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Abstract
Mapping anthropogenic forest disturbances has largely been focused ondistinct delineations of events of
deforestationusing optical satellite images. In the tropics, frequent cloud cover and the challenge of
quantifying forest degradation remainproblematic. In this study,wedetect processes of deforestation,
forest degradation and successional dynamics, using long-wavelength radar (L-band fromALOS
PALSAR)backscatter.Wepresent a detection algorithm that allows for repeateddisturbances on the
same land, and identifies areaswith slow- and fast-recovering changes in backscatter in close spatial and
temporal proximity. In the study area inMadre deDios, Peru, 2.3%of landwas found to bedisturbed
over three years,with a false positive rate of 0.3%of area.A low, but significant, detection rate of
degradation fromsparse and small-scale selective loggingwas achieved.Disturbancesweremost common
along the tri-national InteroceanicHighway, aswell as inmining areas and areas underno landuse
allocation.A continuous spatial gradient of disturbancewas observed, highlighting artefacts arising from
imposingdiscrete boundaries ondeforestation events. Themagnitudeof initial radar backscatter, and
backscatter decrease, suggested that large-scale deforestationwas likely in areaswith initially lowbiomass,
either naturally or since alreadyunder anthropogenic use. Further, backscatter increases following
disturbance suggested that radar canbeused to characterize successional disturbance dynamics, such as
biomass accumulation in lands post-abandonment. Thepresented radar-baseddetection algorithm is
spatially and temporally scalable, and can supportmonitoring degradation anddeforestation in tropical
rainforestswith the use of products fromALOS-2 and the future SAOCOMandBIOMASSmissions.

1. Introduction

There is wide international agreement on the critical
role of forests in mitigating climate change. Reducing
emissions from deforestation and forest degradation,
with conservation, sustainable management and
enhancement of forest carbon stocks in developing
countries (REDD+), has been under intense negotia-
tion since 2007 (UNFCCC 2007, 2011). Alongside this
process, monitoring forests using satellites is gaining
pace as studies progress in assessing carbon stocks and
forest clearance across the globe (Houghton and
Goetz 2008, Baccini et al 2012,Hansen et al 2013).

Of particular interest to forest monitoring is
detecting degradation, i.e. the anthropogenic reduc-
tion of forest cover or woody biomass in areas that still
remain defined as ‘forests’ of more than 10–30% tree
cover (FAO 2002). In contrast to deforestation, which
can be identified based on classifications of forest into
changed/unchanged, degraded forests can be in any
state along a ‘bare-ground’ to ‘intact-forest’ con-
tinuum based on numerous definitions (Schoene
et al 2007, Sasaki and Putz 2009, Guariguata
et al 2009). Studies that quantify carbon emissions or
the extent of degradation indicate that it is widespread
across the tropics and affecting land area similar to, or
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of larger portion, than deforestation (Asner et al 2010,
Margono et al 2012, Zhuravleva et al 2013, Ryan
et al 2012, 2014, Pearson et al 2014). Since degradation
has been shown to precede deforestation (Ahrends
et al 2010, Asner et al 2006), quantifying the former
may assist the prevention of the latter. While distinct
conceptualizations of the two spatially and temporally
correlated processes may challenge efforts towards
characterizing anthropogenic forest disturbances,
standard conceptualizations based on binary land clas-
sification (Lu et al 2005) also broadly risk over-
simplifying the process of degradation. The challenge
arises since degraded areas are often dynamic frontiers
in transition, and may recover or be repeatedly dis-
turbed before being deforested.

