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ABSTRACT
Kepler-78b is one of a growing sample of planets similar, in composition and size, to the
Earth. It was first detected with NASA’s Kepler spacecraft and then characterized in more
detail using radial velocity follow-up observations. Not only is its size very similar to that of
the Earth (1.2 R⊕), it also has a very similar density (5.6 g cm−2). What makes this planet
particularly interesting is that it orbits its host star every 8.5 h, giving it an orbital distance
of only 0.0089 au. What we investigate here is whether or not such a planet could have been
perturbed into this orbit by an outer companion on an inclined orbit. In this scenario, the outer
perturber causes the inner orbit to undergo Kozai–Lidov cycles which, if the periapse comes
sufficiently close to the host star, can then lead to the planet being tidally circularized into a
close orbit. We find that this process can indeed produce such very-close-in planets within
the age of the host star (∼600–900 Myr), but it is more likely to find such ultrashort-period
planets around slightly older stars (>1 Gyr). However, given the size of the Kepler sample and
the likely binarity, our results suggest that Kepler-78b may indeed have been perturbed into its
current orbit by an outer stellar companion The likelihood of this happening, however, is low
enough that other processes – such as planet–planet scattering – could also be responsible.

Key words: planets and satellites: formation – planets and satellites: general – planet–star
interactions.

1 IN T RO D U C T I O N

Analysis of data from NASA’s Kepler spacecraft (Borucki et al.
2010; Batalha et al. 2013) indicates that planets with radii similar
to that of the Earth are common (Dressing & Charbonneau 2013;
Petigura, Marcy & Howard 2013). Recently it was announced that
one of the Kepler targets (Kepler-78) showed a 0.02 per cent de-
cline in brightness that was associated with a planet with a radius
of only 1.16 ± 0.19 R⊕ (Sanchis-Ojeda et al. 2013). Follow-up ob-
servations, using HARPS-N (Cosentino et al. 2012) and the High
Resolution Echelle Spectrometer (Vogt et al. 1994), confirmed that
this is indeed a planet with a mass of about 1.86 M⊕ and a density
of about 5.6 g cm−3 (Howard et al. 2013; Pepe et al. 2013).

Of course it is fascinating that we are now detecting planets with
sizes and densities similar to that of the Earth, but what makes this
planet particularly interesting is that it has an orbital period of only
8.5 h, meaning that it is orbiting at a distance of only 0.0089 au
from its parent star. Quite how such a planet can end up in such an
orbit is very uncertain. It almost certainly could not have formed
where it now resides, as the temperature in the disc in that region
would have been too high even for dust grains to condense (Bell

⋆ E-mail: wkmr@roe.ac.uk

et al. 1997). It could potentially have migrated inwards through disc
migration. However, such low-mass planets would migrate in the
gapless, Type I regime (Ward 1997) which is typically thought to
be so fast (Tanaka, Taleuchi & Ward 2002; Kley & Crida 2008) that
it would seem unlikely that such objects could be left stranded so
close to their parent stars. Population synthesis models (Ida & Lin
2008; Mordasini, Alibert & Benz 2009) typically assume a reduced
Type I migration rate.

Alternatively, such close-in planets could be scattered on to
eccentric orbits (Ford & Rasio 2006) that are then circularized
through tidal interactions with the parent star (Rasio et al. 1996).
It has indeed been suggested that if such a process were to oper-
ate, we should be seeing some very short period hot super-Earths
(Schlaufman, Lin & Ida 2010), so this could be an explanation for
the origin of Kepler-78b. However, even this study suggested that
typical orbital periods would be greater than the 8.5 h orbital period
of Kepler-78b.

Another mechanism for forming close-in planets, related to dy-
namical interactions in multiplanet systems, is for the planet to
undergo Kozai–Lidov cycles driven by a stellar companion on a
highly inclined orbit (Kozai 1962; Lidov 1962). If the eccentricity
is sufficiently large, so that the periastron becomes very small, the
planet’s orbit may be circularized through tidal interactions with its
host star (Wu & Murray 2003; Fabrycky & Tremaine 2007). What
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we want to investigate in this paper is whether or not this process
could indeed explain the origin of Kepler-78b. Given that binarity
amongst solar-like stars is quite high (Duquennoy & Mayor 1991;
Abt & Willmarth 2006) it seems likely that this could play a role in
producing close-in, Earth-sized planets.

In this paper, we present results from a series of Monte Carlo
simulations in which we consider how a planet with a mass and
density the same as that of Kepler-78b, but initially orbiting be-
tween 0.5 and 2 au, is influenced by perturbations from a binary
stellar companion. We also include the influence of tides, which
would allow the orbit to circularize if the eccentricity becomes
sufficiently large, and the influence of general relativistic (GR)
and apsidal precession. This paper is organized as follows : in
Section 2 we present equations of motion, in Section 3 we de-
scribe the basic setup of the problem, in Section 4 we discuss the
results, and in section 5 we discuss the results and draw some
conclusions.

2 EQUATI O N S O F M OT I O N

The goal is to evolve an inner binary (planet and star) under the
influence of tidal interactions, perturbing accelerations from stel-
lar and planetary distortions due to tides and rotation, perturbing
accelerations from a third body, and GR apsidal precession. To
quadrupole order, these equations were first presented by (Eggleton
& Kiseleva 2001) and can also be found in Wu & Murray (2003)
and Fabrycky & Tremaine (2007).

