

Edinburgh Research Explorer

Using Rich Inference to Find Novel Answers to Questions

Citation for published version:
Nuamah, K, Bundy, A & Lucas, C 2015, Using Rich Inference to Find Novel Answers to Questions. in 3rd
International Essence Workshop: Algorithms for Processing Meaning. Evolution of Shared Semantics in
Computational Environments (ESSENCE), Barcelona, United Kingdom, 20/05/15.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
3rd International Essence Workshop: Algorithms for Processing Meaning

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43713691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/using-rich-inference-to-find-novel-answers-to-questions(d2bbdf8e-8286-48a5-91de-075a40ace7c2).html

Using Rich Inference to Find

Novel Answers to Questions

Kwabena Nuamah

School of Informatics

University of Edinburgh

Edinburgh, United Kingdom

k.nuamah@ed.ac.uk

Alan Bundy

School of Informatics

University of Edinburgh

Edinburgh, United Kingdom

bundy@inf.ed.ac.uk

Christopher Lucas

School of Informatics

University of Edinburgh

Edinburgh, United Kingdom

c.lucas@ed.ac.uk

Abstract— The Web is continuously enriched with data and has

become a large knowledge repository. However, machines are unable

to fully exploit this vast knowledge space in performing reasoning

tasks such as question answering. This inability limits the extent of

inference and ultimately limits the range of questions they can

answer. We argue that the quality and range of answers generated

by a question-answering system is significantly improved when we

use rich reasoning techniques to infer novel knowledge from web

data. By finding and aggregating facts from different knowledge

bases, an agent can obtain a better representation of a domain and

hence infer new facts which did not exist in any of the original

knowledge sources. We intend to explore rich semantic

representations and rich forms of reasoning. These include the

curation of data and the use of a combination of heuristics, logic and

probabilistic techniques to infer answers. This approach will

minimize noise and uncertainty in the knowledge for reasoning. Our

customized representations will suit the problem to be solved rather

than being restricted by the formalisms used in the sources. We plan

to implement this in a question-answering system that exploits a vast

set of knowledge bases such as ontologies and Linked Data

repositories. Our question-answering system will focus on questions

which require rich inferences such as prediction and composition of

answers from several pieces of information.

Keywords— inference, question-answering, knowledge

representation, heuristics, uncertainty

I. INTRODUCTION

 The increasing availability of knowledge bases, such as
ontologies on the web, has opened up the possibility of computer
agents taking advantage of the massive amounts of information
on the web for reasoning and information retrieval tasks that
were previously intractable. Logical inference can enable an
agent to infer implicit relationships between concepts in the
knowledge base, provided appropriate techniques are employed
to deal with ambiguous, incomplete and sometimes erroneous
data.

When given a question, humans possess the ability to choose
from a gamut of possible strategies the one that best solves the
question. This ability allows us to answer questions even when
the answer is not pre-stored in our memory or knowledge base.
In contrast, question answering (QA) systems, although
originally designed to use inference, tend to assume that the
answer is pre-stored in a knowledge base. Consider the question
“What will be the UK population in 2021?”. A QA system will

typically attempt (unsuccessfully) to find the pre-stored fact
population(UK, 2021, p). It most likely will not find this, and so
will give up and return no answer. Wolfram|Alpha [1] highlights
this point in a statement on its website: “Only what is known is
known to Wolfram|Alpha”. In contrast, humans are able to
answer this kind of question, by indirectly inferring answers that
we do not already have, from other readily available
information. In the example above, we could look up the
population values for past years, and then estimate the
population in 2021 using regression. We could also find the
population growth rate from Wikipedia and use that to predict
the population in 2021. In so doing, we use a combination of
heuristics, logic and probabilistic techniques to infer answers.
We refer to this as rich inference.

We believe that rich inference, applied to the heterogeneous
and ever-growing sources of information on the web, is critical
to realizing the promise of automated question-answering.

