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Spatial Wavelet Statistics of SAR Backscatter
for Characterizing Degraded Forest: A Case

Study From Cameroon
Elsa C. De Grandi, Member, IEEE, Edward Mitchard, Member, IEEE, Iain H. Woodhouse,

and Gianfranco D. De Grandi, Fellow, IEEE

Abstract—Forest degradation is an important issue in global
environmental studies, albeit not yet well defined in quantitative
terms. The present work addresses the problem, by starting with
the assumption that forest spatial structure can provide an indi-
cation of the process of forest degradation, this being reflected in
the spatial statistics of synthetic aperture radar (SAR) backscatter
observations. The capability of characterizing landcover classes,
such as intact and degraded forest (DF), is tested by supervised
analysis of ENVISAT ASAR and ALOS PALSAR backscatter spa-
tial statistics, provided by wavelet frames. The test is conducted
in a closed semideciduous forest in Cameroon, Central Africa.
Results showed that wavelet variance scaling signatures, which
are measures of the SAR backscatter two-point statistics in the
combined space-scale domain, are able to differentiate landcover
classes by capturing their spatial distribution. Discrimination
between intact and DF was found to be enabled by functional
analysis of the wavelet scaling signatures of C-band ENVISAT
ASAR data. Analytic parameters, describing the functional form
of the scaling signatures when fitted by a third-degree polyno-
mial, resulted in a statistically significant difference between the
signatures of intact and DF. The results with ALOS PALSAR, on
the other hand, were not significant. The technique sets the stage
for promising developments for tracking forest disturbance, espe-
cially with the future availability of C-band data provided by ESA
Sentinel-1.

Index Terms—Degraded forest (DF), spatial statistics, synthetic
aperture radar (SAR), texture, wavelet transform.

I. INTRODUCTION

F ORESTS play a fundamental role in the exchange of
gases and energy between the atmosphere and biosphere.

In particular, degraded forests (DFs) in tropical forest ecosys-
tems are a large component of the global carbon balance, with
the process of degradation representing a large but hard to
quantify source of carbon, whereas regrowing DFs are also
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responsible for a significant carbon sink [1]. Recognition of
the role of deforestation and forest degradation by the U.N.
General Assembly has stressed the need for mapping the extent
of deforested and degraded forests [2], in order to enable a
successful system for reducing emission from deforestation
and forest degradation (REDD+). The International Tropical
Timber Organization estimated that there are up to 850 mil-
lion ha of tropical forest which have already been degraded
[3] due to intensive pressures such as logging, slash and burn
agriculture, and shifting cultivation outside of protected areas.

Forest degradation in a remote sensing context can be defined
from the ecological standpoint and at a conceptual level as an
environmental change process, where a disturbance causes the
system to evolve from an initial state toward a final state with
loss of valuable properties (e.g., canopy cover or carbon stocks)
or capacities (e.g., provision of fuelwood and other ecosystem
services). This initial state constituted a spatially contiguous
and unmanaged old-growth forest [intact forest (IF)]. If some
of its structural and physical properties are affected by a major
disturbance (logging, fire, insect infestation, timber harvest, or
windthrow), then the system will change to a final state, char-
acterized by a different forest type (i.e., secondary forest or
disturbed forest).

A mapping between the ecological process of forest degra-
dation and physical observables is needed to provide measures
of its onset and extent. The basic tenet of the work presented in
this paper is that the process of forest degradation will result in
a change of the forest structure. As a consequence, the map-
ping was established by considering synthetic aperture radar
(SAR) backscatter spatial statistics (texture) as a measure of
forest structure, this in turn being one of the ecological vari-
ables that can be assumed to be a fingerprint of the degradation
process. Different stages of the degradation process will result
in changes of the statistics. For instance, removal of part of an
old-growth forest will correspond to the transition from some
stationary regime due to backscattering from the irregular top
layer of the canopy [e.g., K-distributed with an exponential
cosine autocorrelation function (ACF)] [4] to some nonstation-
ary or intermittent regime. At the final stage of regrowth, when a
secondary forest will have taken place, the statistics will revert
back to stationary, albeit with different correlation properties
due to the different horizontal structure.

This starting assumption is tested by supervised statistical
analysis of spatial random fields (SRFs) provided by SAR
observations at C- and L-band, i.e., calculating statistics over
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areas of interest based on expert knowledge and the interpre-
tation of other satellite. The spatial statistics are derived from
a signal representation in a wavelet frame basis. The analy-
sis seeks to assess the capability of these textural measures to
discriminate between intact and DF.

This paper is organized as follows. In Section II, the role of
remote sensing for mapping forest degradation is explained.
In Section III, the test site of the present work is described.
Methods for SAR data processing and analysis are found in
Section IV. Results are reported and discussed in Section V.
Section VI summarizes the findings and gives concluding
remarks.

II. BACKGROUND AND CONTEXT

Remote sensing plays a primary role for mapping and mon-
itoring deforestation and forest degradation for REDD+ [5].
In particular, compared to deforestation, forest degradation is
more difficult to detect using remote sensing [6], [7].

Mapping and monitoring of forest degradation has been
accomplished using optical remote sensing due to the avail-
ability of Landsat [8], [9] and the distinct spectral response of
DF [10]. Fine resolution optical sensors have been most suc-
cessfully employed for mapping selective logging, including
IKONOS [11] and RapidEye [12]; but to our knowledge, such
methods have not been used to map actual forest degradation (as
opposed to the presence of logging roads) in African forests.

Limitations of optical sensors have given impetus to the use
of sensors independent of atmospheric conditions, such as SAR,
which allows observations regardless of cloud cover and illu-
mination conditions, but most importantly is sensitive to both
forest vertical structure (through interferometry) and horizontal
structure (through backscatter and coherence).

