
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The posterior pituitary

Citation for published version:
Leng, G, Pineda Reyes, R, Sabatier, N & Ludwig, M 2015, 'The posterior pituitary: from Geoffrey Harris to
our present understanding' Journal of Endocrinology. DOI: 10.1530/JOE-15-0087

Digital Object Identifier (DOI):
10.1530/JOE-15-0087

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Endocrinology

Publisher Rights Statement:
Disclaimer: this is not the definitive version of record of this article. This manuscript has been accepted for
publication in Journal of Edocrinology but the version presented here has not yet been copy-edited, formatted or
proofed. Consequently, Bioscientifica accepts no responsibility for any errors or omissions it may contain.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43713918?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1530/JOE-15-0087
https://www.research.ed.ac.uk/portal/en/publications/the-posterior-pituitary(afbcfb40-2f47-4a59-9356-ebaea2870537).html


 1 

The posterior pituitary, from Geoffrey Harris to our present understanding 1 

 2 

Gareth Leng, Rafael Pineda, Nancy Sabatier, and Mike Ludwig 3 

Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George 4 

Square Edinburgh EH9 8XD  5 

 6 

Corresponding author: 7 

Gareth Leng 8 

Professor of Experimental Physiology 9 

Centre for Integrative Physiology 10 

University of Edinburgh 11 

Hugh Robson Bldg, George Square 12 

Edinburgh EH8 9XD, UK 13 

Tel: -44 (0) 131 650 2869 14 

Fax: -44 (0) 131 650 3711 15 

Email: Gareth.Leng@ed.ac.uk 16 

 17 

Acknowledgments: Work was supported by a grant from the BBSRC (BB/J004723, ML, 18 

GL) and a Newton International Postdoctoral Fellowship (RP) from the Royal Society. The 19 

authors reported no biomedical financial interests or potential conflicts of interest. 20 

 21 

 22 

Abstract: 172 words 23 

Main text: 5337 words 24 

Figures: 2 25 

Table: 0 26 

References: 97 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 



 2 

Abstract 37 

Geoffrey Harris pioneered our understanding of the posterior pituitary, mainly by 38 

experiments involving electrical stimulation of the supraoptico-hypophysial tract. Here we 39 

explain how his observations included key clues to the pulsatile nature of the oxytocin signal, 40 

clues which were followed up by subsequent workers including his students and their students. 41 

These studies ultimately led to our present understanding of the milk-ejection reflex and of the 42 

role of oxytocin in parturition. Key discoveries of wide significance followed: the recognition 43 

of the importance of pulsatile hormone secretion, the recognition of the importance of 44 

stimulus-secretion coupling mechanisms in interpreting patterned electrical activity of 45 

neurons, the physiological importance of peptide release in the brain, the recognition that 46 

peptide release comes substantially from dendrites and can be regulated independently of 47 

nerve terminal secretion, and the importance of dynamic morphological changes to neuronal 48 

function in the hypothalamus, all followed from the drive to understand the milk-ejection 49 

reflex. We also reflect on Harris’ observations on vasopressin secretion, on the effects of stress, 50 

and on oxytocin secretion during sexual activity.    51 

 52 

Introduction 53 

The comfortable view of science is of a uniquely disinterested activity, gathering 54 

objective and unbiased observations which, by the selfless collaboration and co-operation of 55 

transnational armies of scientists, lead us ever closer to objective truth. A less comfortable 56 

view was expressed by Karl Popper: "Science does not rest upon solid bedrock. The bold 57 

structure of its theories rises, as it were, above a swamp”, and in his view, it is the “bold 58 

ideas, unjustified anticipations and speculative thought” of individual scientists that mark the 59 

best science and which drive progress (Popper 1959). There is certainly a flow in our 60 

understanding: one observation leads to the next and each question answered raises another, 61 

and that flow is certainly perturbed (if not quite guided) by those whose bold ideas gain 62 

currency. In this essay, we trace the impact of the work of Geoffrey Harris on our 63 

understanding of the posterior pituitary gland, though whether our understanding would be 64 

different had Harris become an accountant instead of a scientist is something we can’t say: 65 

that is one experiment we can’t yet perform.  66 

Harris won his reputation as the “father of neuroendocrinology” by incisive experiments 67 

which showed that the endocrine cells of the anterior pituitary are regulated by products of 68 

hypothalamic neurones that are secreted into the hypothalamo-pituitary portal circulation 69 

(Raisman 1997). If he was bold in this, he was more conservative when it came to the theories of 70 
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others: in his 1955 monograph he still at this time inclined to the view that the posterior pituitary 71 

contained endocrine cells that were innervated by hypothalamic neurones (Harris 1955). While 72 

conceding that the neurosecretory origin of the posterior pituitary hormones (Leveque and 73 

Scharrer 1953) was an “attractive hypothesis”, he stated that “sweeping statements have been 74 

made at various times by the protagonists of the neurosecretory hypothesis” and warned that 75 

