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Abstract— The Web is continuously enriched with data and has 

become a large knowledge repository. However, machines are unable 

to fully exploit this vast knowledge space in performing reasoning 

tasks such as question answering. This inability limits the extent of 

inference and ultimately limits the range of questions they can 

answer. We argue that the quality and range of answers generated 

by a question-answering system is significantly improved when we 

use rich reasoning techniques to infer novel knowledge from web 

data. By finding and aggregating facts from different knowledge 

bases, an agent can obtain a better representation of a domain and 

hence infer new facts which did not exist in any of the original 

knowledge sources. We intend to explore rich semantic 

representations and rich forms of reasoning. These include the 

curation of data and the use of a combination of heuristics, logic and 

probabilistic techniques to infer answers. This approach will 

minimize noise and uncertainty in the knowledge for reasoning. Our 

customized representations will suit the problem to be solved rather 

than being restricted by the formalisms used in the sources. We plan 

to implement this in a question-answering system that exploits a vast 

set of knowledge bases such as ontologies and Linked Data 

repositories. Our question-answering system will focus on questions 

which require rich inferences such as prediction and composition of 

answers from several pieces of information. 

Keywords— inference, question-answering, knowledge 

representation, heuristics, uncertainty 

I.  INTRODUCTION  

 The increasing availability of knowledge bases, such as 
ontologies on the web, has opened up the possibility of computer 
agents taking advantage of the massive amounts of information 
on the web for reasoning and information retrieval tasks that 
were previously intractable. Logical inference can enable an 
agent to infer implicit relationships between concepts in the 
knowledge base, provided appropriate techniques are employed 
to deal with ambiguous, incomplete and sometimes erroneous 
data. 

When given a question, humans possess the ability to choose 
from a gamut of possible strategies the one that best solves the 
question. This ability allows us to answer questions even when 
the answer is not pre-stored in our memory or knowledge base. 
In contrast, question answering (QA) systems, although 
originally designed to use inference, tend to assume that the 
answer is pre-stored in a knowledge base. Consider the question 
“What will be the UK population in 2021?”. A QA system will 

typically attempt (unsuccessfully) to find the pre-stored fact  
population(UK, 2021, p). It most likely will not find this, and so 
will give up and return no answer. Wolfram|Alpha [1] highlights 
this point in a statement on its website: “Only what is known is 
known to Wolfram|Alpha”. In contrast, humans are able to 
answer this kind of question, by indirectly inferring answers that 
we do not already have, from other readily available 
information. In the example above, we could look up the 
population values for past years, and then estimate the 
population in 2021 using regression. We could also find the 
population growth rate from Wikipedia and use that to predict 
the population in 2021. In so doing, we use a combination of 
heuristics, logic and probabilistic techniques to infer answers. 
We refer to this as rich inference.   

We believe that rich inference, applied to the heterogeneous 
and ever-growing sources of information on the web, is critical 
to realizing the promise of automated question-answering. 

More specifically, we claim that the quality and range of 
answers generated by a question-answering system is 
significantly improved when we automatically curate data and 
use richer forms of inference to infer novel knowledge from 
Semantic Web data [2]. This improvement can be achieved by 
finding and aggregating facts from different knowledge bases, 
obtaining a better representation of the domain, discovering and 
caching new facts that are not already stored in any of the 
original knowledge sources. The rich inference that supports the 
project includes heuristics for decomposing questions, logical 
and probabilistic reasoning and higher-order functions which we 
use to aggregate data into answers to questions, not limited by 
the formalisms of the source data. 

In practical terms, we intend to build a system that can 
respond to questions where no suitable answer is contained in 
any available data source, e.g., as a Resource Description 
Framework (RDF) triple [3], stored phrase, or table entry. This 
requires rich inference applied to pre-stored facts, logical 
relationships, e.g., web ontology language (OWL) [4] and 
description logics [5], and other formal semantics. Further, any 
novel facts or relationships that have been inferred can then be 
propagated back to customized knowledge-bases, facilitating 
future question-answering. Unlike current question answering 
systems which focus on the natural language processing (NLP) 
problems inherent in QA, our core contribution will emphasize 
mapping machine-readable queries to answers. Although natural 



language processing is not our main focus, we will use third-
party tools to map natural-language questions to representations 
that our system can use. 

