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Blood-stage immunity to Plasmodium
chabaudi malaria following
chemoprophylaxis and sporozoite
immunization
Wiebke Nahrendorf1,2*†‡, Philip J Spence1†‡, Irene Tumwine1§, Prisca Lévy1§,
William Jarra1, Robert W Sauerwein2, Jean Langhorne1*§

1Division of Parasitology, MRC National Institute for Medical Research, London,
United Kingdom; 2Department of Medical Microbiology, Radboud University Medical
Centre, Nijmegen, Netherlands

Abstract Protection against malaria in humans can be achieved by repeated exposure to infected

mosquito bites during prophylactic chloroquine treatment (chemoprophylaxis and sporozoites

(CPS)). We established a new mouse model of CPS immunization to investigate the stage and strain-

specificity of malaria immunity. Immunization with Plasmodium chabaudi by mosquito bite under

chloroquine cover does not generate pre-erythrocytic immunity, which is acquired only after

immunization with high sporozoite doses. Instead, CPS immunization by bite elicits long-lived

protection against blood-stage parasites. Blood-stage immunity is effective against a virulent,

genetically distinct strain of P. chabaudi. Importantly, if exposure to blood-stage parasitemia is

extended, blood-stage parasites induce cross-stage immunity targeting pre-erythrocytic stages. We

therefore show that CPS immunization can induce robust, long-lived heterologous blood-stage

immunity, in addition to protection against pre-erythrocytic parasites following high dose sporozoite

immunization. Cross-stage immunity elicited by blood-stage parasites may further enhance efficacy

of this immunization regimen.

DOI: 10.7554/eLife.05165.001

Introduction
Protective immunity against microorganisms is developed after repeated infection and recovery (Mutapi

et al., 2013). Vaccines are usually successful if they mimic these naturally acquired immune responses

(Fox, 1984; Mielcarek et al., 2006). While protection against viruses and bacteria can be induced by

vaccination with killed (inactivated) or live-attenuated pathogens (Delany et al., 2014), there is no

licensed vaccine for human parasitic diseases like malaria that pose a major global health burden.

The apicomplexan malaria parasite Plasmodium is transmitted by bites of female anopheline

mosquitoes. In the vertebrate host, sporozoites injected into the dermis migrate to the liver, where

they establish a clinically silent infection of hepatocytes. Merozoites are then released from the liver

and invade erythrocytes, leading to an exponential asexual replication cycle that is entirely responsible

for the clinical signs and symptoms associated with malaria. Immunity against severe disease can be

acquired following repeated infection, but sterile parasite clearance is rarely achieved (Goncalves

et al., 2014). Clinically immune adults in endemic areas still harbor parasites in their blood-stream

(Okell et al., 2009). These asymptomatic carriers also develop gametocytes, the form transmissible to

mosquitoes, thereby allowing the parasite to complete its life cycle.

To achieve malaria control and eventually eradication, transmission must be blocked (Kappe et al.,

2010). A vaccine that protects against pre-erythrocytic parasites, and thus outperforms naturally
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acquired immunity, would greatly facilitate this aim. Parasites that arrest during the liver stage, either

because of irradiation (Nussenzweig et al., 1967) or targeted gene deletion (Mueller et al., 2005),

can provide immunity against challenge infection. Indeed, immunization of human volunteers with

irradiated sporozoites can induce sterile protection in experimental settings (Clyde et al., 1973;

Seder et al., 2013). However, in the absence of acquired immunity to the blood-stage parasite

a pre-erythrocytic vaccine that is only partially effective, and therefore permits breakthrough

erythrocytic infections, will provide no protection against severe malaria (Bejon et al., 2011). The

inclusion of a blood-stage component together with an effective pre-erythrocytic vaccine is therefore

preferred to provide a multi-stage malaria vaccine that minimizes both transmission and disease

(Ellis et al., 2010; Goodman and Draper, 2010).

A recently described experimental malaria immunization protocol using chemoprophylaxis and

sporozoites (CPS) (Roestenberg et al., 2009) ensures exposure to pre-erythrocytic and blood-stage

parasites, and hence has the unique potential to induce protection against all Plasmodium life cycle

stages in the vertebrate host. Three immunizations with bites of 10–15 Plasmodium falciparum-

infected mosquitoes under chloroquine chemoprophylaxis are sufficient to elicit sterile protection

against homologous challenge in human volunteers (Roestenberg et al., 2009; Bijker et al., 2013,

2014). Although it is not possible to measure liver parasite burden in human volunteers directly, it

appears that immunity exclusively targets pre-erythrocytic parasite life cycle stages, as there is no

protection against direct blood challenge (Bijker et al., 2013). CPS immunization is thus substantially

more effective than immunization with irradiated sporozoites, which requires 1000 mosquito bites

eLife digest Malaria is a life-threatening infectious disease in humans that is caused by a single-

celled parasite called Plasmodium. The parasite is carried between people by mosquitos; when an

infected mosquito bites a human, the parasite is injected into the bloodstream with the mosquito’s

saliva. Plasmodium first infects liver cells but then re-enters the bloodstream, where it infects red

blood cells leading to symptoms of disease. If another mosquito bites the infected individual at this

so-called ‘blood-stage’, the parasite can be passed to this mosquito and the cycle of transmission

continues.

Currently there are no vaccines available that can effectively protect against malaria. Although an

experimental vaccine containing a weakened form of the parasite can protect against the liver-stage

parasites, it fails to prevent the parasite from multiplying in the red blood cells. Therefore, the

individuals remain susceptible to severe malaria.

Recently, researchers have developed a new strategy for immunization that provides exposure to

both liver-stage and blood-stage parasites. Human volunteers taking an anti-malarial drug were

deliberately exposed to mosquitos carrying the parasite on three separate occasions. Although the

volunteers were infected with the parasite, the anti-malarial drug killed the parasites inside the red

blood cells. After the end of the drug treatment, the volunteers were exposed to mosquitos carrying

the parasite and they were still protected from infection. These results are promising, but it is not

clear if the volunteers have acquired immunity to liver-stage or blood-stage parasites, or even both.

To answer this important question, Nahrendorf et al. developed a similar immunization strategy in

mice. Just like the human volunteers, the mice were treated with an anti-malarial drug and exposed

to mosquitos carrying Plasmodium on three separate occasions. Although the immunizations did not

protect the mice against early infection in the liver, they did provide long-term protection against

parasites multiplying in the red-blood cells.

The immunity generated by this immunization strategy also protected the mice against another

strain of Plasmodium, different to the one used in the immunizations. The experiments also show that

prolonged exposure to the blood-stage parasites can even lead to immunity against the liver-stage

parasites.

Nahrendorf et al.’s findings show that this immunization strategy can protect individuals against

both the liver-stage and blood-stage parasites. The next challenges are to find out how the immunity

generated by one stage of infection can protect against the other stages, and to discover which

molecules on the parasite the immune system targets.

