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Shugoshins: Tension-Sensitive Pericentromeric Adaptors Safeguarding
Chromosome Segregation

Adele L. Marston

The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, Edinburgh, United Kingdom

The shugoshin/Mei-S332 family are proteins that associate with the chromosomal region surrounding the centromere (the peri-
centromere) and that play multiple and distinct roles in ensuring the accuracy of chromosome segregation during both mitosis
and meiosis. The underlying role of shugoshins appears to be to serve as pericentromeric adaptor proteins that recruit several
different effectors to this region of the chromosome to regulate processes critical for chromosome segregation. Crucially,
shugoshins undergo changes in their localization in response to the tension that is exerted on sister chromosomes by the forces
of the spindle that will pull them apart. This has led to the idea that shugoshins provide a platform for activities required at the
pericentromere only when sister chromosomes lack tension. Conversely, disassembly of the shugoshin pericentromeric platform
may provide a signal that sister chromosomes are under tension. Here the functions and regulation of these important tension-
sensitive pericentromeric proteins are discussed.

CHROMOSOME SEGREGATION DURING MITOSIS AND
MEIOSIS
Mitosis. During the somatic cell cycle, the genome is dupli-
cated, and then one copy of each chromosome is segregated
into two new daughter cells with genome content identical to
that of the mother cell from which they originated. To achieve
this equal partitioning of the chromosomes, the newly dupli-
cated chromosomes are linked together as they replicate in S
phase by the establishment of a protein complex, known as
cohesin (reviewed in reference 1).

During mitosis, replicated and cohered sister chromatids at-
tach to microtubules of the mitotic spindle through the kineto-
chores that are assembled at a specific locus on each chromosome,
called the centromere (Fig. 1A). Kinetochores of sister chromatids
must attach to microtubules that grow from opposite poles to
ensure their later segregation to different daughter cells. In this
state, known as sister kinetochore biorientation, cohesin between
sister chromatids resists microtubule pulling forces, thereby gen-
erating tension that serves as a signal that chromosomes are prop-
erly attached to microtubules (reviewed in reference 2). Only once
all the chromosomes have achieved sister kinetochore biorienta-
tion, does a protease, separase, become active and cleave cohesin,
triggering the segregation of sister chromatids to opposite poles
(reviewed in reference 1). While separase-dependent cohesin
cleavage is the universal trigger for chromosome segregation, in
mammals the bulk of cohesin is removed from chromosomes dur-
ing prophase through a nonproteolytic mechanism. This so-called
“prophase” pathway removes the majority of cohesin from chro-
mosome arms but not pericentromeres, where cohesin is pre-
served until separase activation at anaphase onset.

Cohesin is a ring-shaped complex thought to hold sister chro-
mosomes together by embracing them (reviewed in reference 3).
The core cohesin complex consists of two structural maintenance
of chromosome (Smc) subunits, Smc1 and Smc3, an Scc3/stromal
antigen (SA/STAG) subunit and an �-kleisin subunit (Scc1/
Rad21/Mcd1 in mitotic cells), which together form a ring that is
thought to encompass the two daughter DNA strands. Cleavage of
the �-kleisin subunit by separase opens the ring and triggers chro-
mosome separation. Cohesin association with chromosomes is

the result of a balance between cohesin loading and unloading
(reviewed in reference 1). Prior to S phase, the Scc2/Scc4 (also
called Nipped-B-like [NIPBL]/Mau4) cohesin loader enables the
association of cohesin with chromosomes (4–9). This loading re-
action is thought to involve opening of the “hinge” interface be-
tween Smc1 and Smc3 in a manner dependent on hydrolysis of
ATP by the Smc proteins (10–14). Core cohesin recruits the ac-
cessory subunit Pds5 (Pds5A/B in vertebrates) through the �-klei-
sin subunit (15–18). Pds5 recruitment enables the association of
Wapl/Rad61 which promotes cohesin release, probably by open-
ing the Smc3-Scc1 interface (17, 19–21). Therefore, before S
phase, cohesin turns over rapidly on chromosomes due to the
competition between the loading activity of Scc2/Scc4 and the
destabilizing activity of Wapl. Stable association of cohesin with
chromosomes, and establishment of cohesion, occurs only upon
acetylation of its Smc3 subunit by the Eco1 acetyltransferase
(ESCO1 and ESCO2 in vertebrates) during DNA replication (22–
26). This acetylation, proximal to the Smc3-Scc1 interface is
thought to lock the cohesin ring shut by making it insensitive to
the destabilizing ability of Wapl. In yeasts, where a prophase path-
way of cohesin removal is not apparent, Smc3 acetylation appears
to be sufficient to counteract the destabilizing activity of Wapl. In
mammals, however, Smc3 acetylation recruits the sororin protein,
and this is essential to counteract Wapl activity and stabilize co-
hesin (27–30). Sororin competes with Wapl for binding to Pds5,
suggesting that sororin stabilizes cohesin by dislodging Wapl from
cohesin (27).
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During prophase, sororin is phosphorylated by the cyclin-de-
pendent kinase (CDK) and Aurora B kinases, which disrupts its
interaction with Pds5, enabling Wapl-dependent removal of co-
hesin from chromosome arms (27, 28, 31–33). Importantly, it is
only the pool of cohesin that has been acetylated that requires
sororin phosphorylation for its removal (32). The Plk1 kinase also
promotes cohesin removal during prophase (34–37) by phosphor-
ylating the SA2 cohesin subunit, though the mechanism by which
this triggers cohesin loss remains unclear (32, 38).

Meiosis. To generate gametes, the process of chromosome
segregation must be modified so that the genome content is
reduced by half (1, 39). In a specialized cell division, called
meiosis, chromosomes are duplicated and then undergo two
consecutive chromosome segregation events, known as meiosis
I and meiosis II (Fig. 1B) (reviewed in references 1 and 39).
During meiosis I, the paternal and maternal chromosomes
(known as homologs) are segregated (reductional division),
while in meiosis II, the sister chromatids are segregated (equa-
tional division), similar to mitosis. Uniquely in meiosis I, ki-
netochores of sister chromatids attach to microtubules of the
same pole, rather than opposite poles, which is called sister

kinetochore monoorientation. Additionally, the homologs are
now linked, usually as a result of meiotic recombination that
generates sites of reciprocal exchange between the homologs,
known as chiasmata. As in mitosis, sister chromatids are held
together by cohesin complexes, which are modified to perform
specialized roles during meiosis: notably, in many organisms,
the Scc1 �-kleisin subunit is replaced by its meiosis-specific
homolog, Rec8, and this substitution is essential for many mei-
osis-specific functions of cohesin (reviewed in reference 39; see
below). Chiasmata are held in place owing to distal sister chro-
matid cohesion on chromosome arms enabling homologs to
align on the meiosis I spindle. Kinetochore monorientation
and chiasmata together ensure that homologs, rather than sis-
ter chromatids, are bioriented during meiosis I. Once homolog
biorientation has occurred, separase becomes active. In con-
trast to mitosis, separase cleaves Rec8 only on chromosome
arms, while Rec8 in centromeric regions is protected from
separase activity during meiosis I by the presence of shugoshin.
Protection of Rec8 and, thereby, the maintenance of centro-
meric cohesin is important, as it allows sister chromatids to
form bipolar attachments to the meiosis II spindle. Only upon

