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Near optimal compressed sensing without priors:
Parametric SURE Approximate Message Passing

Chunli Gud, Student Member, IEEEBNd Mike E. DaviesSenior Member, IEEE

Abstract—Both theoretical analysis and empirical evidence
confirm that the approximate message passing (AMP) algoritm
can be interpreted as recursively solving a signal denoisq
problem: at each AMP iteration, one observes a Gaussian nas
perturbed original signal. Retrieving the signal amounts b a
successive noise cancellation until the noise variance deases
to a satisfactory level. In this paper we incorporate the Stm’'s
unbiased risk estimate (SURE) based parametric denoiser i
the AMP framework and propose the novel parametric SURE-
AMP algorithm. At each parametric SURE-AMP iteration, the
denoiser is adaptively optimized within the parametric clas by
minimizing SURE, which depends purely on the noisy observa-
tion. In this manner, the parametric SURE-AMP is guaranteed
with the best-in-class recovery and convergence rate. If
parameter family includes the families of the mimimum mean
squared error (MMSE) estimators, we are able to achieve the
Bayesian optimal AMP performance without knowing the signa
prior. In the paper, we resort to the linear parameterization of the
SURE based denoiser and propose three different kernel farieés
as the base functions. Numerical simulations with the Bernalli-
Gaussian, k-dense and Student’s-t signals demonstrate that the
parametric SURE-AMP does not only achieve the state-of-the
art recovery but also runs more than 20 times faster than the
EM-GM-GAMP algorithm.

Index Terms—Compressed sensing, Stein’s unbiased risk esti-
mate, approximate message passing algorithm, parametricsé-
mator, signal denoising.

I. INTRODUCTION

the measurement matri@ € R™*", m < n and the noisy
observatiory = ®x, +w € R, wherew is the noise vector
with i.i.d Gaussian random entries € A (w;;0,02), the CS
reconstruction task is to solve the severely under-deterchi
linear system to recover the original signgl € R™. Over the

past decade, CS techniques have been found to be valuafy

OMPRESSED sensing (CS) refers to a technique th@ft
retrieves the information of a sparse or compressiblg, 0
signal with a sampling ratio far below the Nyquist rate. Give

reconstruction algorithm with low computational cost isson
of the most discussed topics in the CS community.

Within all existing CS reconstruction algorithms, the ap-
proximate message passing (AMP) algorithm and its variants
exhibit the attractive reconstruction power and low coraput
tional complexity. First introduced by Donoho et. al in [2],
AMP based algorithms generally take a simple iterative form

r' =x' + ®"7' 1)

X = (r") 2
1

2T =y @k <) > @)

wherey = m/n is the sampling ratio. Initialized witk® = 0
andz® = y, AMP iteratively produces an estimation of the
original signalk! with a scalar non-linear functiop (-), which

is applied elementwise te!. With & being the Gaussian
random measurement matrix, at each AMP iteration can be
effectively modelled as the original signal with some Gaarss
perturbation in the large system limit. To be specific, we
approximately have’ ~ x, + /7;z', z; € N'(z;;0,1), where

7 IS the effective noise variance [2], [3]. Then the non-lirkya
n:(-) essentially acts as a denoising function to remove the
Gaussian noise/7;z.

In the original AMP paper [2], [4], the denoising is
achieved with the simple soft thresholding functigfr, c¢) =
sign(r)(|r] — ¢)4+, where(r); = rI(r > 0). I(-) is the indi-
or function. The corresponding AMP algorithm,
-AMP, is proved to have the identical phase transition for
sparse signal reconstruction as theminimization approach
[3]. Despite the fact that the noisy vector has multiple i.i.d
distributed elements, thé -AMP treats the denoising as a
1-d problem and utilizes the element-wise soft-thresimgidi
function as the denoiser. However, since the true signaldf
visible in the noisy estimate in the large system limit ane th
Ective noise variance is estimated at each AMP iteratian

in a wide range of practical scenarios, including the naturg,, 4 pe able to exploit such information to achieve better
image processing, the medical imaging, the radar tasks q’@govery than the;-AMP.

the astro-imaging, to name just a few. Since signals encouny is well known that whem

tered in practice are normally very large, developing edfiti
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(x,) is known, the optimal de-
noising with the least mean square error (MSE) is achieved by
applying the minimum mean squared error (MMSE) estimator.
Consequently, the AMP algorithm which deploys the MMSE
estimator for denoising achieves the best reconstructidhe
least square sense, and is denoted as the Bayesian optimal
AMP (BAMP) algorithm [5]. However, the requirement of
p(x,) to be known in advance can be restrictive in practice.
The advantages and limitation of BAMP also motive us to find
an alternative approach which is able to fill the gap between
the/;-AMP and the BAMP, or even performs as well as BAMP



without knowing the signal distribution a priori. a Gaussian mixture (GM) model is used as the parametric
representation op(x,). The expectation-maximization (EM)
A. Main contributions approach is deployed to jointly learn the prior along with
recoveringx,. The corresponding algorithm is denoted as
the EM-GM-GAMP. The key difference between the EM-
._GM-GAMP and the parametric SURE-AMP is that fitting
Slafhe signal prior is an indirect adaptation for minimizingeth

noise kernel. To improve the recovery, we could either esm ) . .
4 . reconstruction MSE while we directly tackle the problem by
the pdf and then deduce the associated MMSE estimator, or . . . . .
adaptively selecting the best-in-class denoiser with #eestl

directly optimize the denoising. In this paper, we adopt t ) o .
latter approach and propose the parametric SURE-AMP algg):SE. When the signal distribution can be well approximated