More specifically, we claim that the quality and range of
answers generated by a question-answering system is
significantly improved when we automatically curate data and
use richer forms of inference to infer novel knowledge from
Semantic Web data [2]. This improvement can be achieved by
finding and aggregating facts from different knowledge bases,
obtaining a better representation of the domain, discovering and
caching new facts that are not already stored in any of the
original knowledge sources. The rich inference that supports the
project includes heuristics for decomposing questions, logical
and probabilistic reasoning and higher-order functions which we
use to aggregate data into answers to questions, not limited by
the formalisms of the source data.

In practical terms, we intend to build a system that can
respond to questions where no suitable answer is contained in
any available data source, e.g., as a Resource Description
Framework (RDF) triple [3], stored phrase, or table entry. This
requires rich inference applied to pre-stored facts, logical
relationships, e.g., web ontology language (OWL) [4] and
description logics [5], and other formal semantics. Further, any
novel facts or relationships that have been inferred can then be
propagated back to customized knowledge-bases, facilitating
future question-answering. Unlike current question answering
systems which focus on the natural language processing (NLP)
problems inherent in QA, our core contribution will emphasize
mapping machine-readable queries to answers. Although natural

language processing is not our main focus, we will use third-
party tools to map natural-language questions to representations
that our system can use.

II. INFERENCE IN EXISTING QA MODELS

To varying extents, recent QA systems apply different forms
of question transformations, decompositions, rules and inference
techniques to get answers to questions. We classify these into
three models. Fig. 1 shows the three main types of models that
current QA systems use.

Model 1 is the simplest type, characterized by avoiding any
transformations of the representation of the question. Model 1
systems query knowledge bases directly, with the hope that the
data that best answers the questions are immediately available.
This model is often restricted to a specific domain using curated
knowledge bases, and a query language with a restricted
vocabulary. This is found in simple QA systems which place a
user interface over the knowledge base and then find answers
that best match the user query. Most basic information retrieval
system and database systems such as SQL (Structured Query
Language) follow this model.

Model 2 adds a question transformation feature. The
objective is to transform the question so that it exploits the
knowledge representation formalism used in the knowledge
base. This allows the QA system to work with knowledge bases
whose formalisms are known. These transformation rules are
usually fixed and specific to the knowledge bases that the QA
system depends on. AskMSR[6] uses this technique to
reformulate questions. Because its core strategy is to leverage
search engines, the reformulation of questions allows it to
rewrite the same query in different ways, and then submit each
query to a search engine. AskMSR exploits the redundancy in
web data by collecting summaries of the search results, mining
and filtering N-grams, and determining the best answers from
the remaining data. Initial versions of START [7] similarly
approach QA by transforming questions into templates which it

uses to search its knowledge base. It uses its rule-based approach
(S-rules) and its natural language annotations to find the
matches in its knowledge base to the question and then returns
an answer from the best matches.

Model 3 does not just transform the question into some
specific representation, but also decomposes it by some criteria.
For instance, the IBM Watson system uses parallel
decomposition [8] when questions contain mutually
independent facts about the answer. An example used by the
authors was “[Which] company with origins dating back to 1876
became the first U.S. company to have 1 million stockholders in
1951?”. In this question, knowing the company with origins
dating back to 1876 is important, but not necessary to
determining the first U.S. company to have 1 million
stockholders in 1591. So both can be determined independently
and a common answer that both sub-questions find, will most
likely be the answer to the whole question. IBM Watson also
uses nested decomposition for questions containing an
independent fact about an entity related to the correct answer and
a separate fact that links that entity to the correct answer. An
example of this type of question is “Which surgical procedure is
required to deal with an aortic condition associated with
bicuspid aortic valves?”. In this question, it is necessary to first
determine the aortic condition associated with bicuspid aortic
valves before the surgical procedure required to deal with it is
found.