FIG 1 Chromosome segregation during mitosis and meiosis. (A) Pathways to cohesin loss during mitosis. During prophase, cohesin dissociates from chromo-
some arms in a manner dependent on Wapl. Once chromosomes are properly bioriented, separase is activated, and this cleaves the remaining cohesin, triggering
chromosome segregation. (B) Spatial loss of cohesin during meiosis. Separase-dependent cleavage of cohesin on chromosome arms during meiosis I leads to the
resolution of chiasmata and the segregation of homologous chromosomes. Protected pericentromeric cohesin allows sister chromatids to biorient during meiosis
II, resulting in separase activation and cleavage of this cohesin.
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biorientation of sister chromatids during meiosis II does sepa-
rase become active again and cleave residual pericentromeric
cohesin. It is owing to their requirement for the protection of
centromeric cohesin during meiosis I that shugoshins were first
identified.

DISCOVERY OF SHUGOSHINS

The retention of cohesin in the pericentromeric region until mei-
osis II predicted the existence of a “protector” of pericentromeric
cohesion during meiosis I. A Drosophila mutant, mei-S332, was
identified; this mutant appeared to lose pericentromeric cohesion
prematurely during meiosis (40). Mei-S332 localizes at centrom-
eres during meiosis until anaphase II, the time when cohesion is
lost, as predicted for a protector of centromeric cohesion (41).
However, at that point in time, counterparts of Mei-S332 were not
identified in other organisms, so it was unclear whether the cohe-
sion protector was conserved. A few years later, screens carried out
in fission yeast Schizosaccharomyces pombe and budding yeast Sac-
charomyces cerevisiae identified genes required for protection of
meiotic cohesion in these organisms (42–45). This defined a fam-
ily of proteins, called “shugoshins” (meaning guardian of the ge-
nome in Japanese), of which Drosophila Mei-S332 turned out to
be a distant relative (43). Subsequent work has revealed that
shugoshins have roles at the pericentromere in addition to the
protection of centromeric cohesion during meiosis. Though the
mechanism is distinct, shugoshins also prevent cohesion loss at
the centromere due to the effects of the prophase pathway during
mammalian mitosis. Shugoshins additionally promote biorienta-
tion of sister chromatids during mitosis. Broadly, all these activi-

ties are carried out through the recruitment of effector protein
complexes to the pericentromere, including protein phosphatase
2A (PP2A) for cohesin protection or the chromosome passenger
complex (CPC), MCAK (mitotic centromere-associated kinesin)/
Kif2A kinesin motor, and condensin for sister kinetochore biori-
entation (Table 1; see below). While Drosophila and budding yeast
have a single shugoshin protein, fission yeast, plants, and mam-
mals have two (Fig. 2) (46). Some of these shugoshins are present
only in meiotic cells, while others (e.g., budding yeast Sgo1, Dro-
sophila Mei-S332) are also present in somatic cells. Shugoshins are
relatively divergent except for a conserved C-terminal “SGO” mo-
tif and an N-terminal coiled-coil domain (Fig. 2). Consistently,
there is some variation in the functions and interactions of
shugoshins. The nomenclature is also not consistent with the de-
scribed functions for shugoshins between species: for example, the
meiotic cohesin protector in fission yeast is Sgo1, while this is the
role of mouse Sgo2 (see below; summarized in Table 1). To avoid
confusion, throughout this minireview, shugoshins are referred to
with a prefix corresponding to the organism which they originate
from (i.e., human Hs-Sgo [Hs stands for Homo sapiens], mouse
Mm-Sgo [Mm stands for Mus musculus], frog Xl-Sgo [Xl stands
for Xenopus laevis], fruit fly Dm-Mei-S332 [Dm stands for Dro-
sophila melanogaster], fission yeast Sp-Sgo [Sp stands for Schizo-
saccharomyces pombe], and budding yeast Sc-Sgo [Sc stands for
Saccharomyces cerevisiae]). (Note that mouse and human Sgo1
and Sgo2 have also been called Sgol1 and Sgol2, respectively.)
Overall, I will argue that the common function of shugoshins is to
serve as pericentromeric adaptor proteins, which have been tai-
lored to perform in different contexts.

TABLE 1 Summary of functions for shugoshin proteins

Function Species Shugoshin(s) Effector Reference(s)

Protection of pericentromeric
cohesion during meiosis I

Budding yeast Sc-Sgo1 PP2A-Rts1 42–44
Fission yeast Sp-Sgo1 PP2A-Par1 43, 45
Drosophila Mei-S332 ? 40
Arabidopsis At-Sgo1, At-Sgo2 ? 47, 48
Rice Os-Sgo1 ? 49
Maize Zm-Sgo1 ? 50
Mouse Mm-Sgo2 PP2A-B= (B56) 51, 52, 63

Protection of cohesion during mitosis Xenopus Xl-Sgo1 PP2A-B= (B56�) 17, 72
Human Hs-Sgo1 PP2A-B= (B56) 65–71

Biorientation of sister chromatids
during mitosis

Budding yeast Sc-Sgo1 CPC 76, 89
Condensin 76, 89
PP2A-Rts1 89, 90

Fission yeast Sp-Sgo2 CPC 78, 87
Xenopus Xl-Sgo2 CPCa 73

MCAK
PP2A-B56ε

Human Hs-Sgo1 CPC 95
Hs-Sgo2
Hs-Sgo2 MCAK 68

Spindle checkpoint silencing Budding yeast Sc-Sgo1 ? 116
Mouse Mm-Sgo2 Mad2, PP2A 63

Biorientation of homologous
chromosomes during meiosis I

Budding yeast Sc-Sgo1 ? 44, 88
Mouse Mm-Sgo2 ?b 63

a Xl-Sgo2 affects the activation of the CPC, not its localization.
b Through inhibition of Aurora B/C kinases, though the relevant effector is unknown.
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FUNCTIONS OF SHUGOSHINS IN PROTECTING COHESION
Mechanism of pericentromeric cohesin protection during mei-
osis I. The canonical role of shugoshins as protectors of pericen-
tromere cohesion from separase activity during meiosis is well

conserved and is known to require budding yeast Sc-Sgo1 (42–
44), fission yeast Sp-Sgo1 (43, 45), Arabidopsis At-Sgo1 (At stands
for Arabidopsis thaliana) and At-Sgo2 (47, 48), rice Os-Sgo1 (Os
stands for Oryza sativa) (49), maize Zm-Sgo1 (Zm stands for Zea

