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Near optimal compressed sensing without priors:
Parametric SURE Approximate Message Passing

Chunli Guo∗, Student Member, IEEE,and Mike E. Davies,Senior Member, IEEE

Abstract—Both theoretical analysis and empirical evidence
confirm that the approximate message passing (AMP) algorithm
can be interpreted as recursively solving a signal denoising
problem: at each AMP iteration, one observes a Gaussian noise
perturbed original signal. Retrieving the signal amounts to a
successive noise cancellation until the noise variance decreases
to a satisfactory level. In this paper we incorporate the Stein’s
unbiased risk estimate (SURE) based parametric denoiser with
the AMP framework and propose the novel parametric SURE-
AMP algorithm. At each parametric SURE-AMP iteration, the
denoiser is adaptively optimized within the parametric class by
minimizing SURE, which depends purely on the noisy observa-
tion. In this manner, the parametric SURE-AMP is guaranteed
with the best-in-class recovery and convergence rate. If the
parameter family includes the families of the mimimum mean
squared error (MMSE) estimators, we are able to achieve the
Bayesian optimal AMP performance without knowing the signal
prior. In the paper, we resort to the linear parameterization of the
SURE based denoiser and propose three different kernel families
as the base functions. Numerical simulations with the Bernoulli-
Gaussian,k-dense and Student’s-t signals demonstrate that the
parametric SURE-AMP does not only achieve the state-of-the-
art recovery but also runs more than 20 times faster than the
EM-GM-GAMP algorithm.

Index Terms—Compressed sensing, Stein’s unbiased risk esti-
mate, approximate message passing algorithm, parametric esti-
mator, signal denoising.

I. I NTRODUCTION

COMPRESSED sensing (CS) refers to a technique that
retrieves the information of a sparse or compressible

signal with a sampling ratio far below the Nyquist rate. Given
the measurement matrixΦ ∈ Rm×n, m ≪ n and the noisy
observationy = Φxo +w ∈ Rm, wherew is the noise vector
with i.i.d Gaussian random entrieswi ∈ N (wi; 0, σ2

w), the CS
reconstruction task is to solve the severely under-determined
linear system to recover the original signalxo ∈ Rn. Over the
past decade, CS techniques have been found to be valuable
in a wide range of practical scenarios, including the natural
image processing, the medical imaging, the radar tasks and
the astro-imaging, to name just a few. Since signals encoun-
tered in practice are normally very large, developing efficient
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reconstruction algorithm with low computational cost is one
of the most discussed topics in the CS community.

Within all existing CS reconstruction algorithms, the ap-
proximate message passing (AMP) algorithm and its variants
exhibit the attractive reconstruction power and low computa-
tional complexity. First introduced by Donoho et. al in [2],
AMP based algorithms generally take a simple iterative form:

rt = x̂t + ΦT zt (1)

x̂t+1 = ηt(r
t) (2)

zt+1 = y − Φx̂t+1 +
1

γ
zt < η′

t(r
t) > (3)

whereγ = m/n is the sampling ratio. Initialized witĥx0 = 0

and z0 = y, AMP iteratively produces an estimation of the
original signal̂xt with a scalar non-linear functionηt(·), which
is applied elementwise tort. With Φ being the Gaussian
random measurement matrix,rt at each AMP iteration can be
effectively modelled as the original signal with some Gaussian
perturbation in the large system limit. To be specific, we
approximately havert ≈ xo +

√
τtz

t, zi ∈ N (zi; 0, 1), where
τt is the effective noise variance [2], [3]. Then the non-linearity
ηt(·) essentially acts as a denoising function to remove the
Gaussian noise

√
τtz

t.
In the original AMP paper [2], [4], the denoising is

achieved with the simple soft thresholding functionη(r, c) =
sign(r)(|r| − c)+, where(r)+ = rI(r ≥ 0). I(·) is the indi-
cator function. The corresponding AMP algorithm, dubbed as
theℓ1-AMP, is proved to have the identical phase transition for
sparse signal reconstruction as theℓ1-minimization approach
[3]. Despite the fact that the noisy vectorrt has multiple i.i.d
distributed elements, theℓ1-AMP treats the denoising as a
1-d problem and utilizes the element-wise soft-thresholding
function as the denoiser. However, since the true signal pdfis
visible in the noisy estimate in the large system limit and the
effective noise variance is estimated at each AMP iteration, we
should be able to exploit such information to achieve better
recovery than theℓ1-AMP.

It is well known that whenp(xo) is known, the optimal de-
noising with the least mean square error (MSE) is achieved by
applying the minimum mean squared error (MMSE) estimator.
Consequently, the AMP algorithm which deploys the MMSE
estimator for denoising achieves the best reconstruction in the
least square sense, and is denoted as the Bayesian optimal
AMP (BAMP) algorithm [5]. However, the requirement of
p(xo) to be known in advance can be restrictive in practice.
The advantages and limitation of BAMP also motive us to find
an alternative approach which is able to fill the gap between
theℓ1-AMP and the BAMP, or even performs as well as BAMP
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without knowing the signal distribution a priori.