The southwestern Peruvian Amazon, including
the region of Madre de Dios, is important in this con-
text. It is recognized as a tropical ‘Capital of Biodi-
versity’ (Peruvian law No. 26311) and a conservation
priority (Myers et al 2000) since it has been threatened
by deforestation and degradation following the paving
of the tri-national interoceanic highway (IOH) since
2006 (Southworth et al 2011, Kirkby et al 2011). High-
accuracy automated methods that utilize multi-tem-
poral Landsat satellite imagery to map deforestation
(Asner et al 2009, Hansen et al 2013, Potapov
et al 2014) are widely used in Peru. However, these
methods are often restricted to cloud-free conditions
since they rely on an optical sensor. Over three-quar-
ters of intact tropical forests have over 70% cloud
cover on average (calculated for years 2010–2014
(NEO 2015)), particularly in Papua New Guinea, Bor-
neo, Sumatra, Gabon and the North-Western Ama-
zon. Hence, obtaining regular cloud-free imagery
from satellites with low repeat coverage per year is rare
in many areas (Asner 2001, Chambers et al 2007).
Optical-derived vegetation indices typically used in
mapping biomass or leaf area have also been shown to
saturate in dense forests (Asner et al 2004, Song 2013),
challenging the detection of subtle changes in vegeta-
tion structure. Spaceborne radar imagery operating at
microwave frequencies instead offers the advantage of
being unaffected by cloud and atmospheric effects,
and allowing night-time acquisition. Long-wave-
length radar signals can penetrate canopies (Rignot
et al 1995, Wang et al 1998, Woodhouse 2006a) and
have been related to forest structure and woody bio-
mass (Woodhouse et al 2012) up to a saturation limit
(higher for longer wavelengths), which allow them to
be used in support for land use monitoring (Ryan
et al 2014). Additionally, radar has been used to detect
changes in biomass resulting specifically from degra-
dation (Mitchard et al 2011, Ryan et al 2012, Mitchard
et al 2013, Ryan et al 2014). Despite its numerous
advantages, the cost and limited availability of long-
wavelength radar imagery, and the sensitivity of the
signal to surface topography andmoisture, has restric-
ted establishing it as a method to study forest
disturbances.

Our research demonstrates amethod to detect for-
est cover change dynamics, including degradation,
deforestation and succession, using annual radar ima-
ges from 2007 to 2010. The analysis includes secondary
and degraded forests, since this broad definition
accommodates for the detection of repeated use of
land.We distinguish intact forest as consisting of native
tree species and ecological processes that are not visi-
bly affected by humans (Potapov et al 2008). Further,
so as to not arbitrarily delineate deforestation and
degradation, we define forest disturbance as including
both the effects of clear-cutting from deforestation and
diffuse forest cover loss from degradation. Forest dis-
turbances are studied by mapping and analysing dif-
ferences in radar backscatter (L-band at 24 cm
wavelength), i.e. the proportion of outgoing radar
power that bounces back to the satellite from the
ground (Woodhouse 2006a), between years. Decrea-
ses in backscatter have been previously reported to
correspond to canopy cover reduction (Thiel
et al 2006, Ryan et al 2012), while increases are depen-
dent on management practices and are expected with
canopy cover recovery (e.g. after selective logging
(Asner et al 2006)). Here, we interpret a drop in back-
scatter as forest disturbance, and a recovery of back-
scatter values in the years thereafter as successional
forest dynamics (sensu Christensen 2014). The output
disturbance maps allow us to ask the following ques-
tion: can the analysis of radar backscatter intensity
provide information on (a) the spatial distribution
and (b) the dynamics of forest disturbances in tropical
rainforests?

2. Land cover and use in the study area

Our study covers parts of Tahuamanu and Tambopata
provinces of Madre de Dios (figure 1(a)). Natural
ecosystems of tropical forests cover 80% of the area,
including lowland rainforests and extensive thickets of
arborescent bamboo on alluvial terraces and flood-
plains. Other natural ecosystems cover less than 5% of
the region, including palm swamps (3%) and rivers
(2%). Annual precipitation exceeds 1500 mm,
received mostly from November to March (figure S1
in the supplementary data, available at stacks.iop.org/
erl/10/034014/mmedia).

During the study period, the region was deforested
at an estimated rate of 0.35% yr−1 (Hansen et al 2013)
due to (i) clearance for subsistence agriculture farms
of sizes between ∼1 and 10 ha (ii) clearance for pas-
tures of sizes between ∼1 and 40 ha, commonly aban-
doned since cattle-ownership was low; and (iii) illegal
clandestine gold-mining (figure S2). Conservation
priorities are well recognized (Kirkby et al 2010) and
forest concession systems (Brazil nut, conservation,
ecotourism and indigenous lands) have had inhibitory
effects on deforestation in the region (Nunes
et al 2012, Vuohelainen et al 2012). However,
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overlapping and conflicting land use allocations have
increased land pressure (Scullion et al 2014)
(figure 1(b)).

The sustainability of selective timber harvesting in
Brazil nut concessions has drawn attention since a
5 m3 ha−1 cap on extraction was lifted in 2007 (Giu-
dice et al 2012). Extraction is common in drier
months, but personal observations (Woo 2012) recor-
ded timber-trucks exiting forests throughout the year.
Although extraction rates were highest in the
2007–2008 period of this study, exceeding those in
allocated timber concessions of Madre de Dios, they
remained below 3.7 m3 ha−1 on average (Cossío-
Solano et al 2011).

