

The development of enriched ƐNd values is also observed in the Pampean flat slab segment; a ƐNd 

value of -2.0 has been obtained for the Late Miocene, Vacas Heladas Ignimbrites compared to ƐNd 

values of between +1.2 to -0.1 for the Late Oligocene, Tilito Formation (Kay et al., 1991). This provides 

supporting evidence for the contamination of the Late Miocene arc magmas erupted in the Frontal 

Cordillera with the Grenville-aged basement.  

 

During the Late Eocene to Late Miocene the products of subduction erosion and sediments present in 

the Chilean trench may well have entered and influenced the melt source region in the asthenospheric 

mantle wedge, as is suggested by high rates of subduction erosion (e.g., Stern, 2011) and exhumation 

along the increasingly compressional Central Andean margin (e.g., Kurtz et al., 1997; Maksaev et al., 

2003; Spikings et al., 2008). However, any effect which this subducted continental material had on the 

isotopic composition of the arc magmas in the melt source region appears to have been overprinted by 

the assimilation of the overlying crust en route to the surface, as is evidenced by the across-arc O and 

Hf isotopic variations which reflect the distinct basement terranes. Subduction erosion could 
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potentially move continental crust laterally, however, this is still unlikely to generate the observed 

across-arc isotopic array that correlates so well with the composition of the Andean basement. 

Punctuated versus steady state crustal evolution – an unbiased record  

Subduction zones are considered to be sites of continental growth (e.g., Rudnick, 1995). Net growth, 

however, may be punctuated by periods of crustal loss due to tectonic erosion (e.g., Scholl and von 

Huene, 2007, 2009; von Huene and Scholl, 1991b), as is evident along the Andean margin where mass 

flux, and hence rates of crustal recycling have varied over time (e.g., Kay et al., 2005). It has been 

proposed that the Andean margin has lost ~250 km of crust over the past 150 Ma, with 30 km of trench 

retreat at 33 °S in the last 10 Ma (Clift and Hartley, 2007; Laursen et al., 2002). If we assume an average 

crustal thickness of ~40 km over the study area, this equates to a loss of 2.4 x 106 km3 of crust in the past 

150 Ma. If continuous addition of crustal material to the mantle wedge occurred at a rate of 3 km/Ma as 

estimated at 33 °S, then implicitly variable but recognizable signatures of crustal contamination should 

be observable. This is not the case for the samples analysed from the southern Central Andes. Intrusive 

rocks dated from Late Cretaceous (~73 Ma) to Eocene (~39 Ma) record a sustained period of upper 

crustal growth, with very limited evidence of contamination by older continental crust. From ~36 Ma to 

17 Ma however there is good evidence for mixing of mantle-derived melts with Late Palaeozoic – Early 

Mesozoic basement. This may be the result of increased sediment flux to the trench and ultimately the 

mantle wedge; or subduction erosion of the margin. In the Late Oligocene (~23 Ma) to Late Miocene (~6 

Ma) at least two types of basement that differ in age are required to generate the isotopic variability 

observed, i.e. a mixture of Grenville and Palaeozoic basement. As no crust of Grenville age occurs close 

to the margin it is indicative of crustal assimilation and recycling. This is consistent with the 

conclusions of Clift and Hartley (2007) that the forearc has eroded slowly since ~20 Ma and that 

subduction erosion is punctuated over time. Interestingly the timing of episodes of high flux do not 

correspond with those further north between 15 to 25 °S which peaked at ~80, 40 and <10 Ma ago 

(DeCelles et al., 2009); suggesting considerable spatial variability in flux along the length of the margin.  

 

Models for the growth of continental crust rely on knowing the balance between the generation of new 

crust and the reworking of old crust. A number of studies (e.g., Belousova et al., 2010; Dhuime et al., 
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2012; Kemp et al., 2006; Wang et al., 2013) have used similar techniques to those applied here to unravel 

the preserved sedimentary record, which is just a snap shot of the overall signal. In this study, where 

the spatial relationship between samples is well constrained, along and across margin variability in the 

zircon record is revealed. Such spatial variability could be averaged by sediment transport processes 

and thus be masked if only using sediments to reveal the growth of continental crust over geological 

time (Allègre and Rousseau, 1984).  

Conclusions 

It is evident that combining the in-situ analysis of the oxygen and hafnium isotopic composition of 

magmatic zircon, with high resolution U-Pb dating, can be used to identify the spatial contamination of 

arc magmas with specific portions of crust during one tectonic cycle. This has significant implications 

for models of continental growth, particularly in settings where the geodynamics and plate tectonics 

are poorly understood, for example in the early Earth, demonstrating that wide variations in δ18O(zircon) 

and ƐHf(zircon) values can be generated over relatively short distances (10s kms). This approach 

demonstrates that as the geodynamic setting of the southern Central Andean margin changed (the 

subducting Nazca plate shallowed, the continental crust thickened, and the position of arc magmatism 

migrated to the east), the Late Eocene to Late Miocene mantle-derived magmas became contaminated 