“such claims as these, which run contrary to a great deal of established data should be taken with 76 

reserve” (Harris 1955 p264).  In particular, Harris rejected the notion that the Gomorri-stainable 77 

material present in the hypothalamo-hypophysial tract was the histological representation of 78 

antidiuretic hormone as argued by the Scharrers. He thought that the amount of oxytocic and 79 

antidiuretic activity present in the hypothalamus was too low to be consistent with the 80 

hypothalamus being the site of production. Finally, he disputed the evidence that neural stalk 81 

section could be followed by a partial regeneration of the neural lobe - evidence which 82 

suggested that regeneration of nerve terminals was sufficient to support secretion in the absence 83 

of endocrine cells (Harris 1955 p262-265). 84 

 Nevertheless, Harris pioneered our understanding of the posterior pituitary, mainly by 85 

experiments involving electrical stimulation of the supraoptico-hypophysial tract. At the outset 86 

of those experiments it was known that extracts of the posterior pituitary could stimulate the let-87 

down of milk in lactating animals, and Ely and Peterson (1941) had shown that the blood of 88 

cows which had been milked contained something that could evoke milk let-down in the isolated 89 

udder. They proposed that this substance came from the posterior pituitary and was released by 90 

suckling, but Selye (1934) had earlier proposed that lactation could be explained by the 91 

stimulation of prolactin production from the anterior pituitary, and several reports had appeared 92 

that lactation could proceed normally even after sectioning the neural stalk.  93 

Accordingly, with his student Barry Cross, Harris set out to test these two hypotheses. 94 

He had concluded (Harris 1948a) that direct electrical stimulation was ineffective in triggering 95 

secretion from the anterior pituitary, but the posterior pituitary was innervated by a nervous tract 96 

- the supraoptico-hypophysial tract. Cross and Harris (1950, 1952) showed that electrical 97 

stimulation of this tract caused an increase in intramammary pressure in lactating rabbits - 98 

showing that the pituitary contains a releasable factor that can induce milk let-down. Harris et al. 99 

(1969) later showed that the mammary response depended strongly on the stimulus frequency - 100 

only at frequencies in excess of 40 Hz was there an appreciable response – a finding that was to 101 

prove prescient (Fig. 1 A,B).  102 

In 1966, Yagi et al. showed that electrical stimuli applied to the neural stalk would 103 

trigger action potentials that were conducted antidromically to the neurosecretory cell bodies, 104 
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but the utility of this seemed limited as both the site of stimulation and the site of recording 105 

required precise stereotaxic control. However, Barry Cross, who was now Professor of Anatomy 106 

at Bristol, saw that, in lactating rats, the site of the stimulating electrode could be precisely 107 

controlled by ensuring that it was positioned where stimulation would elicit a rise in 108 

intramammary pressure (Sundsten et al. 1970). This opened the way to studying magnocellular 109 

neurons in vivo, and Jon Wakerley and Dennis Lincoln, working in Cross’s Department, used 110 

this approach to study how the electrical activity of “antidromically identified” magnocellular 111 

neurons regulate oxytocin and vasopressin secretion. 112 

 113 

The milk-ejection reflex 114 

There was still no real understanding of the milk-ejection reflex, and, in particular, no 115 

appreciation that the reflex was intermittent. The key breakthrough came when Wakerley and 116 

Lincoln (1973) showed that, during suckling, some of the antidromically identified cells in the 117 

supraoptic and paraventricular nuclei showed brief, synchronised high frequency discharges (~ 118 

1-2 s at 5OHz) at intervals of ~ 10 min, each of which was followed, about 10s later, by an 119 

abrupt increase in intramammary pressure – a marker of milk let-down in the mammary glands 120 

(Fig.1D).  It became clear that these bursts, which led to pulses of oxytocin secretion, were 121 

approximately synchronised amongst all of the magnocellular oxytocin cells in the 122 

hypothalamus. As a corollary, other magnocellular neurons that were antidromically identified 123 

as projecting to the posterior pituitary but which did not participate in this bursting activity could 124 

be assumed to be vasopressin cells. 125 

 Exactly why pulsatile secretion was a critically important phenomenon was not 126 

immediately apparent, but an important clue lay in Harris’ observation, alluded to earlier, that 127 

electrical stimulation of the posterior pituitary would only evoke a strong intramammary 128 

pressure response if relatively high frequencies of stimulation were used (Harris et al. 1969). 129 

The explanation for this has two elements (Fig. 1). First, the response of the mammary gland to 130 

a bolus of oxytocin is non-linear, and has quite a narrow dynamic range: there is a threshold 131 

dose that must be exceeded before any effect is observed, and above this threshold the response 132 

to higher doses of oxytocin rises swiftly to a maximum. Thus the mammary gland seems to 133 

require pulsatile activation – especially because, if oxytocin is applied continuously rather than 134 

in pulses, then the response of the gland rapidly diminishes. Second, how much oxytocin is 135 

secreted in response to electrical stimulation strongly depends on the frequency of stimulation – 136 

more is secreted per stimulus pulse when stimuli are clustered closely together (Fig. 1C). This 137 

frequency facilitation of stimulus-secretion coupling can be attributed to several factors. A 138 
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solitary spike invading an axon in the pituitary will not invade all terminals of that axon, and 139 

in those it does invade, it will produce only a brief rise in intracellular calcium - the essential 140 

trigger for vesicle exocytosis. However, during a burst of spikes, a progressive increase in 141 

extracellular [K+] depolarises the axons and endings in the neural lobe, securing a more 142 

complete invasion of the terminal arborisation. Moreover, successive spikes in a burst are 143 

progressively broadened, inducing a progressively larger calcium entry, giving a potentiated 144 

signal for exocytosis. As a result, each spike within a burst releases much more oxytocin than 145 

the isolated spikes that occur between bursts (Bourque 1991; Leng and Brown 1997). 146 