FIG 2 Organization of shugoshin proteins. Schematic diagram illustrating the key features of shugoshin proteins in organisms discussed in this minireview.
Shugoshins carry a conserved basic “SGO motif” near the C terminus and a coiled-coil domain close to the N terminus, but they are otherwise relatively divergent.
The coiled-coil domain has been found to enable shugoshin dimerization and association with PP2A and/or CPC; the SGO motif is required for the interaction
with phosphorylated histone H2A. Motifs found to be important for association with HP1 or Mad2 (amino acid sequences MRLP, AHLP, and LRLP) or that are
required for degradation (K box, D box, and amino acid sequence NKSEN) are also shown. The sites of regulatory phosphorylation events are also indicated. For
details, see the text. PBD, Polo-binding domain.
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mays) (50), Drosophila Dm-Mei-S332 (40), and mouse Mm-Sgo2
(51, 52). Since the discovery of shugoshin in yeasts, the molecular
mechanism underlying the protection of centromeric cohesin
during meiosis has been worked out (Fig. 3A). During meiosis in
many organisms, the Scc1/Rad21/Mcd1 �-kleisin is substituted by
the meiosis-specific Rec8 kleisin (reviewed in reference 39). Rec8-
containing cohesin performs multiple functions during meiosis
that cannot be fulfilled by the Scc1 counterpart, including the
maintenance of pericentromeric cohesion until meiosis II (53,
54). Rec8 phosphorylation is essential for its cleavage by separase
(55–59), but at the pericentromere, shugoshins counteract Rec8
phosphorylation by recruiting a specific form of the protein phos-
phatase 2A, thereby preventing its cleavage (60–62). PP2A is a
three-subunit complex comprised of a scaffold (A), regulatory
(B), and catalytic subunit (C). Sc-Sgo1 and Hs-Sgo1 associate only
with a specific holoenzyme containing the B= regulatory subunit
(60–62). PP2A-B= is recruited to centromeres during meiosis by

budding yeast Sc-Sgo1 and fission yeast Sp-Sgo1 and is required to
protect cohesion (60–62). Similarly, recruitment of PP2A by
mouse Mm-Sgo2 in oocytes is required for pericentromeric cohe-
sin maintenance during meiosis I (63). Artificial tethering of fis-
sion yeast PP2A to chromosome arms prevents Rec8 cleavage
along chromosomes, demonstrating that PP2A recruitment to the
pericentromere by shugoshin is sufficient to prevent Rec8 cleavage
(61). Similarly, artificial expression of Mm-Sgo1 in oocytes blocks
the segregation of homologous chromosomes but only when it is
capable of interacting with PP2A (62). Together these findings
demonstrate a conserved role for Sgo-PP2A in rendering pericen-
tromeric Rec8 resistant to separase activity during meiosis I.

At least in yeasts, the relevant substrate for PP2A in protecting
cohesin from separase activity during meiosis is Rec8. Mutation of
phosphorylated sites identified by mass spectrometry in budding
or fission yeast Rec8 to alanine slowed or precluded Rec8 cleavage
(57–59). Moreover, substitution of in vivo-phosphorylated resi-

FIG 3 Protection of cohesin by shugoshins. (A) Mechanism of protecting pericentromeric cohesin from cleavage by separase during meiosis I. Shugoshin
recruits PP2A, which prevents Rec8 phosphorylation, making it a poor substrate for separase-dependent cleavage. DDK, Dbf4-dependent kinase. (B) Mechanism
of protecting pericentromeric cohesin from dissociation by Wapl during mammalian mitosis. In G1, Wapl can associate with cohesin and make it stable. After S
phase, Eco1-dependent acetylation stabilizes cohesin in mammals by associating with sororin, which counteracts Wapl activity. During mitosis, CDK and Aurora
B phosphorylate sororin, leading to its release from cohesin and making it susceptible to Wapl. At the pericentromere, shugoshin-PP2A protects cohesin from
Wapl activity in two ways: preventing sororin phosphorylation and blocking Wapl binding to SA2.
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dues in Sc-Rec8 with the phosphomimetic aspartate leads to its
cleavage all along chromosomes during meiosis I, despite the pres-
ence of Sc-Sgo1–PP2A (57). The kinases that phosphorylate Rec8
to promote its cleavage show some redundancy as well as species
specificity: casein kinase contributes in both budding and fission
yeast, while Dbf4-dependent kinase (DDK) and Polo kinase are
hitherto known to promote Rec8 cleavage only in budding yeast
(56, 57, 59, 64). Overall, these studies demonstrate that PP2A-B=
recruitment by shugoshin prevents the separase-dependent cleav-
age of pericentromeric Rec8 during meiosis I by antagonizing its
phosphorylation.

Pericentromeric cohesin protection during mitosis in verte-
brates. Protection of pericentromeric cohesin from the prophase
pathway (i.e., Wapl-destabilizing activity) is conferred by Hs-
Sgo1 in human cell lines, though Hs-Sgo2 is present in mitotic
cells (65–71). In Xenopus, Xl-Sgo1 also protects pericentromeric
cohesin from the prophase pathway, though Xl-Sgo2 does not (17,
72, 73). Mice lacking sgo2 are viable but infertile, suggesting that
Mm-Sgo1 is the main Wapl antagonist in mouse somatic cells too
(51). In budding yeast, the prophase pathway of cohesin removal
does not seem to exist because cohesin levels and cohesion are
maintained during mitosis in cells lacking Sc-Sgo1 (74–76). Sim-
ilarly, although a fraction of cohesin dissociates from fission yeast
chromosomes in early mitosis (77), there is no evidence that
shugoshins regulate cohesion loss during mitosis in this organism
(78).