Saquete et.al [9] also device a temporal decomposition
strategy in their QA system which was designed to answer
questions of a temporal nature. The question: “Where did Bill
Clinton study before going to Oxford University?” is
decomposed into the questions “Where did Bill Clinton study”
and “When did Bill Clinton go to Oxford University”. Model 3
approaches also perform some degree of inference from
knowledge bases. IBM Watson does this by taxonomic
reasoning to check whether the candidate answer type it
generates matches the proper lexical answer type. It also uses
some form of inference to reason over semantic web and linked
data resources (such as DBpedia [10], YAGO [11] and Cyc [12])
it uses as part of its knowledge base.

Another system using a Model 3 is GORT [13]. In the
GORT project, the Semantic Web was used to “guesstimate”
answers to user questions by combining disparate facts to
provide approximate answers to numeric questions. However,
GORT is limited to specific types of proof-trees, and basic
functions such as Min, Max, Count and Average from which it
can compute to infer new facts. It also requires user inputs to
fill in answers to some sub-questions. PowerAqua [14] and
ANGIE [15] also use semantic web data to answer questions.
PowerAqua uses its triple mapping component (triple similarity
service) to find suitable answers to questions which have been
decomposed and transformed into query triples. A later version
of START [16] uses syntactic and semantic decompositions to
help answer questions using multiple web data sources. It is
limited in its use of formal inference and rather uses rules which
match specific patterns in the questions to connect domain
questions to sub-questions that are answerable by specific
knowledge resources.

Fig. 1. QA Models

<User>

Question

Model 1:

Direct Search

of KB

<User>

Question

Model 2:

Query

Transformation

Question

Transformation

<User>

Question

Model 3:

Query

Decomposition and

Inference

Question

Decomposition

Inference & Rules

KB

KB

KB

Earlier QA system also used different formal methods of
inference and deduction to answer questions. QA3 [17] and
DEDUCOM [18] are examples of such systems. However, an
analysis of these early QA systems by Simmons in [19] showed
that several of these system use inference rules to expand and
transform the formal expression of the question until it matches
some combination of facts in its knowledge base.

In general, the extent of inference applied in Model 3 is only
to the point of directly retrieving fact(s) from the knowledge
base and using that as the answer, as part of the answer or as
input into a placeholder in a nested question.

III. RICH INFERENCE

The crucial difference between these past approaches and
our proposal is the idea of rich inference, to which we have
already alluded. Here we describe the characteristics that
distinguish this idea from the kinds of inference in Model 3
systems, and outline a plan for implementing it. First, rich
inference involves reasoning about higher-order facts, such as
functional relations in the data, which expands the range of
answers that can be sought. Second, rich inference involves
dynamic curation and re-use of previously inferred facts and
relations, which makes it possible to find answers to increasingly
difficult questions and abstract questions. Third, rich inference
must be robust in the face of uncertainty, and must make is
possible to express degrees of certainty to end users. Fourth and
finally, rich inference must be able to exploit efficient heuristics
for composing known facts and relations to find answers,
without which our enterprise becomes intractable.

Our model is shown in Fig. 2.This model emphasizes the use
of heuristics and rich forms of inference. The decomposition of
questions is based on heuristics which create possible
alternatives to compute an answer. The model makes of use of
data from different knowledge bases and automatically curates
the necessary facts that it uses to compute its answers for a
specific question.