3.Material andmethods

3.1. Radar scenes
Surface moisture can vary backscatter and decrease its
contrast over forests and bare-ground. To minimize
the problem, two dry-season scenes were acquired
from the phased array L-band Synthetic Aperture
Radar sensor aboard the Advanced Land Observing
Satellite (ALOS PALSAR) in July–August for each year
from 2007 to 2010 (scene IDs provided in table S1).
Since terrain can significantly impact image projection

and backscatter, scenes were terrain-corrected and
radiometrically calibrated using the 90 m resolution
Shuttle Radar Topography Mission dataset (Jarvis
et al 2008). They were then converted to backscatter
(co-polarized σHH

0 and cross-polarized σHV
0 ) using

coefficients of Shimada et al (2009) and mapped at
15 m resolution in UTM projection (schematic pro-
cessing chain is shown infigure 2(a)).

Speckle, which is inherent in radar images
(Woodhouse 2006a), may be problematic for accurate
disturbance detection. Our images were moderately
despeckled using the Enhanced Lee Filter (Lopes
et al 1990) with a 3 × 3 pixel window to retain textural
information. Image pixels were then averaged to 30 m
resolution as a compromise to reduce speckle, but
allow the detection of small-area disturbances and
comparability to Landsat-based deforestation datasets
(e.g. Asner et al 2010,Hansen et al 2013).

To reduce any remaining variability in backscatter
unrelated to anthropogenic disturbances, images were
calibrated to the base year (2007) by adjusting pixel
values by the difference in average backscatter over a
510 × 510 m window (figures 2(b)–(c)). This proce-
dure was chosen since it showed reasonable adjust-
ment over known forest/non-forest areas (collected
field data described in section 3.2.2), and corrected for

Figure 1. (a) Land cover/land usemap of the study area, produced by visual interpretation of Resouresat imagery (25 × 25 m) from
2012 and ground-data collected in 2013 (IIAP 2013, BAM2013). Themining regionwas identified usingWorldView-2 imagery from
July 2011. ‘Agropecuaria’ are areas of amix of secondary forests, pastures and agriculture. (b)Designated land use concessions in the
study area. (c) ALOSPALSARbackscatter (σHV

0 ) for years 2010 and 2007 as an red, green, blue colour composite. AreaA is illustrated
in figure 4, and B andC in figure S8.
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variations over different land cover types locally. The
chosen window size was much larger than most
known disturbances in the region, and they were
hence unlikely to be lost by the calibration. To ensure
that large-area disturbances were not lost, backscatter
was not adjusted if averages differed by more than a
cut-off threshold; here, half the standard deviation of
2007 backscatter, chosen empirically based on field
knowledge of large-area disturbances. The procedure
showed no significant impact on the area-dependent
analysis presented in section 4.4.

3.2.Mapping forest disturbances
3.2.1. Detection algorithm
A preliminary investigation of our study region
revealed frequently disturbed areas with a continuum
of surrounding disturbed land. To maximize the
detection of these areas, we exploited the advantage of
multi-temporal and spatially continuous radar images.
A time-series allows the same pixel to be observed
multiple times, and hence allows more confidence in
determining its status (disturbed/undisturbed), as
compared to only two observations. To minimize
detecting backscatter variations unrelated to anthro-
pogenic disturbances, we used a local moving-window
filtering procedure that assumes that disturbances are
more likely to be real if they neighbour other
disturbances. The designed algorithm hence (i) uses
multi-temporal data as intermediate information to
verify disturbance locations, but does not temporally
categorize change pixels initially, and (ii) identifies
areas with slow-recovering and fast-recovering back-
scatter change (i.e. areas where backscatter remained
consistently changed compared to year 2007 for a
period of two years or more, and for a period of one
year, respectively) in close proximity, but does not
spatially categorize these into deforested/degraded.

Areas known to have <30% forest cover in year
2000 (Hansen et al 2013), σ <HV

0
−14.0 dB or Radar

Forest Degradation Index >0.5 (figure 2(a)) (Mitch-
ard et al 2012) in 2007 were discarded, removing bare-

ground, infrastructure, water and some inundated
swamps (4.7% of study area) from the analysis. Suces-
sional forest dynamics are not studied for these areas.
Backscatter, particularly σHV

0 , was found to be related
to biomass for the remaining areas (figure S3) and
observed to decrease upon disturbance. Since forests
tend to depolarize the radar signal
(Woodhouse 2006a), giving high σHV

0 values that
reduce upon forest cover loss, our methodology uses
the annual loss inσHV

0 for disturbance detection.
To identify a disturbed pixel, the algorithm uses a

set of thresholds (T1 to T5, table 1), explained in
figure 3 and exemplified in figure 4. Five backscatter
change maps (Δσ 2010HV