DOI: 10.7554/eLife.05165.002
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(Clyde et al., 1973) or five intravenous (iv) injections of more than 100,000 sporozoites for sterile

protection (Seder et al., 2013). We therefore hypothesize that transient blood-stage parasitemia,

before abrogation by chloroquine, may contribute to immunity following CPS immunization.

In this study, we have investigated the stage- and strain-specificity of protection in a novel mouse

model of CPS immunization using Plasmodium chabaudi. P. chabaudi establishes a chronic, non-lethal

blood-stage infection, which has been used extensively to characterize the immune response to

blood-stage parasites in vivo (Stephens et al., 2012). A recently optimized protocol for P. chabaudi

mosquito transmission (Spence et al., 2012) allows us now to also study pre-erythrocytic stages of this

rodent parasite. Heterologous protection can readily be assessed since many genetically distinct

P. chabaudi isolates displaying a variety of virulence phenotypes are available (Mackinnon and Read,

1999; Otto et al., 2014). We immunized C57BL/6 mice three times with bites of P. chabaudi-infected

mosquitoes under oral chloroquine chemoprophylaxis similar to human clinical trials (Roestenberg

et al., 2009; Bijker et al., 2013, 2014). This approach is unique amongst all published animal models

of CPS immunization (Beaudoin et al., 1977; Golenser et al., 1977;Orjih et al., 1982; Belnoue et al.,

2004; Friesen and Matuschewski, 2011; Inoue et al., 2012; Nganou-Makamdop et al., 2012b; Doll

et al., 2014; Lewis et al., 2014; Peng et al., 2014), which have (without exception) used iv injection of

high numbers of Plasmodium berghei or Plasmodium yoelii sporozoites for immunization.

Furthermore, rather than evaluating effector mechanisms by challenging shortly after immunization

(Beaudoin et al., 1977; Belnoue et al., 2004; Friesen and Matuschewski, 2011), we performed the

challenge 100 days after the final immunization to test the generation and maintenance of long-term

immunological memory.

CPS immunization with P. chabaudi by mosquito bite does not generate pre-erythrocytic immunity,

which is acquired only after immunization with high doses of sporozoites. Instead, immunization by

bite elicits blood-stage immunity that is effective against the immunizing strain and also a more

virulent, genetically distinct P. chabaudi. Moreover, extended exposure to blood-stage parasitemia

elicits robust pre-erythrocytic immunity, comparable to protection afforded by high dose sporozoite

immunization. Exposure to blood-stage parasites thus elicits heterologous blood-stage immunity and

can contribute to the pre-erythrocytic efficacy of this immunization regimen. Therefore, these findings

add significantly to advances from previous CPS immunization mouse models by evaluating the

generation of immune memory after immunization with P. chabaudi by mosquito bite. This is relevant

for our understanding of acquired immunity in a malaria endemic setting, and can inform multi-stage

malaria vaccine development.

Results
We investigated the stage- and strain-specificity of protection in a novel mouse model of CPS

immunization (Figure 1). C57BL/6 mice were immunized three times at 2-week intervals with P.

chabaudi AS-infected mosquito bites. For certain experimental questions, it was necessary to deviate

from the natural route of infection and inject sporozoites iv to control the dose. Starting on the day of

infection, mice were then treated orally with 100 mg per kg chloroquine for 10 days following each

immunization. To assess the long-term efficacy of acquired immunity, mice were challenged

approximately 100 days after the last immunization. Protection against pre-erythrocytic or blood-

stage parasites was evaluated after mosquito bite or direct blood challenge.

CPS immunization leads to a transient blood-stage infection
Transient blood-stage parasitemia is a key feature of CPS immunization. We used quantitative

RealTime (qRT) PCR to measure erythrocytic parasite burden after each immunization with

P. chabaudi AS-infected mosquito bites under chloroquine cover. After the first immunization,

approximately 50,000 parasites per ml whole blood were detected within the first erythrocytic cycle

(Figure 2). The amount of blood-stage parasites within the first erythrocytic cycle varied extensively

(median 47,596, range 67–222,699), reflecting the stochastic inoculation of sporozoites during

mosquito bite (Beier et al., 1991; Ponnudurai et al., 1991; Medica and Sinnis, 2005). Thereafter,

chloroquine reduced parasitemia by 86–96% every 24 hr. After the fourth cycle, the majority of

erythrocytic parasites were cleared. Similarly, after the second and third immunization mice

experienced a substantial number of circulating blood-stage parasites for 48–72 hr. However,

although blood-stage parasites were detected in all but one mouse, parasitemia in the first
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erythrocytic cycle was reduced by 5- and 13-fold after the second and third immunizations,

respectively, when compared to infection controls (Figure 2). Consequently, one CPS immunization is

sufficient to reduce blood-stage parasite burden within the first erythrocytic cycle, which indicates

either pre-erythrocytic or blood-stage immunity.

Figure 1. Overview of experimental procedures. To quantify transient blood-stage exposure during chemoprophylaxis and sporozoite (CPS) immunization

female C57BL/6 were immunized three times at 2-week intervals with P. chabaudi AS-infected mosquito bites (typically 9.15 [median, range 6.9–13.6]

[Spence et al., 2012]). Following each immunization mice received 100 mg per kg chloroquine (CQ) per os daily for 10 days, starting from the day of

infection. A small blood sample was taken 48 hr after each mosquito transmission (before merozoite egress from the liver, P. chabaudi develops in the liver

for 52 hr [Stephens et al., 2012]; erythrocytic cycle 0), and then every 24 hr until erythrocytic replication cycle 4. Blood parasitemia was analyzed by

sensitive quantitative RealTime (qRT) PCR (Figure 2). Pre-erythrocytic immunity was evaluated in mice immunized three times with either P. chabaudi

AS-infected mosquito bites (Figure 3A) or by intravenous (iv) injection of defined numbers of P. chabaudi CB sporozoites (Figure 3B). P. chabaudi CB was

used since mosquitoes infected with this parasite harbor an increased number of sporozoites in their salivary glands (Spence et al., 2012), which made

injections of high numbers of sporozoites technically feasible. Mice were challenged 100 days after the last immunization by mosquitoes infected with the

respective homologous strain. Liver parasitemia was examined 42 hr after challenge by qRT PCR. Blood-stage immunity was assessed in mice immunized

with P. chabaudi AS-infected mosquito bites by qRT PCR and thin blood film following homologous challenge with either infected mosquito bites

(Figures 4A, 5C/D) or intraperitoneal (ip) injection of parasitized erythrocytes, which were either derived from a donor mouse infected by mosquito bite

(recently mosquito transmitted, Figure 4B) or after 26–32 serial blood-passages (Figure 4C). Heterologous protection was assessed using P. chabaudi

CB-infected mosquito bites (Figure 5A/B). To evaluate cross-stage protection mice received a first infection with P. chabaudi AS either by mosquito bite

or by ip injection of recently mosquito transmitted parasitized erythrocytes. The resulting blood-stage infection was eventually self-cured without

intervention. Mice were re-challenged 100 days after their first infection with P. chabaudi AS-infected mosquito bites and liver parasitemia was evaluated

by qRT PCR (Figure 6).