Five main aspects related to forest degradation have been the
focus of research: 1) above-ground biomass and carbon stock
changes using SAR backscatter (e.g., [13]); 2) classification of
DF and particularly the contribution of texture (focus of the
present research); 3) detection of the removal of single trees
using very high resolution SAR imagery (e.g., [14]); 4) use
of interferometric phase information to determine a change in
the canopy structure which can be associated with removal
of vegetation (e.g., [15]); and 5) use of coherence to provide
information on canopy openness [16].

The future provision of Sentinel-1 (C-band) will enable to
study forest degradation at increased revisit time leading to
unprecedented levels of SAR data availability [17]. However,
currently, data coverage is limited due to the recent launch of
Sentinel-1.

A further topic of interest is the classification of DF, which
can be accomplished with the addition of texture that provides
complementary knowledge to intensity-only information [18].

The main research that has been employed in the domain of
texture analysis for landcover classification includes the use of
Haralick parameters based on gray-level cooccurrence matrix
(GLCM) ([19]) and spectral analysis (or ACF, these being tech-
niques in the Fourier transform domain). Notice that the ACF
provides a two-point statistics, while GLCM is a second-order
one-point one.

The limitations in using these methods for the classification
of SAR data are twofold. First, direction constraints on GLCM
and insensitivity to short-lived high frequencies in the Fourier
transform limit the ability of these methods to quantify the evo-
lution of statistical properties through scale [20]. Second, by
their nature, SAR sensors are affected by both multiplicative
noise and correlated noise: this means that simple relationships
among neighboring pixels can either bear no information, being
themselves just stationary white noise, or even provide false
information; for instance, two constant reflectivity areas might
be measured as two textured areas because of the presence of
speckle. GLCM and ACFs are both highly sensitive to speckle
noise. A way out suggested in related work such as in [21] is to
apply these statistics after transforming the input signal to the
logarithmic domain. This transform makes the multiplicative
noise additive. However, introduces side effects such as com-
pressing high dynamics features and boosting low-level noise,
such as thermal noise.

Wavelet transforms provide a modern pathway to time-
frequency (space-scale) analysis with better resolution in the
combined domain, and superior computational efficiency on
the discrete setting. Moreover, wavelet statistics can be nor-
malized in such a way as to be compatible with multiplica-
tive noise without recurring to the logarithmic transform (see
Section IV-C)

The field of wavelets developed in the mid-1980s with
research by [22]. Originally, wavelet transform developed in
the field of geophysics applied to time-series analysis of one-
dimensional (1-D) geophysical signals [23]; but since then have
been applied in the field of remote sensing including landcover
classification using SAR, which is becoming more popular [24].

Techniques based on the use of wavelet transform with SAR
imagery have seldom been used in the thematic context of forest
degradation. However, wavelet statistics of SAR backscatter in
connection with textural analysis was proposed in a different
thematic context in [25]and [26] and in general, its utility in
image processing have been long understood [27].

III. STUDY SITE

We center our study in Cameroon, a country of great inter-
est for forest monitoring, since it is the African country with
the highest percentage of previously logged forests [28]. Over
a third of its territory is covered by moist tropical forest, part of
the Congo Basin, and the area covered by active or previously
active logging concessions extends over 71 000 km2, about 40%
of total forest area [29]. Cameroon is also a significant hotspot
of other forms of forest degradation, including those related
to agricultural encroachment, fuelwood extraction, and illegal
logging [28]: it is more affected by these than its Congo basis
neighbors as it has a significantly higher population density
than neighboring Gabon, Democratic Republic of the Congo,
or the Republic of Congo.

The study site encompasses semideciduous closed forest
located in Deng Deng National Park and its surroundings in
Lom et Djerem, Cameroon (13◦4′ E, 5◦28′39 N). The study
site extends for 100× 100 km and is delimited by the Sanaga
River to the west and the forest savanna transition zone to the
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Fig. 1. (a) Study area within the extent of ENVISAR ASAR acquisitions
(WGS84, UTM zone 33 N). (b) Location of all landcover samples (n = 20)
used in the analysis overlaid on ENVISAT ASAR VV (WGS84, UTM
projection-zone 33N). Data source: World Resources Institute and European
Space Agency. The green shape outlines the Deng Deng National Park. The
yellow shape outlines a logging concession. Red squares mark samples of DF
within the concession, green squares mark IF samples in the National Park,
yellow squares mark samples within FS and blue squares mark samples within
FAM (see also Table II).

east (Fig. 1). The main urban center in the area of study is the
region’s capital Bertoua while, a high number of rural villages
are distributed across the landscape contributing to the high-
est rate of rural population exploiting forest resources mainly
in the form of slash and burn agriculture at small to medium
scales [30]. The forest in the area is a semideciduous closed
forest dominated by Sterculiaceae and Ulmaceae and extends
to the north of the moist evergreen forest [31]. Human inter-
vention is widespread in the area giving rise to several stages of
DF and areas of regenerating forest developing into secondary

formations characterized by Musanga cecropioides and Albizia
spp. [32].

Another driver of forest degradation is selective logging
within the forest management units (UFAs). The logging indus-
try has been present in the area and exploited forest resources
through the selective removal of a limited number of high-value
trees. Even though the UFA had been exploited long in the past,
the presence of old logging roads was still clearly visible in the
2010 Landsat and RapidEye imagery (and less evident in radar
imagery).

The climate is classified as equatorial (Guinean type) with
one major wet season (September–November) (monthly rain-
fall over 250 mm) and dry season with rainfall as low as 10 mm
(December–February) [33]. Rainfall at the time of ENVISAT
ASAR data acquisition (January 15, 2010) and ALOS PALSAR
(August 3, 2010) can be considered negligible, since the data
was acquired in the dry season. Topography in the study site is
hilly to mountainous ranging from 597 to 1060 m with areas
of more pronounced topography located to the north of the
study site in the forest-savanna (FS) mosaic, whereas topogra-
phy is more gentle in the areas of semideciduous forest (ranging
between 597 and 700 m a.s.l.).