The explosive nature of milk-ejection bursts suggested that some positive feedback was 147 

involved, and Moss, Dyball and Cross (1972) set about to try to show that oxytocin released 148 

from the posterior pituitary had that positive feedback effect. They recorded from magnocellular 149 

neurons in rats and rabbits, and studied the effects of oxytocin given intravenously and 150 

administered directly to the neurones by iontophoresis. The results were disconcerting – 151 

oxytocin had a dramatic excitatory effect upon many magnocellular neurons, and this seemed to 152 

be a specific effect, as non-neurosecretory cells were unaffected, and vasopressin applied in the 153 

same way was without effect. However, oxytocin even at large doses had no effect at all when 154 

given intravenously. 155 

At that time there was no evidence that oxytocin was released centrally, and indeed it 156 

seemed very unlikely that it would be – there was no strong evidence of axon collaterals, and the 157 

evidence tended to suggest that if there were any recurrent collaterals then their effect was 158 

probably inhibitory. Indeed several reports had appeared of “recurrent inhibition” in the 159 

magnocellular system  – reports later shown by Leng and Dyball (1984) to be based upon 160 

misinterpreted evidence. Moss et al. (1972) recognised that the ineffectiveness of intravenous 161 

oxytocin meant that oxytocin secreted from the pituitary did not find its way back into the brain. 162 

Accordingly, they concluded that the excitatory action of oxytocin on oxytocin cells was a 163 

pharmacological phenomenon without physiological significance. 164 

However this view was soon to change. Philippe Richard and his colleagues in France 165 

showed that oxytocin was released into the hypothalamus during suckling, that small amounts of 166 

oxytocin injected into the brain of lactating rats dramatically facilitated the milk- ejection reflex, 167 

and that central injections of oxytocin antagonist could block the reflex (Richard et al. 1991). 168 

Thus it seemed that, somehow, oxytocin given centrally was able to “orchestrate” the 169 

intermittent bursting activity of oxytocin cells that was first seen by Wakerley and Lincoln 170 

(1973). This was the first convincing demonstration of a physiological role for a peptide in 171 

the brain, and it led the way to a transformation of our understanding of information 172 
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processing in the nervous system. We now know that more than a hundred different 173 

neuropeptides are expressed in different neuronal populations, that most if not all neurons in 174 

the brain release one or more peptide messengers as well as a conventional neurotransmitter. 175 

Because peptides have a relatively long half-life and act at receptors with nanomolar affinity, 176 

their actions are not confined to targets in direct apposition to the site of release. Importantly, 177 

peptide signals in the brain often have organisational and activational roles that seem more 178 

akin to the roles of hormones in the periphery (Ludwig and Leng 2006). This understanding, 179 

that peptides in the brain can have specific functional roles, we now take for granted, with our 180 

knowledge of many peptides that, when injected into the brain, evoke coherent behavioural 181 

responses.  182 

 In Germany, Rainer Landgraf and his colleagues began measuring oxytocin and 183 

vasopressin release in the brain using the new technique of microdialysis (Landgraf et al. 184 

1992). They at first assumed that they were measuring release from nerve terminals in the 185 

brain. However, there were accumulating discrepancies between central release and 186 

peripheral release of the peptides, and when Morris and Pow (1991) showed that oxytocin 187 

and vasopressin could be released from all compartments of magnocellular neurons, not just 188 

the nerve terminals, Landgraf’s student Mike Ludwig realised that measurements of oxytocin 189 

and vasopressin in the magnocellular nuclei reflected release from the soma and dendrites of 190 

these neurons, not from nerve terminals (Fig. 2). Furthermore, he recognised that this 191 

dendritic release must somehow be regulated independently of terminal release (Ludwig 192 

1998).   193 

 This was a key breakthrough– but how then was dendritic release regulated?  194 

Intriguing data from the laboratories of Theodosis and Hatton had indicated that in lactating 195 

animals there was a morphological reorganisation of the supraoptic nucleus that might 196 

facilitate dendro-dendritic interactions: normally the dendrites are separated from each other 197 

by interleaved glial cell processes, but in lactation these processes are retracted, leaving the 198 

dendrites of oxytocin neurons in direct apposition to each other within “bundles” of dendrites 199 