In the large system limit, the true prior fat, at each
AMP iteration is essentially embedded in the datawhich

. . ) L y a GM model, fitting the prior and minimizing MSE
rithm. Realizing the recursive denoising nature of the AM ead to subtle difference. However, for distributions thad

iteration, we introduce a class of parameterized denOis'Hﬂﬁcult to be approximated as the finite sum of Gaussians
functions to the generic AMP framework. At each iteration .

the denoiser with the least MSE is selected within the clgss %S we demonstrate in Section 1V, the parametric SURE-AMP

ontimizing the free parameters. In this manner. the ametalgorithm provides a better solution. In terms of compotadi
b g b ' ’ P complexity, the parametric SURE-AMP significantly outper-

SURE-AMP algorithm adaptively chooses the best-in-class, o "F\1. GM-GAMP with the linear parameterization of
denoiser and achieves the best possible denoising witlein ﬁe denoisers

parametrlc famlly_ at each |terat|pn. When the den_o_lser_sclas In [18], the authors generalized the EM step with an
contains all possible MMSE estimators for a specific signal

the parametric SURE-AMP is expected to achieve the BAM?—’daptNe prior selectlpn function. The _prop(_)sed adaptexe g
. . ; . eralized AMP (adaptive GAMP) algorithm includes the EM-
recovery without knowing the signal prior.

The key feature of the parametric SURE-AMP algorithm i(SBM-GAI\/!P as a spemal case. Although the ggneral form
f the prior adaptation also enables other learning methods

that the denoiser optimization does not require prior knowl?e maximum-likelihood (ML), to be deployed in the AMP
edge ofp(x,). To make this possible, we resort to the Steiny ooy i principle the adaptive GAMP still focuses on
unbiased risk estimate (SURE) based parametric Ieastesqu:ﬁ

denoiser construction. There exists a rich literature gmadi .
reconstruction MSE.

g(_enmsgngI\gth StrL]J RE b[G], ([17]' Es] Eg], f[ll\(ZI],SE[nt]r; [12]. .tThe parametric SURE-AMP framework was first introduced
]:n::he best dls 1€ un '![isfh els Imfl\e/ISOE _ ,th'e PUrSHt the preliminary work [1]. In the current paper, detailed
ot the best denaiser wi € leas IS_nothing moraenalysis of the algorithm, more kernel families and paramet
than minimizing the corresponding SURE. More important!

. . . . timization scheme are presented. Extensive simulatitn w
for Gaussian noise corrupted signal, the calculation of BU b P

. ifferent priors are also reported in terms of both recarstr
depends P.“re'y on the sampled_a\{erage of th_e noisy qlata []n h performance and computational efficiency. While waqgti
By leveraging the Iarg_e system “m.'t’ t_he best-!n-clas this paper, we become aware of another relevant work, the
can be determined without the prior information [1.2]. denoising-based AMP (D-AMP) algorithm [19]. The intrin-
The success OT thg parametric S.URE'AMP relies heawg)( denoising problem within AMP iterations has also been
on the parameterization of the denoiser class. The numbern cr[iced by the authors. The intuition for D-AMP is to take
parameters as w_eII as the linearity _determine the optimir_zat advantage of the rich existing literature on signal demgiso
complexity. In this paper, we restrict ourselves to the am.eenhance the AMP algorithm. In the paper, the existing image

combination of non-linear kernel functions as the deno's%noising algorithm BM3D has be utilized as the denoiser

structure. The non-linear parameters of the kernel funst|oin D-AMP and produced the state-of-art recovery for natural

are S?t to havg a fixed ratio with the effectly € noise Var'ar.]q%ages. The authors essentially share the same underggandi
The linear weights for the kernels are optimized by solvmg? us for the AMP algorithm and point out the possibility of

Eting the signal prior rather than directly minimizing the

a linear system of equations. We presented two types o ing the SURE based estimator for denoising.
piecewise linear kernel family and one exponential kerne

family for both sparse and heavy-tailed signal reconsmact - sirycture of the paper
The numerical simulation with the Bernoulli-Gaussian (BG)

k-dense and Student’s-t signals show that with a limited The re_mamder of the Paper 15 _orgamzed as followg: The
number of kernel functions, we are able to adaptively Caﬁlotuparametrlc SURE-AMP algorithm is presented in Section Il.
: éection Il is devoted to introducing the construction oé th

the evolving shape of the MMSE estimator and achieves t (—EJ . :
. - RE-based parametric denoiser class. Three types oflkerne
state-of-art performance in the sense of reconstructiatitgu . Lo
families as well as the parameter optimization scheme are

and computational complexity. discussed herein. The simulation results are summarized in
. Section IV. We compare both the reconstruction performance
B. Related literature and the computational complexity of the parametric SURE-
The pre-requisite of the signal prior to implement BAMRAMP algorithm with other CS algorithms. We conclude the
has been noticed by several research groups. To tackle thagper in Section V.
limitation, the prior estimation step was proposed to b@inc  Notation: For the rest of the paper, we use boldface capital
porated within the AMP framework. In [14], [15], [16], [17], letters e.g.A, to represent matrices, andl” to denote the



transpose. We use boldface small letters liketo denote B. SURE based denoiser selection
vectors andz; to represent itsi'” element. For a vector