DOI: 10.7554/eLife.05165.003
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Pre-erythrocytic immunity requires
high doses of sporozoites during
CPS immunization
In order to assess directly whether pre-

erythrocytic immunity was generated by this

CPS immunization protocol, liver parasite burden

was analyzed after mosquito bite challenge.

Surprisingly, there was no difference in the liver

parasite burden between mice given three CPS

immunizations with P. chabaudi AS-infected

mosquito bites and infection controls

(Figure 3A). Therefore, immunization by mos-

quito bite under chloroquine cover according to

this protocol failed to elicit pre-erythrocytic

immunity. This is in contrast to results from other

animal models of CPS immunization where pre-

erythrocytic immunity is induced after high

numbers of sporozoites are injected iv (Belnoue

et al., 2004; Friesen and Matuschewski, 2011;

Inoue et al., 2012; Nganou-Makamdop et al.,

2012b; Lewis et al., 2014; Peng et al., 2014). To

test if pre-erythrocytic immunity can be induced

after CPS immunization with large numbers of

sporozoites, we used P. chabaudi CB, since

mosquitoes infected with this parasite strain

harbor an increased number of sporozoites in

their salivary glands compared to P. chabaudi AS

(Spence et al., 2012), making these experiments

technically feasible. In agreement with previous

studies (Belnoue et al., 2004; Friesen and

Matuschewski, 2011; Inoue et al., 2012;

Nganou-Makamdop et al., 2012b; Lewis

et al., 2014; Peng et al., 2014), mice immunized

iv three times with 10,000 P. chabaudi CB

sporozoites under chloroquine cover did show

reduced liver parasite burden (up to 90%) after

mosquito bite challenge, compared to infection controls (Figure 3B). Conversely, mice immunized iv

three times with a low dose of 100 P. chabaudi CB sporozoites (representative of the estimated

number of P. chabaudi sporozoites that initiate infection via mosquito bite, Spence et al., 2012) do

not acquire pre-erythrocytic immunity (Figure 3B). It also appears that CPS immunization with 10,000

live sporozoites was more effective at inducing pre-erythrocytic immunity than immunization with

10,000 irradiated P. chabaudi CB sporozoites, which arrest during hepatic development (Suhrbier

et al., 1990) and do not establish a blood-stage infection (Figure 3B). This suggests that complete

liver-stage maturation and the increased blood-stage parasitemia that accompanies immunization

with 10,000 sporozoites (as compared to 100 sporozoites or mosquito bite) could contribute to

pre-erythrocytic protection.

CPS immunization by mosquito bite elicits blood-stage immunity
To test whether the transient blood-stage infection resulting from CPS immunization by mosquito bite

(Figure 2) is sufficient to induce protection against erythrocytic parasites, we challenged mice

approximately 100 days after the last immunization and measured blood-stage parasitemia (Figure 4).

Mice that were CPS immunized with P. chabaudi AS had similar numbers of parasitized erythrocytes as

compared to mock immunized controls within the first five erythrocytic cycles following mosquito bite

challenge (Figure 4A). However, from erythrocytic cycle 6 parasitemia was significantly reduced and

blood-stage parasites were cleared more rapidly in immunized mice. This was reflected in a 6-fold

Figure 2. Chloroquine permits transient blood-stage

parasitemia during each immunization. The number of

parasitized erythrocytes (pE) per ml of whole blood was

enumerated by quantitative RealTime PCR after each

CPS immunization (i1, i2, i3) with P. chabaudi AS-

infected mosquito bites under chloroquine (CQ) cover.

The number of pE (at the late trophozoite stage) was

quantified immediately before merozoite egress from

the liver, at 48 hr post mosquito transmission (erythro-

cytic cycle 0), and then every 24 hr until erythrocytic

replication cycle 4. Daily parasitemia of 10 CPS

immunized mice (each color represents an individual

mouse) are shown. Blood-stage parasites were detected

within the first erythrocytic cycle after every immuniza-

tion in all but one mouse after the final immunization.

Gray bars represent the mean parasitemia in the first

erythrocytic cycle of naive mice infected as controls for

mosquito transmission efficiency separate with each

immunization (n = 3–5). Significant differences in the

number of blood-stage parasites in the first erythrocytic

cycle between naive and CPS immunized mice are

indicated (Mann Whitney test, **p ≤ 0.01).

DOI: 10.7554/eLife.05165.004
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reduction of total area under the curve (AUC) (right inset, Figure 4A). Protection against erythrocytic

parasites was also evaluated by direct blood challenge, using blood-stage parasites obtained from

a donor mouse infected by mosquito bite. Similar to the results of mosquito bite challenge, blood-

stage parasitemia was significantly reduced (Figure 4B), but the infection was still chronic in some

mice (Figure 4—figure supplement 1). However, blood-stage protection was abrogated when CPS

immunized mice were challenged with serially blood passaged (SBP) P. chabaudi; blood-stage

parasites with increased virulence following multiple passages through naive mice (Spence et al.,

2013, Figure 4C). In this case, CPS immunization reduced blood-stage parasite burden only between

erythrocytic cycle 6 and 8, as compared to mock immunized controls. This was reflected in only

a 1.2-fold reduction in total AUC (right inset, Figure 4C). Therefore, CPS immunization by mosquito

bite elicits homologous blood-stage immunity, which is most effective in the context of mosquito

transmission.

CPS immunization elicits heterologous blood-stage immunity
CPS immunization has so far not been shown to induce protection against challenge with genetically

distinct strains of Plasmodium; a situation that would be encountered in human malaria-endemic

areas. The genetic diversity amongst strains of P. chabaudi (Mackinnon and Read, 1999; Otto et al.,

2014) allows us to investigate heterologous immunity in this model of CPS immunization. Mice that

were CPS immunized with P. chabaudi AS-infected mosquito bites had reduced peak parasitemia, and

blood-stage parasites were cleared faster, when compared to mock immunized mice after

homologous (P. chabaudi AS) and heterologous (P. chabaudi CB) mosquito bite challenge

(Figure 5A–D). A direct comparison between P. chabaudi AS and CB challenge revealed nonetheless

that homologous blood-stage immunity is more effective than heterologous immunity. In this

experiment, CPS immunization reduced total AUC by 25-fold following homologous challenge, as

Figure 3. Pre-erythrocytic immunity following CPS immunization requires high doses of sporozoites. Liver parasite

burden was determined 42 hr after mosquito bite challenge as copy number of P. chabaudi-specific 18S rRNA.