Rather than using the equations in Eggleton & Kiseleva (2001),
we have implemented those from Barker & Ogilvie (2009) and
Barker (2011) which are regular at e = 0. We want to evolve an
inner system (planet + host star), where the bodies have masses
Ms and Mp, radii Rs and Rp, and in which the orbit has an
eccentricity e, semimajor axis a, and orbital angular frequency
n =

√
G(Ms + Mp)/a3. The vector quantities that we want to

evolve are, therefore, the spin of the parent star !s, the spin of
the planet !p, the eccentricity of the inner orbit e, and angular
momentum vector of the inner orbit h = r × ṙ = na2

√
1 − e2 ĥ.

We have built our model by considering, initially, only the equa-
tions that evolve these quantities through tidal dissipation and a
stellar wind. From Barker & Ogilvie (2009), we have

dh
dt

= − 1
tfs

[
!s · e

2n
f5(e2)he

− !s

2n
f3(e2)h +

(
f4(e2) − !s · h

2n

1
h

f2(e2)
)

h
]

− 1
tfp

[
!p · e

2n
f5(e2)he − !p

2n
f3(e2)h

+
(

f4(e2) − !p · h
2n

1
h

f2(e2)
)

h
]

=
(

dh
dt

)

s
+

(
dh
dt

)

p
(1)

h
de
dt

= − 1
tfs

[
!s · e

2n
f2(e2)h + 9

(
f1(e2)h − 11

18
!s · h

n
f2(e2)

)
e
]

− 1
tfp

[
!p · e

2n
f2(e2)h + 9

(
f1(e2)h − 11

18
!p · h

n
f2(e2)

)
e
]

(2)

d!s

dt
= −µ

Is

(
dh
dt

)

s
+ !̇swind (3)

d!p

dt
= − µ

Ip

(
dh
dt

)

p
, (4)

where Is and Ip are the moments of inertia of the star and planet,
!̇swind represents the stellar wind, and µ = MsMp/(Ms + Mp) is
the reduced mass of the inner system. We also need to define the
tidal friction time-scales for the star and planet (tfs and tfp), which
depend on the star and planet’s tidal quality factors (Q′

s and Q′
p),

and the functions of the eccentricity.

1
tfs

=
(

9n

2Q′
s

) (
Mp

Ms

) (
Rs

a

)5

(5)

1
tfp

=
(

9n

2Q′
p

) (
Ms

Mp

) (
Rp

a

)5

(6)

f1(e2) =
1 + 15

4 e2 + 15
8 e4 + 5

64 e6

(1 − e2)
13
2

(7)

f2(e2) =
1 + 3

2 e2 + 1
8 e4

(1 − e2)5
(8)

f3(e2) =
1 + 9

2 e2 + 5
8 e4

(1 − e2)5
(9)

f4(e2) =
1 + 15

2 e2 + 45
8 e4 + 5

16 e6

(1 − e2)
13
2

(10)

f5(e2) =
3 + 1

2 e2

(1 − e2)5
(11)

f6(e2) =
1 + 31

2 e2 + 255
8 e4 + 5

16 e6 + 25
64 e8

(1 − e2)8
. (12)

We also include the contributions due to an additional outer body
(b) of mass Mo, orbital angular frequency no, semimajor axis ao, and
eccentricity eo. Additionally, we add contributions from quadrupo-
lar distortions of the inner star and planet due to tidal and rotational
bulges (qs and qp), and we include GR apsidal precession. The
equations, shown below, are taken from Barker (2011)
(

dh
dt

)

b
= −3Cbh

[
(1 − e2)

h2
(n · h)(n × h) − 5(n · e)(n × e)

]

(13)

(
dh
dt

)

qs
= − αs

h(1 − e2)2
(!s · h)(!s × h)

(
dh
dt

)

qp
= − αp

h(1 − e2)2
(!p · h)(!p × h) (14)

h

(
de
dt

)

b
= 3Cb(1 − e2)

[
2(h × e) − (n · h)(n × e)

+5(n · e)(n × h)
]

(15)
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h

(
de
dt

)

qs
= αs

(1 − e2)2

[
1
2

(
3
h2

(!s · h)2 − #2
s

)

+ 15 GMp

a3
f2(e2)(1 − e2)2

]
(h × e)

+ αs

h2(1 − e2)2
(!s · h)(!s · h × e)h

h

(
de
dt

)

qp
= αp

(1 − e2)2

[
1
2

(
3
h2

(!p · h)2 − #2
p

)

+ 15 GMs

a3
f2(e2)(1 − e2)2

]
(h × e)

+ αp

h2(1 − e2)2
(!p · h)(!p · h × e)h (16)

h

(
de
dt

)

GR
= 3 G(Ms + Mp)n

ac2(1 − e2)
(h × e), (17)

where n is a unit vector that is perpendicular to the plane of the
outer body’s orbit (not to be confused with n and no, which are the
angular frequencies of the inner and outer orbits), and

αs = R5
s ksMp

2µna5
αp =

R5
pkpMs

2µna5
(18)

Cb = Mo

Ms + Mp + Mo

n2
o

n

1
4(1 − e2)1/2(1 − e2

o)3/2
. (19)

In equation (18), ks and kp are the inner star and planet’s tidal love
numbers.