Hs-Sgo1 protects pericentromeric cohesin from the prophase
pathway in human cells, thereby restricting removal of cohesin to
chromosome arms during prophase (60, 61, 67) (Fig. 3B). The
cohesin protection capability of Hs-Sgo1 is activated by cyclin-
dependent kinase (CDK) phosphorylation on T346, which en-
ables Sgo1 binding to cohesin, bringing with it PP2A (33). The
binding of Hs-Sgo1 to cohesin is essential for its cohesin protec-
tion function (79). Three activities of the Sgo1-PP2A complex
contribute to the protection of pericentromeric cohesion during
mammalian mitosis (Fig. 3B). First, Hs-Sgo1-PP2A ensures so-
rorin maintenance at the centromere. Sororin is concentrated at
centromeres in an Hs-Sgo1-dependent manner (27) and is a crit-
ical downstream target of Hs-Sgo1-PP2A in cohesin protection.
Hs-Sgo1-PP2A counteracts Aurora B and CDK to maintain so-
rorin in the dephosphorylated state, preserving its association
with Pds5 and thereby counteracting cohesin removal by Wapl
(31–33). Therefore, CDK both promotes and prevents cohesin
loss during prophase through phosphorylation of sororin and Hs-
Sgo1, respectively (27, 28, 31–33). Second, Hs-Sgo1-PP2A pre-
vents cohesin dissociation through SA2 dephosphorylation (38,
61, 69). Dephosphorylation of sororin and SA2 appear to inde-
pendently promote cohesin protection since nonphosphorylat-
able sororin and SA2 mutants have additive effects on slowing
cohesin dissociation (32). Third, a recent crystal structure of the
SA2 cohesin subunit in complex with an Scc1 fragment allowed
the binding site for Hs-Sgo1 on cohesin to be mapped (80, 81).
Interestingly, Hs-Sgo1 and Wapl were found to bind to the same
interface, suggesting that Hs-Sgo1 directly counteracts the associ-
ation of Wapl with cohesin (81).

Although all the available evidence provides a strong argument
for collaboration between Sgo1 and PP2A in protecting pericen-
tromeric cohesion from the prophase pathway during mamma-
lian mitosis, the identity and regulation of the relevant pool of
PP2A is still not completely clear. Depletion of Hs-Sgo2 has little

effect on cohesion (65) but delocalizes PP2A from centromeres
(61). Conversely, depletion of Hs-Sgo1 from human cells results
in loss of cohesion without affecting PP2A localization at centro-
meres (61, 67). Instead, Hs-Sgo1 is required for PP2A association
with cohesin (33). Together with the observation that depletion of
the major PP2A scaffold subunit, A�, results in loss of centromeric
cohesion (61, 67), these findings argue that Hs-Sgo1-dependent
recruitment of PP2A to cohesin is important for its protection,
while centromeric PP2A is not (33). Hs-Sgo1 copurifies specifi-
cally with PP2A containing its B= family of regulatory subunits
(82, 83) from mitotic cells and binds directly through this subunit
(62). Though depletion of the major A� scaffold subunit causes
loss of cohesion (61, 67), paradoxically, depletion of all B= regula-
tory subunits does not (82, 83). Therefore, the composition and
specific interactions of the PP2A enzyme complex responsible for
cohesion protection during mammalian mitosis are unclear.
Analysis of specific Hs-Sgo1/Hs-Sgo2 and PP2A subunit alleles
that specifically interrupt the interactions between them could
help resolve this important issue.

FUNCTIONS OF SHUGOSHINS IN CHROMOSOME
BIORIENTATION

Accurate segregation relies on a system to ensure that chromo-
somes attach to microtubules from opposite poles, known as
chromosome biorientation. In mitosis, it is the identical sister
chromatids that attach to microtubules from opposite poles and
are said to be bioriented. However, during meiosis I only, sister
kinetochores attach to microtubules from the same pole (termed
monoorientation or coorientation), and it is homologous chro-
mosomes that are bioriented instead. In both cases, geometrical
constraints are likely to promote chromosome biorientation.
However, geometry in itself is not sufficient for biorientation, and
where this fails, the resultant lack of tension engages the “error
correction” process, the major role of which appears to be to de-
stabilize tension-less kinetochore-microtubule attachments (re-
viewed in reference 2). The key player in this process is the chro-
mosome passenger complex (CPC) comprised of Aurora B, its
centromere-targeting factor, survivin, together with inner centro-
mere protein INCENP and borealin (84). As cells biorient chro-
mosomes, it is critical that cell cycle progression is blocked so that
cohesin is not cleaved before biorientation is complete. This is the
role of the spindle assembly checkpoint (SAC), which prevents
separase activation in the presence of improper kinetochore-mi-
crotubule interactions (reviewed in reference 85).

Biorientation of sister chromatids during mitosis. An elegant
screen in budding yeast first identified Sc-SGO1 as a gene required
for the response to a lack of tension between kinetochores during
mitosis (74). Budding yeast Sgo1 is required both to facilitate
biorientation and to prevent cell cycle progression in response to
the lack of tension that ensues when biorientation fails (74, 86).
Subsequently, fission yeast Sp-Sgo2 and human Hs-Sgo2 have
been found to play a similar role. Shugoshins appear to promote
chromosome biorientation by enabling the centromeric localiza-
tion of several factors important for biorientation. These factors
include the CPC, chromosome-shaping complex, condensin, PP2A,
SAC component Mad2, and the kinesin MCAK, each with distinct
functions in orienting chromosomes (63, 66, 76, 78, 86–91).

(i) Biorientation through error correction. A major role of
shugoshins that is likely to underlie their function in kinetochore
biorientation is to serve as an adaptor for the CPC at the pericen-
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tromere. The CPC is known to destabilize kinetochore-microtu-
bule interactions that lack tension, thereby allowing these errors to
be corrected (reviewed in reference 2). The pericentromeric local-
ization of the CPC is thought to be critical to allow access to sub-
strates in the kinetochore, the phosphorylation of which destabi-
lizes interactions with microtubules when kinetochores are not
under tension (92, 93). However, in budding yeast, prevention of
CPC localization to the inner kinetochore through all previously
described pathways did not preclude chromosome biorientation,
at least under normal circumstances (94). Shugoshins have been
shown to affect CPC localization in several organisms, providing a
possible explanation of how they facilitate biorientation and pre-
vent cell cycle progression where it fails (17, 72, 76, 78, 87, 89,
95–97). Budding yeast Sc-Sgo1 is not required for the initial asso-
ciation of the CPC with the centromere, but it is important for its
maintenance during mitosis, which could explain why the CPC,
but not Sgo1, is essential for biorientation in an unperturbed cell
cycle (76, 89, 96). In fission yeast, CDK-dependent phosphoryla-
tion of the Bir1/survivin CPC subunit enables its association with
the pericentromere through binding to the coiled-coil region of
Sp-Sgo2, and this interaction is important for chromosome biori-
entation (78, 87, 95). In human cells, CDK1 phosphorylates a
different CPC subunit, borealin, allowing it to bind to the coiled-
coil regions of Hs-Sgo1 and Hs-Sgo2 which both contribute to the
pericentromere localization of the CPC (95). In fission yeast and
human cells (but not budding yeast), the localization of the CPC at
the pericentromere is also under the control of the Haspin kinase
(98–100). Haspin is recruited to chromosomes through an inter-
action with the cohesin subunit Pds5, and once it is positioned, it
phosphorylates histone H3 on threonine 3 (H3-T3-P) to provide a
docking site for the CPC subunit survivin. Pericentromeric CPC
enrichment is therefore the product of the intersection of the co-
hesin-proximal H3-T3-P mark and shugoshin localization in the
pericentromere (which also depends on a histone mark: phos-
phorylation of histone H2A on S121 (H2A-S121-P) by kineto-
chore-localized Bub1; see below).