1 . The Stein’s unbiased estimate (SURE) is an unbiased es-
x € R", we use< x >= = ). ; to represent its average.

timate for MSE. It becomes more accurate as more data
is available, which is particularly apt for AMP since it is
designed with the large system limit in mind. It has been
widely used as the surrogate for the MSE to tune the free
A. Parametric SURE-AMP algorithm parameters of estimation functions for signal denoisimg. |

o o ] g)13], it has been proved that for the Gaussian noise cordupte
We begin with a description of the parametric SURE-AMRjgnq|, the calculation of SURE can be performed entirely in

algorithm, which extends the generic AMP iteration defimed kerms of the noisy observation. This property is summarized
eg. (1), eq. (2) and eq. (3) with an adaptive signal denoisifg ne following theorem.
module. The implementation of the parametric SURE-AMP

Il. PARAMETRIC SURE-AMP RRAMEWORK

algorithm is summarized in Algorithm 1. Theorem 1. [13] Let z, be the signal of interest and =
T, + +/cz be noisy observation with ~ N(z;0,1). Without
Algorithm 1 : Parametric SURE-AMP loss of generality, we assume the denoising funcfipnc|0)
1 initialization: %° — 0, 20 — y, @ —< |29 > is parameterized by and has the form
2: for t=0,1,2,--- do _
3 I‘t _ )A(t + @th f(’l’, C|0) =r+ g(T, C|0) (5)
4 0'=H,(r',c") . The denoised signal is obtained through= f(r,c|@). Then
5. X' = fi(r', 'O )t SURE is defined as the expected value over the noisy data
6: vt =< fi(x!,c'0") > alone and is the unbiased estimate of the MSE. That is,
7: ZtJrl =y - @&H»l + %I/tJrth
8t =<|z?% > Bz, {(2 — xO)Q} =Kz, {[f(r,cl0) — xO]Q} ©6)
9: end for =c+E,{g*(r,c|0) + 2cg'(r,c|0)}

fth ities h h . . . _For the complete proof of Theorem 1 please refer to [13],
MOStO t gentme_s avet € same mte_rpretauon as in AM 12]. According to Theorem 1, the parameter selection for
r® is the noisy version of the original signal, which can b

. - d Joat e parametric SURE-AMP algorithm can thus be conducted
effectively approximated as ~ x,+v'z', zi ~ N(2:0,1). i the minimization of SURE. By the law of large numbers,
Here ¢! is the estimation of the effective noise variance. e expectation in (6) can be approximated as the average
new signal estimat&’*! is obtained by denoising’ at each

) . o i ) . over multiple realizations of the noisy dataFor parametric
iteration. The key modification to AMP is the introductiong Re_aAMP. we naturally have a vectof at each iteration

. .. . t y .
of the parametric denoising functiof(/6") and the param- gjnce the term: will disappear in the minimization of eq. (6),

eter §elect|0n funcuorHt(-)_. Consider a class of denmsmgthe corresponding parameter selection function is thusieefi
functionsF(-|Q) characterized by the parameter €@t At

each iteration, the best-in-class denoigef:|6;) € F(-|Q) as

is chosen by selecting the parame##r via the parameter 6" = Hy(x', ")

selection functionH,(-). We designH;(-) as a function of = argmin < g?(r*, ¢'0) + 24/ (x!, ¢'|0) > )
the noisy datar* and the effective noise varianeé to close 6

the parametric SURE-AMP iteration. It fundamentally eliminates the dependency on the original
The next question is what should be the parameter selecti@gnal for selecting the denoisers with the minimum MSE.

criteria for the pargmetric SURE-AMP algorithm. Our f_UndaAppIying eq. (7) into line 4 of Algorithm 1 we have a complete
mental reconstruction goal is to obtain a signal estinkatéth  parametric SURE-AMP algorithm.

the minimum MSE. Theoretically speaking, we want to jointly

select the denoisers across all iterations. However, rsplihie

joint optimization is not trivial. Based on the state evant C. State evolution
analysis in the subsequent section, we propose to break th
joint selection into separate independent steps. Spdbifica
the parameter vectd' at iterationt is selected by solving

Bne distinguishable feature of the AMP algorithm is that
its asymptotic behaviour can be accurately characterized b

the simple state evolution (SE) formalism in the large syste
t . ctt1 2 limit [4], [20]. Specifically, the SE equation can be used to
0= arg;nmE[(x %o)’] predict the reconstruction MSE for AMP with a large Gaussian
= arg min E{[f;(r", ¢'|) — x,]*} ) random measurement matrix. As an extension of the AMP
0 algorithm, one expects the parametric SURE-AMP would also

follow the SE analysis incorporating the denoising adagmat

which assumes the optimality (#°, - - - , 6"~ '] in the previous |y, hereby formally summarize our finding:
iterations. As the signal estimage is optimized within the )
denoiser class at each step, one would expect to obtairFiading 1. Starting with 70 = ”fn” , the state evolution

"global” optimal reconstruction as the algorithm converge equation for the parametric SURE-AMP algorithm has the



fOllOWIng iterative form —>— SE prediction 30% sampling

_t 05F K =)= Parametric SURE-AMP 30% sampling
0 =Hi(x+ V1iz, Tt) (8) —&— SE prediction 40% sampling