2.1 Octupole terms

It now appears that expanding the equations only to quadrupole
order may not be appropriate for many systems (Naoz et al. 2011;
Naoz, Farr & Rasio 2012), so we have also included the octupole
terms. This allows us to consider situations in which the outer body’s
mass is comparable to that of the inner planet, and to consider
situations in which the outer orbit is eccentric.

We are unable to write the octupole terms in a way that is regular
at e = 0, so have implemented the form in (Mardling & Lin 2002).
The octupole contributions are
(

dh
dt

)

oct
= G(Ms + Mp)

a

(
Mo

Ms + Mp

) (
Ms − Mp

Ms + Mp

)

×
( a

R

)4 15e

16

{
10(1 − e2)R̂1R̂2R̂3 ê

+
[
(4 + 3e2)R̂3 − 5(3 + 4e2)R̂1

2
R̂3

− 5(1 − e2)R̂2
2
R̂3

]
q̂

−
[
(4 + 3e2)R̂2 − 5(1 + 6e2)R̂1

2
R̂2

− 5(1 − e2)R̂2
3
]

ĥ
}

(20)

(
de
dt

)

oct
= −n

(
Mo

Ms + Mp

) (
Ms − Mp

Ms + Mp

)

×
( a

R

)4 √
1 − e2

15
16

{[
−(4 + 3e2)R̂2

2

+ (5 + 6e2)R̂1
2
R̂2 + 5(1 − e2)R̂3

3
]

ê

+
[
(4 + 3e2)R̂1 − 5(1 − 3e2)R̂1R̂2

2

− 5(1 + 4e2)R̂1
3
]

q̂

+ 10e2R̂1R̂2R̂3 ĥ
}

, (21)

where R is the coordinate of the outer body, and the coordinate
frame is defined by the basis vectors (ê,q̂,ĥ), with q̂ = ĥ × ê. The
other unit vectors above are R̂1 = R̂ · ê, R̂2 = R̂ · q̂, R̂3 = R̂ · ĥ.

2.2 Integrating the outer orbit

The octupole terms described above need the coordinate of the outer
body, which we determine by solving for the eccentric anomaly, E.
This can be done by iterating the following equations until dE is
below a threshold (we use 10−12)

dE = −(E − eo sin E − l)
1 − eo cos E

E = E + dE, (22)

where l is the mean anomaly [l = no(t − P)], with P the orbital
period and t the time since the completion of the last full orbit of
the outer body. In all of our simulations, we fix the outer body to lie
in the xy plane and so its co-ordinates are then

Rx = ao(cos E − eo)

Ry = ao

√
1 − e2

o sin E

Rz = 0, (23)

where ao and eo are the semimajor axis and eccentricity of the outer
orbit. In this work, we neglect perturbations on the outer orbit.

2.3 Stellar wind

Without a stellar wind, or with a very weak stellar wind, it is possible
that tidal interactions between the star and planet can result in the
planet being trapped in a close orbit (Dobbs-Dixon, Lin & Mardling
2004). Most stars, however, have winds that continue to remove an-
gular momentum, and so once tidal interactions become significant,
we would typically expect the planet to continue spiralling in to-
wards the central star. We implement here a very simple magnetic
braking form for the stellar wind (Weber & Davis 1967; Kawaler
1988; Collier Cameron & Jianke 1994) so that in the unsaturated
regime, the stellar wind term is

#̇swind = −κw#3
s , (24)

where κw is the braking efficiency coefficient. In the saturated
regime (when #s > #̃) this becomes

#̇swind = −κw#2
s #̃. (25)

The braking efficiency coefficient, κw, is set so that the stellar
rotation period matches that expected for the star being considered,
and #̃ is set to be 14#⊙. The vector associated with the stellar
wind is always set so as to point in to opposite direction to that of
the spin of the planet host star.
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2.4 Putting it together

Ultimately we want to evolve the angular momentum, h, and ec-
centricity, e, of the inner orbit, and the spins of the planet and its
host star, !p and !s. The evolution of the stellar spin is determined
by combining the stellar wind equations (equations 24 and 25 with
equation 3). The evolution of the spins of the star and planet (equa-
tion 4), both depend on the tidal evolution of the orbital angular
momentum (equation 1).

To evolve the angular momentum of the inner orbit, we need to
add the contributions from tides (equation 1), perturbations from
an outer body expanded to quadupole and octupole order (equa-
tions 13 and 20), and perturbations from distortions of the inner star
and planet (equation 14). Similarly to evolve the eccentricity of the
inner orbit, we combine the contributions from tides (equation 2),
perturbations from an outer body expended to quadrupole and oc-
tupole order (equations 15 and 21), perturbations from distortions
of the inner star and planet (equation 16) and GR apsidal precession
(equation 17).

2.5 Some basic tests

Since this is a new code, we ran a few comparison tests to check
that it was working properly. The first was that introduced by Wu &
Murray (2003). It comprises a 1.1 M⊙ star with a 7.8 MJup planetary
companion, the star having a radius of 1R⊙ and the planet having
a radius the same as that of Jupiter. The initial stellar and planetary
spin periods are, respectively, 20 d and 10 h. The inner system’s
orbit has a semimajor axis of a = 5.0 au, and eccentricity e = 0.1,
the tidal love numbers are ks = 0.028 and kp = 0.51, and the tidal
dissipation quality factors are Q′

s = 5.35 × 107 and Q′
p = 5.88 ×

105. The system also has a 1.1 M⊙ companion with ao = 1000 au,
eo = 0.5 and with an orbital plane inclined at 85.◦6 to that of the
plane of the inner orbit.