A. Main contributions

In the large system limit, the true prior forxo at each
AMP iteration is essentially embedded in the datart, which
is the convolution of the original signal with the Gaussian
noise kernel. To improve the recovery, we could either estimate
the pdf and then deduce the associated MMSE estimator, or
directly optimize the denoising. In this paper, we adopt the
latter approach and propose the parametric SURE-AMP algo-
rithm. Realizing the recursive denoising nature of the AMP
iteration, we introduce a class of parameterized denoising
functions to the generic AMP framework. At each iteration,
the denoiser with the least MSE is selected within the class by
optimizing the free parameters. In this manner, the parametric
SURE-AMP algorithm adaptively chooses the best-in-class
denoiser and achieves the best possible denoising within the
parametric family at each iteration. When the denoiser class
contains all possible MMSE estimators for a specific signal,
the parametric SURE-AMP is expected to achieve the BAMP
recovery without knowing the signal prior.

The key feature of the parametric SURE-AMP algorithm is
that the denoiser optimization does not require prior knowl-
edge ofp(xo). To make this possible, we resort to the Stein’s
unbiased risk estimate (SURE) based parametric least squarer
denoiser construction. There exists a rich literature on signal
denoising with SURE [6], [7], [8], [9], [10], [11], [12].
Since SURE is the unbiased estimate of MSE, the pursuit
of the best denoiser with the least MSE is nothing more
than minimizing the corresponding SURE. More importantly,
for Gaussian noise corrupted signal, the calculation of SURE
depends purely on the sampled average of the noisy data [13].
By leveraging the large system limit, the best-in-class denoiser
can be determined without the prior information [12].

The success of the parametric SURE-AMP relies heavily
on the parameterization of the denoiser class. The number of
parameters as well as the linearity determine the optimization
complexity. In this paper, we restrict ourselves to the linear
combination of non-linear kernel functions as the denoiser
structure. The non-linear parameters of the kernel functions
are set to have a fixed ratio with the effective noise variance.
The linear weights for the kernels are optimized by solving
a linear system of equations. We presented two types of
piecewise linear kernel family and one exponential kernel
family for both sparse and heavy-tailed signal reconstruction.
The numerical simulation with the Bernoulli-Gaussian (BG),
k-dense and Student’s-t signals show that with a limited
number of kernel functions, we are able to adaptively capture
the evolving shape of the MMSE estimator and achieves the
state-of-art performance in the sense of reconstruction quality
and computational complexity.

B. Related literature

The pre-requisite of the signal prior to implement BAMP
has been noticed by several research groups. To tackle this
limitation, the prior estimation step was proposed to be incor-
porated within the AMP framework. In [14], [15], [16], [17],

a Gaussian mixture (GM) model is used as the parametric
representation ofp(xo). The expectation-maximization (EM)
approach is deployed to jointly learn the prior along with
recoveringxo. The corresponding algorithm is denoted as
the EM-GM-GAMP. The key difference between the EM-
GM-GAMP and the parametric SURE-AMP is that fitting
the signal prior is an indirect adaptation for minimizing the
reconstruction MSE while we directly tackle the problem by
adaptively selecting the best-in-class denoiser with the least
MSE. When the signal distribution can be well approximated
by a GM model, fitting the prior and minimizing MSE
lead to subtle difference. However, for distributions thatare
difficult to be approximated as the finite sum of Gaussians,
as we demonstrate in Section IV, the parametric SURE-AMP
algorithm provides a better solution. In terms of computational
complexity, the parametric SURE-AMP significantly outper-
forms the EM-GM-GAMP with the linear parameterization of
the denoisers.

In [18], the authors generalized the EM step with an
adaptive prior selection function. The proposed adaptive gen-
eralized AMP (adaptive GAMP) algorithm includes the EM-
GM-GAMP as a special case. Although the general form
of the prior adaptation also enables other learning methods,
i.e. maximum-likelihood (ML), to be deployed in the AMP
framework, in principle the adaptive GAMP still focuses on
fitting the signal prior rather than directly minimizing the
reconstruction MSE.

The parametric SURE-AMP framework was first introduced
in the preliminary work [1]. In the current paper, detailed
analysis of the algorithm, more kernel families and parameter
optimization scheme are presented. Extensive simulation with
different priors are also reported in terms of both reconstruc-
tion performance and computational efficiency. While writing
this paper, we become aware of another relevant work, the
denoising-based AMP (D-AMP) algorithm [19]. The intrin-
sic denoising problem within AMP iterations has also been
noticed by the authors. The intuition for D-AMP is to take
advantage of the rich existing literature on signal denoising to
enhance the AMP algorithm. In the paper, the existing image
denoising algorithm BM3D has be utilized as the denoiser
in D-AMP and produced the state-of-art recovery for natural
images. The authors essentially share the same understanding
as us for the AMP algorithm and point out the possibility of
using the SURE based estimator for denoising.

C. Structure of the paper

The remainder of the paper is organized as follows: The
parametric SURE-AMP algorithm is presented in Section II.
Section III is devoted to introducing the construction of the
SURE-based parametric denoiser class. Three types of kernel
families as well as the parameter optimization scheme are
discussed herein. The simulation results are summarized in
Section IV. We compare both the reconstruction performance
and the computational complexity of the parametric SURE-
AMP algorithm with other CS algorithms. We conclude the
paper in Section V.

Notation:For the rest of the paper, we use boldface capital
letters e.g.A, to represent matrices, andAT to denote the
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transpose. We use boldface small letters likex to denote
vectors andxi to represent itsith element. For a vector
x ∈ Rn, we use< x >= 1

n

∑

i xi to represent its average.