(A) Mice were CPS immunized three times (i1, i2, i3) with P. chabaudi AS-infected mosquito bites under chloroquine

(CQ) cover (CPS (Bite)) and challenged (C) 96–104 days after immunization by bites of P. chabaudi AS-infected

mosquitoes (pooled data from three independent experiments; naive infection controls (−) n = 25, CPS (Bite) n = 35).

(B) 100 or 10,000 untreated or irradiated (Irr.) P. chabaudi CB sporozoites (spz) were injected iv three times under

CQ cover. Mice were challenged 96 days after immunization by bites of P. chabaudi CB-infected mosquitoes (naive

infection controls (−) n = 12, all other groups n = 20). All data are displayed relative to the mean of corresponding

liver parasite burden of naı̈ve infection controls and presented as mean ± SEM, (A) Mann–Whitney test: no

significant difference between the groups; (B) Kruskal Wallis with Dunn’s multiple comparisons test *p ≤ 0.05,

***p ≤ 0.001.

DOI: 10.7554/eLife.05165.005
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Figure 4. CPS immunization elicits blood-stage immunity. Mice were CPS immunized three times (i1, i2, i3) using

chloroquine (CQ) and P. chabaudi AS-infected or uninfected mosquito bites (mock immunized). Approximately 100

days after the final CPS immunization, mice were challenged (C) with P. chabaudi AS. Erythrocytic parasitemia was

evaluated daily by quantitative RealTime PCR (cycle 1–3, displayed as parasitized erythrocytes (pE) per ml whole

blood; left) and from cycle 3–14 by thin blood-film (expressed as % parasitized erythrocytes [parasitemia] 0.01%

parasitemia corresponds to 1,000,000 pE per ml; middle). The total area under the curve (AUC) was calculated

for each mouse between erythrocytic cycle 3 and 14 (right). (A) Mosquito bite challenge: parasitemia from 1st to 3rd

(n = 10) and between 3rd and 14th erythrocytic cycle (representative of three independent experiments, n = 12–19),

total AUC between cycle 3 and 14 (n = 19). (B) Direct blood challenge using 10,000 erythrocytic parasites obtained

from a donor mouse infected by mosquito bite; injected intraperitoneal (ip): parasitemia between 1st and 3rd (n = 10)

and 3rd and 14th erythrocytic cycle (representative of three independent experiments, n = 10), total AUC between

cycle 3 and 14 (n = 10). (C) Blood challenge using 10,000 serially blood passaged parasites; injected ip: parasitemia

from 1st to 3rd (n = 10) and between 3rd and 14th erythrocytic cycle (representative of two independent experiments,

Figure 4. continued on next page
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compared to 6-fold following heterologous challenge (Figure 5E). Nevertheless, CPS immunization

elicits blood-stage protection against a robust heterologous challenge with the genetically distinct,

and more virulent, CB strain of P. chabaudi.

Extended exposure to blood-stage parasites elicits robust
pre-erythrocytic immunity
Blood-stage parasites appear to be both the source and target of protection following CPS

immunization with P. chabaudi AS-infected mosquito bites. It was shown that immunization with

serially blood passaged P. yoelii parasites with prophylactic chloroquine treatment can elicit

pre-erythrocytic immunity (Belnoue et al., 2008). We wanted to assess whether blood-stage parasites

have the potential to induce pre-erythrocytic protection also in the context of mosquito transmission.

We therefore asked whether a fulminant blood-stage infection could elicit cross-stage immunity

against pre-erythrocytic parasites. We infected mice with P. chabaudi AS by mosquito bite or

intraperitoneal (ip) injection of recently mosquito transmitted blood-stage parasites. The two groups

of mice were not drug-treated, and therefore experienced a low-grade chronic, recrudescing blood-

stage infection for up to 90 days (Spence et al., 2013). After mosquito bite challenge, both groups of

mice demonstrated reduced liver parasite burden (up to 85%), compared to infection controls

(Figure 6). Cross-stage immunity is therefore a powerful mechanism for protection against pre-

erythrocytic parasites, which may be absent during CPS immunization with small sporozoite numbers

as the blood-stage infection is curtailed by the use of chloroquine.

Discussion
Timing, route of infection, and antigen dose play major roles in determining the initial priming of the

antimalarial immune response (Legorreta-Herrera et al., 2004; Elliott et al., 2005; Belnoue et al.,

2008; Guilbride et al., 2012; Nganou-Makamdop et al., 2012a). We incorporated many of these

aspects from human clinical trials (Roestenberg et al., 2009; Bijker et al., 2013, 2014) in a new

P. chabaudi mouse model of CPS immunization to investigate the stage- and strain-specificity of CPS-

induced protection against malaria. Our results highlight the complexity of immunity against the

different life cycle stages of the malaria parasite (Table 1). Pre-erythrocytic immunity appears to

depend on the number of immunizing sporozoites. In this study, we find no evidence of pre-

erythrocytic immunity after CPS immunization with P. chabaudi infected mosquito bites, which

inoculate an estimated maximum of 100 sporozoites per immunization (Spence et al., 2012, 2013).

Sterile pre-erythrocytic protection was however reported in human CPS immunization trials

(Roestenberg et al., 2009; Bijker et al., 2013, 2014). Anopheles stephensi mosquitoes

experimentally infected with P. falciparum 3D7 or NF54 habor 50–200 times more sporozoites in

their salivary glands (Bijker et al., 2013) compared to P. chabaudi AS (Spence et al., 2012). However,

only few sporozoites are injected into the skin during mosquito bite and this number is independent of

salivary gland sporozoites load (Beier et al., 1991; Ponnudurai et al., 1991; Medica and Sinnis,

2005). Since the number of sporozoites establishing a liver-stage infection can further be influenced

by inherent sporozoite infectivity (Khan and Vanderberg, 1991), our best estimate of immunizing

sporozoite dose is the number of infected erythrocytes observed directly after egress from the liver.

Assuming that 10,000 merozoites are released from one infected liver cell (White et al., 2014), we

estimate approximately 400 infected hepatocytes (95% CI 137–1250) in human volunteers (Bijker

et al., 2013) compared to 5 in P. chabaudi AS immunized mice (95% CI 1–31). Therefore, the number

of infected hepatocytes after CPS immunization by mosquito bite in the P. chabaudi mouse model is

approximately 100-fold lower than in CPS immunized humans. We show that this differences in

Figure 4. Continued

n = 8–10), total AUC between cycle 3 and 14 (n = 10). All data are presented as mean ± SEM, Mann–Whitney test per

time point *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.