Fig. 1 shows the time evolution of the semimajor axis (dashed
line) and periaps (solid line) of the system described above, and
appears the same as that in Fabrycky & Tremaine (2007), who also
performed this test. It is not quite the same as in Wu & Murray
(2003), but we can match their result if we remove the apsidal
precession due to the spin and tidal bulges of the planet (which can
require very short timesteps and, hence, long integration times).

Figure 1. A figure showing the evolution of the semimajor axis (a – solid
line) and the periaps (a(1 − e) – dashed line) using initial conditions the
same as those in Wu & Murray (2003). This was a code test that was also
carried out by Fabrycky & Tremaine (2007), and our results appear to match
theirs. It does not quite match Wu & Murray (2003) but we can match their
results if we ignore the term representing the apsidal precession due to the
spin and tidal bulges of the planet.

Figure 2. The evolution of 1 − e for a system with the same parameters as
those used by Naoz et al. (2013) and described here in the text. The solid line
shows the evolution when the octupole terms are included and it matches
that of Naoz et al. (2013). The dashed line shows how the system would
evolve in the absence of the octupole terms.

The second test was primarily to check that the octupole terms
had been properly implemented. In this test, taken from Naoz et al.
(2013), we ignore the tidal evolution terms, the terms associated
with the distortion of the inner star and planet due to their tidal
bulges, and the effect of GR apsidal precession. The system consists
of an inner star of mass 1 M⊙, a companion planet with mass 1 MJup,
and an outer planet with mass 1 M⊙. The inner orbit has a semimajor
axis of a = 6 au and eccentricity of e = 0.001. The outer orbit has
a semimajor axis of ao = 100 au, an eccentricity of eo = 0.6 and
is inclined at 65◦ to the plane of the inner orbit. The argument of
pericentre of the inner orbit is also set, initially, to 45◦ with the outer
one set to zero.

Fig. 2 shows the time evolution of 1 − e for the system described
above. The result appears identical to that in Naoz et al. (2013). The
dotted line also shows how the system would evolve in the absence
of the octupole terms.

3 BASIC SETUP

The system we want to consider specifically is Kepler-78 (Sanchis-
Ojeda et al. 2013). The companion planet, with a mass of
Mp = 1.86 M⊕ and radius of Rp = 1.173 R⊕, is Earth-sized and
has an Earth-like density (ρ = 5.57 g cm−3) (Howard et al. 2013;
Pepe et al. 2013). The host star has a mass of Ms = 0.81 M⊙ and
radius Rs = 0.737 M⊙, and the planet has an orbit that is circular
(e = 0) and orbits at a distance a = 0.0089 au (giving an orbital
period of 8.5 h).

The system is thought to have an age between 600 and 900 Myr
(Sanchis-Ojeda et al. 2013), so here we run our initial simulations for
800 Myr. We set the stellar wind braking parameter to κw = 1046,
which gives a stellar rotation speed of between 11 and 12 d at
t = 800 Myr, similar to that observed (Pepe et al. 2013). A star
with a mass similar to that of Kepler-78, however, does not spin-
down much in the first Gyr and so the stellar wind is probably
not particular important here. The tidal love numbers are set to
ks = 0.028 and kp = 0.51, and we consider stellar tidal quality
factors of Q′

s = 5 × 105 and Q′
s = 5 × 106. We will specify the

tidal quality factor for the planet Q′
p, the planet’s initial orbital

properties and the properties of the outer body, when we discuss the
results of the simulations.
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Kozai–Lidov cycles and Kepler-78b 1733

4 R ESULTS

Since we want to consider if Kozai–Lidov cycles could explain the
properties of Kepler-78b, our models are set up in the following
way. We assume we have a planet with a mass and radius the same
as that of Kepler-78b with an initial semimajor axis between a = 0.5
and 2 au, with the semimajor axis chosen randomly in log a. The
initial eccentricity is set to be e = 0.05, chosen because we are
assuming, here, that the planet has formed in a circumstellar disc in
an almost circular orbit. We should acknowledge, however, that the
initial eccentricity can have a significant impact on the evolution
of co-planar systems (Li et al. 2014) and, therefore, stress that our
results only apply to systems in which the inner system has a low
initial eccentricity.

We also assume that there is an outer companion with a mass
randomly chosen to be uniform between Mo = 0.1 M⊙ and
Mo = 1 M⊙, a semimajor axis chosen randomly in log a, between
ao = 40 au and ao = 20 000 au, and a randomly chosen eccentricity
between eo = 0 and eo = 1. We then fix the outer companion’s orbit
to be in the xy plane and randomly orientate the inner orbit so that the
mutual inclination, i, is isotropic (Wu, Murray & Ramsahai 2007).
We also randomly orientate the longitude of the planet’s ascending
node. By choosing such a high-mass companion, we are essentially
in the test particle regime (Lithwick & Naoz 2011). Such compan-
ions will also produce a large maximum eccentricity (for the inner
orbit) than lower mass companions (Teyssandier et al. 2013). As
such, we might expect a reasonably large number of tidal disruption
events (Naoz, Farr & Rasio 2012; Li et al. 2014; Petrovich 2015).
As such, our results only apply to a situation where the companion
is of stellar mass.