1 =3 Parametric SURE-AMP 40% sampling
t+1 2 t gl / tint —F— SE prediction 20% sampling
T * =0y + ;E{T ft (I + tha T |0 )} (9) 0.4 ' =[3 Parametric SURE-AMP 20% sampling

wherexz ~ p(z,) has the same marginal distribution as the
original signal, z ~ N(2;0,1) is the white Gaussian noisey *%[
In the large system limit, i.en — oo, n — co With vy = m/n =
fixed, the MSE of parametric SURE-AMP estimate at iteration, ,|
t can be predicted as

]E{(xo_gty}zai_f_lﬂz{ :c—ft(:v—i—\/ﬁzmﬂ@t)r} 0.1r
! (10)

0

We use the term Finding here to emphasize the lack of lteration .
9 P ig. 1. The actual MSE for the noiseless Bernoulli-Gaussiate recon-

rigor(_)us_ proof. However, the empiricql SimU|a_ti0_n SUPPOIkiryction at each parametric SURE-AMP iteration versusstiage evolution
our finding. In Fig. 1, the state evolution prediction for therediction. The signal is generated i.i.d according to ef).( The first

noiseless BG signal reconstruction with the parametric BURPiecewise linear kernel family is utilized within the pareimc SURE-AMP
. : . algorithm, which will be discuss in section Ill-Al. The rewtruction MSE

AMP algorithm is compared against the Monte Carlo averag€s average over 100 Monte Carlo realizations.
at multiple iterations. It is clear from the figure that at
various sampling ratios, SE accurately predicts the MSE of
the parametric SURE-AMP reconstruction. signal. In [11], [9], [10], the exponential kernels are dfiec

Finding 1 coincides with the SE analysis for the adaptiveally designed for natural image denoising in the transémtm
GAMP algorithm in [18] when the output channel is assumedbmain. In this section, we start by presenting three types
to be Gaussian white noise and,(-) is the prior fitting of kernel families for both sparse and heavy-tailed signal
function. The authors have proved that whBR(-) has the denoising. Then we will explain the parameter optimization
weak pseudo-Lipschitz continuous property and the dempisirule for both linear and non-linear parameters of the ketnel
function f:(-|@") is Lipschitz continuous, the adaptive GAMPFinally the constructed denoiser is applied to three diffier
can be asymptomatically characterized by the correspgndsignal priors to validate the design.
state evolution equations in the large system limit. Unfort
nately, their analysis does not apply directly to the pataime
SURE-AMP algorithm since ouf,(-) and f;(-|6") do not
satisfy the required pseudo-Lipschitz continuous progert 1) First piecewise linear kernel familyThe underlining
The theoretical proof of Finding 1 is beyond the scope @finciple for the kernel function design is to keep it simple

this paper and remains an open question for further Study_ and flexible at the same time. One way to do this is to use the
piecewise linear function as the kernel format and proposed

the first piecewise linear kernel family which consists ¢re
kernel functions:
The reconstruction quality of the parametric SURE-AMP

A. Kernel families

IIl. CONSTRUCTION OF THEPARAMETRIC DENOISER

algorithm primarily counts on the construction of the adagpt 0 . TS —2an,m 22,
denoiser class and the tuning of free parameters. We choose t flrla) =4 o~ 2 2o <r<-m (12)
form the denoiserf,(-|#") as a weighted sum of some kernel ar —ar ST <o
functions to give an adaptive non-linearity. To be specific, L +2 o <r<2a
t tipt . t t -1 rs e
fri(r",c'67) = Zat,z‘ft.,i(r D¢, (c")) (11) % —p < T < —ay
- flrlara)={0  —ar<r<a (13)
where f; ;(r*|9;,:(c')) is the non-linear kernel function with real o< < ag
94,i(c') summarizes all non-linear parameters that depend on oz
the effective noise varianeé. The linear weight for the kernel 1 T2 ag
function is represented with!. At each parametric SURE- r+ay r<—as
AMP iteration, we need to optimize the parameter @et= fa(rlaz) =<0 —ap <7< o (14)

[at.i, ﬁt,i]le to select the best denoising function in the class.
For the rest of this section, we drop the iteration index

This parameterization method for denoisers has been usdterea; > 0 andas > 0 are hinge points closely related
before. In [12], the "bump” kernel family is designed tao the effective noise levaet. The three kernels are plotted
approximate the MMSE estimator of the generalized GaussianFig. 2(a). Eq. (14) is the soft thresholding function to

r—aQg T > Q9
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Fig. 2. Kernel families used for linear parameterizationtted SURE based denoiser: (a) the first piecewise linear kéangly (b) The second piecewise
linear kernel family. (c) The exponential kernel family.

promote sparsity. It sets all vector elements whose maggitu Similar to the first piecewise linear kernel family, the heng
smaller tharw, to zero and keeps the linear behaviour of larggoints 5, and 3, depend on the effective Gaussian noise level.
elements. The linear part with positive gradient in eq. (12)ith proper scaling of the second piecewise linear kerrtleés,
aims to soften the "brutal” correction of the soft threstiodd constructed denoiser is able to mimic the MMSE estimator
function on the small elements. It is designed for removirtgghaviour for thek-dense signal under different noise levels.
the Gaussian perturbation for small but non-zero elements3) Exponential kernel familyFor the third type of kernel
of compressible signals. Eqg. (13) is constructed to addfamily, we resort to more sophisticated exponential fuorcdi
denoising transition between the small and large elements t
increase the denoiser flexibility. With proper rescalingtioé h(r)=r (18)
three kernels anq appropriate setting for_the hinge povms . fo(r|T) = 7,6—;% (19)
expect the denoiser class constructed with the first piessewi
linear kernels to be flexible and accurate enough to captdrbis kernel family is motivated from the derivatives of Gaus
the evolving shape of the MMSE estimators for CS signals siins (DOG) and has been used for natural image denoising in
different noise levels. the transformed domain in [11], [9], [10]. The virtue of DOGs