II. INFERENCE IN EXISTING QA MODELS 

To varying extents, recent QA systems apply different forms 
of question transformations, decompositions, rules and inference 
techniques to get answers to questions. We classify these into 
three models. Fig. 1 shows the three main types of models that 
current QA systems use. 

Model 1 is the simplest type, characterized by avoiding any 
transformations of the representation of the question. Model 1 
systems query knowledge bases directly, with the hope that the 
data that best answers the questions are immediately available. 
This model is often restricted to a specific domain using curated 
knowledge bases, and a query language with a restricted 
vocabulary. This is found in simple QA systems which place a 
user interface over the knowledge base and then find answers 
that best match the user query. Most basic information retrieval 
system and database systems such as SQL (Structured Query 
Language) follow this model. 

Model 2 adds a question transformation feature. The 
objective is to transform the question so that it exploits the 
knowledge representation formalism used in the knowledge 
base. This allows the QA system to work with knowledge bases 
whose formalisms are known. These transformation rules are 
usually fixed and specific to the knowledge bases that the QA 
system depends on. AskMSR[6] uses this technique to 
reformulate questions. Because its core strategy is to leverage 
search engines, the reformulation of questions allows it to 
rewrite the same query in different ways, and then submit each 
query to a search engine. AskMSR exploits the redundancy in 
web data by collecting summaries of the search results, mining 
and filtering N-grams, and determining the best answers from 
the remaining data. Initial versions of START [7] similarly 
approach QA by transforming questions into templates which it 

uses to search its knowledge base. It uses its rule-based approach 
(S-rules) and its natural language annotations to find the 
matches in its knowledge base to the question and then returns 
an answer from the best matches.  

Model 3 does not just transform the question into some 
specific representation, but also decomposes it by some criteria. 
For instance, the IBM Watson system uses parallel 
decomposition [8] when questions contain mutually 
independent facts about the answer. An example used by the 
authors was “[Which] company with origins dating back to 1876 
became the first U.S. company to have 1 million stockholders in 
1951?”. In this question, knowing the company with origins 
dating back to 1876 is important, but not necessary to 
determining the first U.S. company to have 1 million 
stockholders in 1591. So both can be determined independently 
and a common answer that both sub-questions find, will most 
likely be the answer to the whole question. IBM Watson also 
uses nested decomposition for questions containing an 
independent fact about an entity related to the correct answer and 
a separate fact that links that entity to the correct answer. An 
example of this type of question is “Which surgical procedure is 
required to deal with an aortic condition associated with 
bicuspid aortic valves?”. In this question, it is necessary to first 
determine the aortic condition associated with bicuspid aortic 
valves before the surgical procedure required to deal with it is 
found.   

Saquete et.al [9] also device a temporal decomposition 
strategy in their QA system which was designed to answer 
questions of a temporal nature. The question: “Where did Bill 
Clinton study before going to Oxford University?” is 
decomposed into the questions “Where did Bill Clinton study” 
and “When did Bill Clinton go to Oxford University”. Model 3 
approaches also perform some degree of inference from 
knowledge bases. IBM Watson does this by taxonomic 
reasoning to check whether the candidate answer type it 
generates matches the proper lexical answer type. It also uses 
some form of inference to reason over semantic web and linked 
data resources (such as DBpedia [10], YAGO [11] and Cyc [12]) 
it uses as part of its knowledge base.  

Another system using a Model 3 is GORT [13]. In the 
GORT project, the Semantic Web was used to “guesstimate” 
answers to user questions by combining disparate facts to 
provide approximate answers to numeric questions. However, 
GORT is limited to specific types of proof-trees, and basic 
functions such as Min, Max, Count and Average from which it 
can compute to infer new facts. It also requires user inputs to 
fill in answers to some sub-questions. PowerAqua [14] and 
ANGIE [15] also use semantic web data to answer questions. 
PowerAqua uses its triple mapping component (triple similarity 
service) to find suitable answers to questions which have been 
decomposed and transformed into query triples. A later version 
of START [16] uses syntactic and semantic decompositions to 
help answer questions using multiple web data sources. It is 
limited in its use of formal inference and rather uses rules which 
match specific patterns in the questions to connect domain 
questions to sub-questions that are answerable by specific 
knowledge resources. 
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Earlier QA system also used different formal methods of 
inference and deduction to answer questions. QA3 [17] and 
DEDUCOM [18] are examples of such systems. However, an 
analysis of these early QA systems by Simmons in [19] showed 
that several of these system use inference rules to expand and 
transform the formal expression of the question until it matches 
some combination of facts in its knowledge base. 