DOI: 10.7554/eLife.05165.006

The following figure supplement is available for figure 4:

Figure supplement 1. Chronic blood-stage infection in CPS immunized mice.

DOI: 10.7554/eLife.05165.007

Nahrendorf et al. eLife 2015;4:e05165. DOI: 10.7554/eLife.05165 8 of 17

Research article Immunology | Microbiology and infectious disease

http://dx.doi.org/10.7554/eLife.05165.006
http://dx.doi.org/10.7554/eLife.05165.007
http://dx.doi.org/10.7554/eLife.05165


infected hepatocyte numbers by a factor of 100 can be significant for the development of pre-

erythrocytic immunity: three immunizations with 10,000 P. chabaudi sporozoites iv induce long-lasting

protection against mosquito bite challenge, while three immunizations with 100 P. chabaudi

sporozoites fail to do so. This is in general agreement with other rodent malaria studies using

P. berghei (Beaudoin et al., 1977; Golenser et al., 1977; Orjih et al., 1982; Friesen and

Matuschewski, 2011; Nganou-Makamdop et al., 2012b; Lewis et al., 2014) or P. yoelii (Belnoue

et al., 2004; Inoue et al., 2012; Doll et al., 2014; Peng et al., 2014), in which sterile pre-erythrocytic

immunity is observed after immunization with high sporozoite doses (typically 10,000–50,000

sporozoites per immunization), while a reduction in sporozoite dose or the number of immunizations

leads to breakthrough blood-stage infections upon challenge (Belnoue et al., 2004; Inoue et al.,

2012). Reduction of the number of P. falciparum-infected mosquitoes also reduces the frequency of

sterilely protected volunteers (Bijker et al., 2014), indicating that the number of sporozoites

establishing a liver-stage infection fails to surpass the protective threshold to elicit sterile

Figure 5. CPS immunization elicits heterologous blood-stage immunity. Mice were CPS immunized three times (i1,

i2, i3) under chloroquine (CQ) cover by P. chabaudi AS-infected mosquito bites or mock immunized with uninfected

mosquito bites, and challenged (C) 96–107 days later by mosquito bite. Erythrocytic parasitemia was evaluated daily

by quantitative RealTime PCR for blood-stage parasites (cycle 1–3, displayed as parasitized erythrocytes (pE) per ml

whole blood) and from cycle 3–20 by thin blood-film (expressed as % parasitized erythrocytes [parasitemia], 0.01%

parasitemia corresponds to 1,000,000 pE per ml). (A/B) Heterologous challenge with P. chabaudi CB infected

mosquitoes (A) Parasitemia between 1st and 3rd (n = 10) and (B) from 3rd to 20th erythrocytic cycle (n = 20).

(C/D) Homologous challenge with P. chabaudi AS-infected mosquitoes (C) Parasitemia between 1st and 3rd (n = 10)

and (D) from 3rd to 20th erythrocytic cycle (CPS immunized n = 20, mock immunized n = 19). (E) Total AUC comparing

mock and CPS immunized mice receiving heterologous or homologous mosquito bite challenge. Data are

presented as mean ± SEM, (A–D) Mann–Whitney test per time point (E) Kruskal Wallis with Dunn’s multiple

comparisons test *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.

DOI: 10.7554/eLife.05165.008
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pre-erythrocytic immunity. This may also explain

why in malaria-endemic areas pre-erythrocytic

immunity is thought to be absent (Tran et al.,

2013). In addition to maximizing specific

responses against immunodominant antigens,

CPS immunization with high numbers of sporo-

zoites may broaden the immune repertoire by

including protective responses against subdomi-

nant antigens, which could enhance heterolo-

gous pre-erythrocytic protection (Trieu et al.,

2011). This may further be enhanced by the

longer liver-stage development of P. falciparum

(egress 6.8 days after mosquito bite, Roestenberg

et al., 2012) compared to P. chabaudi (egress

after 52 hr, Stephens et al., 2012). Longer liver

stage development may positively influence the

generation of pre-erythrocytic immunity by allow-

ing time for protective immune responses to

develop.

A key feature of CPS immunization is that it

permits exposure to all Plasmodium life cycle

stages in the vertebrate host, including parasit-

ized erythrocytes. It is well known that repeated

exposure to blood-stage parasites, for example,

in rodent models (Jarra and Brown, 1985;

Legorreta-Herrera et al., 2004; Elliott et al.,

2005), in humans exposed to ultra-low doses of

parasitized erythrocytes while receiving drug

treatment (Pombo et al., 2002), during malaria-

therapy of neurosyphilis patients (Collins and

Jeffery, 1999), and in people living in malaria-

endemic areas (Bull et al., 1998), induces blood-

stage immunity. Our results also clearly show that

during CPS immunization repeated transient

blood-stage infection (less than 0.01% para-

sitemia for 48–72 hr) elicits long-lasting blood-

stage immunity. Protection against challenge

infection was only apparent after multiple eryth-

rocytic replication cycles and patent blood-stage parasite densities, which could indicate that blood-

stage protection was not observed in CPS immunized human volunteers after direct blood-challenge

because drug treatment is required at low parasite densities as soon as patency is reached (typically

between the third and fourth erythrocytic cycle, Bijker et al., 2013). Blood-stage parasites are

however recognized in human volunteers, which was demonstrated by an earlier increase of IFNγ and
monokines induced by IFNγ (MIG) concentrations in CPS immunized volunteers compared to infection

controls after direct blood challenge (Bijker et al., 2013). It will be of value to investigate whether the

observed blood-stage protection in this mouse model is also detected in CPS immunized primates,

where a longer blood-stage infection than that allowed in human clinical trials is possible.

Despite the reduced peak parasitemia and faster clearance of blood-stage parasites during the

acute phase of infection in CPS immunized mice, recrudescent parasitemia could still be observed in

the chronic phase of infection after challenge, suggesting a parasite variant escapes the protective

immune response (McLean et al., 1982). There are very few reports on protective efficacy of

CPS immunization (or indeed any sporozoite-based vaccine) against direct blood-challenge

(Belnoue et al., 2004; Inoue et al., 2012; Peng et al., 2014). Doll et al. (2014) reported that

sustained, subpatent blood-stage infection after treatment with a commonly used dose of

chloroquine can induce partial blood-stage protection. Low-grade transient blood-stage parasitemia,

achieved by attenuation of blood-stage parasites using an antimalarial drug (Pombo et al., 2002;

Figure 6. Extended blood-stage parasitemia elicits pre-

erythrocytic immunity. Mice received a first infection

with P. chabaudi AS either by mosquito bite (Bite) or

intraperitoneal (ip) injection of 10,000 parasitized eryth-

rocytes obtained from a donor mouse infected by

mosquito bite (Blood (MT)). Blood-stage parasitemia

was self-cured before challenge (C; 98 days post-

infection) using P. chabaudi AS-infected mosquito bites.