2) Second piecewise linear kernel familyt [2], the AMP is that they decay very fast and ensure a linear behaviour
reconstruction power for three canonical CS signal modass tclose to the identity for large elements [10]. It has been
been demonstrated, one of which has most of the vector eliemonstrated that with kernels defined in eq. (18) and eg, (19
ments taking their the value from the discreteBet {—¢,¢} the constructed denoiser delivers the near-optimal pmidoce
and the rest are real numbers from the open continuous segarding both quality and computational cost. The paramet
C = (-¢,s). We denote this signal model as tlhedense T in eq. (19) has the same functionality as the hinge points for
signal and give the explicit pdf as follows the piecewise linear kernels. It controls the transitiotwieen

—)) small and large elements and is linked tightly with the effec
———0(z—<)+M(—¢,s) (15) noise variance. Given the fact that most natural images are

1—-A 1
Pro(T) = (7)5($+§)+(
where/ represents the pdf of the continuous componenﬁa?mpressmle in the wavelet or DCT domain, we believe that

In the CS literature, thé-dense signal has been considereg
before as thé:—3|_rnple signal in [21]. The_ face count|r_19 theqr{[ecovery compressible signals,

has been established to bound the minimum sampling ratio Ol ne thing worth noting is that the proposed kernel families
the perfect reconstruction of thkedense signal via the convex . . P .

RN ; ) : are not designed to fit any specific signal prior, but are
optlml_zat|0n. In [2].’ the SOft. thresholding function Wlthd tivated from the general sparse or compressible pattern.
adaptive thresholding level is suggested as a generic A hus they are, to some extent, suitable for many CS signal
algorithm for such signals. For thkedense signals, we propose ' !

. e . reconstructions. It is also straightforward to construetvn
the second piecewise linear kernel functions to consthet t : . o
kernel functions to increase the sophistication of the con-

denoiser. structed denoiser. For the exponential kernel family, luigter
-1 r<-p DOGs can be used. For the piecewise linear kernel families,
fi(r|B) = & —h<r<p (16) more functions with various hinge points could be added. In
1 r> 6 our work, we find that with just three kernel functions, the
constructed denoiser is able to deliver a near Bayesiamapti
-1 r < —[ performance. Moreover, we do not necessarily require the
gj_ﬁﬁll —fa <1< -1 denoiser class to contain the true MMSE estimator to achieve
fa(r[Br, B2) = 4 0 B <r<h (17) good reconstruction performance. As proved in [22], destsis
rB 3 << f constructed by the piecewise I|_near kernels are not eégibl
P2=p1 for the true MMSE estimator since they are not°(R").
1 T > (2 Nevertheless, they exhibit excellent performance for ti®e C



signal denoising and integrate well with the parametric R the images. The denoising and reconstruction simulations i
AMP reconstruction as we will see later. When the paramettite subsequent sections will also confirm that it is a pldesib
denoiser class includes all possible MMSE estimators forcaoice for both sparse and heavy-tailed signals.

specific prior, the parametric SURE-AMP algorithm is guar-

anteed to obtain the BAMP recovery. C. Linear parameter optimization

] ) ] With the non-linear parameters fixed with the effective aois

B. Non-linear parameter tuning for kernel functions variance, the only parameters left to be optimized are the

To cope with the developing noise level during the parameternel weights:;. Denotes as the MSE of the denoised signal
ric SURE-AMP iteration, the aforementioned kernel funetio using the parametric functiofi(r, ¢|@). With Theorem 1, we
all have some non-linear dependency, i.e. the hinge poiht amave
the variance for the exponential kernel. While the nondiity £ =c+ < g*(r,c|0) + 2¢g'(r, c|0) > (23)
is necessary, finding the global optimizer for the non-lnea
parameter can be computationally expensive. To mitigae ti/Nere

problem, we propose a fixed linear relationship between the g(r,c|l0) =f(r,c|@) —r

non-linear parameters and the effective noise level. Saice k (24)

each parametric SURE-AMP iteration we obtain an estimated =Y a;fi(r|¥(c)) —r

effective noise variance?, the non-linear parameters are i=1

consequently selected. In this section, we will explaintbe-  Optimizing the weightsa; to achieve the minimum MSE

linear parameter tuning for all three kernel families. requires differentiation ofs over a; and solving for all
1) First piecewise linear kernel familyin [23], the authors ; (1,---, k).