II. PARAMETRIC SURE-AMP FRAMEWORK

A. Parametric SURE-AMP algorithm

We begin with a description of the parametric SURE-AMP
algorithm, which extends the generic AMP iteration defined in
eq. (1), eq. (2) and eq. (3) with an adaptive signal denoising
module. The implementation of the parametric SURE-AMP
algorithm is summarized in Algorithm 1.

Algorithm 1 : Parametric SURE-AMP

1: initialization: x̂0 = 0, z0 = y, c0 =< ‖z0‖2 >
2: for t = 0, 1, 2, · · · do
3: rt = x̂t + ΦTzt

4: θ
t = Ht(r

t, ct)
5: x̂t+1 = ft(r

t, ct|θt)
6: νt+1 =< f ′

t(r
t, ct|θt) >

7: zt+1 = y − Φx̂t+1 + 1
γ νt+1zt

8: ct+1 =< ‖zt+1‖2 >
9: end for

Most of the entities have the same interpretation as in AMP:
rt is the noisy version of the original signal, which can be
effectively approximated asrt ≈ xo+

√
ctzt, zi ∼ N (zi; 0, 1).

Here ct is the estimation of the effective noise variance. A
new signal estimatêxt+1 is obtained by denoisingrt at each
iteration. The key modification to AMP is the introduction
of the parametric denoising functionft(·|θt) and the param-
eter selection functionHt(·). Consider a class of denoising
functions F(·|Q) characterized by the parameter setQ. At
each iteration, the best-in-class denoiserft(·|θt) ∈ F(·|Q)
is chosen by selecting the parameterθ

t via the parameter
selection functionHt(·). We designHt(·) as a function of
the noisy datart and the effective noise variancect to close
the parametric SURE-AMP iteration.

The next question is what should be the parameter selection
criteria for the parametric SURE-AMP algorithm. Our funda-
mental reconstruction goal is to obtain a signal estimatex̂ with
the minimum MSE. Theoretically speaking, we want to jointly
select the denoisers across all iterations. However, solving the
joint optimization is not trivial. Based on the state evolution
analysis in the subsequent section, we propose to break the
joint selection into separate independent steps. Specifically,
the parameter vectorθt at iterationt is selected by solving

θ
t = arg min

θ

E[(x̂t+1 − xo)
2]

= arg min
θ

E{[ft(r
t, ct|θ) − xo]

2} (4)

which assumes the optimality of[θ0, · · · , θt−1] in the previous
iterations. As the signal estimatêxt is optimized within the
denoiser class at each step, one would expect to obtain a
”global” optimal reconstruction as the algorithm converges.

B. SURE based denoiser selection

The Stein’s unbiased estimate (SURE) is an unbiased es-
timate for MSE. It becomes more accurate as more data
is available, which is particularly apt for AMP since it is
designed with the large system limit in mind. It has been
widely used as the surrogate for the MSE to tune the free
parameters of estimation functions for signal denoising. In
[13], it has been proved that for the Gaussian noise corrupted
signal, the calculation of SURE can be performed entirely in
terms of the noisy observation. This property is summarized
in the following theorem.

Theorem 1. [13] Let xo be the signal of interest andr =
xo +

√
cz be noisy observation withz ∼ N (z; 0, 1). Without

loss of generality, we assume the denoising functionf(r, c|θ)
is parameterized byθ and has the form

f(r, c|θ) = r + g(r, c|θ) (5)

The denoised signal is obtained throughx̂ = f(r, c|θ). Then
SURE is defined as the expected value over the noisy data
alone and is the unbiased estimate of the MSE. That is,

Ex̂,xo
{(x̂ − xo)

2} = Er,xo
{[f(r, c|θ) − xo]

2}
= c + Er{g2(r, c|θ) + 2cg′(r, c|θ)} (6)

For the complete proof of Theorem 1 please refer to [13],
[12]. According to Theorem 1, the parameter selection for
the parametric SURE-AMP algorithm can thus be conducted
via the minimization of SURE. By the law of large numbers,
the expectation in (6) can be approximated as the average
over multiple realizations of the noisy datar. For parametric
SURE-AMP, we naturally have a vectorrt at each iteration.
Since the termc will disappear in the minimization of eq. (6),
the corresponding parameter selection function is thus defined
as

θ
t = Ht(r

t, ct)

= arg min
θ

< g2(rt, ct|θ) + 2ctg′(rt, ct|θ) > (7)

It fundamentally eliminates the dependency on the original
signal for selecting the denoisers with the minimum MSE.
Applying eq. (7) into line 4 of Algorithm 1 we have a complete
parametric SURE-AMP algorithm.

C. State evolution

One distinguishable feature of the AMP algorithm is that
its asymptotic behaviour can be accurately characterized by
the simple state evolution (SE) formalism in the large system
limit [4], [20]. Specifically, the SE equation can be used to
predict the reconstruction MSE for AMP with a large Gaussian
random measurement matrix. As an extension of the AMP
algorithm, one expects the parametric SURE-AMP would also
follow the SE analysis incorporating the denoising adaptation.
We hereby formally summarize our finding:

Finding 1. Starting with τ0 = ‖y‖2

m , the state evolution
equation for the parametric SURE-AMP algorithm has the
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following iterative form

θ̄
t
=Ht(x +

√
τ tz, τ t) (8)

τ t+1 =σ2
w +

1

γ
E{τ tf ′

t(x +
√

τ tz, τ t|θ̄t
)} (9)

wherex ∼ p(xo) has the same marginal distribution as the
original signal, z ∼ N (z; 0, 1) is the white Gaussian noise.
In the large system limit, i.e.m → ∞, n → ∞ with γ = m/n
fixed, the MSE of parametric SURE-AMP estimate at iteration
t can be predicted as

E{(xo − x̂t)2} = σ2
w +

1

γ
E{

[

x − ft(x +
√

τ tz, τ t|θ̄t
)
]2

}
(10)

We use the term Finding here to emphasize the lack of
rigorous proof. However, the empirical simulation supports
our finding. In Fig. 1, the state evolution prediction for the
noiseless BG signal reconstruction with the parametric SURE-
AMP algorithm is compared against the Monte Carlo average
at multiple iterations. It is clear from the figure that at
various sampling ratios, SE accurately predicts the MSE of
the parametric SURE-AMP reconstruction.