0
–2007, Δσ 2009HV

0
–2007,

Δσ 2008HV
0

–2007, Δσ 2009HV
0

–2008 and Δσ 2010HV
0

–

2009 ) were produced and disturbance captured in two
stages. First, slow-recovering changes are selected by
eliminating pixels with change values that do not meet
threshold T1 and are not seen consistently over two
years or more (box A, output 1), and are spatially iso-
lated from pixels detected in all years’ slow-recovering
change maps (output 2). Second, fast-recovering
changes are selected by eliminating pixels with change
values that do not meet threshold T1 (box B, output
3), and eliminating pixels that are spatially isolated
from all years’ fast-recovering or slow-recovering

Figure 2. (a) Pre-processing of ALOSPALSAR images. RFDI is the Radar Forest Degradation Index (Mitchard et al 2012). (b)
Distribution of uncalibrated and (c) calibrated annualσHV

0 values (in power domain) to the base year 2007. SD refers to standard
deviation.

Table 1.Thresholds selected for for-
est disturbance detection in the study
area for the algorithmpresented in
figure 3. Thresholdswere chosen
empirically through amanual pro-
cess, aimed atmaximizing detecting
known disturbances andminimizing
false detections based on prior
knowledge of the study area.

Threshold Chosen value

T1 −1.5 dB

T2 56%

T3 2 pixels

T4 67.5%

T5 3 pixels

4
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changemaps (output 4). Locations of disturbances are
then assigned to time periods to obtain annual dis-
turbancemaps (boxC, output 5).

3.2.2. Training and validating detections
Thresholds for removing non-forest areas, and T1–T5
(table 1), were chosen empirically through a manual
iterative process, aimed to minimize false detections
and maximize detecting known disturbances. The
latter were obtained from a visual inspection of (i)
GeoEye-1 images from July 2011 and Google Earth,
(ii) 107 ground-locations of forest and non-forest
areas obtained over 2011–2013 (figure S4), and (iii)
the yearly Asner et al (2010) and Hansen et al (2013)

forest loss maps (available at MINAM (2014) and
UMD(2013)).

Multiple products (figure S4) were used to validate
the disturbancemaps:

(1)Fifty-six new agriculture and pastoral farms of
0.25–90 ha were visually identified using Landsat
(July 2007) and Resourcesat (August 2010) ima-
gery. Farm locations were verified using Google
Earth and their edges manually digitized to poly-
gons using a WorldView-2 image (2 m resolution)
from July 2011. Ahit rate andmiss ratewas derived,
defined as the number of pixels in the polygons that
were caught and lost on the disturbance maps
respectively. A 3 × 3 window majority filter was

Figure 3. Forest disturbance detection algorithmusing ALOSPALSARbackscatter (σHV
0 in dB). Slow-recovering changes are detected

first (boxA) and fast-recovering changes located in distant areas, as well as in close spatial and temporal proximity to slow-recovery
changes, are then detected (box B). T1, T2, T3, T4 andT5 are thresholds set based on training data through an empiricalmanual
process. An illustrative example of the algorithm is shown infigure 4.
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used to fill gaps within detected areas before this
analysis.

(2)False positives were quantified by analysing a
5219 ha area of the region that had no recorded
logging and no detections on previous forest loss
datasets (Asner et al 2010, Hansen et al 2013)
(figure 1(c)). Using this definition of false positives
is a conservative estimate, as it relies on the absence
of anthropogenic disturbance and may include
unquantified natural disturbances.

(3)Records of volumes of roundwood harvest in Brazil
nut concessions were obtained from 2008 to 2010
(ATFFS 2011) and related to the area detected.

(4)Ground-GPS locations of 24 requested harvest
areas of 26–690 ha in 2010 were compared against
detections.

(5)Thirty-four GPS locations of 1–3-year-old felling
gaps were acquired during June–August 2011 and
compared against detections. Gap sizes ranged
120–290 m2, leaving canopy openness of ∼20%
(Moll-Rocek et al 2014).

A Monte Carlo procedure was used to estimate the
probability of detecting the 24 logging areas and34 felling-
gaps by chance, by simulating randomdisturbances in the
extent of the Brazil nut concessions where these observa-
tionsweremade in 1000 iterations (mathematical descrip-
tion in supplementary information). A sensitivity analysis
of the hit rate and false positive rate to the thresholds T1–
T5was thenconductedbyvarying them independently.