discussed the thresholding choice for iterative reconttm
algorithms for compressed sensing. For iterative softstive de
olding, they proposed to set the threshold as a fixed multiple da;
the standard derivation of the effective noise variance. iTite ~ ,
of thumb for the multiple is between 2 and 4. This threshold= D < ; f5(x19;(0) fi(x[9:(c) >= —c < f{(x]9:(c)) >
choice has been tested with the stagewise orthogonal mgtchi ~ /=* (25)
pursuit (StOMP) algorithm [24] and the underling rationades
been explained therein. For the first piecewise linear kermll equations can be summarized in the following matrix form
family which has the soft thresholding aspect, we take their

d d
=< 2¢(r, c|0)£g(r, cl@) + cd

Q;

g'(r|6) >=0

2 .. !
recommendation and set the hinge points as <Ji> <fufi>]m </fi> (26)
A =]
o] = 2\/5, g = 4\/6 (20) < fkfl > . < f]? > ak < f}/C >
2) Second piecewise linear kernel familyr [25], a novel s M pS

iterative dense recovery (IDR) algorithm is proposed tdaep
the MMSE estimator for thé-dense signal with an adaptive
denoiser within the AMP iteration. The essence of the IDR A=—cF 1D (27)

is the employment of a piecewise linear function with one _ i _
flexible hinge point to approximate the MMSE estimator class N summary, the linear kernel weights can be easily op-
Inspired by the selection of hinge point in [25], we choose f§nized by solving a linear system of equations. We will

fix the linear ratio for the second piecewise linear kernals §émenstrate later that this linear parameterization isy ver
following advantageous in terms of the computational complexity.

The linear system can then be solve by

1

1
B = TT6/c P2 = T2 (21) D. Denoising performance

The ratio in (21) is based on the empirical denoising ex- T_O yalidate our proposed kernel families "?m(.j the parameter
periments withk-dense signals under different noise Ievef.)pt'm'z"’1t|0n scheme, we compare the optimized parametric

Although not very critical, we find it to be a good choice fo|den0|sers alongside with the MMSE estimator for BG and

implementing the parametric SURE-AMP algorithm to recovéjrelnsi.s'ggals' that with iust th K | funci
the k-dense signal. n Fig. 3 we can see that with just three kernel functions

3) Exponential kernel familyFor the non-linear parameter]crom the first piecewise '"?ear_ kernel family and th_e SUg-
of the exponential kernel, we adopt the recommendation sted parameter optimization in eq., the constructedisieno
[10] and setT as ' achieves an excellent agreement with the MMSE estimator

T = 6y/c 22) for the noisy BG data. The MSE difference between the
denoised signal using the SURE based parametric denoier and
It has been demonstrated through extensive simulationstlire Bayesian optimal denoising is neglectable. The exp@aien
[10] that the image denoising quality is not very sensitive tkernel family also does a good job at capturing the key
the ratio betweeff’ and/c. Eq. (22) is shown to be a practicalstructure of the MMSE estimator, especially in the vicinity
setting for removing various noise perturbation irrespeadf of small values where most of the data concentrates.
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Fig. 3. MMSE estimator and parametric SURE for the noisy Belit  Fig 4. MMSE estimator and parametric SURE for the ndisglense data.
Gaussian data. The noise variancés 0.1. The reconstruction error for the The noise variance is 0.1. The reconstruction error for the MMSE estimator,

MMSE estimator, the SURE estimator with the first piecewisedr kernel the SURE with the second piecewise linear kernel, the SURIEha®r with
and the SURE estimator with the exponential kernel(a020615, 0.020788  the first piecewise linear kernel and the IDR denoisertad@43 and0.0248,

and0.022047, respectively. 0.0251 and0.0315 respectively.

In Fig. 4 we compare the MMSE estimator, the SURE baséal particular, we experiment with the Bernoulli-Gaussian,
parametric denoisers with the proposed two piecewise Hingdense and Student’s-t signals to demonstrate the recotistru
kernel families, and the IDR estimator [25] for tiiedense power and efficiency of the parametric SURE-AMP algorithm.
signal denoising. As demonstrated in the plot, the denoiser
constructed with the second piecewise linear kernel fits tihe Noisy signal recovery

MMSE estimator better because the kernels are tailored towe first present the reconstruction quality for noisy signal
the k-dense structure. The first piecewise linear kernel baspgj;overy_ For all simulations, we fixed the signal dimension
denoiser performs slightly worse because of the unbouridedto , — 10000. Each numerical point in the plots is an average
in eq. (14). The IDR denoiser is a piecewise linear functiogy 100 Monte Carlo iterations. To have a fair comparison,

with just one hinge point. Thus it misses the subtle tramsiti the noise level is defined in the measurement domain and
between the small and large elements and performs the we{shntified as

among the three. B 12
To check the denoising power of the proposed kernel SNR, = 1010&0@
families for heavy tailed signals, we present the averaged [[wll3
MSE for the Student's-t signal denoising in Table I. Sinc&he reconstruction quality is evaluated in terms of the &lign
there is not an explicit form for the MMSE estimator forto noise ratio in the signal domain, defined as
the Student’s-t prior, we compare the SURE based parametric %012
denoiser with the GM model based denoiser, which is the SNR; = 10logy, %o — X2 (29)
MMSE estimator for the 4-state GM distribution used to © 2 N
approximate the Student's-t distribution. It essentiadiythe The elements of the measurement matixare drawn i.i.d
key denoisng approach implemented by the EM-GM-GAMBOM N (2;;:0,m™) and the matrix columns are normalized
algorithm. Each figure reported in Table | is an average ové one. For all reconstruction algorithms, the convergence
100 iterations. The SURE based denoiser with the exporient@lerance is set as0~°. The maximum iteration number is
kernel and the first piecewise linear kernel both deliverilgim Set as 100. _ . _ o
denoising performance as the MMSE estimator for the 4- 1) BernouII_|—Gau_SS|an prlor:Th_e_ Bernoulli-Gaussian sig-
state GM approximation, if not better. This implies that thB2ls for the simulation are draw i.i.d from