Finding 1 coincides with the SE analysis for the adaptive
GAMP algorithm in [18] when the output channel is assumed
to be Gaussian white noise andHt(·) is the prior fitting
function. The authors have proved that whenHt(·) has the
weak pseudo-Lipschitz continuous property and the denoising
functionft(·|θt) is Lipschitz continuous, the adaptive GAMP
can be asymptomatically characterized by the corresponding
state evolution equations in the large system limit. Unfortu-
nately, their analysis does not apply directly to the parametric
SURE-AMP algorithm since ourHt(·) and ft(·|θt) do not
satisfy the required pseudo-Lipschitz continuous properties.
The theoretical proof of Finding 1 is beyond the scope of
this paper and remains an open question for further study.

III. C ONSTRUCTION OF THEPARAMETRIC DENOISER

The reconstruction quality of the parametric SURE-AMP
algorithm primarily counts on the construction of the adaptive
denoiser class and the tuning of free parameters. We choose to
form the denoiserft(·|θt) as a weighted sum of some kernel
functions to give an adaptive non-linearity. To be specific,

ft,i(r
t, ct|θt) =

k∑

i=1

at,ift,i(r
t|ϑt,i(c

t)) (11)

whereft,i(r
t|ϑt,i(c

t)) is the non-linear kernel function with
ϑt,i(c

t) summarizes all non-linear parameters that depend on
the effective noise variancect. The linear weight for the kernel
function is represented withat

i. At each parametric SURE-
AMP iteration, we need to optimize the parameter setθ

t =
[at,i, ϑt,i]

k
i=1 to select the best denoising function in the class.

For the rest of this section, we drop the iteration indext.
This parameterization method for denoisers has been used

before. In [12], the ”bump” kernel family is designed to
approximate the MMSE estimator of the generalized Gaussian

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

Iteration

M
S

E

SE prediction 30% sampling

Parametric SURE−AMP 30% sampling

SE prediction 40% sampling

Parametric SURE−AMP 40% sampling

SE prediction 20% sampling

Parametric SURE−AMP 20% sampling

Fig. 1. The actual MSE for the noiseless Bernoulli-Gaussiandata recon-
struction at each parametric SURE-AMP iteration versus thestate evolution
prediction. The signal is generated i.i.d according to eq. (30). The first
piecewise linear kernel family is utilized within the parametric SURE-AMP
algorithm, which will be discuss in section III-A1. The reconstruction MSE
is an average over 100 Monte Carlo realizations.

signal. In [11], [9], [10], the exponential kernels are specifi-
cally designed for natural image denoising in the transformed
domain. In this section, we start by presenting three types
of kernel families for both sparse and heavy-tailed signal
denoising. Then we will explain the parameter optimization
rule for both linear and non-linear parameters of the kernels.
Finally the constructed denoiser is applied to three different
signal priors to validate the design.

A. Kernel families

1) First piecewise linear kernel family:The underlining
principle for the kernel function design is to keep it simple
and flexible at the same time. One way to do this is to use the
piecewise linear function as the kernel format and proposed
the first piecewise linear kernel family which consists three
kernel functions:

f1(r|α1) =







0 r ≤ −2α1, r ≥ 2α1

− r
α1

− 2 −2α1 < r < −α1

r
α1

−α1 ≤ r ≤ α1

− r
α1

+ 2 α1 < r < 2α1

(12)

f2(r|α1, α2) =







−1 r ≤ −α2

r+α1

α2−α1

−α2 < r < −α1

0 −α1 ≤ r ≤ α1

r−α1

α2−α1

α1 < r < α2

1 r ≥ α2

(13)

f3(r|α2) =







r + α2 r ≤ −α2

0 −α2 < r < α2

r − α2 r ≥ α2

(14)

whereα1 > 0 and α2 > 0 are hinge points closely related
to the effective noise levelc. The three kernels are plotted
in Fig. 2(a). Eq. (14) is the soft thresholding function to
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Fig. 2. Kernel families used for linear parameterization ofthe SURE based denoiser: (a) the first piecewise linear kernel family (b) The second piecewise
linear kernel family. (c) The exponential kernel family.

promote sparsity. It sets all vector elements whose magnitude
smaller thanα2 to zero and keeps the linear behaviour of large
elements. The linear part with positive gradient in eq. (12)
aims to soften the ”brutal” correction of the soft thresholding
function on the small elements. It is designed for removing
the Gaussian perturbation for small but non-zero elements
of compressible signals. Eq. (13) is constructed to add a
denoising transition between the small and large elements to
increase the denoiser flexibility. With proper rescaling ofthe
three kernels and appropriate setting for the hinge points,we
expect the denoiser class constructed with the first piecewise
linear kernels to be flexible and accurate enough to capture
the evolving shape of the MMSE estimators for CS signals at
different noise levels.