We also impose stability criteria (Mardling & Aarseth 2001;
Lithwick & Naoz 2011; Naoz et al. 2013) and insist that

a

ao

eo

1 − e2
o

< 0.1, (26)

and that

ao

a
> 2.8

(
1 + Mo

Ms + Mp

)2/5 (1 + eo)2/5

(1 − eo)6/5

(
1 − 0.3i

180◦

)
. (27)

Equation (26) ensures that we are in the regime where the
quadrupole and octupole terms dominate, while equation (27), in
which i is the mutual inclination of the two orbits, ensures that the
triple system is long-term stable (Mardling & Aarseth 2001). Equa-
tion (27) is almost always satisfied for the initial conditions used
here.

4.1 Initial results

The tidal quality factor for a terrestrial planet is thought to lie
between Q′

p = 10 and Q′
p = 500 (Goldreich & Soter 1966). Since

we are considering a young system in which the planet likely retains
a lot of its initial internal heat, we assume a value at the top of this
range (Q′

p = 500), and also a more extreme case where Q′
p = 5000

(Henning, O’Connell & Sasselov 2009). For the star, we assume
tidal quality factors of Q′

s = 5 × 105 and Q′
s = 5 × 106, within

the range expected for exoplanet host stars (Baraffe, Chabrier &
Barman 2010; Brown et al. 2011). For each simulation we select
the initial conditions as described above and evolve the system until
t = 800 Myr, using a fourth-order Runge–Kutta integrator. We repeat
this 10 000 times for each set of parameters, and the basic result is
shown in Fig. 3. The top panel is for Q′

p = 500 and the bottom for
Q′

p = 5000. The solid line in each figure is for Q′
s = 5 × 106, the

Figure 3. Histograms showing the final semimajor axes of the simulations
with initial setup as described in the text and in which each simulations is
stopped at t = 800 Myr. The top panel is for Q′

p = 500 and the bottom
is Q′

p = 5000. The stellar tidal quality factors that we consider are Q′
s =

5 × 106 (solid line) and Q′
s = 5 × 105 (dashed line). We consider 10 000

system in each case, with the planet starting with a between 0.5 and 2
au. After 800 Myr, there are between 10 and 4 planets surviving inside
a = 0.01 au, depending on the values of Q′

p and Q′
s. The vertical dash–

dotted line indicates the current semimajor axis of Kepler-78b. In each case,
the number of planets still located between 0.5 and 2 au is very large, and
their distribution extends well above the limits shown on the y-axis.

dashed line is for Q′
s = 5 × 105, and the vertical dash–dotted line

indicates the current semimajor axis of Kepler-78b. In each case,
the number of planets still located between 0.5 and 2 is very large
and their distribution extends well above the limits shown on the
y-axis.

From Fig. 3 it seems clear that it is possible for a planet to be
perturbed into an orbit inside a = 0.01 au within 800 Myr. However,
the numbers are typically small. For Q′

p = 500 it is 10 (Q′
s = 5 ×

106) and 4 (Q′
s = 5 × 105), while for Q′

p = 5000 it is 7 and 4,
respectively. Even though the number of planets surviving inside
a = 0.01 au is small, in most cases, a much larger number reach
their Roche limit [a = Rp/0.462(M∗/Mp)1/3 = 0.0056 au] (Faber,
Rasio & Willems 2005) and are assumed to be tidally disrupted
and destroyed. With the exception of the Q′

p = 500, Q′
s = 5 × 106

simulation (in which the numbers were small), in excess of 100 –
out of a sample of 10 000 – reached the Roche limit.

Given that a large numbers of planets do become tidally de-
stroyed, it is useful to know for how long a planet might exist inside
a = 0.01 au. Fig. 4 shows four single planet simulations, one for
each combination of Q′

p and Q′
s, each of which is run until the planet

reaches its Roche limit. The amount of time such a planet spends
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Figure 4. A set of single planet simulations, each with a different Q′
p or

Q′
s value. In each case we have chosen initial conditions that would indeed

perturb the planet into a close orbit, and have run each simulation until the
planet reaches its Roche limit (a = 0.0056 au in this case). The time a planet
spends inside 0.01 au before reaching its Roche limit depends primarily on
the star’s tidal quality factor and varies from 48 Myr (Q′

s = 5 × 105) to
480 Myr (Q′

s = 5 × 106).

inside a = 0.01 au depends, primarily, on the star’s tidal quality
factor. For Q′

s = 5 × 106, the planet reaches the Roche limit in
480 Myr, while for Q′

s = 5 × 105 it takes 48 Myr. Therefore, it
would seem that for reasonable estimates of the star’s tidal quality
factor, a planet such as Kepler-78b will only be detectable inside
a = 0.01 au for a few hundred Myr at most.

Our initial results would therefore seem to suggest that it is pos-
sible for an outer companion to perturb a planet like Kepler-78b
into a very close orbit (a < 0.01 au) within the age of the system
(∼800 Myr). However, the numbers are small, with at most 10 out
of 10 000 surviving inside a = 0.01 au at t = 800 Myr.