(28)

corresponding parametric SURE-AMP algorithm should be p(x0) = 0.1N (20;0, 1) + 0.95(z) (30)
competitive with the EM-GM-GAMP for the Student’s-t signal i
reconstruction. We choose the noise level to B&VR, = 25 dB. For com-

parison, we show the performance of the parametric SURE-
AMP algorithm with both first piecewise linear kernel and the

exponential kernel family, the EM-BG-GAMP algorithinthe
In this section, the reconstruction performance and compu-

tational complexity of the parametric SURE-AMP algorithm, ‘A special case of the EM-GM-GAMP algorithm which approxissat
. . . . . the signal prior with a mixture of Bernoulli and Gaussian tritisi-

using the three types of kernel families introduced in Secti tions. We use the implementation from http://www?2.eceedtate.edu/ vi-

lll, are compared with other CS reconstruction algorithm&j/EMGMAMP/EMGMAMP.html.

IV. NUMERICAL RESULTS



( Effective noise levek [ 0.01 [ 01 ] 1 | 5 | 10 ] 50 [ 100
MMSE estimator for 4-state GM 9.9655e-3 0.0958 0.7285 2.1788 3.2088 | 6.5801 8.6543

Exponential kernel denoiser 9.9948e-3 0.0967 0.7200 | 2.1504 | 3.1606 | 6.9979 9.6347
Piecewise linear kernel denoisgf 9.9383e — 3 | 0.0955 | 0.7191 2.1560 3.1764 6.6554 | 8.6245

TABLE |
DENOISING COMPARISON FOR NOISYSTUDENT’ S-T SIGNAL WITH VARIOUS DENOISERS
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Fig. 6. SNRx versus sampling ratio for CS recovery of ndisgense data.

Sampling ratio m/n
Fig. 5. SNRx versus sampling ratio for CS recovery of noisynBalli-
Gaussian data.

,-AMP algorithm2 and the genie BAMP algorithm. The 2) k-Dense signal:ln [25], extensi_ve simulation has peen
reconstruction qualitys N R, for various sampling ratios are conducted to compare the IDR algorithm performance with the
illustrated in Fig. 5. It is obvious that the parametric SUREState-of-art algorithms for the noigydense signal reconstruc-
AMP algorithm with the first piecewise linear kernel exhipit ion- Thus in this paper, we use the same setting and mainly
the near-optimal construction: far> 0.24, the difference be- compare the parametric SURE-AMP using two piecewise
tween the parametric SURE-AMP algorithm which is blind t§n€ar kernel families with the IDR, EM-GM-GAMP and
the signal prior and the genie BAMP algorithm is negligitite. the 9enie BAMP algorithm. Thé-dense signal is generated
also adequately demonstrates that SURE is a perfect sterod&d from €d. (15) withA = 0.1 and¢/ being the uniform
for the MSE measure and the intrinsic signal property cafistribution. The noise level iISNR, = 28 as in [25]. For

be effectively exploited by the SURE-based denoiser. Morkl€ EM-GM-GAMP algorithm we found that as the number
over, it shows again that the proposed hinge point selecti3h Gaussian components increase, the reconstructiontyjuali
strategy in (20) works very well regardless of the effectiv@€tS better. Thus we used 20 Gaussian mixture to fitkthe
noise level. Compared with the EM-BG-GAMP algorithm, idense prior, which is the largest number alloyved for the EM-
delivers roughly 2 dB better recovery for24 < v < 0.3, CM-GAMP MATLAB package. The parametric SURE-AMP
For v > 0.36, EM-BG-GAMP also delivers reconstructionWith the secopd piecewise linear kgrnel is only_ slightly seor
performance that is very close to the genie BAMP result. It [§an the genie BAMP reconstruction. There is roughly
because the kernels used in EM-BG-GAMP to fit the data g difference between the two for> 0.5. Comparing to the
essentially the prior for generating the data. For the pataen DR reconstruction, there is a consistent 2 dB improvement f
SURE-AMP algorithm with the exponential kernels, it i/ > 0.55. This reconstructlon_quahty gainis pred|c_tabl_e as we
roughly 1 dB worse than its counterpart with the first piecwi he}ve already demonstrated in the.den0|.smg_ section in Fig. 4
linear kernel and the Bayesian optimal reconstruction tdis also reasonable that the first piecewise linear kerasét

~ > 0.26. This comes as no surprise as we have alreafi§"@metric SURE-AMP does not perform as well as IDR and
seen in Fig. 3 that the denoiser based on exponential kerr8f§ Sécond piecewise linear kernel. It is in general 2 dB @ors
doesn't capture the MMSE estimator structure for data withan the IDR and 5 dB worse than the genie BAMP bench
large magnitude. Nevertheless, it still demonstratesifiognt mark. This is mainly because the first piecewise linear Herne

improvement over the/;-AMP reconstruction for which no fails to correct the large coefficients to bel. However, it
statistical property of the original signal is exploited. still greatly outperforms the EM-GM-GAMP algorithm. The
failure of the EM-GM-GAMP in this case is probably because

2We use the implementation from http://people.epfl.ch/kigkamilov. th_e algor_lthm gets stuck .at some local minima When_flttlhg the
3The true signal priop(x,) is assumed known for the BAMP reconstruc-Pror. This exf’;\mple confirms the qdvantage.ogs. motivation fo
tion. It is served as the upper bound 8V R,. the parametric SURE-AMP algorithm: minimizing the MSE
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Fig. 8. Runtime versus signal dimension for CS recovery aéyn8ernoulli-

Fig. 7. SNRx versus sampling ratio for CS recovery of noisydsent-t data. Gaussian data.

is the direct approach to obtain the best reconstruction.