2) Second piecewise linear kernel family:In [2], the AMP
reconstruction power for three canonical CS signal models has
been demonstrated, one of which has most of the vector ele-
ments taking their the value from the discrete setD ≡ {−ς, ς}
and the rest are real numbers from the open continuous set
C ≡ (−ς, ς). We denote this signal model as thek-dense
signal and give the explicit pdf as follows

pKD(x) =
(1 − λ)

2
δ(x+ς)+

(1 − λ)

2
δ(x−ς)+λU(−ς, ς) (15)

where U represents the pdf of the continuous components.
In the CS literature, thek-dense signal has been considered
before as thek-simple signal in [21]. The face counting theory
has been established to bound the minimum sampling ratio for
the perfect reconstruction of thek-dense signal via the convex
optimization. In [2], the soft thresholding function with the
adaptive thresholding level is suggested as a generic AMP
algorithm for such signals. For thek-dense signals, we propose
the second piecewise linear kernel functions to construct the
denoiser.

f1(r|β1) =







−1 r ≤ −β1

r
β1

−β1 < r < β1

1 r ≥ β1

(16)

f2(r|β1, β2) =







−1 r ≤ −β2
r+β1

β2−β1

−β2 < r < −β1

0 −β1 ≤ r ≤ β1
r−β1

β2−β1

β1 < r < β2

1 r ≥ β2

(17)

Similar to the first piecewise linear kernel family, the hinge
pointsβ1 andβ2 depend on the effective Gaussian noise level.
With proper scaling of the second piecewise linear kernels,the
constructed denoiser is able to mimic the MMSE estimator
behaviour for thek-dense signal under different noise levels.

3) Exponential kernel family:For the third type of kernel
family, we resort to more sophisticated exponential functions.

f1(r) = r (18)

f2(r|T ) = re−
r
2

2T2 (19)

This kernel family is motivated from the derivatives of Gaus-
sians (DOG) and has been used for natural image denoising in
the transformed domain in [11], [9], [10]. The virtue of DOGs
is that they decay very fast and ensure a linear behaviour
close to the identity for large elements [10]. It has been
demonstrated that with kernels defined in eq. (18) and eq. (19),
the constructed denoiser delivers the near-optimal performance
regarding both quality and computational cost. The parameter
T in eq. (19) has the same functionality as the hinge points for
the piecewise linear kernels. It controls the transition between
small and large elements and is linked tightly with the effective
noise variance. Given the fact that most natural images are
compressible in the wavelet or DCT domain, we believe that
the exponential kernel family used for image denoising can
also be applied in the parametric SURE-AMP algorithm to
recovery compressible signals.

One thing worth noting is that the proposed kernel families
are not designed to fit any specific signal prior, but are
motivated from the general sparse or compressible pattern.
Thus they are, to some extent, suitable for many CS signal
reconstructions. It is also straightforward to construct new
kernel functions to increase the sophistication of the con-
structed denoiser. For the exponential kernel family, highorder
DOGs can be used. For the piecewise linear kernel families,
more functions with various hinge points could be added. In
our work, we find that with just three kernel functions, the
constructed denoiser is able to deliver a near Bayesian optimal
performance. Moreover, we do not necessarily require the
denoiser class to contain the true MMSE estimator to achieve
good reconstruction performance. As proved in [22], denoisers
constructed by the piecewise linear kernels are not eligible
for the true MMSE estimator since they are notC∞(Rn).
Nevertheless, they exhibit excellent performance for the CS
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signal denoising and integrate well with the parametric SURE-
AMP reconstruction as we will see later. When the parametric
denoiser class includes all possible MMSE estimators for a
specific prior, the parametric SURE-AMP algorithm is guar-
anteed to obtain the BAMP recovery.

B. Non-linear parameter tuning for kernel functions

To cope with the developing noise level during the paramet-
ric SURE-AMP iteration, the aforementioned kernel functions
all have some non-linear dependency, i.e. the hinge point and
the variance for the exponential kernel. While the non-linearity
is necessary, finding the global optimizer for the non-linear
parameter can be computationally expensive. To mitigate this
problem, we propose a fixed linear relationship between the
non-linear parameters and the effective noise level. Sinceat
each parametric SURE-AMP iteration we obtain an estimated
effective noise variancect, the non-linear parameters are
consequently selected. In this section, we will explain thenon-
linear parameter tuning for all three kernel families.

1) First piecewise linear kernel family:In [23], the authors
discussed the thresholding choice for iterative reconstruction
algorithms for compressed sensing. For iterative soft thresh-
olding, they proposed to set the threshold as a fixed multipleof
the standard derivation of the effective noise variance. The rule
of thumb for the multiple is between 2 and 4. This threshold
choice has been tested with the stagewise orthogonal matching
pursuit (StOMP) algorithm [24] and the underling rationalehas
been explained therein. For the first piecewise linear kernel
family which has the soft thresholding aspect, we take their
recommendation and set the hinge points as

α1 = 2
√

c, α2 = 4
√

c (20)

2) Second piecewise linear kernel family:In [25], a novel
iterative dense recovery (IDR) algorithm is proposed to replace
the MMSE estimator for thek-dense signal with an adaptive
denoiser within the AMP iteration. The essence of the IDR
is the employment of a piecewise linear function with one
flexible hinge point to approximate the MMSE estimator class.
Inspired by the selection of hinge point in [25], we choose to
fix the linear ratio for the second piecewise linear kernels as
following

β1 =
1

1 + 6
√

c
, β2 =

1

1 + 2
√

c
(21)

The ratio in (21) is based on the empirical denoising ex-
periments withk-dense signals under different noise level.
Although not very critical, we find it to be a good choice for
implementing the parametric SURE-AMP algorithm to recover
the k-dense signal.