3.2.3. Estimating false positives due to speckle
To test the contribution of speckle to false detections,
we simulated annual datasets of homogeneous forest
with random noise over 106 pixels. Statistical para-
meters of the distribution were set by analysing the
same area as for false positives, i.e. mean equal to the
average annual backscatter and variance to half the
average variance of backscatter differences between
years, to mimic the additive noise contribution of
speckle (mathematical description in supplementary
information). The disturbance detection algorithm
was then run for 100 iterations to quantify percent of
pixels detected by chance.

Figure 4. Illustrative example of disturbance detected in area A, figure 1(c), with pixels values ofσHV
0 or ΔσHV

0 in dB shown as red,
green, blue (RGB) colour composites. Black areas shownodisturbance, and non-forest areas before July 2007are shown inwhite.
Outputs 1–5 are described in the schematic disturbance detection algorithm in figure 3.
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4. Results

4.1. Forest disturbances
Significant differences in the distribution of back-
scatter for disturbed and undisturbed, and slow- and
fast-recovering, areas were recorded in the study
region (figures 5(a)–(b)). Over the three year period,
2.3% (17 722 ha) of the study area was disturbed (rate
of 0.78% yr−1), with 1.3% under slow-recovery and
1.0% under fast-recovery. Of the disturbed land,
2,555 ha was found to be repeatedly disturbed during
the three years, and there was decline in total disturbed
area with each year (table 2). Disturbances were
observed mostly along the IOH and secondary roads,
although fast-recovering disturbances were more
widespread (figure 5(c)).

The proportion of change type (fast- and slow-
recovering) differed over areas with different author-
ized land uses (figure 5(d)). Protected areas, conserva-
tion and Brazil nut concessions had the lowest percent
of forest disturbance, and a higher fraction of fast-
recovering changes, in comparison to mining conces-
sions and areas under no allocated land use (e.g. lands
in long-term use for mainly agricultural and pastoral
farming).

4.2.Detection validation and algorithm sensitivity
Validation of the detection algorithm is reported using
the sources introduced in section 3.2.2:

(1)Disturbances were detected in 1721 of 2740 pixels
on the delineated agricultural and pastoral farms, a
hit rate of 63% andmiss rate of 37%, over the three
years.

(2)Over the remote forest area, the difference in
backscatter was 0.015 ± 1.477 dB (mean ±standard
deviation) between 2007 and 2010 (figure S5). A
false positive rate of 0.3% of area was detected
(consistently 0.1% yr−1). Of these, slow-recovery
false positives were 0.04% of area, suggesting that
there is more uncertainty associated with fast-
recovering disturbances. Sensitivity of detections
to simulated speckle (section 3.2.3) showed that
only a small proportion of pixels, 0.04% yr−1, are
detected by chance. This suggests that at least some
false positives in the remote area are genuine
disturbances.

(3)Of the 250 Brazil nut concessions that reported
logging, disturbances were detected in 212 conces-
sions. For these, regression analysis between

Figure 5. (a)Distribution of radar backscatter in disturbed and undisturbed areas. (b)Distribution of change in backscatter for areas
of fast-recovering and slow-recovering backscatter following disturbance. (c) Spatial distance of disturbances from secondary and
primary roads in study area. (d) Fraction of slow- and fast-recovering changes in selected land concessions (figure 1(b)) in the
2007–2010 period. ‘None’ refers to areas with no designation, primarily lands already in use for agricultural purposes. ‘Overlap’ refers
to all designations that overlapmining concessions. Significance of difference is provided as p-value ***<0.001.

Table 2.Extent of forest disturbances detected using radar in the study region.

Area of disturbance (hectares) (percent of study area)

Period Slow-recovery Fast-recovery Total %

Jul 2007–Aug 2008 3,743 4,148 7,891 1.05

Aug 2008–Jul 2009 5,101 2,231 7,331 0.97

Jul 2009–Jul 2010 3,032 2,022 5,055 0.67
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extracted volumes normalized by concessions’ area
and percentage of detected disturbed area showed a
very weak but significant relation, particularly for
the last year of data (r2 = 0.15, p < 0.001) (figure
S6). Disturbances are not expected to result from
logging activities alone and log volumes do not
necessarily have a high correlation with area
logged. However, the result suggests that the area of
detections picked up by radar are realistic to a
significant extent.

(4)Of the 24GPS-marked areas where logging permis-
sion was requested, disturbances were observed
within 12, and in 15 when allowing for a 90 m
buffer (threshold T5). The probability of these 15
being observed by chance is 0.04 or 4% (i.e. in 40 of
1000 iterations).

(5)Of the 34 felling gaps however, only 6were detected
within 60–90 m buffer with a probability of chance
observation of 0.01 or 1% (i.e in 10 of 1000
iterations). The low detection rate is expected,
since logging is sparse in the region and felling-gaps
are smaller than the radar image resolution (Moll-
Rocek et al 2014).