In general, the extent of inference applied in Model 3 is only 
to the point of directly retrieving fact(s) from the knowledge 
base and using that as the answer, as part of the answer or as 
input into a placeholder in a nested question. 

III. RICH INFERENCE 

The crucial difference between these past approaches and 
our proposal is the idea of rich inference, to which we have 
already alluded. Here we describe the characteristics that 
distinguish this idea from the kinds of inference in Model 3 
systems, and outline a plan for implementing it. First, rich 
inference involves reasoning about higher-order facts, such as 
functional relations in the data, which expands the range of 
answers that can be sought. Second, rich inference involves 
dynamic curation and re-use of previously inferred facts and 
relations, which makes it possible to find answers to increasingly 
difficult questions and abstract questions. Third, rich inference 
must be robust in the face of uncertainty, and must make is 
possible to express degrees of certainty to end users. Fourth and 
finally, rich inference must be able to exploit efficient heuristics 
for composing known facts and relations to find answers, 
without which our enterprise becomes intractable.  

Our model is shown in Fig. 2.This model emphasizes the use 
of heuristics and rich forms of inference. The decomposition of 
questions is based on heuristics which create possible 
alternatives to compute an answer. The model makes of use of 
data from different knowledge bases and automatically curates 
the necessary facts that it uses to compute its answers for a 
specific question. 

A. Reasoning and Curation 

 Inference will form the core of our question-answering 
system. Current open domain question-answering systems are 
tasked with finding facts from existing data. However, question 
answering does not have to be limited to finding pre-stored facts 
since that approach fails to answer questions where the answer 
is not explicitly stated, or is not observed in the existing dataset. 
By searching and finding facts from various knowledge bases, 
we will dynamically create a formal representation of the 
knowledge. By loosely coupling the representation of the source 
data and the reasoning task, we are able to deal with many 
different data sources, including RDF triples, tabular data and 
other data formats. This lessens the impact of heterogeneous 
data representation on the web on our reasoning tasks. The local 
representation will be customized to the question being 
answered, in which case we can factor in formalisms of time and 
other concepts as arguments. In particular, a representation of 
the states of the world using first order logic and dynamic 
Bayesian networks enables us to reason over different time slices 
and about uncertainty. This rich and expressive representation 
will enable use of rich forms of inference to determine missing 
facts from a sequence of observations with gaps, or predict a 
future observation from past facts. In order to discover robust, 
generalizable relationships within and between data sources, we 
will use a combination of the logic-based methods described 
above, and, in the case of numerical data, recent methods from 
machine learning, e.g., flexible regression methods [20], and 
compositional approaches [21].  

Humans use heuristics that are capable of making inferences 
in the face of incomplete and noisy information. Todd and 
Gigerenzer considered the spectrum rationality from unbounded 
to bounded rationality and ecological rationality [22]. They 
looked at the common types of heuristics which humans use to 
answer a wide range of questions. These heuristics guide the 
search to focus on retrieving only essential information and 
stopping the search when sufficient information has been 
retrieved to answer the question. Such heuristics can be found in 
causal relationships between concepts in a domain. Suppose we 
have a concept A which has a causal relationship with concept 
B such that concept A causes (or influences) B. If data on A is 
readily accessible, we can solve for A and infer the solution for 
B from solution of A.  

In our system, we will use heuristics which select specific 
combination functions when certain features are identified from 
the question and the facts retrieved from the knowledge bases. 
Thus, we will explore the idea that heuristics can help to 
decompose a question and constrain the problem to known 
functions which can be solved in a more tractable way as 
opposed to using the brute force approach which tries to explore 
the entire search space of solutions. These kinds of meta-
knowledge heuristics will allows us to select only the most 
appropriate and promising reasoning strategy to solve the QA 
problem. We will also exploit existing techniques in higher order 
logical reasoning and machine learning. We will use regression, 
classification and other inference methods in third-party 
machine learning libraries. This richness will allow our 
reasoning process to capture a wide range of computations 
necessary to estimate novel facts from the pre-stored facts in the 
local knowledge base.  