Another effector of Hs-Sgo2 that is relevant for chromosome
biorientation is the kinesin MCAK/Kif2a, which is known to pro-
mote proper kinetochore-microtubule attachments by helping
them to turn over and which is recruited to centromeres by Hs-
Sgo2 (66, 68, 101–104). Interestingly, MCAK recruitment by Hs-
Sgo2 depends on Aurora B-dependent phosphorylation of the
central region of Hs-Sgo2 (68). In Xenopus, Xl-Sgo1 mediates the
localization of the CPC, while Xl-Sgo2 rather promotes its activity
toward MCAK (73). It is important to note, however, that the
interaction between MCAK and Hs-Sgo2 does not appear to be
essential for mitosis. Although mitotic defects have been observed
upon Hs-Sgo2 knockdown by small interfering RNA (siRNA),
this is not consistently the case, hinting that Hs-Sgo2 becomes
important only in cell lines that are already compromised (65, 66,
68). Mice lacking Mm-Sgo2 consistently show no overt chromo-
some segregation defects, despite delocalization of MCAK from
kinetochores (51). These findings suggest that chromosome biori-
entation in mammals is under robust control comprised of several
redundant pathways.

(ii) Biorientation through geometry. In budding yeast, the
chromosome-organizing complex condensin is a further effector
of Sc-Sgo1 in promoting kinetochore biorientation (76, 89). Cells
lacking condensin function show impaired tension sensing and
biorientation (105). Condensin is highly enriched in the pericen-

tromere (106) and is important to provide a proper chromatin
structure to resist spindle forces (107). The enrichment of con-
densin in the pericentromere requires Sc-Sgo1 (76, 89), explaining
the altered pericentromeric chromatin structure observed when
Sc-Sgo1 is absent (108). Pericentromeric condensin serves two
functions in biorientation. First, condensin confers a bias on sister
kinetochores to be captured by microtubules from opposite poles
(76). Second, condensin in the pericentromere facilitates the error
correction process driven by the CPC (76, 89). Although further
studies are needed to understand exactly how condensin contrib-
utes to biorientation, it seems likely that it provides a particular
structure or geometry that orients sister kinetochores in a “back-
to-back” orientation.

One unresolved issue is the involvement of PP2A-B=/Rts1 in
condensin-dependent sister kinetochore biorientation. One study
found that cells lacking RTS1 showed a reduction in pericentro-
meric condensin and missegregated chromosomes during ana-
phase after being challenged with microtubule-depolymerizing
drugs (89). Consistently, in human and Xenopus cells, a noncata-
lytic function of PP2A promotes condensin II (but not condensin
I) association with chromosomes (109). However, in two different
studies, cells lacking RTS1 achieved sister kinetochore biorienta-
tion efficiently in metaphase-arrested cells (76, 90). A possible
explanation to reconcile these findings is if PP2A-B=/Rts1 is dis-
pensable for biorientation during metaphase but essential both to
elicit a cell cycle delay where biorientation fails (see below) and to
maintain robust kinetochore-microtubule attachments during
anaphase. In support of this idea, the B= PP2A regulatory subunits
are reported to stabilize kinetochore-microtubule attachments in
human cells (82). Alternatively, a different form of PP2A, associ-
ated with the alternate “B” subunit (called Cdc55 in budding
yeast) might promote biorientation downstream of Sc-Sgo1 in
budding yeast when the B= subunit (Rts1) is absent. In accordance
with this view, cells carrying versions of Sc-Sgo1 that cannot bind
PP2A do show biorientation defects (76, 89, 90), and artificial
recruitment of PP2A can rescue the biorientation defects of bud-
ding yeast cells lacking Sc-Sgo1 (89, 90). Exactly how PP2A con-
tributes to chromosome biorientation is an important question to
address in the future.

Delaying the cell cycle. In addition to governing the error cor-
rection process, the CPC also plays a central role in preventing cell
cycle progression in response to a lack of tension, predominantly
by generating unattached kinetochores that activate the SAC,
thereby stabilizing securin and maintaining separase inhibition
(110–112). In budding yeast, Sc-Sgo1 may also delay cell cycle
progression in response to a lack of tension between kinetochores
independently of its role in localizing the CPC to the centromere.
Both PP2A-B=/Rts1 and the alternative PP2A-B/Cdc55 holoen-
zyme are thought to contribute to delaying the cell cycle in re-
sponse to a lack of tension downstream of Sc-Sgo1 (62, 89, 113).
Although the underlying mechanisms are unclear, PP2A-B/Cdc55
at least appears to act independently of the SAC and securin (113).
PP2A-Cdc55 inhibits cohesin cleavage by antagonizing Polo ki-
nase (Cdc5)-dependent phosphorylation of the Scc1 cohesin sub-
unit (114) but may also prevent separase activity directly (113).
These observations indicate that shugoshins could act at multiple
levels to elicit the response to a lack of tension between kineto-
chores. Interestingly, the requirement for Sc-Sgo1 in sensing ten-
sion can be largely overridden by artificial recruitment of either
the CPC (89, 94) or PP2A (89, 90). Whether PP2A and CPC col-

Minireview

640 mcb.asm.org February 2015 Volume 35 Number 4Molecular and Cellular Biology

 on June 3, 2015 by U
N

IV
E

R
S

IT
Y

 O
F

 E
D

IN
B

U
R

G
H

http://m
cb.asm

.org/
D

ow
nloaded from

 

http://mcb.asm.org
http://mcb.asm.org/


laborate in the response to tension or perform separate, redun-
dant roles remains unclear, but the finding that the CPC main-
tains PP2A-Rts1 at centromeres in budding yeast meiosis hints at
the former possibility (115).

In vertebrates, Hs-Sgo2 and Xl-Sgo1 interact directly with the
SAC component Mad2 (65). This raises the possibility that
shugoshins directly engage the SAC to delay the cell cycle in re-
sponse to a lack of tension. However, as described above, Hs-Sgo2
does not seem to be essential for mitosis (65, 66, 68). Furthermore,
in mouse oocytes, Mm-Sgo2 interaction with Mad2 appears to be
important not to activate but to silence the SAC (see below) (63).
Therefore, the importance of the Sgo2-Mad2 interaction in so-
matic cells requires further investigation. Similarly, in budding
yeast, Sc-Sgo1 has also been proposed to promote SAC silencing,
though the underlying mechanism is unknown (116).