The sensitivity analysis to thresholds T1–T5
showed that the algorithm was most sensitive to T2
and T4, i.e. the fraction of pixels that must be dis-
turbed within the neighbourhood of a pixel for it to be
selected as disturbed, followed by T3 and T5, i.e. the
neighbourhood size. A 0% false positive rate was
achievable, although at the expense of reducing the hit
rate to between 50 and 52% (figure S7).

4.3. Spatial pattern of disturbances
To analyse the spatial patterns of detections, distur-
bances were visualized as forest disturbance ‘events’
(FDE) by grouping and converting neighbouring
disturbed pixels to polygons. These polygons indicated

that 85% of slow-recovery events were detected with
fast-recovery events along edges, visibly related to the
same land use. Fast-recovery events were more fre-
quent (2.6 times) than and more isolated from slow-
recovery events (70% neighboured slow-recovery
events). Both types of disturbances were also common
at the frontiers of already-cleared land (figures 4 and
S8). It was noted that spatially delineating disturbed
areas with abrupt boundaries risks ignoring surround-
ing lands in transitional disturbance. Hence, we fused
neighbouring fast- and slow-recovery events as
belonging to the same FDE, merging neighbouring
deforestation and degradation and giving a continuous
spatial gradient of disturbance.

4.4.Disturbances by land use
To understand successional forest dynamics, we
analysed fused FDEs occurring in the 2007–2008
period that fall into different land cover/use categories,
delineated using an independent dataset in 2012
(figure 1(a)) (IIAP 2013, BAM 2013). Analysis of
variance (ANOVA) tests revealed that events resulting
in pastures, typically clearing full forest cover, were
characterized with significantly lower backscatter
prior to disturbance as compared to (unclassified)
events in intact forests (difference of 1.1 dB, p < 0.001)
and gold-mining (difference of 0.8 dB, p < 0.001)
(figure 6). Such a result is expected, as pastures are
concentrated along areas already under human-use
(figure 1(a)) and gold-mining involves clearing rela-
tively intact forests. Backscatter remains low in
successive years following FDE for gold-mining as
compared to increases observed for events in intact
and secondary forests (difference of 1.5 and 1.2 dB
respectively, p < 0.001), suggesting that the recovery of
forest cover or biomass in gold-mining areas is
significantly slower (test statistics described in tables
S2–S4).

Figure 6.Distribution of backscatter in forest disturbance events detected in the 2007–2008 period, classified by land use/cover
(figure 1(a)). Outliers in data are not shown. Summary of analysis of variance (ANOVA) test statistics of the differences between
categorized datameans are provided in tables S2–S4.
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Initial and recovered backscatter values were also
related to the size of land cleared for each land use
(examples in figure 7). Regression analysis revealed
that (i) large-sized events for pastures and gold-
mining begin with low backscatter in the year before
clearance (slope = −0.51 and −0.47 respectively,
p < 0.001), suggesting that the clearing of large areas
is more common in lands with low biomass.
Although a similar trend is visible in intact forests,
the overall trend across events of different sizes is not
significant (p > 0.5); (ii) large-sized events also have
a large drop in backscatter during a FDE, particularly
for gold mining (slope = −0.96, p < 0.001). Themag-
nitude of change (ranging ∼3–5 dB) suggests that
these large-areas are more likely to be fully cleared or
with very low biomass immediately after

disturbance. In contrast, small-sized events are more
likely to be diffuse disturbances not involving full
clearance; and (iii) large-sized events for pastures,
and marginally for gold-mining (slope = 0.37,
p = 0.02), recover backscatter faster in the years after
FDE. Personal field observations (Woo 2012) recor-
ded that parts of large pastures were commonly
abandoned due to maintenance challenges. Small
changes in biomass may cause large changes in back-
scatter when initial biomass values are low, as seen
theoretically (Woodhouse 2006b, Brolly and Wood-
house 2012) and empirically (non-linear biomass-
backscatter curve, figure S3). The result suggests that
rapid cover and biomass accumulation post-dis-
turbance are crucial successional dynamics in these
lands.