 

 

Fig. 2. Proposed model 

<User> 

Question 

Model 4:  

Using Heuristics and 

Rich Inference 

Heuristics-Based 

Question Decomposition 

Rich Inference and 

Heuristics  

KB 



B. Heuristics and Commonsense Knowledge 

We believe that in a search space which is very large, as 
found in question-answering, heuristics are vital to making the 
problem tractable. Our approach to QA will use reasoning 
techniques which adopt different heuristics that constrain the 
problem to known functions that can solve sub-problems of the 
main problem, and aggregate the sub-solutions to give an answer 
to the user. This forms one of the core strategies we use in our 
rich inference techniques. 

Heuristics are vital to the problem solving and decision 
making strategies of rational agents. Several applications of 
heuristics are found in computational problems that would 
otherwise be hard when brute force algorithms that search the 
entire space of solutions are used. Informed search algorithms 
such as greedy best first search and A* search use knowledge 
about the search domain to prioritize branches of the search 
space which lead to an optimal solution. Proponents of heuristics 
for problem solving such as Todd and Gigerenzer [22], Pearl 
[23] and Tversky and Kahneman [24] make strong arguments 
for the use of readily accessible information about the domain to 
solve problems in the domain. In [25] Simon argues that humans 
use a bounded form of rationality which uses approximate 
methods to solve tasks within reasonable amounts of time. This 
is in contrast to unbounded rationality where there is an 
assumption that agents possess some form of unbounded 
knowledge, unlimited memory, unbounded computational 
capacities and unlimited time for computations. Despite the 

well-defined nature of the optimal solutions to problems and the 
possibilities to be searched, the search space is just too large to 
consider all these possibilities within a reasonable amount of 
time. Todd and Gigerenzer further argue that these heuristics for 
bounded rationality can incorporate environmental structure, 
thereby adapting the heuristics to the environment, in what they 
term ecological rationality. Our first use of heuristics will be to 
make the search space manageable. When reasoning about 
existing knowledge from which to find novel information or do 
prediction, more data is usually better. However, in an 
automated system, where search for relevant knowledge as well 
as reasoning over the knowledge are both essential, more data 
could significantly slow down the process of finding or 
computing the required data. For instance, if you are interested 
in finding the city with the largest population, we could search 
for the population of all cities in every country and use a 
maximum function to determine the largest one. However, if you 
are told that large cities are found in countries with large 
populations, we could eliminate several countries from our 
search and focus only on those cities in countries with large 
populations. Using Todd and Gigerenzer’s recognition heuristic 
[22], we could further reduce the search space to those that are 
recognized from the existing knowledge base. This fast and 
frugal heuristic can yield answers with reasonable accuracy, 
especially when past knowledge about the domain is limited. We 
will extract such commonsense knowledge from knowledge 
bases such as ConceptNet [26]. We refer to this category of 
heuristics as space heuristics. 

 

 

Fig. 3. Question decomposition example 
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Our second use of heuristics will determine the question 
decomposition functions and the corresponding fact 
combination functions to answer the question. Cues or keywords 
identified in the question will determine if, for instance, a 
temporal and (or) geo-spatial decomposition of the question is 
required. This would create a tree of strategies that can be used 
to find a solution. Multiple strategies can be pursued, and their 
final answers compared to estimate accuracy and confidence. 
We refer to the heuristics used here as strategy heuristics. An 
example of this is illustrated in Fig. 3. 

C. Handling Uncertainty 

The variety of sources from which data is published, the 
variety of representation formats, naming conventions and other 
cultural and contextual issues which arise in the creation and 
publishing of ontologies add an even greater level of uncertainty 
about the facts. Formal knowledge representations, such as 
OWL used in the Semantic Web, are based on the Open World 
Assumption. This means that if a fact is not stated explicitly in 
the ontology, it does not necessarily make it false. This carries 
with it a great deal of uncertainty when being used as a data 
resource for question-answering. Each ontology also models a 
different aspect of the universe (or its domain). In addition, 
representations of knowledge model a partial view of the world.  

Our approach to QA will encounter three main forms of 
uncertainty: 

 Understanding of the question 

 Heuristics and their inherent simplification assumptions 

 Noise and incompleteness of data in knowledge base. 