4.2 Age of the system

The previous simulations only considered the likelihood of a system
with an age similar to that of Kepler-78, having a planetary com-
panion with orbital properties similar to that of Kepler-78b. The
results suggest it is possible, but probably rare. Additionally, the
age distribution of a sample of 950 Kepler object of interest host
stars (Walkowicz & Basri 2013) suggests that about 10 per cent
have ages less than 1 Gyr. This is also probably biased towards
younger stars because of the way in which the sample was selected.
Given that about 40 per cent of these would have stellar compan-
ions (Raghavan et al. 2010) would further reduce the likelihood of
actually observing a Kepler-78b-type system.

To investigate how our results might depend on the age of the
system, we reran our simulations with the same set of parameters as
described above, but allowed the age of the star to vary, uniformly,
from 500 Myr, to 2 Gyr. The resulting histograms are shown in Fig. 5
and are very similar to those in Fig. 3. There is a slight increase
in the number surviving inside a = 0.01 au for Q′

s = 5 × 106. In
these runs there were 17 and 16 for Q′

p = 500 and Q′
p = 5000

respectively, compared to 10 and 7 when the age of the system was
fixed at t = 800 Myr. For Q′

s = 5 × 105, the numbers are similar to
the runs with the age fixed at t = 800 Myr.

To further see the influence of the age of the system, we plot
in Fig. 6 the final semimajor axis of the planet against age of the
system, for all those systems in which planets end up inside 0.05 au.
We only show, however, the results for Q′

p = 5000, Q′
s = 5 × 106

as that produced the largest number of surviving planets inside

Figure 5. Histograms showing the final semimajor axes for the simulations
with initial setup as described in the text and in which the age of each system
is randomly chosen to be between 500 Myr and 2 Gyr. The top panel is for
Q′

p = 500 and the bottom is Q′
p = 5000. The stellar tidal quality factors

that we consider are Q′
s = 5 × 106 (solid line) and Q′

s = 5 × 105 (dashed
line). We consider 10 000 system in each case, and the planets start with
a between 0.5 and 2 au. In each case, the number of planets still located
between 0.5 and 2 au is very large, and their distribution extends well above
the limits shown on the y-axis. Depending on the values of Q′

p and Q′
s, there

are between 17 and 6 planets surviving inside a = 0.01 au.

Figure 6. Figure showing the final semimajor axes for those planets that end
up with a < 0.05 au, plotted against the age of the system. This simulations
each considered 10 000 systems in which the outer perturber was assumed
to have a semimajor axis distribution that extended to ao = 20 000 au. It is
clear that it is possible for a system with an age similar to that of Kepler-78
to have a planet inside 0.01 au, but it is more likely for systems older than
1 Gyr, than for those with ages below 1 Gyr.
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a = 0.01 au. The first thing to note is that it appears more likely to
detect such a planet for systems older than 1 Gyr (Kepler-78 has an
age of between 600 and 900 Myr). However, Fig. 6 does show four
systems with an age <1 Gyr, and with a planet inside a = 0.01 au.

Walkowicz & Basri (2013) also suggest that maybe 20 per cent
of the Kepler targets have ages less than 2 Gyr. Kepler observed
about 150 000 stars (Borucki et al. 2010), which suggests maybe as
many as many as 30 000 could have ages less than 2 Gyr. Candi-
dates as small as Kepler-78b, however, are typically found around
quieter – and therefore older – stars. Kepler is therefore incomplete
for stars with high Combined Differential Photometric Precision
(Batalha et al. 2013; Christiansen et al. 2013) and so the number
of such planets is likely an underestimate. In the scenario shown in
Fig. 6, 17 – out of 10 000 – survive inside a = 0.01 au. If we assume
that 40 per cent of those stars have stellar companions (Raghavan
et al. 2010), and that all of those stars could host terrestrial planets
(Greaves & Rice 2011; Cassan et al. 2012), then we might expect
as many as 20 of the 30 000 Kepler targets, with ages below 2 Gyr,
to host such an ultra-close-in planet. Of course, our other simu-
lations suggest that the number surviving could be as low as two
(depending on the tidal properties of the star and planet), but given
that the chance of such a system transiting is actually quite high
(46 per cent), observing such a system is still quite likely.

Similarly, if we consider only those systems with ages below
1 Gyr, Fig. 6 suggests that maybe as many as four out of 10 000
could survive inside a = 0.01 au. Repeating the calculation above
suggests that maybe 4–5 stars with ages similar to that of Kepler-
78 could host such a close-in planet. Again, given the high transit
probability for such a close-in system, detecting a planet such as
Kepler-78b becomes possible. Our results therefore suggest that it is
possible for this process to have produced a planet like Kepler-78b.
Of course, if Kepler-78 is closer in age to 600 Myr, than to 900 Myr,
Fig. 6 suggests that it would become less likely.

4.3 Perturber properties

The results above suggest that it is possible for an outer perturber
to drive a Kepler-78b-like planet into a close-in orbit within the
age of Kepler-78. To see how the properties of the outer body
influences the inner planet, we show – in Fig. 7 – how the final
semimajor axis of the planet depends on the mass of the outer body.
Again, we only shows results from the simulation with Q′

p = 5000

Figure 7. Figure showing the planet’s final semimajor axis plotted against
the mass of the outer companion. There appears to be little dependence
on companion mass. Kepler would probably have detected a companion
with a mass in excess of ∼0.5 M⊙, but this figure does show that a low-
mass companion (M < 0.5 M⊙) could indeed have produced a system like
Kepler-78b system.

