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Abstract

In Homotopy Type Theory (HoTT), the ‘encode-decode’ method makes heavy use of ex-
plicit recursion over higher inductive types to construct, and prove properties of, homotopy
equivalences. We argue for the classical separation between specification and implementa-
tion, and hence for using relations to track the graphs of encode/decode functions. Our
aim is to isolate the technicalities of their definitions, arising from higher path construc-
tors, from their properties. We describe our technique in the calculation of π1(S1), and
comment on its applicability in the current Agda implementation of HoTT.

Introduction Burstall’s seminal analysis [2] of how to prove properties of fold (defined by
structural recursion on lists) proceeds by first deriving a proof principle for fold by structural
induction, and then applying it. This avoids relying on the definition of fold to achieve coinci-
dences in proof by list induction, by encapsulating the recursive call structure once and for all.
This achieves separation of concerns between a concrete implementation and its abstract spec-
ification in terms of the induction principle for its graph. This insight has been rediscovered,
applied, and engineered many times over; in type theory most recently in the Function [1] and
Program [8] extensions to Coq, and in the design and implementation of views in Epigram [6].

The encode-decode method, pioneered by Licata and Shulman in their proof of π1(S1) ' Z
[4], heavily exploits definition by structural recursion and proof by induction on the newly-
introduced Higher Inductive Types (HITs) of Homotopy Type Theory (HoTT [9]), where in-
ductive types introduce not only new term constructors, but also those of (higher) paths. Below
we explore Burstall’s technique in this context, and its implementation in systems such as Agda.

Graphs of (recursively-defined) functions A function f : Πx:AB(x) gives rise to a graph
relation F : Πx:AΠy:B(x)Type trivially via Fxy ≡ y = f(x). But if f is defined recursively,
then F may be given inductively, with base cases of the definition of f corresponding to axioms
in that of F , and step cases to inference rules, with recursive calls of f tracked by inductive
premises involving F . Such an F then yields an induction principle for f , and proofs that F is
sound, sndf (F ) : Πx:AΠy:BxFxy → y = f(x), and complete, cmpf (F ) : Πx:AFx(f(x)), for the
graph relation. Turning this around, any choice of (inductive) family G satisfying sndf (G) and
cmpf (G) constitutes an adequate representation of the graph of f , and may be used in proofs
about f , by virtue of establishing that F and G are extensionally equivalent (⇔) as relations.

The encode-decode equivalence, revisited The circle S1 is given as a HIT with 0-
constructor base : S1 and 1-constructor loop : base = base. Its covering space C(x) is defined by
higher recursion on x : S1, by C(base) ≡ Z and a path Z=Z obtained via the Univalence Axiom
from the automorphism of Z induced by succ : Z → Z. Then the path space P (x) ≡ base = x
over x : S1 is shown homotopy equivalent to C(x) via functions encode : Πx:S1Πp:P (x)C(x) (given
by the action p?(0) ≡ transportC( )p(0) of paths p on 0 : Z) and decode : Πx:S1Πc:C(x)P (x), de-

fined by higher induction on S1: the function decodebase maps z : Z to the iterated path loopz,
and one has to show this definition respects the action loop? of loop.
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Our approach requires the choice of two relations, Encodex p c and Decodex p c, which we
show sound and complete for encodex and decodex, together with a proof of the homotopy
equivalence, which amounts to proving: Πx:S1Πp:P (x)Πc:C(x)Encodex p c⇔ Decodex c p (†). For
Encodex p c we take simply the graph of encodex, while for Decodebase z p we take the inductively
defined graph of z 7→ loopz. The main subtlety lies in proving cmpdecodex(Decodex). As above,
one must show that Decodebase respects the loop? action in an appropriate sense. We then have
that decodex and encodex are inverse: by cmpencodex(Encodex), we have Encodex p (encodex(p)),
hence Decodex (encodex(p)) p by (†), and finally decodex(encodex(p)) = p by snddecodex(Decodex).
The other direction is similar.

Now, the argument may be further streamlined: since we choose relations Encodex and
Decodex , subject to the equivalence (†), we might as well take Encodex p c ≡ Decodex c p, and
thus must show Decodex c p sound and complete for encodex, or else Decodex c p ≡ Encodex p c,
and show that Encodebase is closed under loop?, and Encodex sound and complete for decodex.

Work in progress! Towards validating the above approach, and making comparisons with
Licata-Shulman, we have made some progress on an Agda formalisation [7], subject to some
wrinkles: firstly, inductive families such as those considered above appear not well-tolerated by
Agda, and in particular, its pattern-matching algorithm; instead, one must give equivalent for-
mulations, where the conclusions are explicitly described by equational premises [5]. Secondly,
the proofs of soundness and completeness are made far heavier by the explicit appeal to higher
induction on S1, in particular when showing closure of Encodebase, Decodebase under loop?.

Conclusions and future work We have only had time (and space!) to explore one of the
simplest instances of the encode-decode method. We hope to extend our approach to examples
such as Brunerie’s Flattening Lemma [9, Lemmas 8.1.12, 6.12.2], the Freudenthal suspension
theorem [ibid., Theorem 8.6.4], or Cavallo’s analysis of the Mayer-Vietoris sequence [3], and to
consider how systems such as Agda might better support the methods described here.
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