IV. METHODS

Methods employed for the analysis of both ENVISAT ASAR
(VV) and ALOS PALSAR (HH and HV) scenes comprise the
following steps: 1) SAR data processing; 2) thematic class def-
inition and supervised selection of a spatial test set for SAR
statistics estimation (43× 43 pixels windows) for each class;
and 3) wavelet transform of the test set SRFs and wavelet
coefficients statistics computation and interpretation.

A. SAR Data Processing

Nine ENVISAT ASAR IMS scenes were acquired between
2003 and 2010 at VV polarization, IS2 mode (23◦ incidence
angle) over the study area. The datasets were processed using
the basic processing module available with SARscape 5.0 soft-
ware [34]. The scenes were multilooked, coregistered, radio-
metrically calibrated and radiometrically normalized (cosine
correction) using a 90-m SRTM DEM, geocoded to WGS84,
UTM projection (zone 33N) at 15-m pixel spacing. Importantly,
the time-series was speckle filtered using “De Grandi multi-
temporal filter” available in SARscape 5.0 and based on the
principles proposed in [35]. This step enables the reconstruc-
tion of the radar cross-section (RCS) with good preservation
of its two-point spatial statistics, whereas abating the strength
of the high-frequency noise induced by the fading process to
a level inversely proportional to the number of samples in the
series. It is therefore fundamental with respect to the capability
of retrieving textural properties of the imaged target.

Most of the analysis presented here was then undertaken on
a single ENVISAT ASAR scene (January 15, 2010), since it
was acquired during the dry season with minimal influence
from rainfall events and, correspondent with available ALOS
PALSAR and RapidEye data.
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Twelve ALOS PALSAR fine beam dual (FBD) were acquired
between 2007 and 2010 at HH and HV polarizations and 34◦

incidence angle. This dataset was processed using the same
approach as above.

Supplementary optical data for the interpretation of SAR
imagery consisted of Landsat ETM+ (slc-off) at 30-m reso-
lution acquired on January 18, 2011 covering the northernmost
part of the study site and Landsat ETM+ (slc-on) data acquired
on December 27, 2002 covering the southern part of the study
area. The scenes were the only available which were not
affected by extensive cloud cover and closest to the data of
the SAR data acquisition. RapidEye at 5-m resolution was also
acquired on December 17, 2010 for training purposes covering
a selected area of UFA 10 065 and part of Deng Deng National
Park. Contextual data consisting of UFAs, logging roads (dig-
itized with the aid of Landsat), location of protected areas
(e.g., Deng Deng National Park) were provided by [36]. The
data were used to help with the selection of classes of interest
through a supervised analysis.

B. Spatial Test Set Preparation by Supervised Analysis

A supervised analysis was chosen due to unavailability of
ground truth data for 2010, thus the use of optical imagery
and contextual information was used for training purposes. The
analysis uses a 43× 43 pixel window (corresponding to 645×
645 m on ENVISAT ASAR and ALOS PALSAR geocoded
scenes at 15 m pixel spacing). The classes selected correspond
to the following: IF, DF, forest-agriculture mosaic (FAM), and
FS. Four samples were used in parts of the analysis but twenty
samples were selected for each class of interest to ensure a
significant sample size for statistical analysis.

IF areas were selected based on contextual information
including the extent of Deng Deng National Park and the
absence of logging roads and urban centers in the areas cho-
sen. The chosen areas are all located in the northern section of
the Deng Deng National Park, which is known to be intact and
has no sign of logging roads in any ancillary dataset.

DF was identified based on the presence of inactive logging
roads (in 2010) which were clearly visible in both Landsat and
RapidEye data at the time of the analysis and were also notice-
able back in the 1980s Landsat imagery, thus indicating the long
term pattern of disturbance of forest inside the logging con-
cession. FAM could be clearly identified in both Landsat and
RapidEye scenes as the most complex and heterogeneous class
among those selected due to the presence of a mixture of forest,
bare areas, and agricultural fields. The pattern of anthropogenic
disturbance was also very clear due to the proximity to rural set-
tlements. FS presented lower backscatter values in ENVISAT
ASAR VV and ALOS PALSAR HH and HV scenes compared
to dense forested areas.

C. Spatial Statistics From a Wavelet Frame Basis
Representation

The spatial statistics of interest are derived from a signal
(field) representation provided by a nonorthogonal oversampled
discrete wavelet transform (DWT). The basis for this represen-
tation is generated by a wavelet frame [37]. The advantage of

Fig. 2. Mother wavelet (red line) and the dilated by 20.25 version (first and
second voice).

such an approach in connection with texture (spatial statistic)
analysis is proven in [27]. In our case, the mother wavelet in
the continuous scale-space domain is the first derivative of a
box spline of order 3 [38] (see Fig. 2), with Fourier transform

ŵ (ω) = −iω
4

(
sin

(
ω
4

)
ω
4

)4

e−iω2 . (1)

In the discrete case, the transform is implemented using a
variant of the à trous algorithm [39], [40] with four voices per
octave. The design of the multivoice scheme entails the follow-
ing steps. For each voice in the first octave, a fractionally dilated
wavelet is computed in the frequency domain from (1)

Ψdil (ω) =
1√
2d

2dΨ
(
2dω

)
e−iω( 1

2 (2
d−1) (2)

where the fractional dilation factor is d = 0.25 k, k = 0 · · · 3.
The dilated wavelet is normalized by 1√

2d
to preserve the

norms, and shifted by e−iω( 1
2 (2

d−1) in such a way so as to
match the zero crossings of the original mother wavelet.