Figure 7.Distribution (box plots) andmeans (black circles) of backscatter values for forest disturbance events of various sizes detected
in the 2007–2008 period for three land use/cover types. Data is binned into intervals of area (hectares) in logarithmic scale for the
visualization of trends. Regression parameters are for a linear least squares regressionwith area (in hectares) in logarithmic scale, since
this ensures homogeneity of residual variance. Outliers in data are not shown.
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5.Discussion

5.1.Detecting disturbances in tropical forests with
radar
Our study presents a new algorithm to detect forest
disturbances using radar, relying on a temporal
trajectory of backscatter change and identifying areas
with both slow-recovering (backscatter drop sustained
for two or more years) and fast-recovering (back-
scatter drop sustained for one year) disturbances. In
the rainforests of Madre de Dios, we estimated that
2.3% of the study area was disturbed between July
2007–2010 with a false-positive rate of 0.3% of area,
and with disturbances most widespread during July
2007–August 2009. This peak is similar to that noted
in previous studies (Asner et al 2010, Hansen
et al 2013), and has been linked to the boom of
international gold prices in 2008–2009 and increasing
land use bymigrants (Fraser 2009, Swenson et al 2011,
Vuohelainen et al 2012, Asner et al 2013). Similar to
previous studies, protected, conservation or sustain-
ably managed areas were least disturbed, either due to
the inhibitory effects of land concessions on deforesta-
tion or their remote location (Nunes et al 2012,
Vuohelainen et al 2012).

Comparisons to optical-based deforestation data-
sets of Asner et al (2010) and Hansen et al (2013)

however indicated that the total area of disturbance
detected by radar, summing fast- and slow-recovering
areas, is over twice their estimates (after removing pix-
els overlapping detections occurring before 2007 in
both previous studies) (figure 8(a)). This is not neces-
sarily a like-for-like comparison, as the studies demar-
cate annual forest loss and may exclude the observed
extended gradient of disturbances surrounding affec-
ted areas (examples in figure S8) (although Asner et al
(2010) includes ‘disturbances’, there are diffuse thin-
ning from other land uses). We allowed for ±1 year
buffer in the temporal classification of forest dis-
turbance events and assessed the number of events
that overlapped between studies by at least 25% of
area. Most differences were for small-sized events, i.e.
<30% of previous studies’ events of 0.3 ha and 70% at
1.7 ha were detected in our map (figure 8 (b)). At ∼4
ha theHansen et al (2013) study captured 50% and the
Asner et al (2010) study captured 30% of our events
(figures 8 (c)–(d)).

The comparability of the performance of the data-
sets is limited, since we only assess end-products of
optical-derived regional to global deforestation and
our study targets mapping accurate provincial-level
disturbances backed by detailed field-surveys instead.
However, long-wavelength radar is expected to detect
larger areas of disturbance, including degradation,

Figure 8.Comparison of radar-based forest disturbance detection toAsner et al (2010) andHansen et al (2013) deforestationmaps.
Detections in the present study that occurred prior to 2007 in the other datasets were removed, reducing the total changed area on our
maps by 27, 18 and 16% in 2007–2008, 2008–2009 and 2009–2010 (compared to area presented in table 2). TheAsner et al (2010) data
includes both deforestation and diffuse forest thinning. (b) Shows the fraction of detections in the previous studies captured in the
present study and theAsner et al (2010) diffuse thinning is referred to as ‘disturbance’, while (c) and (d) show fraction of the present
study detections captured in previous studies, with an event area overlap of at least 25%.Data is binned into intervals of area (hectares)
in logarithmic scale to visualize trends.
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mainly due to its sensitivity to changes within and
below the forest canopy. Relations between disturbed
area and timber-extract volumes and locations suggest
that degradation is picked up to a significant extent in
Madre de Dios. Some studies have relied on a combi-
nation of data, such as optical and airborne/satellite
lidar (e.g. Asner et al 2010, Zhuravleva et al 2013), to
specifically capture degradation. We hence urge the
development of methods that integrate radar in such
studies to aid frequent disturbance monitoring. How-
ever, constraints still remain on the availability, extent
and costs of long-wavelength radar imagery, which
may be overcome with products from ALOS-2
(JAXA 2014) and the future SAOCOM
(CONAE 2014) and BIOMASS (LeToan et al 2011)
missions.

5.2. Limitations of disturbance detection algorithm
Various scattering processes associated with land
disturbances have shown to cause both decreases and
increases in backscatter (Whittle et al 2012). In our
study area, an examination of known disturbances
showed that a loss in the cross-polarized signal, σHV

0 ,
dominated over disturbed lands. This is expected,
since processes that may increase backscatter and
cause large changes in the co-polarized signal (e.g.
creating and maintaining hard forest edges for
ranches) were not common practices. Further, back-
scatter may have low sensitivity to low-magnitude
biomass losses in areas with high biomass due to
apparent signal saturation (typically 100 Mg ha−1 for
L-band radar). However, significant detections
including selective logging were picked up in such
areas. This may be because large disturbances in
vegetation structure that were relevant at the 30 m
resolution (e.g. removal of a large tree), and to which
backscatter is fundamentally related (Woodhouse
et al 2012), accompanied these activities. Broadly,
further research on backscatter–vegetation interac-
tions and potential errors from saturation would
greatly benefit the use of radar for disturbance detec-
tion over other study areas.