Liver parasite burden was determined 42 hr after

mosquito bite challenge as copy number of P. chabaudi-

specific 18S rRNA. Data are displayed relative to the

mean of corresponding liver parasite burden of naive

infection controls (−). Pooled data from two indepen-

dent experiments (Naive (−) and Bite n = 30, Blood

(MT) n = 20) are presented as mean ± SEM, Kruskal

Wallis with Dunn’s multiple comparisons test *p ≤ 0.05,

***p ≤ 0.001.

DOI: 10.7554/eLife.05165.009
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Elliott et al., 2005), a DNA alkylating agent (Good et al., 2013) or genetic tools (Ting et al., 2008;

Aly et al., 2010) similarly provides protection against homologous and heterologous blood-stage

challenge.

We could show that CPS-induced blood-stage immunity is effective against heterologous mosquito

bite challenge with a more virulent and genetically distinct strain of P. chabaudi (Mackinnon and

Read, 1999; Lamb and Langhorne, 2008). In agreement with the observed cross-species protection

after CPS immunization with mefloquine (Inoue et al., 2012), and one study using chemically

attenuated sporozoites for immunization (Purcell et al., 2008), heterologous protection is less

effective than homologous immunity. Nevertheless, CPS immunization can elicit long-lived protection

against both homologous and heterologous blood-stage parasites, which will be important to

minimize disease severity in the case of breakthrough blood-stage infections. This is essential for the

development of an effective multi-stage malaria vaccine (Ellis et al., 2010; Bejon et al., 2011).

In stark contrast to the observed heterologous blood-stage protection after mosquito bite

challenge infection, protection was almost completely abrogated following direct blood-challenge

with virulent parasites obtained after continuous serial blood passage. This suggests that blood-stage

parasites immediately after mosquito transmission express antigens not present on serially blood

passaged parasites and that these antigens may be the target of protective immunity following CPS

immunization. Serially blood passaged parasites can hence escape from CPS-induced blood-stage

immunity. One group of Plasmodium genes, whose expression is altered by mosquito transmission

during blood-stage infection is the Plasmodium interspersed repeat gene family (pir); termed cir in

P. chabaudi (Lawton et al., 2012). Transcription of more than half of all cir genes is increased in

blood-stage parasites after mosquito transmission compared with their transcription after serial blood

passage. This diversification of cir transcription is associated with a more effective host immune

response, which in turn attenuates parasite virulence (Spence et al., 2013). The cir genes could also

be candidate targets for cross-stage immunity, as P. berghei pir genes are also transcribed during the

liver stages (personal communication BM Franke-Fayard and CJ Janse, Leiden University Medical

Center, The Netherlands). An investigation into shared PIR proteins between liver and blood-stage

parasites may hence provide valuable information for multi-stage malaria vaccine development.

Furthermore, the absence of blood-stage protection in previous CPS models may have been due to

challenge with serially blood passaged rather then recently mosquito transmitted blood-stage

parasites. It is therefore always essential to evaluate blood-stage immunity in the context of mosquito

transmission.

As shared antigenic targets between liver- and blood-stage parasites have been described (Tarun

et al., 2008), the exciting possibility of cross-stage protection has been considered but only rarely

assessed. Genetically modified fabb/f- sporozoites that arrest late in liver-stage development protect

against iv challenge with 100 blood-stage parasites (Butler et al., 2011). On the other hand, a blood-

stage infection with serially blood passaged P. yoelii, drug-treated with chloroquine after 4–5 days,

reduces liver parasite load upon iv challenge with 35,000 sporozoites (Belnoue et al., 2008). In our

model of CPS immunization by mosquito bite, it is likely that repeated transient blood-stage infection

during immunization elicits the observed blood-stage protection, although we cannot yet exclude that

responses acquired against pre-erythrocytic antigens, which are shared with blood-stage parasites

(Tarun et al., 2008), contribute as well. Because of the low number of infected hepatocytes after CPS

immunization with P. chabaudi-infected mosquito bites this seems however unlikely. Nevertheless, we

demonstrate unequivocally that extended exposure to blood-stage parasites is an effective

Table 1. Relationship between the dose of immunizing pre-erythrocytic and blood-stage parasites and the acquisition of immunity.

Low dose High dose

Sporozoites (liver-stage parasites) Mosquito bite or 100 sporozoites iv: no
pre-erythrocytic immunity (Figure 3A/B)

10,000 sporozoites iv: pre-erythrocytic
immunity (Figure 3B)

Blood-stage parasites Blood-stage infection curtailed by
chloroquine: partial blood-stage
immunity (Figure 4)

Fulminant, self-cured blood-stage
infection: blood-stage immunity (Spence
et al., 2013); pre-erythrocytic immunity
(Figure 6)

DOI: 10.7554/eLife.05165.010
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stimulator of pre-erythrocytic immunity. Exposure to blood-stage parasites during CPS immunization

may thus significantly contribute to the observed pre-erythrocytic protection in human volunteers

(Roestenberg et al., 2009; Bijker et al., 2013, 2014). Indeed, cross-stage immunity could be

responsible for the unprecedented efficacy of CPS immunization compared to immunization with

irradiated sporozoites (Clyde et al., 1973; Seder et al., 2013), which arrest early during liver-stage

development and never establish a blood-stage infection. While extending exposure to replicating

blood-stage parasites by delayed drug administration is not possible in humans, the incorporation of

chemically (Good et al., 2013) or genetically (Ting et al., 2008; Aly et al., 2010) attenuated

blood-stage parasites should be considered to further enhance the generation and maintenance of

both pre-erythrocytic and blood-stage immunity. This makes CPS immunization a powerful tool for the

development of an effective multi-stage malaria vaccine.

Materials and methods

Mice
Inbred C57BL/6 mice, originally obtained from Jackson Laboratories (Bar Harbor, USA), were bred

under specific pathogen-free conditions at the MRC National Institute for Medical Research (NIMR)

for over 30 years. All experiments were performed in accordance with UK Home Office regulations

(PPL 80/2358) and approved by the ethical review panel at the MRC NIMR. Mice were housed under

reverse light conditions (light 19.00–07.00, dark 07.00–19.00 GMT) at 20–22˚C and 50% relative

humidity, with continuous access to mouse breeder diet and water.