(Hatton 1990; Theodosis and Poulain 1993). However, there was a stumbling block: oxytocin 200 

cells only show synchronous bursting during suckling and parturition – even during lactation, 201 

other stimuli would increase their activity but never elicited bursts. Dyball and Leng (1986) 202 

working in Cross’ group at the Babraham Institute, of which he had become the Director, 203 

pursued the idea that some kind of positive feedback was involved. They thought it possible 204 

that a recurrent excitatory circuit involving interneurons was responsible – but they found 205 

that intense stimulation of the neural stalk, although it massively activated the cells in the 206 
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supraoptic nucleus, never triggered recurrent excitation in those cells. The stimulation wasn’t 207 

without effect on the milk-ejection reflex, but the effects were quite subtle – there was a 208 

facilitation of bursting, but only when stimuli were given quite close to when a burst was 209 

expected to happen anyway. 210 

 Leng and Ludwig began to work together to address a basic question – would intense 211 

electrical stimulation of the neural stalk actually release any vasopressin or oxytocin in the 212 

supraoptic nucleus? In experiment after experiment, the answer was frustratingly negative – 213 

there was no sign of release measured by microdialysis following electrical activation 214 

(Ludwig et al. 2002). Release could be evoked consistently by other kinds of stimulation, but 215 

without a link to electrical activity of the cells, where was the positive feedback effect?  216 

 The next breakthrough came again from the lab of Richard, with their demonstration 217 

that oxytocin could cause a mobilisation of intracellular calcium stores in oxytocin cells 218 

(Lambert et al. 1994). How might that be relevant?   219 

 Working on the gonadotroph cells of the anterior pituitary gland, another of Harris’ 220 

students, George Fink, had shown something remarkable. In oestrogen-primed rats, the 221 

secretion of luteinising hormone (LH) in response to gonadotrophin releasing hormone 222 

(GnRH) increases with successive exposures to GnRH, a phenomenon that Fink called “self-223 

priming” (see Fink 1995). With Morris and others, Fink showed that, between exposures to 224 

GnRH, there is a “margination” of secretory granules in gonadotrophs: how much LH is 225 

secreted in response to GnRH depends on how many granules lie close to the plasma 226 

membrane – and GnRH could trigger relocation of granules to these sites (Lewis et al. 1986). 227 

This depends on the mobilisation, by GnRH, of intracellular calcium stores, so Leng and 228 

Ludwig, knowing that the release of neurosecretory granules in response to electrical activity 229 

was likely to depend upon those granules being close to the site of depolarisation-induced 230 

calcium entry, wondered if something similar was happening in the dendrites of 231 

magnocellular neurons. By “retrodialysis” – using microdialysis probes to deliver a substance 232 

rather than to collect one - they applied thapsigargin directly to the supraoptic nucleus to 233 

evoke a large increase in intracellular calcium in the magnocellular cells; then, long after the 234 

direct effects of thapsigargin had worn off, they applied electrical stimulation to the neural 235 

stalk. Now, finally, they could see a dramatic electrically-evoked release of both oxytocin and 236 

vasopressin in the supraoptic nucleus as well as from the pituitary. They went on to show that 237 

the same “priming” could be seen in response to peptides that evoked intracellular calcium 238 

mobilisation – including (for oxytocin release) oxytocin itself (Ludwig et al. 2002).  239 
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 Rossoni et al. (2008) were then able to build a computational model of the oxytocin 240 

system that incorporated these phenomena, and which reproduced the bursting behaviour of 241 

oxytocin neurones as observed during the milk-ejection reflex. That model explained how 242 

bursts could be generated by dendro-dendritic intercommunication and could be rapidly 243 

propagated through the oxytocin cells in a hypothalamic nucleus, but left unexplained how 244 

oxytocin cells in the two supraoptic and two paraventricular nuclei came to be activated 245 

simultaneously. One possibility lies in recognising that the appearance of separation of the 246 

four nuclei is misleading –many magnocellular neurons are located between the main nuclear 247 

aggregations, some as small “accessory” nuclei, and some as scattered neurons. Thus, if these 248 

neurons share dendro-dendritic contacts with the major aggregations, they might complete a 249 

network that links all nuclei. A second possibility arises from the work of Knobloch et al. 250 

(2012) who found that the paraventricular nucleus contains some non-neuroendocrine 251 

oxytocin neurons that innervate oxytocin cells in the supraoptic nucleus. 252 

  253 

 254 

Parturition 255 

Oxytocin’s role in milk ejection is indispensable: animals that lack oxytocin are 256 

unable to feed their offspring (Nishimori et al. 1996; Young et al. 1996). By contrast, 257 

although oxytocin is named after its effects on uterine contractility, mice that lack oxytocin 258 

are still able to deliver young relatively normally, but whether this is generally the case in all 259 

mammals remains unclear to this day. In 1941, Ferguson reported that, in the pregnant rabbit, 260 

distension of the uterus and cervix could induce secretion of oxytocin (Ferguson 1941), but in 261 

that same year, Dey et al. (1941) had reported on the effects of lesions to the supraoptico-262 

hypophysial tract in pregnant guinea pigs: of 16 labours studied, ten were prolonged and 263 

difficult, ending in the death of the mother or delivery of dead foetuses, but six were 264 

apparently normal. Harris had shown that electrical stimulation of the neural stalk could 265 

evoke strong uterine contractions, but it remained unclear whether the effects of oxytocin on 266 

the uterus reflected an active role of oxytocin in parturition, or a pharmacological effect 267 

without real physiological significance (Harris 1948b). However, Harris’ papers prompted 268 