It is a hard problem to know how well we understand the 
question to be answered until we get user feedback on accuracy. 
The use of heuristics also introduces assumptions which may 
oversimplify the problem and thereby create more uncertainty in 
the accuracy of the answer generated. Furthermore, we expect 
data from knowledge bases to be noisy and incomplete in some 
cases. To capture these uncertainties in our QA process, we will 
assign uncertainty weights to each space and strategy heuristic 
based on the extent to which it is likely to affect the accuracy of 
our answer. At the start of our QA process we set our confidence 
value, C,  to 1.0.  Supposing we apply heuristics hi in the process 
which has a weight of wi ϵ [0,1]. Our updated confidence value 
will be: 

C = C(1 - wi) 

We intend to use a representation which is expressive 
enough to capture time slices of the world, the dependencies 
between concepts and the uncertainties associated with the data 
available for the QA process. We will explore a representation 
which combines first-order logic (FOL) and Bayesian Networks 
(BN). Similar to first order probabilistic logic in [27], we are 
able to harness the strengths of both FOL and BN in terms of 
expressivity and uncertainty. For the range of questions we 
expect our QA system to answer, we need to be able to represent 
both temporal and geospatial features of data in the knowledge 
representation. In some cases, we consider the dataset required 
to answer the question as spanning over a time range. This 
consideration helps to identify the appropriate inference 
technique to find answers from the representation.  

Additionally, this representation will be able to capture some 
elements of uncertainty. Data from web sources contain a lot of 
noise and variance. We will define combination functions which 
combine these data and generate appropriate probabilities that 
define our belief in the data. These combination functions will 
also be capable of propagating the uncertainty measurements 
through the QA process to the final answer that is generated. 
Other sources of uncertainty such as unrealizability, where the 
appropriate combination function does not exist in our function 
domain, and computational complexity, where the search space 
is too large or is computationally intractable, mean that some of 
the functions yield only approximations to the expected results. 
Probabilistic techniques can be used to determine the prior 
probability of the required data variables. The large size of the 
search domains means that we will use approximations such as 
maximum likelihood estimations to compute the likelihood of 
each data item being consistent with the required data variables 
based on other data items that the search returns. Combined with 
learning approaches like inductive learning, which find suitable 
hypothesis that agree with the observed data and generalize well 
to new data queries, we can incorporate uncertainty directly into 
the representation of knowledge and computations of answers in 
the QA system.   

IV. KEY MODULES OF PROPOSED QA SYSTEM 

A general overview of the key steps in the proposed solution is 

shown in Fig. 4. A more detailed view of each module with its 

inputs and outputs is described in Fig. 5.  
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1. Parsing: This module will take as input the question text 
and apply syntactic and semantic parsing using NLP tools such 
as CoreNLP [28]. The key outputs of this module will be a 
semantic parse tree and a dependency tree.  

2. Feature Extraction: The parse trees will be analyzed to 
identify important features of the question. Features include the 
type of 'wh-' question, the expected type of answer (a number, 
date, time, name, etc.), the concepts inquired about, identifiable 
predicates, elements of time and location and units of 
measurement.  

3. Semantics: The parse trees will be used to generate a 
formal logical representation of the question. We will exploit the 
structure of the dependency trees, and use the part of speech 
tagging to extract entities and predicates. This module will use 
techniques in [29] to identify relationships between concepts.   

4. Search: We will use heuristics which, based on the 
extracted features of the question and its formal representation, 
will create candidate strategies to solve the question. This will 
include spatial and temporal decompositions of concepts and 
predicates in the questions. The heuristics will also take 
advantage of indicators which influence concepts of interest to 
create strategies which are capable of inferring values of the 
variable of interest. These decompositions will guide the 
generation of semantic search queries for SPARQL[30] 
endpoints. 

5. Curation: The system will construct a local, question-

specific ontology for the question being processed. Data 

returned from the searches will be used to update this local 

ontology. We will use a representation which is capable of 

capturing time-sensitive facts [31] and question-specific details 

in the representation. We will also incorporate features to 

manage uncertainty such that results returned from queries are 

tagged with confidence measures based on the extent to which 

they align to the question's features, its representation as well as 

correlation or inconsistencies with data from other knowledge 

bases.  