Parasites and mosquitoes
Plasmodium chabaudi chabaudi (P. chabaudi) AS and CB were cloned at the University of Edinburgh

and sent to the NIMR in 1978 and 1982, respectively. Both parasite lines were routinely serially blood-

passaged (SBP) through mice between 26 and 32 times by ip injection of parasitized erythrocytes or

mosquito transmitted according to a recently published protocol (Spence et al., 2012). In brief

C57BL/6 mice were injected ip with 100,000 parasitized erythrocytes and 14 days post infection

gametocytemia was assessed on Giemsa-stained (VWR, Lutterworth, UK) thin blood film. A. stephensi

mosquitoes, pre-treated with 50 μg/ml gentamicin (Sigma, Gillingham, UK) and starved for 24 hr

before transmission, were fed on anaesthetised mice with >0.1% gametocytes of total erythrocytes at

a ratio of >1 mouse per 100 mosquitoes. Mosquitoes were kept at 26.0˚C (± 0.5˚C) in an ultrasonic

humidity cabinet and provided with 8% Fructose and 0.05% 4-Aminobenzoic acid (both Sigma,

Gillingham, UK) feeding solution. After 8 days, a sample of 20 mosquitoes were dissected to assess

development of P. chabaudi oocyts in the midgut. For infection of experimental mice 20–23

mosquitoes were transferred into 25 cl paper cups after 14 days, starved for 24 hr and fed on

anaesthetized mice for 20–25 min at room temperature. Typically, mice were exposed to 9.15 (median,

range 6.9–13.6) P. chabaudi-infected mosquito bites (Spence et al., 2012).

Isolation of sporozoites
Sporozoites were isolated from P. chabaudi-infected mosquito salivary glands 15 or 16 days post

gametocyte feed. Salivary glands were dissected under a stereomicroscope, transferred to a glass

homogenizer and kept in RPMI supplemented with 0.2% Glucose, 0.2% Sodium bicarbonate (both Sigma,

Gillingham, UK), 2 mM L-Glutamine (Gibco, Paisley, UK) and 10% fetal bovine serum (GE Healthcare Life

Sciences, Pittsburgh, Pennsylvania), on ice for maximum 2 hr. Sporozoites were released from the glands

by gentle homogenization and washed three times before enumeration. The number of sporozoites per

infected mosquito was enumerated for each mosquito transmission experiment. For iv injection

P. chabaudi CB sporozoites were used, since mosquitoes infected with this parasite strain harbor an

increased number of sporozoites per infected mosquito in their salivary glands (median 1638, range

175–2576) compared to P. chabaudi AS (median 438, range 43–956) (Spence et al., 2012).

Attenuation of sporozoites by irradiation
To arrest parasite development in the early stages of liver development P. chabaudi CB infected

A. stephensi were exposed to 16 Gray (=16,000 rad) (Nganou-Makamdop et al., 2012b) of

Caesium-137 γ-irradiation 15 or 16 days post gametocyte feed just prior to sporozoite dissection.
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Chemoprophylaxis and sporozoite (CPS) immunization and challenge
regimen
Female age-matched 8–10 week old C57BL/6 mice were infected three times in 2-week intervals with

P. chabaudi: either by P. chabaudi AS-infected mosquito bites or iv injection of P. chabaudi CB

sporozoites. Mice were treated after each immunization with 100 mg/kg chloroquine diphosphate salt

(chloroquine, Sigma, Gillingham, UK) by gavage daily for 10 days, starting from the day of mosquito

transmission. Mock immunized mice received uninfected mosquito bites and chloroquine treatment.

100 days after the last CPS immunization mice were challenged with P. chabaudi AS or P. chabaudi

CB-infected mosquito bites, or via ip injection of 100,000 parasitized erythrocytes (direct blood-

challenge) that were obtained from either a donor mouse infected by mosquito bite or after serial

blood passage. Since each erythrocytic cycle of P. chabaudi is approximately 24 hr long (Stephens

et al., 2012) development of blood-stage parasitemia was monitored daily by microscopy of Giemsa-

stained thin blood films, from erythrocytic cycle 3 to 14 and every other day thereafter. The limit of

detection was 0.01% parasitemia, which equals 1 parasitized red blood cell in 10,000 erythrocytes or

1,000,000 parasitized erythrocytes per ml of blood.

Quantification of liver- and blood-stage parasitemia by quantitative Real
Time PCR
Liver and blood-parasitemia was assessed by quantifying 18S rRNA using qRT PCR. 42 hr after

mosquito bite challenge mice were terminally anaesthetized and immediately upon cessation of

respiration their livers were perfused with 5 ml RNAse-free Phosphate buffered saline (PBS, Gibco,

Paisley, UK). Using the Gentle MACS homogenizer (Miltenyi, Bisley, UK) the whole liver was

homogenized in 4 ml Guanidinium thiocyanate (Sigma, Gillingham, UK) solution (Chomczynski and

Sacchi, 2006), and 600 μl aliquots were stored at −80˚C. To assess blood-parasite burden during CPS

immunization and in the first erythrocytic cycles following bite challenge 10 μl of blood were isolated

from the tip of the mouse-tail and after two washes in RNAse-free PBS stored at −80˚C in 100 μl
Guanidinium thiocyanate solution (Chomczynski and Sacchi, 2006). The first sample was taken either

just before (erythrocytic cycle 0) or 20 hr after liver merozoite egress (erythrocytic cycle 1) and then

every 24 hr for 4 days. Since P. chabaudi displays a synchronous infection (Stephens et al., 2012) all

blood-stage parasites analyzed were therefore at the late trophozoite stage of development. RNA

was extracted from liver- as well as blood-samples using the Guanidinium-thiocyanate-phenol-chlorophorm

method (all Sigma, Gillingham, UK; Chomczynski and Sacchi, 2006). RNA was thereafter reverse

transcribed by PCR (temperature profile: 25˚C for 10 min, 42˚C for 20 min, 98˚C for 5 min) using 75U

MuLV Reverse Transcriptase, 30U RNAse Inhibitor, and 2.5 μM Random Hexamer primers (all Applied

Biosystems, Paisley, UK) per sample. The amount of 18S rRNA copies was quantified by Real-Time

PCR using TaqMan Universal PCR Master Mix (Applied Biosystems, Paisley, UK), 300 ηM forward

primer (5′-AAGCATTAAATAAAGCGAATACATCCTTAT-3′), 300 ηM reverse primer (5′-GGGAGT

TTGGTTTTGACGTTTATGCG-3′), and 50 ηM probe ([6FAM]CAATTGGTTTACCTTTTGCTCTTT[TAM]).

All reactions were performed in the ABI 7900 HT Real Time PCR machine (temperature profile: 50˚C

for 2 min, 95˚C for 10 min, 40 cycles of 95˚C for 15 s and 60˚C for 1 min). The amount of parasite 18S

rRNA in the liver was calculated based on a Standard curve of known copy numbers of 18S rRNA. For

every experiment liver-parasite burden was normalized to the mean burden of controls infected in the

same experiment. Blood-stage parasitemia was quantified based on a Standard curve of 10-fold

dilutions of mosquito transmitted P. chabaudi AS late trophozoites prepared identically to the

samples.