Figure 8. Figure showing how the orbital properties of the outer companion
influences the final semimajor axis of the inner planet. The top panel shows
that outer companions with smaller semimajor axes (ao) are more likely to
drive the planet to within a = 0.01 au. The bottom panel shows that outer
companions with large eccentricities are more likely to perturb inner planets
into very-close-in orbits, but that it is still possible for outer perturbers with
low eccentricities.

and Q′
s = 5 × 106. Fig. 7 suggests that there is not a particularly

strong mass dependence, consistent with our simulations essentially
being in the test particle regime (Lithwick & Naoz 2011). However,
Kepler-78, which has an apparent magnitude of mv = 12, is not
known to host a stellar companion. Since Kepler is sensitive down
to an apparent magnitude of mv = 14, that would suggest that if
there is an undetected companion it would need to have a mass less
than about 0.5 M⊙.

Fig. 8 shows how the final semimajor axis of the planet, a, depends
on the orbital properties of the outer body. The top panel shows that
it is more likely that the planet will end up close to the parent
star, if the outer body is in a relatively close orbit (ao ∼ <100
au). Kepler’s has a 4 arcsec pixel size, and so Fig. 7 does suggest
that a sufficiently faint, non-variable companion – that could have
perturbed a planet into a Kepler-78b-like orbit – could indeed have
avoided detection. The bottom panel of Fig. 8 shows how the final
semimajor axis of the planet depends on the eccentricity (eo) of the
outer body. It indicates that close-in orbits are a little more likely
when the companion has a high eccentricity (e > 0.4) but are still
possible for those with smaller eccentricities.

4.4 The pile-up inside 0.1 au

Figs 3 and 5 show a pile-up of planets inside a = 0.1 au, peaking
at ∼0.02 au. In our simulations, between 350 and 850 (between 3.5
and 8.5 per cent of the full sample of 10 000) had final semimajor
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Figure 9. Figure showing the obliquity of the inner system. The inner
system starts with the orbital angular momentum aligned with the spins of
the central star and planet. The perturbation from the outer companion can,
however, cause the inclination of the inner orbit to oscillate and those system
that are tidally circularized can end up with a range of obliquities.

axes inside a = 0.1 au (and had not reached their Roche limit). If
we assume that 40 per cent of the Kepler sample could have a binary
companion (either primordial or through an exchange interaction)
– and that most Sun-like stars have terrestrial-mass, planetary com-
panions (Greaves & Rice 2011; Cassan et al. 2012) – then our results
suggest that as much as 3 per cent of the Kepler sample might have
planets that have been perturbed into close-in orbits, with a distri-
bution that peaks at about 0.02 au. This is intriguingly similar to the
suggestion in Sanchis-Ojeda et al. (2014) that about 1 in 200 Kepler
stars hosts a planet with a period of 1 d or less.

4.5 Obliquity

An interesting aspect of the Kozai–Lidov process is that it can per-
turb a planet into an orbit that is inclined with respect to its initial
plane and, hence, inclined with respect to the spin of the host star
(Fabrycky & Tremaine 2007; Wu et al. 2007). We now have a num-
ber of close-in, ‘hot’ Jupiters that are on orbits inclined with respect
to the spin of the host star (Hébrard et al. 2008; Triaud et al. 2010)
and these are thought to be a consequence of Kozai–Lidov cycles.
Fig. 9 shows the final angle (obliquity) between the angular mo-
mentum vector of the inner planet’s orbit and the spin of the central
star, and shows that a wide range of obliquities are possible. All the
systems initially have obliquities of zero (the angular momentum
of the inner orbit is aligned with the spins of the parent star and
planet) and Fig. 9 shows that those that are perturbed into an inner
orbit can then be tidally circularized with a large range of obliq-
uities, consistent with other similar studies (Fabrycky & Tremaine
2007; Naoz et al. 2012). Using the Rossiter–McLaughlin method to
determine such a misalignment (e.g. Queloz et al. 2000) is probably
not possible for such a low-mass planet, but it may be possible to
do so using spot-crossing (Desert et al. 2011) or astro-seismology
(Chaplin et al. 2013).

5 D I S C U S S I O N A N D C O N C L U S I O N S

We have considered, here, if systems like Kepler-78b (an Earth-like
exoplanet with a very close-in orbit) could be due to a perturbation
from an outer companion on an, initially, inclined orbit. To do this,
we consider a system in which the star and planet have the same
masses and radii as in the Kepler-78 system (Howard et al. 2013;
Pepe et al. 2013; Sanchis-Ojeda et al. 2013), but in which the planet
initially has an almost circular orbit with a semimajor axis between

0.5 and 2 au. The system is also assumed to have an outer companion
with a semimajor axis between 40 and 20 000 au, with an orbital
eccentricity that can be as high as e = 1 (but constrained by stability
criteria) and that may be inclined with respect to the plane of the
inner orbit.