Biorientation of homologous chromosomes during meiosis I.
Shugoshins are also required for accurate chromosome segrega-
tion during meiosis I, a function that is likely unrelated to their
role in cohesion protection. Budding yeast Sc-Sgo1 (44, 88), fis-
sion yeast Sp-Sgo2 (43), and mouse Mm-Sgo2 (63) have all been
found to be required for accurate segregation of homologs. In
mice, Mm-Sgo2 silences the SAC by binding to Mad2 and PP2A
(63). In addition to Aurora B, oocytes express an alternative CPC
catalytic subunit, Aurora C, and both kinases contribute to the
meiotic functions of the CPC (117). Aurora B/C-dependent phos-
phorylation of Mm-Sgo2 enables its association with MCAK,
which restricts the stretching of homologous chromosomes, pre-
sumably by modulating the pulling forces from microtubules
(63). Curiously, Mm-Sgo2 also inhibits Aurora B/C kinases at
kinetochores to allow stabilization of kinetochore-microtubule
interactions (63). Therefore, at least in mouse oocytes, both inhi-
bition of Aurora B/C and recruitment of MCAK by Mm-Sgo2 are
thought to promote homolog biorientation. The finding that Au-
rora B/C kinases may be inhibited by Mm-Sgo2 contrasts with the
idea that other shugoshins play a positive role in Aurora B recruit-
ment to promote biorientation (see above). This suggests the in-
triguing possibility that inhibition of Aurora B/C kinases by Mm-
Sgo2 represents part of a meiosis I-specific mechanism to allow
the unique suppression of sister kinetochore biorientation.

BUILDING THE PERICENTROMERIC SHUGOSHIN PLATFORM

Shugoshins appear to play their critical roles in chromosome seg-
regation when localized to the centromeric region. Mounting ev-
idence indicates that this localization is due to the convergence of
multiple control mechanisms that direct functionally important
interactions with chromatin proteins, including heterochromatin
protein 1 (HP1), nucleosomes, and cohesin in the centromere-
proximal domain (Fig. 2). Furthermore, at least in human cells,
these interactions appear to define functionally separable pools of
shugoshin either overlapping with the kinetochore or with the
so-called “inner centromere” (the chromatin domain on the inte-
rior face of the kinetochore between sister chromatids) (Fig. 4).

Heterochromatin recruits shugoshin during interphase. In
most organisms, with the notable exception of budding yeast, cen-
tromeres are associated with pericentromeric heterochromatin,
characterized by di- and trimethylation of histone H3 on lysine 9
(H3K9me2/3) to which HP1 binds (118). HP1 directly binds to
shugoshin and contributes to its pericentromeric localization in
fission yeast and mammals (Fig. 4A), though the relevance of this
association for cohesin protection appears to differ between or-

ganisms (119, 120). In fission yeast, the Sp-Sgo1–HP1 interaction
is functionally important because a mutant Sp-Sgo1 protein that
loses the ability to associate with HP1 (called Swi6 in fission yeast)
fails to properly protect cohesin during meiosis (119). The situa-
tion is less clear in mammalian cells (119–122) where there are
three HP1 proteins, HP1�, HP1�, and HP1� (123). During mito-
sis, however, most of the HP1 dissociates from chromatin owing
to phosphorylation of histone H3 on the serine 10 residue (H3-
pS10), which disrupts the H3K9Me2/3-chromodomain interac-
tion (124, 125). Although one study reported that depletion of
HP1� using siRNA led to delocalization of Hs-Sgo1 and a corre-
sponding loss of centromere cohesion during mitosis (119), an-
other study found no evidence for HP1 proteins in maintaining
cohesion (122). Furthermore, inactivation of the Suv39h H3K9
methyltransferase did not lead to gross centromere cohesion de-
fects in human cells (121), though the alternative Suv4-20h meth-
yltransferase is important for proper cohesion (126). A later study
used an Hs-Sgo1 mutant that specifically abrogated its binding to
HP1 to demonstrate that this interaction is not essential for its
centromeric localization or cohesion protection function during
mitosis (120). Conversely, the centromeric localization of Hs-
Sgo1 during interphase is dependent on its association with HP1,
though the function of this pool of Hs-Sgo1 is not yet clear (120,
127). Overall, these findings suggest that HP1 may establish Hs-
Sgo1 localization during interphase for optimal execution of its
functions later in mitosis and/or that Hs-Sgo1 may have functions
at the pericentromere during interphase.

Bub1 kinase and cohesin direct shugoshin localization dur-
ing mitosis. The kinetochore-localized Bub1 kinase plays a central
and conserved role in localizing shugoshins to the centromeric
region, and this appears to be distinct from the HP1-mediated
localization in interphase (43, 70, 75, 127–132). In addition to
localizing shugoshin, Bub1 is also required for the SAC, which
prevents separase activation in response to unattached kineto-
chores during mitosis (133). While the SAC function of Bub1 lies
outside its kinase domain (134, 135), Bub1 kinase activity is essen-
tial for its shugoshin localization function (127, 131). Bub1 phos-
phorylates histone H2A at residue T120 (S121 in yeasts) to enable
shugoshin enrichment in the centromeric region (79, 136). H2A-
T120-P is localized within the kinetochore domain of the centro-
mere in human cells and enables Hs-Sgo1 recruitment to the ki-
netochore but not the inner centromere (79). Instead, the inner
centromere localization is mediated through the association of
Hs-Sgo1 with cohesin, which depends on the prior phosphoryla-
tion of Hs-Sgo1 at T346 by CDK (33, 79). In the absence of Bub1/
H2A-T120-P, Hs-Sgo1 localizes along chromosomes through its
interaction with cohesin, resulting in the protection of arm cohe-
sin from removal by the prophase pathway (33, 70, 129, 132).
Therefore, it is the Hs-Sgo1– cohesin interaction, rather than its
Bub1/H2A-T120-P-dependent kinetochore localization, that is
functionally relevant in protecting cohesin from the prophase
pathway of removal (79).

Whether the protection of cohesin from separase activity dur-
ing meiosis also depends on cohesin-dependent localization of
shugoshins, as opposed to Bub1/H2A-S121-P-dependent local-
ization, remains to be determined. The fission yeast meiosis cohe-
sin protector Sp-Sgo1 interacts with the meiosis-specific Sp-Rec8
cohesin subunit (43). In addition, Sc-Sgo1 requires cohesin for its
localization during both mitosis and meiosis (75, 76). However,
Sp-Bub1/H2A-S121-P also appears to be essential for the mainte-
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nance of pericentromeric cohesion until meiosis II (137), suggest-
ing that both pathways of recruitment could play a role in cohesin
protection during meiosis. Furthermore, although histone H2A
phosphorylation is essential for the pericentromeric localization
of shugoshin, it may not be sufficient and Bub1 may have other,
as-yet-unidentified, relevant substrates. In budding yeast, the
phosphomimetic H2A-S121D mutant supports Sc-Sgo1 pericen-
tromeric localization, but only in the presence of Bub1 (96). In
addition, further residues in yeast histone H2A as well as H3 are
known to affect Sc-Sgo1 localization, suggesting that shugoshins
may contact multiple components on the nucleosome (97, 138,
139).