6. Rich Inference: We will apply rich forms of inference to 

compute answers to questions. We will not limit the system to 

RDF/OWL formalisms of the data source during inference since 

our local knowledge representation in the curation module is rich 

and expressive. This gives us room to explore additional data 

sources such as HTML tables. We define variables over 

functions and algorithms such that specific features within the 

question trigger the corresponding combination functions to 

execute. The combination functions will include numerical 

functions such as correlation, regression, classification, etc., 

using third-party mathematical, statistical and machine learning 

libraries.  

 7. Answer Synthesis: The final answer that best matches the 
question from module 6 will be used to construct an answer 
string. The form of the response will depend on the question 
features identified in module 3. We will adopt techniques such 
as [32] and [33] in answer ranking and merging in this module. 

Our emphasis in this project will be on modules 5 and 6. We 
will use third party components as far as possible for the 

 

Fig. 5. Module inputs and outputs. Shaded modules represent the primary 

contributions of this project. 

remaining modules since we do not intend to reinvent the wheel 
in these cases. 

V.  CONCLUSION AND FUTURE WORK 

Question-answering using existing data to find novel 
information, not explicitly stated is possible with the vast 
amount of information on the web. This work aims at equipping 
question-answering system with the ability to decompose 
questions to identify the bits of information needed to infer new 
knowledge from existing ones. The QA system would be 
capable of building its own local ontologies and refining its 
representation incrementally as it gets more information from 
semantic web endpoints and semantic search engines. We aim 
not just to retrieve factoids from existing knowledge bases, but 
to use inference which enables the system to automatically find 
relevant data from which it can infer novel information using 
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Question:  

What will be the 

population of  

UK in 2020? 
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What is UK 2020 
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Geospatial features: location (United Kingdom) 

Temporal Features:    year (2020) 

1. Queries formulated based on: 

 Spatial decomposition of UK into sub-components  

 Temporal decomposition of time period (2020)  

 Spatial expansion over previous temporal states 

 Predicate expansion over synonyms, inverse, etc  

2. Kowledge-bases queried and search results stored. 

Example of SPARQL query for a past year’s population 

data: 

SELECT  ?population  

WHERE { ?x ns:location ? location.  ?y ns:year  ?year . 

                   FILTER (?x=”United Kingdom”)  FILTER 

(?y=”2010”) } 

1. Local knowledge-base (KB) created and updated with 

new data.  

2. Checked for inconsistencies between new data and 

existing data in KB. 

3. Repaired inconsistencies and uncertainty measures 

incorporated.  

Example of population facts in KB (where pi’s are 

population values):  

(UK, population_1911, p1);  (UK, population_1950, p2);  

(UK, population_1980, p3); (UK, population_1990, p4);  

(UK, population_2000, p5); (UK, population_2013, p6) 

 

Answer string is composed by substituting the 

inferred value into appropriate placeholder in 

composed answer text. 

 

Example: 

Population of UK in 2020 will be approximately 

67,000,000  

  

Question,  

Parse tree 

Formal representation of question  
Parse tree 

Parse tree, 

Question 

features 

Search  

results 

Curated KB,  

Parse tree,  

Features 

 

1. Answer inferred from data in curated KB. 

2. Inference using functions that aggregate existing 

data in KB and estimate future values using 

appropriate functions. 

 

For example, with data in KB on UK population in 

past years, module uses heuristics (based on question 

features and observed value types) to apply regression 

to the past population values to estimate the population 

in 2020. 

  

Inferred value, 

Parse tree,  

Question 

features  

INPUT MODULE OUTPUT 



rich inference techniques. These heuristics and inference 
techniques will allow the QA system to identify sub-questions 
and the corresponding combination functions which it will 
ultimately use to construct its final answer.  The QA system 
would be capable of defining its level of confidence in answers 
that it retrieves depending on the sources of information. These 
techniques will improve the range of questions that question 
answering systems can handle successfully. 

To realize this system, we will focus next on researching the 
best approach for identifying heuristics that will help to narrow 
the search for useful knowledge. We will also explore question 
decomposition strategies and their corresponding knowledge 
combination functions that constrain the QA problem to known 
machine learning inference methods such as regression. We will 
also select the appropriate third-party tools and software 
libraries that we can reuse for the non-core modules of our 
system. 
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