Importantly, the multivoice scheme using the à trous algo-
rithm can only be implemented with the s−1/2 normalization
to assure equal norms among the mother wavelets which sam-
ple the frequency lattice within one octave. In this way, wavelet
coefficients corresponding to all voices and octaves carry com-
parable energy, and can be used in forming measures, e.g.,
two-point statistics of the signal.

The à trous algorithm [39], [40] calls for the approximation
of the continuous space wavelet by means of an interpolating
filter. This condition is expressed in the time and frequency
domain by

1√
2
ψ

(
t

2

)
=

∑
n
h [n]φ (t− n) (3)

2√
2
Ψdil (2ω) = Hj (ω) Φ (ω) . (4)

The high-pass filter coefficients for each fractionally dilated
wavelet are computed from (4) by inverse discrete Fourier
transform (DFT)

hj [n] =
1

2π

∫ +π

−π

Hj (ω) e
iωndω (5)
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where j is the voice index.
Each dilated high-pass filter hj for each voice is finally

used in a recursive à trous decomposition scheme to gen-
erate wavelet coefficients at the corresponding dyadic scales
2d+j, j = 1 . . . n.

In case of analysis of a two-dimensional (2-D) field, the
DWT is implemented by separable (row, columns) convolutions
with a low-pass and a high-pass filter [40]

fs+1 (i, j) = gs (j) gs (i)⊗j⊗ifs (i, j)

cx,s+1 (i, j, v) = hs (j, v)⊗jfs (i, j)

cy,s+1 (i, j, v) = hs (i, v)⊗ifs (i, j) (6)

where
⊗

j is the convolution operator over columns, and
⊗

i is
the convolution operator over lines, f1 (i, j) is the input signal,
hs is high-pass filter at level s and voice v, gs is low-pass filter
(à trous filter) at level s, both filters being upsampled by dilation
with s zeros.

In a nutshell, the multivoice scheme for v voices is imple-
mented by applying the à trous algorithm, valid for power
of two scales, v times starting from each fractionally dilated
mother wavelet.

Importantly, the wavelet coefficients in (6) are normalized by

smooth approximations of the input fields f(i, j)s at the corre-
sponding scale s. The smooth approximations are obtained by
convolution with separable smoothing spline filters with unit
norm (energy conserving) and dilated by a factor corresponding
to the scale s. This position (as pointed out in [25]) is necessary
to avoid influence on the wavelet statistics of the fading vari-
able when multiplicative noise is developed, and to equalize
the dynamic range of the variable of interest (RCS). Theoretical
characterization (bias and variance) of estimators of normalized
wavelet coefficients is given in [41].

The mother wavelet (Fig. 2) acts as a differential operator.
It is this characteristic that establishes the bridge for reaching
over to the spatial statistics of interest. Indeed, a wavelet which
is a symmetric and odd function of the space coordinate (as
the one considered here), when translated performs differences
between averages of the signals around points whose distance
is proportional to the dilation factor (scale). This leads to
consider the following equivalence between local averages
of the wavelet coefficients squared and a two-point statistic
known as structure function of order 2

〈cx,s2〉 ∼= 〈(f (x+ τ )− f(x)2〉, where s
yields−→ τ (7)

where 〈〉 is a spatial average operator.
In turn, this statistic leads to the characterization of station-

ary random processes, as well as of nonstationary processes
with stationary increments (e.g., fractals) [42]). The wavelet
variance as a function of scale provides in the log–log
variance/scale plane a characteristic signature of the process
and measures of the process parameters, such as correlation
structures in stationary processes and the scaling exponent in 1/f
processes.

Computationally, the wavelet scaling signature (WASS) is
estimated from the wavelet coefficients of the 2-D DWT (6)

within a 43× 43 pixels window of the backscatter image
centered around points of interest (see Section IV-B for the
selection criteria)

WSx (s) = 〈cx,s(i, j)2〉
WSy (s) = 〈cy,s(i, j)2〉 (8)

where the average is taken over the estimation window. The
standard error of the wavelet variance estimator S2 (8) is σS2 =

S2
√

2
n−1 , where n is the number of samples in the estimation

window.
When a second realization of the input random field is avail-

able, this being acquired at a different date or with different
sensor’s configuration (e.g., polarization, incidence angle), a
scaling signature can be constructed with the wavelet coeffi-
cients cross-correlation

WCRSx (s) =
〈cx,s1 (i, j) cx,s2 (i, j)〉(

〈cx,s1(i, j)2〉〈cx,s2(i, j)2〉
)1/2

WCRSy (s) =
〈cy1 (s, i, j) cy2 (s, i, j)〉(

〈cy,s1(i, j)2〉〈cy,s2(i, j)2〉
)1/2

. (9)

In the case of spatial statistics, this signature provides an
indicator of the textural difference of the observed random
fields between acquisitions. For acquisitions at different dates,
the wavelet cross-correlation extends the statistics to the time–
space–frequency domain.

A second point of view leads us to consider the generation
of a scale-dependent gradient field ε (s, x, y) from the wavelet
coefficients, which in turn can be used as a random measure in
intermittency analysis. Intermittency in our context can be gen-
erated in a random field by the presence of singularities such as
edges and point targets. The normalized fourth moment of the
gradient modulus (called the flatness factor) is taken in this case
as an indicator of intermittency within the random field. Indeed,
the fourth moment of a probability density function (pdf) (kur-
tosis) is related to the flatness of the distribution’s tails. Since
the wavelet frame is a differential operator, thick tails of the
distribution indicate the presence of spikes or events with high
derivative. The wavelet flatness factor signature (dependence
on scale) is computed in a way similar to the wavelet scaling
signature (9)

FlSx (s) =
〈cx,s(i, j)4〉
〈cx,s(i, j)2〉2

FlSy (s) =
〈cy,s(s, i, j)4〉
〈cy,s(s, i, j)2〉2

. (10)

Finally, the gradient field modulus squared can be interpreted
as the signal energy captured at every point visited by the trans-
lated and dilated wavelet in the space-scale lattice and within
the resolution cell at that point (Heisenberg box [38]). Local
estimates of the ε (s, x, y) field through the related wavelet
coefficients provide a space–frequency analysis of the input
random field energy, which is called the wavelet spectrum. The
wavelet spectrum is computed by convolution of the wavelet
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TABLE I
WAVELET RESOLUTION FOR THE FIRST FOUR VOICES

coefficients with a smoothing kernel (a cubic spline βm, with
support m = 25 pixels)

Wspctr (s, i, j) =
(
cx,s(i, j)

2
+ 〈cy,s(i, j)2〉

)
⊗βm (i, j) .