A. Reasoning and Curation

 Inference will form the core of our question-answering
system. Current open domain question-answering systems are
tasked with finding facts from existing data. However, question
answering does not have to be limited to finding pre-stored facts
since that approach fails to answer questions where the answer
is not explicitly stated, or is not observed in the existing dataset.
By searching and finding facts from various knowledge bases,
we will dynamically create a formal representation of the
knowledge. By loosely coupling the representation of the source
data and the reasoning task, we are able to deal with many
different data sources, including RDF triples, tabular data and
other data formats. This lessens the impact of heterogeneous
data representation on the web on our reasoning tasks. The local
representation will be customized to the question being
answered, in which case we can factor in formalisms of time and
other concepts as arguments. In particular, a representation of
the states of the world using first order logic and dynamic
Bayesian networks enables us to reason over different time slices
and about uncertainty. This rich and expressive representation
will enable use of rich forms of inference to determine missing
facts from a sequence of observations with gaps, or predict a
future observation from past facts. In order to discover robust,
generalizable relationships within and between data sources, we
will use a combination of the logic-based methods described
above, and, in the case of numerical data, recent methods from
machine learning, e.g., flexible regression methods [20], and
compositional approaches [21].

Humans use heuristics that are capable of making inferences
in the face of incomplete and noisy information. Todd and
Gigerenzer considered the spectrum rationality from unbounded
to bounded rationality and ecological rationality [22]. They
looked at the common types of heuristics which humans use to
answer a wide range of questions. These heuristics guide the
search to focus on retrieving only essential information and
stopping the search when sufficient information has been
retrieved to answer the question. Such heuristics can be found in
causal relationships between concepts in a domain. Suppose we
have a concept A which has a causal relationship with concept
B such that concept A causes (or influences) B. If data on A is
readily accessible, we can solve for A and infer the solution for
B from solution of A.

In our system, we will use heuristics which select specific
combination functions when certain features are identified from
the question and the facts retrieved from the knowledge bases.
Thus, we will explore the idea that heuristics can help to
decompose a question and constrain the problem to known
functions which can be solved in a more tractable way as
opposed to using the brute force approach which tries to explore
the entire search space of solutions. These kinds of meta-
knowledge heuristics will allows us to select only the most
appropriate and promising reasoning strategy to solve the QA
problem. We will also exploit existing techniques in higher order
logical reasoning and machine learning. We will use regression,
classification and other inference methods in third-party
machine learning libraries. This richness will allow our
reasoning process to capture a wide range of computations
necessary to estimate novel facts from the pre-stored facts in the
local knowledge base.

Fig. 2. Proposed model

<User>

Question

Model 4:

Using Heuristics and

Rich Inference

Heuristics-Based

Question Decomposition

Rich Inference and

Heuristics

KB

B. Heuristics and Commonsense Knowledge

We believe that in a search space which is very large, as
found in question-answering, heuristics are vital to making the
problem tractable. Our approach to QA will use reasoning
techniques which adopt different heuristics that constrain the
problem to known functions that can solve sub-problems of the
main problem, and aggregate the sub-solutions to give an answer
to the user. This forms one of the core strategies we use in our
rich inference techniques.

Heuristics are vital to the problem solving and decision
making strategies of rational agents. Several applications of
heuristics are found in computational problems that would
otherwise be hard when brute force algorithms that search the
entire space of solutions are used. Informed search algorithms
such as greedy best first search and A* search use knowledge
about the search domain to prioritize branches of the search
space which lead to an optimal solution. Proponents of heuristics
for problem solving such as Todd and Gigerenzer [22], Pearl
[23] and Tversky and Kahneman [24] make strong arguments
for the use of readily accessible information about the domain to
solve problems in the domain. In [25] Simon argues that humans
use a bounded form of rationality which uses approximate
methods to solve tasks within reasonable amounts of time. This
is in contrast to unbounded rationality where there is an
assumption that agents possess some form of unbounded
knowledge, unlimited memory, unbounded computational
capacities and unlimited time for computations. Despite the