3) Exponential kernel family:For the non-linear parameter
of the exponential kernel, we adopt the recommendation in
[10] and setT as

T = 6
√

c (22)

It has been demonstrated through extensive simulations in
[10] that the image denoising quality is not very sensitive to
the ratio betweenT and

√
c. Eq. (22) is shown to be a practical

setting for removing various noise perturbation irrespective of

the images. The denoising and reconstruction simulations in
the subsequent sections will also confirm that it is a plausible
choice for both sparse and heavy-tailed signals.

C. Linear parameter optimization

With the non-linear parameters fixed with the effective noise
variance, the only parameters left to be optimized are the
kernel weightsai. Denoteε as the MSE of the denoised signal
using the parametric functionf(r, c|θ). With Theorem 1, we
have

ε = c+ < g2(r, c|θ) + 2cg′(r, c|θ) > (23)

where

g(r, c|θ) =f(r, c|θ) − r

=
k∑

i=1

aifi(r|ϑi(c)) − r
(24)

Optimizing the weightsai to achieve the minimum MSE
requires differentiation ofε over ai and solving for all
i ∈ (1, · · · , k).

dε

dai
=< 2g(r, c|θ)

d

dai
g(r, c|θ) + c

d

dai
g′(r|θ) >= 0

⇐⇒
k∑

j=1

< ajfj(r|ϑj(c))fi(r|ϑi(c)) >= −c < f ′
i(r|ϑi(c)) >

(25)

All equations can be summarized in the following matrix form





< f2
1 > · · · < f1fk >
...

. . .
...

< fkf1 > · · · < f2
k >






︸ ︷︷ ︸

F






a1

...
ak






︸ ︷︷ ︸

A

= −c






< f ′
1 >
...

< f ′
k >






︸ ︷︷ ︸

D

(26)

The linear system can then be solve by

A = −cF−1D (27)

In summary, the linear kernel weights can be easily op-
timized by solving a linear system of equations. We will
demonstrate later that this linear parameterization is very
advantageous in terms of the computational complexity.

D. Denoising performance

To validate our proposed kernel families and the parameter
optimization scheme, we compare the optimized parametric
denoisers alongside with the MMSE estimator for BG andk-
dense signals.

In Fig. 3 we can see that with just three kernel functions
from the first piecewise linear kernel family and the sug-
gested parameter optimization in eq., the constructed denoiser
achieves an excellent agreement with the MMSE estimator
for the noisy BG data. The MSE difference between the
denoised signal using the SURE based parametric denoier and
the Bayesian optimal denoising is neglectable. The exponential
kernel family also does a good job at capturing the key
structure of the MMSE estimator, especially in the vicinity
of small values where most of the data concentrates.
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Fig. 3. MMSE estimator and parametric SURE for the noisy Bernoulli-
Gaussian data. The noise variancec is 0.1. The reconstruction error for the
MMSE estimator, the SURE estimator with the first piecewise linear kernel
and the SURE estimator with the exponential kernel are0.020615, 0.020788
and0.022047, respectively.

In Fig. 4 we compare the MMSE estimator, the SURE based
parametric denoisers with the proposed two piecewise linear
kernel families, and the IDR estimator [25] for thek-dense
signal denoising. As demonstrated in the plot, the denoiser
constructed with the second piecewise linear kernel fits the
MMSE estimator better because the kernels are tailored to
the k-dense structure. The first piecewise linear kernel based
denoiser performs slightly worse because of the unboundedf3

in eq. (14). The IDR denoiser is a piecewise linear function
with just one hinge point. Thus it misses the subtle transition
between the small and large elements and performs the worst
among the three.

To check the denoising power of the proposed kernel
families for heavy tailed signals, we present the averaged
MSE for the Student’s-t signal denoising in Table I. Since
there is not an explicit form for the MMSE estimator for
the Student’s-t prior, we compare the SURE based parametric
denoiser with the GM model based denoiser, which is the
MMSE estimator for the 4-state GM distribution used to
approximate the Student’s-t distribution. It essentiallyis the
key denoisng approach implemented by the EM-GM-GAMP
algorithm. Each figure reported in Table I is an average over
100 iterations. The SURE based denoiser with the exponential
kernel and the first piecewise linear kernel both deliver similar
denoising performance as the MMSE estimator for the 4-
state GM approximation, if not better. This implies that the
corresponding parametric SURE-AMP algorithm should be
competitive with the EM-GM-GAMP for the Student’s-t signal
reconstruction.

IV. N UMERICAL RESULTS

In this section, the reconstruction performance and compu-
tational complexity of the parametric SURE-AMP algorithm,
using the three types of kernel families introduced in Section
III, are compared with other CS reconstruction algorithms.
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Fig. 4. MMSE estimator and parametric SURE for the noisyk-dense data.
The noise variancec is 0.1. The reconstruction error for the MMSE estimator,
the SURE with the second piecewise linear kernel, the SURE estimator with
the first piecewise linear kernel and the IDR denoiser are0.0243 and0.0248,
0.0251 and0.0315 respectively.