(11)

Since Wspctr (s, i, j) is a function of three variables, a
three-dimensional (3-D) graphic representation is obtained by
averaging in one direction (columns or rows). The spectrum is
then pictured in a 2-D density plot, with space, scale on the x-,
y-axis and a color palette to represent power density.

In space-scale (time–frequency) analysis, which underpins
all the derived spatial statistics considered here, the most
important factor is the combined resolution in the two dimen-
sions of the domain. Wavelet provides adaptive resolution with
increased frequency support and short-time spread at short
scales, and decreased frequency support and wider time spread
at long scales. It is important to quantify the combined res-
olutions and to put these measures in comparison with the
order of magnitude of space variations expected in the physical
phenomenon of interest (e.g., forest canopy horizontal distri-
bution). The space and frequency spread of the wavelet was
computed as follows.

The wavelet ψ (s, x) at each scale s is normalized in such a
way that ‖ψ‖ = 1 and shifted to be centered at x = 0. In this
way, the spread in space and frequency is

σ2
x =

∫ +∞

−∞
x2ψ2dt (12)

σ2
ω =

∫ +∞

−∞
(ω − η)2ψ̂2dω (13)

where ψ̂ is the Fourier transform of ψ and η is the center
frequency.

The spread σx and σω were computed for the first four voices
(Table I).

In Table I, σspace (m) is the resolution in space related to
the reference system of the geocoded SAR imagery with a
pixel spacing of 15 m. σperiod (m) is the resolution if fre-
quency given as a period T = 2π

ω , where ω is the frequency
in radians/m. σfreq (cycles/winl) is the resolution in frequency
given as number of cycles within the estimation window length.

Values in the table can be interpreted as follows. First, notice
that resolutions in the space-scale (time–frequency) plane were
computed for the continuous wavelet transform, therefore,
space is defined on the real numbers set, and the support of
the mother wavelet at scale 1 is in d = [−1, 1]. Normalized val-
ues in the space domain are then converted in metric units with

d � x [m] = [−15, 15]. Values at the next dyadic scales can be
computed simply by multiplication (division) by 2.

With these figures in mind, let us imagine of considering
a backscatter signal portraying intermittent hard targets (e.g.,
buildings) and periodic features (e.g., a forest canopy or ocean
waves). Values σspace (m) tell us that we could distinguish, by
the wavelet multiscale representation, the impulsive features
if they are spaced apart a distance greater than these values.
Values σperiod (m) tell us that we could detect the periodic fea-
tures if their period is greater than those values. Finally, the
last column gives us an indication of how many oscillations of
the periodic phenomena we could at most observe within an
estimation window of 615 m.

In our thematic context, we could for instance conclude
regarding space resolution: The first four voices do not pro-
vide useful information, being the resolution less than the
sensor’s one; intermittency patterns with characteristic spacing
of 2j × 23 m will be best detected at corresponding resonating
scales 2j . Regarding frequency resolution, the spatial frequency
components of an homogeneous forest canopy, this developing
with a characteristic period of some 2j × 40m could be best
measured at resonating scales 2j .

D. Connection Between Wavelet Variance Analysis and Fourier
Spectral Analysis

Relevance of two-point statistics in connection with SAR
imagery textural characterization, in particular of the Fourier
spectral analysis and the ACF, was pointed out in a seminal
work published in the late 1980s [43]. This work was targeted to
supervised classification, where textural class parameters were
estimated from SAR spatial statistics. Analysis was carried out
based on stationary Rayleigh statistics for the envelope of the
received field, and under the condition of a delta correlated fad-
ing component. In this framework, a method was derived for
the estimation of the underlying RCS ACF from experimen-
tal data, whereas no specific model for the surface fluctuations
was proposed. This line of research was extended by a theoret-
ical model for non-Rayleigh SAR scattering statistics, covering
the case of correlations between scatterers in the resolution
cell (or fluctuating cross-section), and finite illumination win-
dow [44], [45]. The surface fluctuations were described by a
Gamma distribution and a Lorentzian spectrum (exponential
ACF). This model is particularly relevant when imaging forest
at the resolution afforded by instruments used in our experi-
ments. These contributions were the springboard over which
interest in space–frequency analysis of SAR backscatter took
momentum [46]–[49].

Wavelet frame spatial statistical measures are rooted in the
groundwork established by the classical Fourier ACF analy-
sis adopted in those research works, but extend it in several
respects: 1) by enabling space-scale analysis (through good
localization in the space–frequency domain); 2) by the capa-
bility of dealing with nonstationary processes; and 3) providing
statistically better and computationally more efficient estima-
tors. The reader is referred to [50] for a discussion on this
topic. It appears therefore interesting to establish, for those ran-
dom processes described by the models mentioned above, the
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Fig. 3. Wavelet variance scaling signatures computed on single date ENVISAT
ASAR VV backscatter (2010) for four classes of interest: FAM (blue), DF (red),
IF (green), and FS (black). The error bars correspond to the standard error of
the wavelet variance estimator.