well-defined nature of the optimal solutions to problems and the
possibilities to be searched, the search space is just too large to
consider all these possibilities within a reasonable amount of
time. Todd and Gigerenzer further argue that these heuristics for
bounded rationality can incorporate environmental structure,
thereby adapting the heuristics to the environment, in what they
term ecological rationality. Our first use of heuristics will be to
make the search space manageable. When reasoning about
existing knowledge from which to find novel information or do
prediction, more data is usually better. However, in an
automated system, where search for relevant knowledge as well
as reasoning over the knowledge are both essential, more data
could significantly slow down the process of finding or
computing the required data. For instance, if you are interested
in finding the city with the largest population, we could search
for the population of all cities in every country and use a
maximum function to determine the largest one. However, if you
are told that large cities are found in countries with large
populations, we could eliminate several countries from our
search and focus only on those cities in countries with large
populations. Using Todd and Gigerenzer’s recognition heuristic
[22], we could further reduce the search space to those that are
recognized from the existing knowledge base. This fast and
frugal heuristic can yield answers with reasonable accuracy,
especially when past knowledge about the domain is limited. We
will extract such commonsense knowledge from knowledge
bases such as ConceptNet [26]. We refer to this category of
heuristics as space heuristics.

Fig. 3. Question decomposition example

q = What will be the UK population in 2021?

 <UK, p, 2021>

FindFactoid() δ=Temporal(2021)

γ=LIN-REGRESS

y=227750x - 396440000

δ=Spatial(UK)

γ=SUM

<UK,p,2011> <UK,p,2001> <UK,p,1991> <UK,p,1911> …

FindFactoid() FindFactoid() FindFactoid() FindFactoid()

57.40m

P(x) = 0.7

56.40m

P(x) = 0.9

38.20m

P(x) = 0.7

SDBPedia SONS SWorldBank SLocal_Curated …

δ=OR

γ=argmax x P(x|Si)

= 63.18m

<England,p,2021>

<Scotland,p,2021>

<Wales,p,2021>

<N.Ireland,p,2021>

FindFactoid()

δ=OR

γ= argmaxa P(a)

δ=Temporal(2021)

γ= LIN-REGRESS

δ= PredicateExpansion()

γ= MEAN_MEDIAN

δ=ChangeRate()

γ= RateFn(<England,p,2021>)

δ=PredicateExpansion()

γ= MEAN_MEDIAN

<UK,r,2021>

<UK,s,2021>

<UK,t,2021>

<UK,u,2021>

…

δ=ChangeRate()

γ= RateFn(<UK,p,2021>)

δ=OR

γ= argmax
a
 P(a|q)

δ= decomposition function

γ= combination function

δ=Proportion()

γ= PropFn(<UK,p,2021>)

Our second use of heuristics will determine the question
decomposition functions and the corresponding fact
combination functions to answer the question. Cues or keywords
identified in the question will determine if, for instance, a
temporal and (or) geo-spatial decomposition of the question is
required. This would create a tree of strategies that can be used
to find a solution. Multiple strategies can be pursued, and their
final answers compared to estimate accuracy and confidence.
We refer to the heuristics used here as strategy heuristics. An
example of this is illustrated in Fig. 3.

C. Handling Uncertainty

The variety of sources from which data is published, the
variety of representation formats, naming conventions and other
cultural and contextual issues which arise in the creation and
publishing of ontologies add an even greater level of uncertainty
about the facts. Formal knowledge representations, such as
OWL used in the Semantic Web, are based on the Open World
Assumption. This means that if a fact is not stated explicitly in
the ontology, it does not necessarily make it false. This carries
with it a great deal of uncertainty when being used as a data
resource for question-answering. Each ontology also models a
different aspect of the universe (or its domain). In addition,
representations of knowledge model a partial view of the world.

Our approach to QA will encounter three main forms of
uncertainty:

 Understanding of the question

 Heuristics and their inherent simplification assumptions

 Noise and incompleteness of data in knowledge base.