Mavis Gunther (1948) to write a letter to the British Medical Journal: she had observed 269 

labour in a woman who was still lactating after the birth of a previous child, and noticed that 270 

beads of milk appeared at the nipples during each uterine contraction. Many factors were 271 

known to be capable of eliciting uterine contractions, but only oxytocin was known to induce 272 
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milk let-down, so Gunther speculated that the uterine contractions provoked the release of 273 

oxytocin, which acted in a positive-feedback manner to support parturition.  274 

 However, by the end of the 1950’s it was recognised that the plasma of pregnant 275 

women contained an enzyme – oxytocinase – that could potently degrade oxytocin, and that 276 

the levels of oxytocinase increased markedly towards term (Melander 1961). This greatly 277 

complicated measuring oxytocin in pregnancy, and also raised fresh doubt about the 278 

physiological role of oxytocin – if oxytocin was important for parturition, it seemed to make 279 

no sense that the placenta should produce large amounts of an enzyme that destroyed it.  280 

 Then, in the 1980’s, Summerlee and colleagues, working in Cross’ former 281 

Department at Bristol, published a series of papers reporting the activity of oxytocin neurons, 282 

recorded over prolonged periods in conscious rats and rabbits through parturition and 283 

lactation (O'Byrne et al. 1986; Paisley and Summerlee 1984; Summerlee 1981; Summerlee 284 

and Lincoln 1981). These studies achieved two things of particular importance; first, the 285 

milk-ejection reflex as described in the anesthetised rat was essentially identical to the reflex 286 

in conscious rats; and second, similar bursting activity was generated during parturition 287 

apparently linked to the delivery of the young. The insight that oxytocin secretion was 288 

pulsatile during parturition cast a new light on the high levels of oxytocinase in the plasma of 289 

pregnant women, for while these diminish basal levels of oxytocin, they would also be 290 

expected to “sharpen” pulses of oxytocin by shortening their half-life. By frequent blood 291 

sampling combined with rigorous methods to inactivate oxytocinase in those samples, Fuchs 292 

et al. (1991) confirmed that spontaneous delivery in women is indeed associated with 293 

frequent short pulses of oxytocin secretion.  294 

 But are pulses necessary for parturition in the way that they are for milk-ejection? 295 

This is less clear, as the uterus will continue to contract in the continued presence of 296 

oxytocin. Nevertheless it seems that pulses are indeed a more effective way for oxytocin to 297 

drive parturition. At Babraham, Luckman et al. (1993) tested this in the rat by first 298 

interrupting parturition with morphine –a potent inhibitor of oxytocin neurons in the rat – and 299 

then attempting to re-establish parturition by giving oxytocin either as pulses of as a 300 

continuous infusion. Normal parturition could be reinstated by giving pulses of oxytocin at 301 

10-min intervals, whereas much higher doses were needed to achieve a similar outcome by 302 

continuous infusion of oxytocin. 303 

It is now generally accepted that, in all mammalian species, oxytocin secreted from 304 

the posterior pituitary has a role in the expulsive phase of labour. Apart from its direct effects 305 

on the uterine myometrium, oxytocin also stimulates prostaglandin release by its actions on 306 
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the decidua/uterine epithelium. Oxytocin is not strictly essential, as other mechanisms can 307 

generally compensate for its absence, but it is secreted in very large amounts during labour, 308 

acts on a uterus that expresses greatly increased levels of oxytocin receptor at term, and 309 

acutely blocking either oxytocin release or its actions slows parturition (Blanks and Thornton 310 

2003; Russell et al. 2003). The trigger for initiating parturition varies between species, but it 311 

seems that oxytocin commonly is a driver for uterine contractions once parturition has begun 312 

(Russell et al 2003; Arrowsmith and Wray 2014). Oxytocin may also play some part in the 313 

initiation of labour, but in women, other, paracrine mechanisms are more important for this 314 

(Kamel 2010), although oxytocin antagonists are used to avert threatened pre-term labour 315 

(Usta et al. 2011).  316 

 317 

Sexual activity 318 

In 1947, Harris had shown that stimulation of the posterior pituitary evoked robust 319 

uterine contractions in the oestrous or oestrogenized rabbit, and that these effects could be 320 

mimicked by injections of pituitary extract (Harris 1947). He knew that this did not 321 

demonstrate a physiological role for oxytocin in labour, and that Ferguson’s findings were 322 

more pertinent to that issue (Ferguson 1941). However, he was intrigued that oxytocin caused 323 

uterine contractions in the empty, non-pregnant uterus, and speculated that coitus might 324 

trigger the secretion of oxytocin to facilitate the transport of seminal fluid up the female 325 

reproductive tract. He went on to find a novel way of testing whether coitus triggered 326 

oxytocin secretion in women. 327 

As described above, Gunther (1948) had reported the appearance of beads of milk in a 328 