In particular, we experiment with the Bernoulli-Gaussian,k-
dense and Student’s-t signals to demonstrate the reconstruction
power and efficiency of the parametric SURE-AMP algorithm.

A. Noisy signal recovery

We first present the reconstruction quality for noisy signal
recovery. For all simulations, we fixed the signal dimension
to n = 10000. Each numerical point in the plots is an average
of 100 Monte Carlo iterations. To have a fair comparison,
the noise level is defined in the measurement domain and
quantified as

SNRy = 10 log10

‖Φxo‖2
2

‖w‖2
2

(28)

The reconstruction quality is evaluated in terms of the signal
to noise ratio in the signal domain, defined as

SNRx = 10 log10

‖xo‖2
2

‖xo − x̂‖2
2

(29)

The elements of the measurement matrixΦ are drawn i.i.d
from N (Φij ; 0, m−1) and the matrix columns are normalized
to one. For all reconstruction algorithms, the convergence
tolerance is set as10−6. The maximum iteration number is
set as 100.

1) Bernoulli-Gaussian prior:The Bernoulli-Gaussian sig-
nals for the simulation are draw i.i.d from

p(xo) = 0.1N (xo; 0, 1) + 0.9δ(x0) (30)

We choose the noise level to beSNRy = 25 dB. For com-
parison, we show the performance of the parametric SURE-
AMP algorithm with both first piecewise linear kernel and the
exponential kernel family, the EM-BG-GAMP algorithm1, the

1A special case of the EM-GM-GAMP algorithm which approximates
the signal prior with a mixture of Bernoulli and Gaussian distribu-
tions. We use the implementation from http://www2.ece.ohio-state.edu/ vi-
laj/EMGMAMP/EMGMAMP.html.
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Effective noise levelc 0.01 0.1 1 5 10 50 100

MMSE estimator for 4-state GM 9.9655e-3 0.0958 0.7285 2.1788 3.2088 6.5801 8.6543
Exponential kernel denoiser 9.9948e-3 0.0967 0.7200 2.1504 3.1606 6.9979 9.6347

Piecewise linear kernel denoiser 9.9383e− 3 0.0955 0.7191 2.1560 3.1764 6.6554 8.6245

TABLE I
DENOISING COMPARISON FOR NOISYSTUDENT’ S-T SIGNAL WITH VARIOUS DENOISERS
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Fig. 5. SNRx versus sampling ratio for CS recovery of noisy Bernoulli-
Gaussian data.

ℓ1-AMP algorithm 2 and the genie BAMP3 algorithm. The
reconstruction qualitySNRx for various sampling ratios are
illustrated in Fig. 5. It is obvious that the parametric SURE-
AMP algorithm with the first piecewise linear kernel exhibits
the near-optimal construction: forγ ≥ 0.24, the difference be-
tween the parametric SURE-AMP algorithm which is blind to
the signal prior and the genie BAMP algorithm is negligible.It
also adequately demonstrates that SURE is a perfect surrogate
for the MSE measure and the intrinsic signal property can
be effectively exploited by the SURE-based denoiser. More-
over, it shows again that the proposed hinge point selection
strategy in (20) works very well regardless of the effective
noise level. Compared with the EM-BG-GAMP algorithm, it
delivers roughly 2 dB better recovery for0.24 ≤ γ ≤ 0.3.
For γ > 0.36, EM-BG-GAMP also delivers reconstruction
performance that is very close to the genie BAMP result. It is
because the kernels used in EM-BG-GAMP to fit the data are
essentially the prior for generating the data. For the parametric
SURE-AMP algorithm with the exponential kernels, it is
roughly 1 dB worse than its counterpart with the first piecewise
linear kernel and the Bayesian optimal reconstruction for
γ ≥ 0.26. This comes as no surprise as we have already
seen in Fig. 3 that the denoiser based on exponential kernels
doesn’t capture the MMSE estimator structure for data with
large magnitude. Nevertheless, it still demonstrates significant
improvement over theℓ1-AMP reconstruction for which no
statistical property of the original signal is exploited.

2We use the implementation from http://people.epfl.ch/ulugbek.kamilov.
3The true signal priorp(xo) is assumed known for the BAMP reconstruc-

tion. It is served as the upper bound forSNRx.
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Fig. 6. SNRx versus sampling ratio for CS recovery of noisyk-dense data.

2) k-Dense signal:In [25], extensive simulation has been
conducted to compare the IDR algorithm performance with the
state-of-art algorithms for the noisyk-dense signal reconstruc-
tion. Thus in this paper, we use the same setting and mainly
compare the parametric SURE-AMP using two piecewise
linear kernel families with the IDR, EM-GM-GAMP and
the genie BAMP algorithm. Thek-dense signal is generated
i.i.d from eq. (15) withλ = 0.1 and U being the uniform
distribution. The noise level isSNRy = 28 as in [25]. For
the EM-GM-GAMP algorithm we found that as the number
of Gaussian components increase, the reconstruction quality
gets better. Thus we used 20 Gaussian mixture to fit thek-
dense prior, which is the largest number allowed for the EM-
GM-GAMP MATLAB package. The parametric SURE-AMP
with the second piecewise linear kernel is only slightly worse
than the genie BAMP reconstruction. There is roughly0.5
dB difference between the two forγ > 0.5. Comparing to the
IDR reconstruction, there is a consistent 2 dB improvement for
γ ≥ 0.55. This reconstruction quality gain is predictable as we
have already demonstrated in the denoising section in Fig. 4.
It is also reasonable that the first piecewise linear kernel based
parametric SURE-AMP does not perform as well as IDR and
the second piecewise linear kernel. It is in general 2 dB worse
than the IDR and 5 dB worse than the genie BAMP bench
mark. This is mainly because the first piecewise linear kernel
fails to correct the large coefficients to be±1. However, it
still greatly outperforms the EM-GM-GAMP algorithm. The
failure of the EM-GM-GAMP in this case is probably because
the algorithm gets stuck at some local minima when fitting the
prior. This example confirms the advantageous motivation for
the parametric SURE-AMP algorithm: minimizing the MSE
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Fig. 7. SNRx versus sampling ratio for CS recovery of noisy student-t data.