Limitations also lie in needing to set cut-off
thresholds T1–T5 (table 1) in the algorithm. The algo-
rithm performance was most sensitive to the spatial
extent of disturbances. The thresholds inherently
coarsen the outputmap ‘resolution’, losing very small-
sized or slow biomass losses, and resulting in a miss
rate of known disturbances of 37% and low detection
rate of gaps from sparse selective logging. However,
the algorithm is designed using a sequence of observa-
tions to ensure confidence in results. Inserting ‘time-
slices’ of more frequent image acquisitions, such as
those from the 14-day repeat cycle of ALOS-2, can
allow for more flexibility in the use of thresholds.
Nevertheless, environmental conditions such as soil
moisture, changes in understory vegetation, sensor
calibration drift and speckle are expected to contribute

to noise and false positives, requiring local-calibration
and ground-data to ensure accuracy.

5.3. Benefits for REDD+and landmonitoring
Since deforestation and forest degradation may not
constitute simple land cover conversions between two
time periods, the radar-based change detection algo-
rithm improves the characterization of these processes
by allowing for fluctuations and reversibility in
conversion, and the detection of repeated distur-
bances. A significant proportion of fast-recovering
disturbance events (70%) neighboured slow-recover-
ing events. This result highlights both the continuous
gradient of land cover change (Guariguata et al 2009)
and the possibility of degradation preceding and
accompanying deforestation. While a recent synthesis
of national REDD+ readiness revealed that most
countries’ direct intervention plans focus on reducing
forest degradation (Salvini et al 2014), methods to
quantify degradation using common remote sensing
time-series are not well established (De Sy et al 2012).
The technique described in this study may hence be of
benefit, particularly in areas prone to subtle changes in
forest cover, andwhere compliance with interventions
requires frequent monitoring. Quantifying the type of
disturbance (fast- and slow-recovery) can also aid
characterizing the dynamics of land cover changes
associatedwith legally granted land uses.

The importance of studying non-forest lands to
assess the effectiveness of policies (Salvini et al 2014)
and monitor land system dynamics (Kuemmerle
et al 2013), has drawn recent attention. An added value
of the use of radar, is understanding successional
dynamics following disturbances. Since themagnitude
of backscatter change is not linearly related to a change
in biomass, a suitable interpretation of the relation is
required. For example, clearances for large-area pas-
tures and gold-mining were most common in lands
with low backscatter before disturbance, and showed a
large-magnitude drop in backscatter during dis-
turbance, suggesting that large-scale deforestation was
likely in areas with initially low biomass. Such areas
may already be in use and in transition to a deforested
state, and/or naturally have low biomass. We also
found that the size of clearances and the land use type
influences backscatter recovery. Large clearances for
pastures recover fast, suggesting that the reversibility
of conversion and accumulation of biomass post-dis-
turbance may be an important sink for atmospheric
carbon. In comparison, areas cleared for gold-mining
recover significantly slower. Since post-disturbance
increases in backscatter and biomass may be affected
by a large number of factors (e.g. soil conditions, cli-
matic variability and management practices), succes-
sional forest dynamics require much further analyses
than those presented here: radar backscatter only pro-
vides a first-step inmonitoring these as an integral part
of deforestation and degradation processes.
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6. Conclusion

The main contribution of our work is presenting the
utility of radar for detecting deforestation and forest
degradation, and monitoring forest dynamics, in
tropical rainforests. In a methodological context,
disturbances are detected using a series of observations
of radar backscatter, mapping deforestation and forest
degradation as continuous progressions in space and
time rather than discrete events. InMadre de Dios, the
disturbed area detected by radar (0.78% yr−1) as such
exceeded previous optical-based deforestation pro-
ducts by over two times. Disturbances were mostly
concentrated in lands with no land use allocation, e.g.
lands already in use for agricultural or pastoral farming
with secondary and degraded forests, and in mining
concessions which expanded into intact forests. Speci-
fically monitoring degradation in the diffused pattern
of deforestation, and allocated land use zones, may
therefore be essential to predict and prevent further
permanent deforestation. Satellite imaging radar data
can benefit suchmonitoring by providing information
on both the spatial distribution and dynamics of
disturbances.
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