lactating woman during labour, and this had impressed Harris as good evidence for active 329 

secretion of oxytocin. In 1953, his colleague Vernon Pickles (1953) made a similar 330 

observation, this time of a lactating woman who had experienced milk let-down immediately 331 

after achieving orgasm. Together, Harris and Pickles (1953) set about seeing if this was a 332 

common occurrence. Their approach was wonderfully direct – they asked the wives of their 333 

colleagues. Six had noticed milk let down during some stage of coitus (not necessarily at 334 

orgasm), and two others reported the ‘tingling experience’ in their breasts that they 335 

recognised as the same as they experienced during suckling. Because milk let-down is a 336 

reflex for which oxytocin is essential, this “bioassay” was powerful evidence that oxytocin is 337 

indeed released during coitus in women; a conclusion later confirmed by radioimmunoassay: 338 

there appears to be enhanced secretion in the arousal phase before orgasm (Carmichael et al. 339 

1987), while the rises at orgasm itself are generally very small (Blaicher et al. 1999).  340 



 11 

Whether the secretion of oxytocin into blood during sexual activity has any 341 

physiological role in women is still unclear: Levin (2011) has argued that it has little if any 342 

role in sperm transport. Oxytocin is also secreted into the blood during coitus in female goats 343 

(McNeilly and Ducker 1972), there is an inconsistent increase in rabbits (Todd and Lightman 344 

1986), and in ewes, and while oxytocin secretion increases in the presence of a ram, there is 345 

no further rise in secretion during mating itself (Gilbert et al. 1991). Large doses of oxytocin 346 

given systemically facilitate lordosis in ovariectomised, oestrogen-primed rats; because 347 

central injections of much smaller amounts of oxytocin have a similar effect it has been 348 

assumed that this is an effect mainly reflecting actions within the brain, but as the effects of 349 

systemically administered oxytocin appear to depend upon the presence of an intact uterus 350 

and cervix, peripheral actions may also contribute (Moody and Adler 1995). 351 

In men, in response to masturbation, Murphy et al. (1987) found an increase in 352 

vasopressin secretion but not oxytocin secretion during sexual arousal, and a large and robust 353 

increase in oxytocin secretion but not vasopressin secretion at ejaculation. Oxytocin and 354 

receptors are expressed in the prostate, penis, epididymis, and testis, and there is good 355 

evidence that peripheral actions of oxytocin support penile erection and ejaculation and 356 

facilitate sperm transport (Corona et al. 2012). 357 

 358 

Vasopressin secretion 359 

While Harris (1948c) showed that electrical stimulation of the posterior pituitary in 360 

rabbits resulted in the appearance of a substance in the urine that had antidiuretic activity, this 361 

was not, in context, any great surprise. It was already clear that posterior pituitary extracts 362 

had marked antidiuretic activity, that the hormone content of the posterior pituitary was 363 

markedly depleted by dehydration, and that the urine of dehydrated animals contained a 364 

substance with apparently similar antidiuretic properties to those of posterior pituitary 365 

extracts. Verney (1947) had established that intracarotid infusions of hypertonic solutions 366 

elicited antidiuresis in dogs, and, by experiments involving ligations of the internal carotid 367 

artery and various nerve sections, he had shown that this antidiuretic response required an 368 

intact posterior pituitary, and that the osmoreceptors apparently lay in a region of the 369 

prosencephalon supplied by the internal carotid. The supraoptic nucleus itself was recognised 370 

to be a prime candidate for the location of these osmoreceptors, particularly as it was known 371 

to be exceptionally densely vascularised. Indeed this speculation was correct – the 372 

magnocellular neurons of the supraoptic and paraventricular nuclei express stretch-sensitive 373 

membrane channels which make them exquisitely sensitive to volume change; with raised 374 
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external osmolality, the cells shrink, resulting in activation of a depolarising current (Bourque 375 

2008).  376 

But this mechanism does not work in isolation. The direct depolarisation that results 377 

from volume changes is small, and not enough in itself to increase the spiking activity of the 378 

magnocellular neurons. However, if those neurons are also receiving extensive afferent input, 379 

then even a small tonic depolarisation becomes effective, by increasing the probability that 380 

depolarisations arising from afferent input will exceed spike threshold. Thus while the 381 

magnocellular neurones are osmoreceptors, when deafferented they cannot increase their 382 

firing rate in response to osmotic stimulation – this response requires at least a tonic afferent 383 

input (Leng et al. 1982). They get such a tonic input from a set of anterior brain structures 384 

that includes two circumventricular organs – the subfornical organ and the organum 385 

vasculosum of the laminae terminalis - that are also osmoreceptive in the same way that 386 

magnocellular neurons are (Bourque 2008). They project to the magnocellular nuclei, but also 387 

to the nucleus medianus, a midline structure adjacent to the anterior wall of the third ventricle 388 

which also projects densely to the magnocellular nuclei. Collectively these anterior regions 389 

became known as the “AV3V region”, and this region controls not only antidiuresis but also 390 

thirst and natriuresis, and it mediates effects of angiotensin produced by the kidney, and of 391 

other circulating hormones of cardiovascular origin (Johnson 1985). 392 

 393 

Stress 394 

Harris’ monograph focusses on another aspect of the regulation of vasopressin 395 

secretion that is more controversial – the effect of emotional stress. He noted that there was 396 

considerable evidence in man that emotional stress was accompanied by antidiuresis, that 397 