(via assimilation) with distinct basement domains. The age and composition of the pre-existing 

continental crust, which is spatially variable over the Andean Cordillera, is shown to play the dominant 

role (over the contamination of mantle wedge with subducting components or the products of 

subduction erosion) in modifying the isotopic composition of the Late Eocene to Late Miocene mantle-

derived melts. In comparison to the early Cenozoic, which is shown to represent a period of upper 

crustal growth with little recycling of crustal material, the Late Eocene to Late Miocene is identified as 

representing a sustained period of crustal reworking in the southern Central Andes. 
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Figure Captions 

 

Figure 1. Map showing the main features of the southern Central Andean margin. Sample locations are 

highlighted (Late Cretaceous – Miocene samples by dark blue circles and the Permian-Triassic 

basement samples by light blue crosses) alongside the locations of the Principal Cordillera, Frontal 

Cordillera and Precordillera (the extent of the Precordillera terrane is outlined). Digital elevation data 

from Jarvis et al. (2008). Current active volcanic centres are indicated with grey triangles. 

 

Figure 2. Cathodoluminescence (CL) images of select zircon grains highlighting the presence of 

inherited cores (outlined), internal growth zoning, and the locations of in-situ isotopic analysis. The 

relative areas analysed by the different techniques (SIMS and LA-MC-ICPMS) are also indicated. The 

oxygen isotope ratios are expressed in δ18O notation (‰) relative to VSMOW and the hafnium isotope 

values are expressed as initial εHf values (calculated using the 206Pb/238U age obtained by SIMS). The U-

Pb ages are presented as 206Pb/238U ages for the individual zircon grains and the errors are quoted at the 

2σ level. 

 

Table 1. Summary sample information. The reported U-Pb ages (Ma) are sample ages as given by 

Concordia diagrams and Terra-Wasserberg plots (Jones, 2014). The whole rock major element 

compositions were determined by X-ray florescence spectrometry (XRF). Whole rock data for sample 

DI095 is from Litvak et al. (2007). 

 

Figure 3. Plots of (a) average δ18O(zircon) and (b) average εHfT(zircon) values for individual samples plotted 

against whole rock SiO2 (wt. %). In samples where there is evidence for the inheritance of xenocrystic 

zircon cores/grains, only O and Hf isotope analyses from un-inherited cores/grains with corresponding 

U-Pb ages, have been used to calculate the sample averages. The error bars represent 2σ values. 

 

Figure 4. Across arc variations in U-Pb crystallisation ages, δ18O(zircon), εHfT(zircon) (of rims or zircons 

without inherited cores) and inherited core 206Pb/238U ages. Error bars represent 2σ values. The isotopic 

data is displayed relative to a schematic cross section of the modern day Andean margin at 30 °S 

showing the extent of the different basement terranes (Gilbert et al., 2006; Heit et al., 2008; Ramos et al., 
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2002). The locations of the Principal Cordillera, Frontal Cordillera, Precordillera and the 

Chile/Argentina border are also shown. Full results are presented in Table A1 of the Appendix. 

 

Figure 5. Initial εHf(zircon) values plotted against crystallisation ages (206Pb/238U) (Ma) for all zircon grains 

and inherited cores. The data highlighted in the red box is expanded to the bottom right. Depleted 

mantle (DM) and new crust (NC) evolution lines are shown along with model ages for the Late 

Cretaceous – Eocene samples and the Proterozoic inherited cores from the Tertiary Intrusives. The 

initial εHf(zircon) values are presented relative to present day chondritic values (CHUR) (Bouvier et al., 

2008). Error bars represent 2σ values. 

 

Figure 6. Initial εHf(zircon) plotted against the corresponding δ18O(zircon) for (a) Late Cretaceous – Eocene 

samples from the Chilean Principal Cordillera, (b) Early Paleocene – Late Miocene samples from the 

Frontal Cordillera and (c) Late Oligocene – Late Miocene samples from the Argentinean Precordillera. 

A bulk mixing line between mantle-derived melts (i.e., NC (Dhuime et al., 2011)) and average Late 

Paleozoic – Early Mesozoic sediments is shown in a. Bulk mixing between mantle-derived melts and 

the Permian – Triassic basement (using a HfNC/HfACC of 0.07) is shown to generate the observed isotopic 

variability in the Early Paleocene – Late Miocene samples from the Frontal Cordillera. Up to 15% bulk 

mixing between mantle-derived melts and average sediment (AS) (Plank and Langmuir, 1998; Savin 

and Epstein, 1970) (using a HfNC/HfAS of 0.05) explains the isotopic variability observed in the Late 

Oligocene – Late Miocene samples from the Argentinean Precordillera. Average sediment values are 

used to represent the basement present in the Precordillera which is suggested to be of Grenville-age 

and to have a sedimentary component (i.e., high δ18O values) (e.g., Kay et al., 1996; Thomas and Astini, 

2003). The shaded areas represent mixing between mantle-derived melts and the upper and lower 

values. Error bars represent 2σ values. 
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Escabroso Formation 
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3 

5.9
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6 

2.8
2 
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8 
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-
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Frontal 
Cordillera Vacas Heladas Ignimbrites Rhyolite 
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-
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