TABLE II
FOUR LANDCOVER SAMPLES USED IN THE ANALYSIS (WGS84, UTM

PROJECTION—ZONE 33 N)

connection between the wavelet space-scale statistics (wavelet
variance and covariance) and the ACF based characterization.

For the purpose, analytical and numerical derivations were
undertaken to illustrate the response of the wavelet scaling
signatures to given correlation properties of the input SRF,
including those assumed in the models in [44]. The gist of the
analysis was based on the theory of linear filtering of random
signals [51], which was exploited to link the spectral proper-
ties of the input signal to the statistics (variance) of the output
process, this being filtered by the wavelet operator. Detailed
analytical derivations and results would be outside the scope
of the paper.

Suffice here to mention that for fractal RCS [52]–[54], the
dependence of the wavelet variance on scale is linear in log–
log scale, with the first derivative proportional to the spectral
exponent. For a Gamma-distributed RCS with exponential ACF
[44], the wavelet variance increases nonlinearly with the deriva-
tive at scale s = 1 linear in β (the inverse correlation length).
While, the asymptotic value is proportional to the second
moment of intensity.

V. ENVISAT ASAR RESULTS AND INTERPRETATION

A. Wavelet Variance Signatures

The graph in Fig. 3 shows the wavelet variance as a function
of scale (four dyadic scales and four voices) for four classes
of interest with corresponding estimation windows selected on
ENVISAR ASAR VV backscatter geocoded data (Table II).
Notice that in this set of classes and with respect to SAR
backscatter, there are two radiometrically pure cases (intact and
DF) and two mixed cases (FAM and FS). However, in terms of

textural analysis, these classes can be handled as pure classes, in
the sense that they can be characterized by separable measures.

The following observations can be made. Regarding the gen-
eral trend with scale, signatures related to IF, DF, and FAM all
show the fingerprint of a stationary random process with loss
of correlation at short scales, a first maximum (sill) in a range
of intermediate scales (corresponding to the correlation length
concept in Fourier analysis), and a final segment with flattening
out (white noise DF, FAM) or the presence of further correla-
tion (or anticorrelation) structures (IF). A striking difference is
provided by the FS signature which presents persistent increase
with scale, a sign of a nonstationary process. This situation is
due to the presence of strong radiometric nonhomogeneities
within the estimation area (mixture), due to the intertwining of
grassland and taller vegetation, as it will be documented later
by wavelet spectra analysis (see Section V-D).

Regarding the separation between signatures (in terms of
point-wise distance between variance values at each scale with
respect to the estimation error), it is clear that between scales
20 and 22, the two radiometrically mixed classes (FAM and
FS) are well separated between themselves and with respect to
the union of more homogeneous classes (IF and DF). However,
separation between IF and DF appears problematic, when based
only on scale-by-scale differences between signature values.
Statistical analysis on the probability distribution of the sig-
natures’ values for 20 samples of each class confirms these
results.

The key to the solution of the problem stems from consid-
ering the functional dependence on scale of the signatures, as
opposed to their point by point differences. For this purpose,
the difference between IF and DF signatures were analyzed in
more detail. The two functions (IF and DF signatures) appear
to have a very similar form in the range of scales 20−22.
However, the sill (first maximum) of the IF occurs at shorter
scale than the DF one, or, in other words, there is a remark-
able and consistent difference in the correlation length for the
two classes [Fig. 4(a)]. Additionally, the IF signature shows
persistent correlation/anticorrelation structures at longer scales,
whereas the DF tends to flatten out.

A link between these two statistical correlation patterns and
the underlying structure of the observed target can be con-
jectured in the following way. The IF structure is made up
by layers of vegetation and in particular large emergent trees
contribute to the signal. Instead, the DF has a relatively more
homogeneous structure due to the removal of large emergent
trees and the vegetation regrowth which has achieved a stage
similar to the remnant vegetation from the intact stage. Let us
remember that C-band radiation has a short penetration depth
into a dense target, like this type of forest. Therefore, the RCS
is spatially modulated by height changes and shadowing effects
of a thin layer at top of canopy. Therefore, the IF return (which
is more “rough”) will decorrelate at shorter scales than the more
homogeneous DF. On the other hand, the IF will retain some
self-similar structures at longer scales, which will result in long
scale memory as far as correlation is concerned. The results
concerning the IF are in line with the dense homogeneous forest
model in [51], where K-distributed clutter with an exponen-
tial cosine ACF is assumed. These considerations suggested a
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Fig. 4. (a) Wavelet scaling signature for two classes: IF (green cross), DF (red
cross), and the fitted third-degree polynomial function (green and red solid lines
for IF and DF, respectively). (b) First derivative of the IF (green) and DF (red)
fitted wavelet scaling signatures. (c) Second derivative (slope) of the IF (green)
and DF (red) fitted wavelet scaling signatures.

computational approach for the two-class pattern recognition
problem based on signature functional analysis (described in
Section V- B).

B. Wavelet Scaling Signatures Functional Analysis

Functional analysis of the wavelet scaling signatures was
undertaken by fitting a polynomial function to the wavelet vari-
ance values for two classes of interest: IF (green) and DF
(red) [Fig. 4(a)]. The wavelet scaling signatures points were fit-
ted using a third-degree polynomial function of the form y =
ax3 + by2 + cx+ d. Two patterns can be noted in the graph:
the first maximum (sill) of the IF signature occurs at shorter

TABLE III
FLATNESS FACTOR STATISTICS FOR 20 SAMPLES OF EACH OF THE FOUR

CLASSES OF INTEREST

DF, degraded forest; IF, infact forest; FAM, forest agriculture mosaic; FS,
forest-savanna.

scale than the DF one; the presence of persistent correlations
(anticorrelations) at long scales in the IF signature, whereas
the DF signature tends to level off (uncorrelated noise). These
two different functional dependences of the wavelet variance
on scale can be described by the first and second derivatives of
the fitting polynomial, as shown in Fig. 4(b) and (c). The zero
crossing of the first derivative marks the onset of the sill point.
The zero crossing of the second derivative marks the inflection
point of the signature, this occurring always at longer scales for
the DF class.