The Mps1 kinase is also required for shugoshin localization to
the pericentromere in budding yeast (91) and human cells (140).
Mps1 is a central upstream kinase in the SAC (141) and is required
for sensing tension and sister kinetochore biorientation (142).
The requirement for Mps1 in shugoshin localization can be ex-
plained, in part, by its role in recruiting Bub1 to the kinetochore
(141); however, Mps1 may also affect shugoshin localization, in-
dependently of Bub1 (91, 140).

Roles of kinases and phosphatases in localizing shugoshin.
The localization of shugoshin and interactions with its effectors
within the pericentromere is the product of a complex interplay

between shugoshin and its effectors. It is reasonable to assume that
cohesin together with the chromatin marks laid down by Hs-Bub1
provide the initial anchor for establishment of the pericentro-
meric shugoshin platform. Shugoshins in turn recruit PP2A and
the CPC, which together with other local kinases influence the
localization and activity of other proteins and each other. For
example, Aurora B and shugoshins appear to have a reciprocal
relationship in promoting the enrichment of each other in many
organisms, while Polo kinase promotes shugoshin dissociation
from the pericentromere (63, 66, 68, 73, 78, 95, 98, 130). Aurora B
directly phosphorylates the Drosophila shugoshin Dm-Mei-S332
to ensure its stable association with chromosomes, while Polo
kinase, though associated with its Polo-binding domain (PBD)
and phosphorylation, promotes its dissociation during anaphase
(143–145). In human culture cells, Hs-PP2A and Hs-Sgo1 are also
mutually required for their localization. PP2A apparently pro-
motes Hs-Sgo1 enrichment by counteracting the Sgo1-dissociat-
ing activity of Polo kinase (61, 67). Furthermore, in human cells,
Aurora B-dependent phosphorylation of Sgo2 enables its binding
to PP2A (68). Similarly, Aurora B is required for recruitment of
PP2A by Sc-Sgo1, as well as cohesin protection, during budding
yeast meiosis (115). Consistently, Aurora B has been shown to be
required for cohesin protection in several organisms (68, 115, 144,

FIG 4 Localization of shugoshins. A generalized diagram is shown, indicating modes of shugoshin localization. (A) In mammalian cells, shugoshin associates
with pericentromeric heterochromatin through an interaction with HP1 protein. (B) In mitosis in the absence of tension between sister kinetochores, shugoshin
associates with the pericentromere (inner centromere), which in mammals depends on its phosphorylation at T346, allowing its association with cohesin. This
allows localization of its effector proteins to the inner centromere/pericentromere. (C) Shugoshin localization at the pericentromere is sensitive to tension. In
mammals, tension between sister kinetochores leads to dephosphorylation of T346 and relocation of Sgo1 to the kinetochore (associated with Bub1-dependent
H2A-T120P). In budding yeast, Sgo1 dissociates from the pericentromeric chromatin when sister kinetochores are under tension, in a manner facilitated by
PP2A-B=/Rts1. Disassembly of the pericentromeric platform is likely to stabilize the bioriented state by release of shugoshin effectors.
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146). Overall, it can be concluded that the pericentromeric local-
ization of the shugoshin platform is regulated by a complex net-
work of feedback, the details of which are yet to be worked out.

INACTIVATION OF SHUGOSHINS

After meiosis I, the protective function of shugoshins must be
turned off to allow loss of centromeric cohesion and sister chro-
matid segregation during meiosis II. Similarly, during mitosis,
shugoshin’s protective and kinetochore-microtubule destabiliz-
ing capabilities would be expected to be inactivated to allow sepa-
rase activation as well as its access to cohesin. So how is shugoshin
regulated?

Degradation of shugoshin. A characteristic of shugoshin is its
cell cycle-dependent degradation during anaphase, though there
are organism-specific differences as to whether the degradation
occurs in meiosis I or meiosis II (42–44, 66, 74, 78, 87). Shugoshin
degradation seems to be dependent on the anaphase-promoting
complex (APC), but the precise control of this degradation is not
well understood (71, 90, 147). In human cells, two separate motifs
(a “KEN” box and a “D box”) mediate Hs-Sgo1 destruction (147),
while in budding yeast, a short sequence close to the C terminus
was found to be important (90) (Fig. 2). Although shugoshin deg-
radation will irreversibly inactivate it, this is probably not the pri-
mary event that cancels its pericentromeric functions. In support
of this idea, ectopic Sp-Sgo1 cannot prevent cohesion loss during
meiosis II (45), and expression of a nondegradable Sgo1 in human
cells or budding yeast similarly does not prevent chromosome
segregation (90, 147). Furthermore, although mutation of the
Polo kinase-dependent sites in Drosophila Mei-S332 prevents its
dissociation from centromeres, chromosome segregation occurs
apparently normally during mitosis and meiosis (143, 145). In-
stead, tension-dependent changes in shugoshin localization to-
gether with direct inhibition of its effectors are together likely to
counteract the effects of shugoshin.

Tension-dependent relocalization of shugoshin. The idea
that tension between sister kinetochores could negatively regulate
shugoshin is attractive since in both mitosis and meiosis,
shugoshins would be expected to play their crucial functions at the
pericentromere when sister kinetochores are not under tension.
Indeed, tension-dependent relocalization of shugoshins has been
observed during mitosis in budding yeast, mouse, and human
cells as well as mouse oocytes (52, 79, 90, 96, 148) (Fig. 4). At least
in mitotic cells, accumulating evidence suggests that relocalization
of shugoshins could be central to the tension-sensing process (Fig.
4B and C). In general, intersister kinetochore tension appears to
trigger shugoshin removal from the pericentromeric chromatin.
How is the tension at sister kinetochores actually sensed by
shugoshins? One possibility is that shugoshins are mechanically
responsive to tension, so that a tension-induced structural change
in shugoshins themselves or the pericentromeric chromatin trig-
gers their dissociation. Alternatively, shugoshin relocalization
may be chemically induced due to a shift in the proximity of phos-
phatases and kinases as tension separates kinetochores from the
pericentromeric chromatin.

Support for the latter model has been obtained from studies of
human cells and budding yeast. During metaphase of mitosis in
human cells, Hs-Sgo1 relocates from the inner centromere, where
it is bound to cohesin, toward the kinetochores, where it colocal-
izes with Bub1-mediated H2A-T120 phosphorylation (52, 79).
Association of Hs-Sgo1 with cohesin requires its phosphorylation

at T346, while its relocalization to kinetochores depends on its
tension-dependent dephosphorylation at this residue (79). Since
Hs-Sgo1 must be associated with cohesin for its protection from
the prophase pathway (33), tension between sister kinetochores
would be expected to turn off the Hs-Sgo1-dependent protection
mechanism; however, in practice, pericentromeric cohesin is
cleaved only after separase activation (79). How pericentromeric
cohesin is spared from the effects of the prophase pathway after
tension triggers Hs-Sgo1 removal remains to be seen.