Statistical analysis
Data were analyzed using GraphPad Prism v7. Unpaired data between two groups at a specific time

point were analyzed by Mann–Whitney test (two-tailed, non-parametric). Differences between more

than two groups were analyzed by non-parametric Kruskal–Wallis test with Dunn’s multiple comparisons

test. Significant differences are indicated by asterisks with *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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Otto TD, Böhme U, Jackson AP, Hunt M, Franke-Fayard B, Hoeijmakers WA, Religa AA, Robertson L, Sanders M,
Ogun SA, Cunningham D, Erhart A, Billker O, Khan SM, Stunnenberg HG, Langhorne J, Holder AA, Waters AP,
Newbold CI, Pain A, Berriman M, Janse CJ. 2014. A comprehensive evaluation of rodent malaria parasite
genomes and gene expression. BMC Biology 12:86. doi: 10.1186/s12915-014-0086-0.

Peng X, Keitany GJ, Vignali M, Chen L, Gibson C, Choi K, Huang F, Wang R. 2014. Artesunate versus chloroquine
infection-treatment-vaccination defines stage-specific immune responses associated with prolonged sterile
protection against both pre-erythrocytic and erythrocytic Plasmodium yoelii infection. The Journal of
Immunology 193:1268–1277. doi: 10.4049/jimmunol.1400296.

Pombo DJ, Lawrence G, Hirunpetcharat C, Rzepczyk C, Bryden M, Cloonan N, Anderson K, Mahakunkijcharoen Y,
Martin LB, Wilson D, Elliott S, Elliott S, Eisen DP, Weinberg JB, Saul A, Good MF. 2002. Immunity to malaria after
administration of ultra-low doses of red cells infected with Plasmodium falciparum. Lancet 360:610–617. doi: 10.
1016/S0140-6736(02)09784-2.

Ponnudurai T, Lensen AH, van Gemert GJ, Bolmer MG, Meuwissen JH. 1991. Feeding behaviour and sporozoite
ejection by infected Anopheles stephensi. Transactions of the Royal Society of Tropical Medicine and Hygiene 85:
175–180. doi: 10.1016/0035-9203(91)90012-N.

Pringle G. 1966. A quantitative study of naturally-acquired malaria infections in Anopheles gambiae and Anopheles
funestus in a highly malarious area of East Africa. Transactions of the Royal Society of Tropical Medicine and
Hygiene 60:626–632. doi: 10.1016/0035-9203(66)90009-5.

Purcell LA, Wong KA, Yanow SK, Lee M, Spithill TW, Rodriguez A. 2008. Chemically attenuated Plasmodium
sporozoites induce specific immune responses, sterile immunity and cross-protection against heterologous
challenge. Vaccine 26:4880–4884. doi: 10.1016/j.vaccine.2008.07.017.

Roestenberg M, McCall M, Hopman J, Wiersma J, Luty AJ, van Gemert GJ, van de Vegte-Bolmer M, van Schaijk B,
Teelen K, Arens T, Spaarman L, de Mast Q, Roeffen W, Snounou G, Rénia L, van der Ven A, Hermsen CC,
Sauerwein R. 2009. Protection against a malaria challenge by sporozoite inoculation. The New England Journal of
Medicine 361:468–477. doi: 10.1056/NEJMoa0805832.

Roestenberg M, O’Hara GA, Duncan CJ, Epstein JE, Edwards NJ, Scholzen A, van der Ven AJ, Hermsen CC,
Hill AV, Sauerwein RW. 2012. Comparison of clinical and parasitological data from controlled human malaria
infection trials. PLOS ONE 7:e38434. doi: 10.1371/journal.pone.0038434.

Seder RA, Chang LJ, Enama ME, Zephir KL, Sarwar UN, Gordon IJ, Holman LA, James ER, Billingsley PF,
Gunasekera A, Richman A, Chakravarty S, Manoj A, Velmurugan S, Li M, Ruben AJ, Li T, Eappen AG, Stafford RE,
Plummer SH, Hendel CS, Novik L, Costner PJ, Mendoza FH, Saunders JG, Nason MC, Richardson JH, Murphy J,
Davidson SA, Richie TL, Sedegah M, Sutamihardja A, Fahle GA, Lyke KE, Laurens MB, Roederer M, Tewari K,
Epstein JE, Sim BK, Ledgerwood JE, Graham BS, Hoffman SL, VRC 312 Study Team. 2013. Protection against
malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science 341:1359–1365. doi: 10.
1126/science.1241800.

Sherwood JA, Copeland RS, Taylor KA, Abok K, Oloo AJ, Were JB, Strickland GT, Gordon DM, Ballou WR, Bales
JD Jr, Wirtz RA, Wittes J, Gross M, Que JU, Cryz SJ, Oster CN, Roberts CR, Sadoff JC. 1996. Plasmodium
falciparum circumsporozoite vaccine immunogenicity and efficacy trial with natural challenge quantitation in an
area of endemic human malaria of Kenya. Vaccine 14:817–827. doi: 10.1016/0264-410X(95)00221-L.

Nahrendorf et al. eLife 2015;4:e05165. DOI: 10.7554/eLife.05165 16 of 17

Research article Immunology | Microbiology and infectious disease

http://dx.doi.org/10.1098/rspb.1999.0699
http://dx.doi.org/10.1016/0014-4894(82)90038-8
http://dx.doi.org/10.1128/IAI.73.7.4363-4369.2005
http://dx.doi.org/10.1371/journal.ppat.0020065
http://dx.doi.org/10.1038/nature03188
http://dx.doi.org/10.1016/j.pt.2013.01.003
http://dx.doi.org/10.1111/pim.12000.x
http://dx.doi.org/10.1371/journal.pone.0036508
http://dx.doi.org/10.1038/216160a0
http://dx.doi.org/10.1086/644781
http://dx.doi.org/10.1086/644781
http://dx.doi.org/10.1016/0035-9203(82)90019&tnqh_x2013;0
http://dx.doi.org/10.1016/0035-9203(82)90019&tnqh_x2013;0
http://dx.doi.org/10.1186/s12915-014-0086-0
http://dx.doi.org/10.4049/jimmunol.1400296
http://dx.doi.org/10.1016/S0140-6736(02)09784-2
http://dx.doi.org/10.1016/S0140-6736(02)09784-2
http://dx.doi.org/10.1016/0035-9203(91)90012-N
http://dx.doi.org/10.1016/0035-9203(66)90009-5
http://dx.doi.org/10.1016/j.vaccine.2008.07.017
http://dx.doi.org/10.1056/NEJMoa0805832
http://dx.doi.org/10.1371/journal.pone.0038434
http://dx.doi.org/10.1126/science.1241800
http://dx.doi.org/10.1126/science.1241800
http://dx.doi.org/10.1016/0264-410X(95)00221-L
http://dx.doi.org/10.7554/eLife.05165
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