It is a hard problem to know how well we understand the
question to be answered until we get user feedback on accuracy.
The use of heuristics also introduces assumptions which may
oversimplify the problem and thereby create more uncertainty in
the accuracy of the answer generated. Furthermore, we expect
data from knowledge bases to be noisy and incomplete in some
cases. To capture these uncertainties in our QA process, we will
assign uncertainty weights to each space and strategy heuristic
based on the extent to which it is likely to affect the accuracy of
our answer. At the start of our QA process we set our confidence
value, C, to 1.0. Supposing we apply heuristics hi in the process
which has a weight of wi ϵ [0,1]. Our updated confidence value
will be:

C = C(1 - wi)

We intend to use a representation which is expressive
enough to capture time slices of the world, the dependencies
between concepts and the uncertainties associated with the data
available for the QA process. We will explore a representation
which combines first-order logic (FOL) and Bayesian Networks
(BN). Similar to first order probabilistic logic in [27], we are
able to harness the strengths of both FOL and BN in terms of
expressivity and uncertainty. For the range of questions we
expect our QA system to answer, we need to be able to represent
both temporal and geospatial features of data in the knowledge
representation. In some cases, we consider the dataset required
to answer the question as spanning over a time range. This
consideration helps to identify the appropriate inference
technique to find answers from the representation.

Additionally, this representation will be able to capture some
elements of uncertainty. Data from web sources contain a lot of
noise and variance. We will define combination functions which
combine these data and generate appropriate probabilities that
define our belief in the data. These combination functions will
also be capable of propagating the uncertainty measurements
through the QA process to the final answer that is generated.
Other sources of uncertainty such as unrealizability, where the
appropriate combination function does not exist in our function
domain, and computational complexity, where the search space
is too large or is computationally intractable, mean that some of
the functions yield only approximations to the expected results.
Probabilistic techniques can be used to determine the prior
probability of the required data variables. The large size of the
search domains means that we will use approximations such as
maximum likelihood estimations to compute the likelihood of
each data item being consistent with the required data variables
based on other data items that the search returns. Combined with
learning approaches like inductive learning, which find suitable
hypothesis that agree with the observed data and generalize well
to new data queries, we can incorporate uncertainty directly into
the representation of knowledge and computations of answers in
the QA system.

IV. KEY MODULES OF PROPOSED QA SYSTEM

A general overview of the key steps in the proposed solution is

shown in Fig. 4. A more detailed view of each module with its

inputs and outputs is described in Fig. 5.

Fig. 4. QA pipeline. Shaded modules represent the primary contributions

of this project

1. Parsing using NLP tools

2. Formal representation

of question

4. Query SPARQL endpoints

and semantic search engines

5. Construct ontology and rich

representation specific to the

question and its features

3. Question Analysis: question

features, answer type, etc.

6. Rich Inference

7. Answer Synthesis

User Question

1. Parsing: This module will take as input the question text
and apply syntactic and semantic parsing using NLP tools such
as CoreNLP [28]. The key outputs of this module will be a
semantic parse tree and a dependency tree.

2. Feature Extraction: The parse trees will be analyzed to
identify important features of the question. Features include the
type of 'wh-' question, the expected type of answer (a number,
date, time, name, etc.), the concepts inquired about, identifiable
predicates, elements of time and location and units of
measurement.

3. Semantics: The parse trees will be used to generate a
formal logical representation of the question. We will exploit the
structure of the dependency trees, and use the part of speech
tagging to extract entities and predicates. This module will use
techniques in [29] to identify relationships between concepts.

4. Search: We will use heuristics which, based on the
extracted features of the question and its formal representation,
will create candidate strategies to solve the question. This will
include spatial and temporal decompositions of concepts and
predicates in the questions. The heuristics will also take
advantage of indicators which influence concepts of interest to
create strategies which are capable of inferring values of the
variable of interest. These decompositions will guide the
generation of semantic search queries for SPARQL[30]
endpoints.

5. Curation: The system will construct a local, question-

specific ontology for the question being processed. Data

returned from the searches will be used to update this local

ontology. We will use a representation which is capable of

capturing time-sensitive facts [31] and question-specific details

in the representation. We will also incorporate features to

manage uncertainty such that results returned from queries are

tagged with confidence measures based on the extent to which

they align to the question's features, its representation as well as

correlation or inconsistencies with data from other knowledge

bases.