We ran a suite of Monte Carlo simulations in which we randomly
select the inner and outer systems semimajor axes, the eccentricity
of the outer system, the mass of the outer companion and the mutual
inclination of the two orbits. We ran two sets of simulations, one
where each system was evolved for t = 800 Myr, similar to the
expected age of the Kepler-78 system, and the other where the age
of the system was randomly selected to be between 500 Myr and
2 Gyr. Our basic results are as follows.

(i) It is possible for a planet to be perturbed into an orbit similar
to that of Kepler-78b around a star with an age (600–900 Myr)
similar to that of Kepler-78. Out of a sample of 10 000, between 4
and 10 survive inside a = 0.01 au.

(ii) If we consider a broader age range, the likely binarity of the
Kepler sample, and the size of the Kepler sample, our results suggest
that as many as 20 of the Kepler targets with ages less than 2 Gyr
could host a Kepler-78b-like planet. Additionally, we find that a
system with an age similar to that of Kepler-78 could indeed have
been found to host a Kepler-78b-like planet.

(iii) A planet such as Kepler-78b will, quite quickly, reach its
Roche limit and be tidally destroyed. Our results suggest that such
a planet would only survive inside a = 0.01 au for a few hundred
Myr, at most. In the simulations here, typically in excess of 100,
but no more than 300, (out of 10 000) reached their Roche limit and
were assumed to be destroyed. This appears consistent with other
work that has also suggested that this process could lead to the tidal
destruction of perturbed planets (Naoz et al. 2012).

(iv) Given Kepler’s 4 arcsec pixel size and magnitude limit, it
is possible that a faint, non-variable companion that could drive
Kozai–Lidov cycles may have gone undetected. That the companion
appears to need to be inside 100 au, means that it may be possible
to detect the resulting radial velocity drift.

(v) If a planet such as Kepler-78b were perturbed into its cur-
rent orbit through Kozai–Lidov cycles, we might expect the star’s
rotation axis to be misaligned with respect to the planet’s orbit. Mea-
suring the star’s obliquity is quite difficult, but could be possible
using spot-crossing (Desert et al. 2011) or using astro-seismology
(Chaplin et al. 2013).

(vi) Even though it appears possible that a system such as Kepler-
78b could form in this way, it appears to be more likely for system
older than 1 Gyr, than for systems younger than 1 Gyr.

Our basic results, therefore, suggest that such a process could
operate, but there are some caveats. Although it is possible for a
system with an age similar to that of Kepler-78 to host a planet
like Kepler-78b, the numbers are small (we may expect the Kepler
sample to host only a few such planets). Additionally it seems that it
would have been more likely to have found such a planet in a slightly
older system. These results, therefore, suggest that Kozai–Lidov
cycles could have played a role in the evolution of Kepler-78b, but
do not rule out that there could be an alternative explanation, such
as planet–planet scattering (Rasio et al. 1996).This, however, may
suffer from the similar issues, since the dominant constraint – given
the relatively low age of Kepler-78 – is the tidal evolution time-scale.
This constraint would probably also apply to the tidal downsizing
hypothesis (Nayakshin 2010), in which a massive gas-giant planet
formed in the outer parts of the system, migrates rapidly inwards
and loses masses via tidal stripping. That, of course, leaves the
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possibility that disc migration (Ward 1997) moved this planet into a
very close orbit which has since evolved, through tidal interactions
with the host star, into the orbit it inhabits today. Again, this would
also involve tidal evolution once the disc has dispersed and so may
also have a similar time-scale issue, unless disc migration can place
the planet sufficiently close to the parent star so that it can then
tidally evolve to where it is today.

Recent work by Sanchis-Ojeda et al. (2014) suggest that about
1 out of every 200 stars hosts an ultrashort-period (USP) planet
(period of 1 d or less). Although we have focused on Kepler-78b
here and found that few of our simulated systems have final periods
as short as Kepler-78b (8.5 h), many more have periods of 1 d or
less. The exact number depends on the chosen parameters, but it
varies from ∼100 to just over 300 (from a total sample of 10 000).
Given that not all stars are binaries, this is intriguingly similar to the
result in Sanchis-Ojeda et al. (2014). Similarly, our results suggest
that such a process should lead to a pile-up of planets with a peak
at about 0.02 au, again consistent with Sanchis-Ojeda et al. (2014),
who find that the occurrence rate rises with period from 0.2 to 1 d.
It may, however, be difficult to distinguish a pile-up due to Kozai–
Lidov cycles from what is expected from scattering in multiplanet
systems (Schlaufman et al. 2010). Sanchis-Ojeda et al. (2014) do,
however, suggest that almost all USPs have companion planets with
period P < 50 d, which may provide a constraint on the formation
process for these USPs.

We should also acknowledge the possibility that our assumptions
do not properly represent the possible initial conditions such a sys-
tem could have. The initial distribution of the planet in semimajor
axis space may be different to what we have assumed and the orbital
properties of the outer perturber may also be different. Similarly,
the tidal properties of the parent star and planet may differ from
what we have assumed. However, we should at least acknowledge
that even though our results suggest that Kozai–Lidov cycles will
rarely produce a planet with properties similar to that of Kepler-78b,
Kepler-78b is itself rare. In that sense our results could be seen as
somewhat consistent with our knowledge of such planets, but that –
alone – does not allow us to determine if it is likely that such a
process did indeed play a role in the evolution of Kepler-78b.
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