In budding yeast, Sc-Sgo1 associates with the cohesin-rich
pericentromere only when sister kinetochores are not under ten-
sion, though tension results in relocalization to the nucleus rather
than the kinetochore in this organism (96). Interestingly, PP2A-B=
(Rts1) appears to negatively regulate Sc-Sgo1 association with the
pericentromere, suggesting that dephosphorylation could be a
general mechanism whereby tension-dependent shugoshin relo-
calization is triggered (96). In addition, continued Bub1 kinase
activity is important to maintain the pericentromeric localiza-
tion of Sc-Sgo1 (96). This suggested that tension-dependent
separation of kinetochore-localized Bub1 and pericentromere-
localized Sc-Sgo1–PP2A could trigger a phosphorylation-depen-
dent switch, resulting in Sc-Sgo1 removal from the pericentro-
mere (96). However, whether PP2A and Bub1 regulate the
same pool of Sc-Sgo1 or share common substrates is not
known. Therefore, further work is required to understand how
tension is converted into phosphorylation-dependent relocal-
ization of shugoshins. The importance of tension-dependent
shugoshin removal from the pericentromere in signaling chromo-
some biorientation is demonstrated by the finding that tension-
dependent Sc-Sgo1 removal also triggers the delocalization of its
effectors (CPC, condensin, and PP2A) (96). This places disassem-
bly of the pericentromeric shugoshin platform as a defining event
in the sensing of sister kinetochore biorientation.

Deprotection of cohesion during meiosis. Does tension-de-
pendent shugoshin relocation play a role in deprotecting cohesion
during meiosis? In mouse meiosis, Mm-Sgo2 colocalizes with
Rec8 at the inner centromere in metaphase I, but when sister chro-
matids become bioriented and under tension during meiosis II,
Mm-Sgo2 moves toward the kinetochores and away from Rec8
(52, 148). It was hypothesized that this relocalization of Mm-Sgo2
might be sufficient to deprotect Rec8, thereby making it suscepti-
ble to cleavage upon separase activation. In support of this idea,
fission yeast mutants that biorient sister chromatids during mei-
osis I fail to protect cohesion (128). In budding yeast, although
loss of the sister kinetochore monoorientation complex, monopo-
lin, does not result in the segregation of sister chromatids to op-
posite poles during meiosis I (53), only a fraction of sister kineto-
chores are bioriented in these cells. By preventing recombination
in monopolin-deficient cells, the fraction of bioriented sister ki-
netochores can be increased, resulting in shugoshin delocalization
and cohesin deprotection in some, but not all, cells during meiosis
I (96). Therefore, while preventing tension between sister kineto-
chores appears to contribute to preventing precocious cohesin
loss during meiosis I, other mechanisms must exist to safeguard
pericentromeric cohesin. Because intersister kinetochore tension
is not sufficient for cohesin deprotection during meiosis, other
pathways must turn off the protection mechanism in meiosis II.

There is also evidence that shugoshin removal from the peri-
centromere is not actually required for cohesin deprotection dur-
ing meiosis. In mouse oocytes, expression of stable cyclin A2
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causes the precocious separation of sister chromatids during mei-
osis I without loss of Mm-Sgo2 from the centromere (149). Sim-
ilarly, in budding yeast, expression of the meiosis II-specific cyclin
Clb3 during meiosis I causes cohesin deprotection without delo-
calizing Sc-Sgo1 (150). Furthermore, examination of PP2A local-
ization in mouse oocytes led to a different conclusion than the
earlier studies where Rec8 and Mm-Sgo2 localization was exam-
ined (151). The authors observed colocalization of PP2A subunits
with Rec8 during meiosis II, arguing that tension-dependent re-
distribution of Mm-Sgo2 is unlikely to be sufficient for deprotec-
tion of Rec8. Instead, I2PP2A, an PP2A inhibitor, colocalizes with
Rec8 in meiosis II but not in meiosis I and is required for meiosis
II chromosome segregation in mouse oocytes (151). How I2PP2A
is itself regulated is an open question. Overall, these studies indi-
cate that cohesin deprotection during meiosis II cannot be fully
explained by tension-dependent relocation of shugoshin.

SGO1: A TENSION-SENSITIVE PERICENTROMERIC ADAPTOR?

Since their discovery as protectors of pericentromeric cohesion
during meiosis, shugoshins have emerged as central regulators of
chromosome segregation. Shugoshins have been reported to per-
form several different functions (Table 1 and Fig. 2). What is the
unifying feature of shugoshins that underlies these functions? The
fundamental and universal property of shugoshins is their ability
to recognize and associate with the pericentromere. The pericen-
tromeric localization of shugoshins appears to be critical for their
diverse functions. Pericentromeric shugoshin acts as a platform to
position key effector proteins that modulate interactions between
chromosomes, kinetochores, and microtubules in a way that is
tailored to the type of cell division that will ensue. A further char-
acteristic of shugoshins is that their association with the pericen-
tromere appears to be modulated in response to tension. The
establishment of tension between sister kinetochores causes de-
creased association of shugoshin with the pericentromere in sev-
eral species. This has led to the idea that this relocalization of
shugoshin in response to tension between sister kinetochores un-
derlies an ancestral role of these proteins in sensing sister kineto-
chore biorientation. This property of shugoshins, together with
their ability to associate with a variety of effector proteins, would
enable essential activities to be positioned at the pericentromere
only where there is a lack of tension between sister kinetochores.
However, the functional relevance and molecular details underly-
ing the response of shugoshin to tension will require clarification
in future studies. Although tension is observed to alter shugoshin
localization, not all of its functions are cancelled in response to
tension: indeed, cohesion is largely preserved upon sister kineto-
chore biorientation (see above). This suggests that different pools
of shugoshin are subject to distinct regulation under tension. Per-
haps a larger pool of shugoshin that promotes chromosome biori-
entation is removed in response to tension, while a smaller, tension-
independent, pool of shugoshin protects cohesin. In organisms with
two shugoshins, these functions are further refined by a division of
labor between them.

The importance of understanding how shugoshins operate is
underscored by recent studies describing their involvement in dis-
eases. Mice heterozygous for Mm-SGO1 showed increased chro-
mosome instability and susceptibility to tumors (152), and muta-
tions in human Hs-SGO1 have been associated with gastric and
colorectal cancers (153) as well as altered heart and gut rhythm
(154). As the list of roles and effector proteins for shugoshins

grows longer, a detailed and molecular characterization of their
functions and regulation across multiple organisms will be re-
quired to uncover conserved principles.
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