3) Student-t prior: To investigate the parametric SURE-
AMP performance for signals that are not strictly sparse, we,. . . . .
consider the Students-t prior as a heavily-tailed distin e(?flmency of the parametric SURE-AMP algorithm. For this,
example. The signal is draw i.i.d according to the followin
distribution.

we fixedy = 0.5, SN R, = 25 dB and varied the signal length
% from 10000 to 100000. For the EM-GM-GAMP algorithm,
we set the EM tolerance ta0—> and the maximum EM
pi(zo) = M(l + xg)f(cﬂrl)/? (31) iterations to20. The runtime for noisy recovery of the BG,
Varl'(q/2) k-dense and Student's-t data are plotted in Fig. 8, Fig. 9 and
where ¢ controls the distribution shape. It has been demohig. 10 respectively. Every point in the plots is an average
strated in [26] that the Student’s-t distribution is an dbere over 100 realizations. The algorithms tested here are tie sa
model to capture the statistical behaviour of the DCT coeffis described before.
cients for natural images. In the simulation, we get 1.67, ) . .
SNR, = 25 dB as in [15]. The parametric SURE-AMP As_W|th the EM-GM-GAMP a_Igorlthm, the major com-
using both exponential and the first piecewise linear kerriftational cost for the parametric SURE-AMP comes from
family are compared with the EM-GM-GAMP algorithm anOthe r_natnx multlTpllcatlon 01_‘ the .vector with the measuremen
LASSO via SPGL1 [27]. As we can see from Fig. 7, theMmatrix & and @ at each iteration. However, we observed a
parametric SURE-AMP and EM-GM-GAMP have the similaframatic runtime improvement across all tested signaltteng
reconstruction performance. This can be expected from fif§ three signal priors. The parametric SURE-AMP is more
denoising comparison in the previous section. None of théfign 20 times faster than the EM-GM-GAMP scheme. The
achieves significant improvement over tiig-minimization 2lgorithm efficiency can be attributed to the simple form of
approach though. It probably because the signal is not véﬂﬁ‘ kernel fqnctlons, the linear parametenza}mn qf théREU _
compressible. With more sophisticated kernel design wémid*@sed denoiser and the reduced number of iterations. Gonsid
achieve better performance with the parametric SURE-AMPE runtime comparison of the BG data reconstruction. The
algorithm. total number of the EM-BG-GAMP iterations is roughly twice
as many as that of the parametric SURE-AMP algorithm.
B. Runtime comparison Moreover, the per-iteration computational cost is much enor
. ) . . expensive for EM-BG-GAMP since fitting the signal prior re-
The parametric SURE-AMP algorithm with the simple, jires many EM iterations. While for each parametric SURE-
kerr_1e| functions and lllnear parametepzauon dogs not O”AMP iteration, only one linear system needs to be solved to
achieve the near optimal reconstruction. More importantly,inize the adaptive estimator. When compared withéthe
It S|gn|f|(_:antly reduces the computational complexity. _ThﬁMP, the runtime for each parametric SURE-AMP iteration is
authors in [15] has compared the EM-GM-GAMP algorithm o imately the same. The improved runtime performance
with most of the existing CS algorithms that are blind ofere comes from the effective denoising so that fewer itenat

the prior and proved EM-GM-GAMP is the most efficient o required for the parametric SURE-AMP to converge. The
among them all. Thus in this section, we will use the EM-GMsaqt runtime performance of the IDR algorithm for the

GAMP runtime performance as the bench mark to evaluate fignqe gata in Fig. 9 is understandable since it only applies

“We run the SPGL1 in the "BPDN’ mode. The MATLAB package can b@&N adaptive th.re§hollding function at each iteration andrioas
found in http://www.cs.ubc.ca/labs/scl/spgl1l. parameter optimization procedure.
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[16]
V. CONCLUSION

In this paper, the parametric SURE-AMP is presented 3]
a novel compressed sensing algorithm, which directly min-
imizes the MSE of the recovered signal at each iteratiofig)
Motivated from the fact that the AMP can be cast as an
iterative Gaussian denoising algorithm, we propose tazatil
the adaptive SURE based parametric denoiser within the AN,
iteration. The optimization of the parameters is achieve by
minimizing the SURE, which is an unbiased estimate of tH&°!
MSE. More importantly, the minimization of SURE depends
purely on the noisy observation, which in the large systefmn]
limit fundamentally eliminates the need of the signal prior
This is also the first time that it has been employed qufz]
the CS reconstruction. The parametric SURE-AMP with the
proposed three kernel families have demonstrated almest th
same reconstruction quality as the BAMP algorithm, wheee t
true signal prior is provided. It also outperforms the EM-GM

GAMP algorithm in terms of the computational cost. Direntio
for further research would involve considering other tyge o
kernel families and the rigorous proof for the state evoluti
dynamics.
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