Verney had shown that this also appeared to be the case in dogs, and that this seemed likely 398 

to be the result of vasopressin released from the posterior pituitary. In rats, many behavioural 399 

stressors have no clear effect on vasopressin secretion, although generally they do stimulate 400 

oxytocin secretion (Gibbs 1986), while conditioned fear stimulates oxytocin secretion but 401 

inhibits vasopressin secretion (Onaka et al. 1988) and novelty stress inhibits vasopressin 402 

secretion with no effect on oxytocin secretion (Onaka et al. 2003). By contrast, in man, 403 

vasopressin secretion appears to be stimulated by psychological stressors such as social stress 404 

(Siegenthaler et al. 2014) and exam stress (Urwyler et al. 2015).  405 

What the physiological significance of this is very uncertain. Vasopressin has an 406 

important role in regulating adrenocorticotropic hormone (ACTH) secretion from the anterior 407 

pituitary; it is released into the hypothalamo-hypophysial portal circulation from the 408 



 13 

terminals of parvocellular and magnocellular neurones of the paraventricular nucleus, acting 409 

in concert with corticotrophin releasing factor (CRF) (Antoni 1993). Circulating levels of 410 

vasopressin, secreted from the posterior pituitary, are generally thought to be too low to be 411 

effective. However, vasopressin and CRF interact synergistically in stimulating ACTH 412 

secretion, so it is possible that in the presence of elevated CRF secretion, vasopressin 413 

secretion from the pituitary might become effective. To date, this possibility has not been 414 

extensively tested – and Ehrenreich et al. (1996) found no association in man between 415 

increases in vasopressin secretion in response to novelty stress and ACTH secretion. Even if 416 

vasopressin from the magnocellular system does influence ACTH secretion under some 417 

circumstances, it is unclear what adaptive significance there might be. Similarly, the 418 

increased secretion of oxytocin in response to many stressors is both without clear 419 

physiological effect or adaptive significance. Oxytocin alone is an even weaker ACTH 420 

secretagogue than vasopressin.  421 

 422 

 423 

The present day 424 

We now know that oxytocin and vasopressin have numerous peripheral targets that 425 

were largely or completely unknown to Harris. There is evidence that, in some species at 426 

least, oxytocin is involved in the regulation of natriuresis (Antunes-Rodrigues et al. 1997), 427 

osteoblast activity (Di Benedetto et al. 2014) and gastric motility (Qin et al. 2009). 428 

However probably the more radical change in our worldview has come from the recognition 429 

that oxytocin and vasopressin are not only secreted from the posterior pituitary, but are also 430 

released in the brain, where they have very diverse behavioural effects. Both oxytocin and 431 

vasopressin are modulators of social behaviour (Caldwell et al. 2008; Lee et al. 2009; 432 

Neumann and Landgraf 2012). Parvocellular oxytocin and vasopressin neurons in the 433 

paraventricular nucleus project to many sites in the CNS and spinal cord, and vasopressin is 434 

also expressed at several other sites in the brain (see De Vries 2008), including in the 435 

olfactory bulb, where it has been implicated in social recognition (Tobin et al. 2010). In 436 

addition, oxytocin is an important regulator of appetite (Leng et al. 2008) and sexual 437 

behaviour (Baskerville and Douglas 2008). Centrally projecting parvocellular oxytocin and 438 

vasopressin neurons have important roles in these, but the magnocellular neuroendocrine 439 

system has also been implicated through dendritic release mechanisms. It now seems clear 440 

that many neuroactive substances released in the brain, including oxytocin and vasopressin, 441 

can act at a distance from their site of release (Leng and Ludwig 2008). Oxytocin and 442 
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vasopressin have profound effects on behaviors that are exerted at sites that, in some cases, 443 

richly express peptide receptors but are innervated by few peptide-containing projections. 444 

This release of these peptides is not specifically targeted at synapses, and the long half-life of 445 

peptides in the CNS and their abundance in the extracellular fluid mean that, after release, 446 

they can reach their sites of action by what Fuxe has called “volume transmission” (Fuxe et 447 

al. 2012). At their targets, the process of priming allows peptides to functionally reorganize 448 

neuronal networks, providing a substrate for prolonged behavioral effects (Ludwig and Leng 449 