The combination of these functional parameters provides a
consistent condition to discriminate between the two classes.
This proposition was proven by a statistical hypothesis test of
the difference of the parameters’ mean values using 20 samples
for each class of interest (H0: xDEG − xIF = 0). Concerning
the first derivative zero crossings, the test resulted in one-sided
p-value equal to 6.477× 10−7; thus, H0 was rejected indicat-
ing that there is a significant difference between the means at a
0.05 significance level. As to the zero crossings of the second
derivative, the test gave a one-sided p-value equal to 0.003 with
H0 rejected.

C. Flatness Factor

The flatness factor [see (10)] intuitively gives an indication of
the relative variability of the wavelet variance within the data
samples, and therefore can indicate the presence of intermit-
tency in the SAR signal, such as edges and point targets. As
a guideline for the interpretation of the experimental data, we
remind that for a wavelet frame that acts as a differentiator, and
for Gaussian white noise as input, the flatness factor equals 3.

IF is the class which presents the lowest amount of intermit-
tency at all scales, and less spread among samples, with flatness
factor values around 3, thus pointing at a nearly Gaussian noise
process (Table III).

The DF reveals some intermittency at short scales, also with
large spread among samples (Table III). This result seems to
contrast the conclusion derived from the scaling signature,
which indicates the DF as a more homogeneous process than
the IF. However, closer examination of the DF areas reveals that
these high intermittency values are due to topographic effects
(shadow, layover) which are present in some of the areas.

The FAM and FS classes both present intermittency of dif-
ferent importance, with the highest values and highest spread
among samples for the FS (Table III). In both these cases,
the intermittency is due to the presence of edges between two



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DE GRANDI et al.: SPATIAL WAVELET STATISTICS OF SAR BACKSCATTER FOR CHARACTERIZING DF 9

Fig. 5. Wavelet spectrum for (a) FS (in the northing direction) and (b) FAM
(easting direction) showing the different textural properties of each class in
the space-scale domain. The spectrum is estimated in a 43× 43 pixels win-
dow (equivalent to 645× 645m in the ASAR geocoded dataset). The SAR
backscatter within the corresponding windows (rendered in false color) is
shown at the right of the spectra. These test cases highlight the capability of
the wavelet space-scale representation to characterize radiometrically hetero-
geneous targets, such as a forest ribbon in (a) and the margin between bare soil
and forest in (b).

homogeneous fields (e.g., soil and forest in FAM, and forest
clusters in the FS). These singularities are of different strength,
as a function of the related backscatter values, as indicated by
higher flatness values with the FS class. The case of these non-
stationary samples will be further analyzed using the wavelet
spectrum in Section V-D.

D. Wavelet Space-Scale Signatures (Spectrum)

Analysis by wavelet spectrum of the two heterogeneous
classes FS and FAM illustrates well the ability of this tech-
nique for localizing features in the combined space–frequency
domain. The FS spectrum is shown in Fig. 5(a), this being
represented in the northing direction. The backscatter in the
estimation window (43× 43 pixels) for FS and FAM is shown
in false color in Fig. 5. A singularity (ridge) due to a forest rib-
bon is present in the image [Fig. 5(a)]. This feature is mapped
onto the triangular area of higher variance values spreading in
scale and around pixel 30 in space. Changes of the wavelet
variance trajectory with scale are due to the intersection of the
translated wavelet with the feature.

The FAM case [Fig. 5(b)] concerns an area with a diago-
nal edge marking the transition from bare soil to forest. In
the spectrum (represented in the easting direction), the first
segment (pixels 0–10) reveals a stationary signature (maxi-
mum at scale 2) that is due to the bare soil homogeneous
region within this range, whereas the following spectrum values

Fig. 6. Wavelet correlation between ENVISAT ASAR datasets acquired in
2006 and 2010 for four classes: DF (red), FS (green), IF (blue), and FAM
(black).

indicate a nonstationary situation (increasing signature at all
scale) corresponding to the presence of an edge.

E. Wavelet Covariance

The normalized wavelet covariance (correlation) signature
(9) provides a measure of how the SAR backscatter within
the estimation window (related to a specific landcover class)
changes texturally between two dates and as a function of scale.
It is therefore a spatiotemporal fingerprint of the SAR statistics.
An example is shown in Fig. 6. The signature was computed
with the same classes as the wavelet variance signature in Fig. 3
and refers to changes between acquisitions in 2006 and 2010. It
can be observed that the wavelet variance of all classes loses
correlation between the two dates, with lower correlation at
longer scales. The changes at short scales may be influenced by
residual speckle noise, whereas as scale increases, variation of
the RCS spatial distribution comes into play. Class FAM (black)
shows the highest decorrelation (highest temporal change) at all
scales. This pattern depends obviously by temporal changes in
the agricultural practices and bare soil extent. At short scales
(up to 23), the statistics of class FS (green) shows more decor-
relation than the ones of class intact and DF. Again, this is the
other class where changes in the target can be expected. For
class IF (blue), there appears to be more textural change in com-
parison with class DF. This feature must be further investigated
to be able to connect it to vegetation changes.

VI. ALOS PALSAR RESULTS AND INTERPRETATION

A. Wavelet Variance Signatures

The wavelet statistics analysis was also applied to L-band
ALOS PALSAR at HH and HV polarizations. The signatures
for the classes FS, IF, DF, and FAM can be found in Fig. 7(a)
and (b). Differences of the wavelet statistics at HH and HV
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Fig. 7. (a) ALOS PALSAR HH and (b) ALOS PALSAR HV wavelet variance
scaling signatures (four dyadic scales) for four classes of interest: FAM (blue),
DF (red), IF (green), and FS (black) with corresponding error bars (black).

polarizations (in terms of absolute wavelet variance values and
functional form) can be readily seen from the graphs.