is the direct approach to obtain the best reconstruction.
3) Student-t prior: To investigate the parametric SURE-

AMP performance for signals that are not strictly sparse, we
consider the Student’s-t prior as a heavily-tailed distribution
example. The signal is draw i.i.d according to the following
distribution.

pT(xo) =
Γ((q + 1)/2)√

qπΓ(q/2)
(1 + x2

o)
−(q+1)/2 (31)

whereq controls the distribution shape. It has been demon-
strated in [26] that the Student’s-t distribution is an excellent
model to capture the statistical behaviour of the DCT coeffi-
cients for natural images. In the simulation, we setq = 1.67,
SNRy = 25 dB as in [15]. The parametric SURE-AMP
using both exponential and the first piecewise linear kernel
family are compared with the EM-GM-GAMP algorithm and
LASSO via SPGL14 [27]. As we can see from Fig. 7, the
parametric SURE-AMP and EM-GM-GAMP have the similar
reconstruction performance. This can be expected from the
denoising comparison in the previous section. None of them
achieves significant improvement over theℓ1-minimization
approach though. It probably because the signal is not very
compressible. With more sophisticated kernel design we might
achieve better performance with the parametric SURE-AMP
algorithm.

B. Runtime comparison

The parametric SURE-AMP algorithm with the simple
kernel functions and linear parameterization does not only
achieve the near optimal reconstruction. More importantly,
it significantly reduces the computational complexity. The
authors in [15] has compared the EM-GM-GAMP algorithm
with most of the existing CS algorithms that are blind of
the prior and proved EM-GM-GAMP is the most efficient
among them all. Thus in this section, we will use the EM-GM-
GAMP runtime performance as the bench mark to evaluate the

4We run the SPGL1 in the ”BPDN” mode. The MATLAB package can be
found in http://www.cs.ubc.ca/labs/scl/spgl1.
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Gaussian data.

efficiency of the parametric SURE-AMP algorithm. For this,
we fixedγ = 0.5, SNRy = 25 dB and varied the signal length
n from 10000 to 100000. For the EM-GM-GAMP algorithm,
we set the EM tolerance to10−5 and the maximum EM
iterations to20. The runtime for noisy recovery of the BG,
k-dense and Student’s-t data are plotted in Fig. 8, Fig. 9 and
Fig. 10 respectively. Every point in the plots is an average
over 100 realizations. The algorithms tested here are the same
as described before.

As with the EM-GM-GAMP algorithm, the major com-
putational cost for the parametric SURE-AMP comes from
the matrix multiplication of the vector with the measurement
matrix Φ andΦT at each iteration. However, we observed a
dramatic runtime improvement across all tested signal lengths
for three signal priors. The parametric SURE-AMP is more
than 20 times faster than the EM-GM-GAMP scheme. The
algorithm efficiency can be attributed to the simple form of
the kernel functions, the linear parameterization of the SURE-
based denoiser and the reduced number of iterations. Consider
the runtime comparison of the BG data reconstruction. The
total number of the EM-BG-GAMP iterations is roughly twice
as many as that of the parametric SURE-AMP algorithm.
Moreover, the per-iteration computational cost is much more
expensive for EM-BG-GAMP since fitting the signal prior re-
quires many EM iterations. While for each parametric SURE-
AMP iteration, only one linear system needs to be solved to
optimize the adaptive estimator. When compared with theℓ1-
AMP, the runtime for each parametric SURE-AMP iteration is
approximately the same. The improved runtime performance
here comes from the effective denoising so that fewer iterations
are required for the parametric SURE-AMP to converge. The
best runtime performance of the IDR algorithm for thek-
dense data in Fig. 9 is understandable since it only applies
an adaptive thresholding function at each iteration and hasno
parameter optimization procedure.
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V. CONCLUSION

In this paper, the parametric SURE-AMP is presented as
a novel compressed sensing algorithm, which directly min-
imizes the MSE of the recovered signal at each iteration.
Motivated from the fact that the AMP can be cast as an
iterative Gaussian denoising algorithm, we propose to utilize
the adaptive SURE based parametric denoiser within the AMP
iteration. The optimization of the parameters is achieve by
minimizing the SURE, which is an unbiased estimate of the
MSE. More importantly, the minimization of SURE depends
purely on the noisy observation, which in the large system
limit fundamentally eliminates the need of the signal prior.
This is also the first time that it has been employed for
the CS reconstruction. The parametric SURE-AMP with the
proposed three kernel families have demonstrated almost the
same reconstruction quality as the BAMP algorithm, where the
true signal prior is provided. It also outperforms the EM-GM-

GAMP algorithm in terms of the computational cost. Direction
for further research would involve considering other type of
kernel families and the rigorous proof for the state evolution
dynamics.
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