2006). 450 

Our mechanistic understanding of the magnocellular neurons has undoubtedly 451 

achieved great sophistication (Brown et al. 2013), substantially through a concerted drive by 452 

many scientists over many years to meet the challenges laid down by Harris and his 453 

contemporaries – to understand the milk-ejection reflex, the role of oxytocin in parturition, 454 

and the nature of the osmoregulatory response of vasopressin cells. Key discoveries of wide 455 

significance followed: the recognition of the importance of pulsatile hormone secretion, the 456 

recognition of the importance of stimulus-secretion coupling mechanisms in interpreting 457 

patterned electrical activity of neurons, the physiological importance of peptide release in the 458 

brain, the recognition that peptide release comes substantially from dendrites and can be 459 

regulated independently of nerve terminal secretion, and the importance of dynamic 460 

morphological changes to neuronal function in the hypothalamus, all followed directly from 461 

the drive to understand the milk-ejection reflex. 462 

Yet despite the intensity with which magnocellular neurons have been interrogated, 463 

these neurons still have the capacity to surprise us. For example, it has only recently become 464 

clear that magnocellular vasopressin neurons are exquisitely thermosensitive (Sudbury et al. 465 

2010) and are regulated by circadian inputs (Trudel and Bourque 2012). 466 

In this essay, and we do not pretend it to be a comprehensive review, we sought to 467 

follow the impact of Harris’ work. Any such venture risks reinterpreting history to suit a 468 

narrative. Yet science is an inescapably social activity, and to neglect this would be a 469 

mistake. For good and bad, there are “bandwagons” in our science, some of which crash in 470 

blind alleys, as we suspect will be the case for the current bandwagon of attention to the 471 

effects of intranasal application of oxytocin and vasopressin, the behavioural consequences of 472 

which are generally ascribed, on little evidence, to central actions but which in our view are 473 

more likely incidental consequences of peripheral actions. The bandwagons that Harris set 474 

rolling have, however, rolled and rolled, leading us inexorably to our present sophisticated 475 

and nuanced understanding of the magnocellular neurons.  476 
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Figure Legends 483 

Figure 1: (A) Harris and co-workers showed, in lactating rabbits, that electrical stimulation of 484 

the neural stalk resulted in a sharp rise in intramammary pressure, and they inferred that this 485 

was the consequence of oxytocin secreted from the posterior pituitary. They noted that the 486 

response to stimulation depended strongly on the frequency of stimulation (A; modified from 487 

Harris et al. 1969). The explanation for this has two components. First, the response of the 488 

mamary gland to oxytocin is non-linear. As shown in B (modified from Cross and Harris 489 

1952), the rabbit mammary gland shows a threshold response to i.v. injection of 10 mU of 490 

oxytocin and a near-maximal response to a dose of 50 mU. Second, the secretion of oxytocin 491 

is greatly facilitated by increasing frequency of stimulation. As shown in C (modified from 492 

Bicknell 1988), the amount of oxytocin (and vasopressin) that is released from the rat 493 

posterior pituitary gland in vitro in response to a fixed number of electrical stimulus pulses 494 

varies markedly with the frequency at which the pulses are applied (the graph plots hormone 495 

release in response to 156 pulses at each frequency). As shown in D (modified from Lincoln 496 

and Wakerley 1974), during the milk-ejection reflex (MER), oxytocin neurons discharge 497 

short bursts (1-3s) at a spike frequency averaging 40-50 spikes/s, i.e. at a frequency that 498 

optimises the effeciency of secretion, and which evokes a sharp rise in intramammary 499 

pressure. As shown in E (modified from Higuchi et al. 1985) this response is indeed 500 

attributable to a pulse of oxytocin, as measured in blood by radioimmunoassay. As shown in 501 

F (modified from Summerlee et al. 1986), similar bursts are observed during parturition.  502 

 503 

Figure 2: 504 

(A) Vasopressin and oxytocin that circulate in the plasma are synthesized by magnocellular 505 

neurons whose cell bodies are located mainly in the paraventricular (PVN) and the supraoptic 506 

nuclei (SON) of the hypothalamus (vasopressin cells are immunostained with fluorescent 507 

green and oxytocin cells with fluorescent red). (B) The peptide immunostaining is punctate 508 

and represents individual or aggregates of large dense-cored vesicles and in dendrites the 509 

vesicles are particularly abundant. (C) Push-pull perfusion studies have shown that dendritic 510 
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oxytocin release increases before the high frequency burst activity of oxytocin neurons, 511 

which is associated with the milk-ejection reflex. (D) Intracerebroventricular injection of 512 

oxytocin increases the burst amplitude and the burst frequency of oxytocin cells showing that 513 

central release regulates the milk-ejection reflex. (E) Dendritic oxytocin release can be 514 

conditionally primed. (1) Under normal conditions dendritic peptide release is not activated 515 

by electrical (spike) activity. This is indicated by the lack of dendritic oxytocin release in 516 

response to electrical stimulation of the neural stalk (light grey columns (1a)). (2) A 517 

conditional signal (arrow), such as oxytocin itself triggers release from dendrites 518 

independently of the electrical activity (2a). (3) The conditional signal also primes dendritic 519 

stores. Priming occurs partially by relocation of dendritic large dense-core vesicles closer to 520 

the dendritic plasma membrane (3a). (4) After oxytocin-induced priming, the vesicles are 521 

available for activity-dependent release for a prolonged period (4a). Adapted and modified 522 

from (Brown et al. 2000; Freund-Mercier and Richard 1984; Ludwig and Leng 2006; Ludwig 523 

et al. 2002; Moos et al. 1989; Tobin et al. 2004). 524 
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