At HH polarization, the scaling functional form of the signa-
tures is similar to the one of ENVISAT ASAR VV, with the DF
signature flattening out and the IF signature keeping memory
of its structure [these trends are better highlighted with the fit-
ted wavelet signatures in Fig. 8(a)]. While, at HV polarization,
the signatures for the two classes reveal the onset of a white
noise random process (no texture) and no significant difference
between the two. We conclude that the HV return (volume scat-
tering) does not provide spatial information that is useful to
discriminate between DF and IF. From another standpoint, dif-
ferences in biomass within and between intact and DF (if any)
cannot be detected at this radiometric and spatial resolution by
HV backscatter. On the other hand, the HH return is sensitive
to the large scattering elements in the top layer of the canopy,
and therefore, develops sensitivity to the forest structure in the
same way as the C-band VV, although with less strength due to

Fig. 8. (a) Wavelet scaling signature for two classes: IF (green cross) and DF
(red cross) and the fitted third-degree polynomial functions (green and red solid
lines). (b) First derivative of the fitted polynomial. (c) Second derivative of the
fitted polynomial.

the increased penetration. The signatures of the two heteroge-
neous classes (FAM and FS), both at HH and HV, bear in a very
strong way the tell-tale signs of nonstationarity, and even more
so with respect to the ENVISAT ASAR case.

B. Wavelet Scaling Signatures Functional Analysis

This analysis is carried out only for HH polarization in view
of IF and DF class separation, since the HV does not pro-
vide useful spatial information. The fitted wavelet signatures
also confirm that the PALSAR HH is similar to the ASAR
VV case in terms of functional form. However, the parameters
that characterize univocally this dependence are different. Now,
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the two classes present the same correlation length [Fig. 8(a)].
Therefore, the first zero crossing of the first derivative cannot be
used as a marker [Fig. 8(b)]. On the other hand, now the second
zero crossing is a good candidate, since it occurs at short scales
for the IF, and at longer scales (if any) for the DF [Fig. 8(c)].

The inflection point (zero of the second derivative) appears
to have the same role as in the case of ASAR. The significance
of these observations was checked using a hypothesis test at
0.05 significance level of the differences of the mean values of
these parameters (second zero crossing of the first derivative
and zero crossing of the second derivative) using 20 samples
for each class of interest.

The test reports that the H0 cannot be rejected in this case
(p = 0.109). Therefore, functional analysis of wavelet signa-
tures does not appear to be a viable solution for the textural
discrimination of the two classes using ALOS PALSAR HH.

VII. CONCLUSION

Supervised analysis of SAR backscatter spatial statistics,
as provided by a wavelet frame representation, was under-
taken with the goal of assessing the capability of retrieving
information about landcover differentiation, in particular, the
ability to differentiate intact and DF in a closed semidecid-
uous forest context. Test cases were developed using both
C-band ENVISAT ASAR and L-band ALOS PALSAR datasets
acquired on a site in Cameroon.

Results have shown that wavelet variance scaling signatures,
which are measures of the SAR backscatter two-point statistics
in the combined space-scale domain, are able to differenti-
ate landcover classes by capturing their spatial distribution.
This sensitivity extends the possibility of class discrimination
based on intensity values distance, which is effective only for
radiometrically pure classes or homogeneous targets, to the
case of heterogeneous targets, these giving rise to texturally
pure classes. Along this line, wavelet spectra were proven to
be effective in characterizing heterogeneous landcover, such
as FAM, by capturing the onset and the spatial location of
singularities, such as edges.

Importantly, discrimination between IF and DF which is
an important focus for conservation science was found to be
enabled by functional analysis of the wavelet scaling signatures
of C-band ENVISAT ASAR data. Analytic parameters, describ-
ing the functional form of the scaling signatures when fitted
by a third-degree polynomial, resulted in a statistically signif-
icant difference between the signatures of the two classes. On
the other hand, this outcome could not be replicated using the
L-band ALOS PALSAR data.

Reasons for the inability to discriminate between intact and
DF using ALOS PALSAR could be explained by the fact
that L-band penetrates more into the canopy, and therefore,
the observed backscatter texture is influenced more by the
distribution of large scattering elements, and by the ground
return. By contrast, C-band ENVISAT ASAR penetration is
lower, and thus, the backscatter return comes primarily from
the top of the canopy components, which produce a micro-
topography effect on the radar return due to their irregular
vertical and horizontal distribution (e.g., emergent trees, which

may be missing in degraded/regenerating forests). Additionally,
differences in incidence angle and environmental/seasonal con-
ditions between the C-band and L-band acquisitions could have
influenced the differences in observed results.

The study area is characterized by DF that was disturbed
by selective logging at least 15 years in the past. It is there-
fore notable that a SAR sensor at 15-m resolution can still
distinguish between this DF stage and IF, based on textural
features. Additional information could be retrieved from higher
resolution sensors (e.g., Sentinel-1 or TanDEM-X).

In this specific environmental setting, the ENVISAT ASAR
VV outperforms the ALOS PALSAR at HH and HV polar-
izations in terms of distinguishing between intact and DF.
However, in a different environmental setting with other degra-
dation patterns (e.g., more recent forest degradation patterns or
in closed evergreen forest), the results could be different and
therefore, testing the method in several areas will be undertaken
in the future.

The performance of C-band ENVISAT ASAR for the pur-
pose of discriminating between intact and DF is a promising
result given the future availability of new C-band data provided
by ESA Sentinel-1 mission.
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