6. Rich Inference: We will apply rich forms of inference to

compute answers to questions. We will not limit the system to

RDF/OWL formalisms of the data source during inference since

our local knowledge representation in the curation module is rich

and expressive. This gives us room to explore additional data

sources such as HTML tables. We define variables over

functions and algorithms such that specific features within the

question trigger the corresponding combination functions to

execute. The combination functions will include numerical

functions such as correlation, regression, classification, etc.,

using third-party mathematical, statistical and machine learning

libraries.

 7. Answer Synthesis: The final answer that best matches the
question from module 6 will be used to construct an answer
string. The form of the response will depend on the question
features identified in module 3. We will adopt techniques such
as [32] and [33] in answer ranking and merging in this module.

Our emphasis in this project will be on modules 5 and 6. We
will use third party components as far as possible for the

Fig. 5. Module inputs and outputs. Shaded modules represent the primary

contributions of this project.

remaining modules since we do not intend to reinvent the wheel
in these cases.

V. CONCLUSION AND FUTURE WORK

Question-answering using existing data to find novel
information, not explicitly stated is possible with the vast
amount of information on the web. This work aims at equipping
question-answering system with the ability to decompose
questions to identify the bits of information needed to infer new
knowledge from existing ones. The QA system would be
capable of building its own local ontologies and refining its
representation incrementally as it gets more information from
semantic web endpoints and semantic search engines. We aim
not just to retrieve factoids from existing knowledge bases, but
to use inference which enables the system to automatically find
relevant data from which it can infer novel information using

Parsing

Semantics

Feature

Extraction

Search

Curation

Rich

Inference

Answer

Synthesis

Question:

What will be the

population of

UK in 2020?

population

What is UK 2020

∃𝑥, 𝑥 𝜖 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ⋀ 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑥,𝑈𝐾 ⋀ 𝑦𝑒𝑎𝑟 𝑥, 2020

Geospatial features: location (United Kingdom)

Temporal Features: year (2020)

1. Queries formulated based on:

 Spatial decomposition of UK into sub-components

 Temporal decomposition of time period (2020)

 Spatial expansion over previous temporal states

 Predicate expansion over synonyms, inverse, etc

2. Kowledge-bases queried and search results stored.

Example of SPARQL query for a past year’s population

data:

SELECT ?population

WHERE { ?x ns:location ? location. ?y ns:year ?year .

 FILTER (?x=”United Kingdom”) FILTER

(?y=”2010”) }

1. Local knowledge-base (KB) created and updated with

new data.

2. Checked for inconsistencies between new data and

existing data in KB.

3. Repaired inconsistencies and uncertainty measures

incorporated.

Example of population facts in KB (where pi’s are

population values):

(UK, population_1911, p1); (UK, population_1950, p2);

(UK, population_1980, p3); (UK, population_1990, p4);

(UK, population_2000, p5); (UK, population_2013, p6)

Answer string is composed by substituting the

inferred value into appropriate placeholder in

composed answer text.

Example:

Population of UK in 2020 will be approximately

67,000,000

Question,

Parse tree

Formal representation of question
Parse tree

Parse tree,

Question

features

Search

results

Curated KB,

Parse tree,

Features

1. Answer inferred from data in curated KB.

2. Inference using functions that aggregate existing

data in KB and estimate future values using

appropriate functions.

For example, with data in KB on UK population in

past years, module uses heuristics (based on question

features and observed value types) to apply regression

to the past population values to estimate the population

in 2020.

Inferred value,

Parse tree,

Question

features

INPUT MODULE OUTPUT

rich inference techniques. These heuristics and inference
techniques will allow the QA system to identify sub-questions
and the corresponding combination functions which it will
ultimately use to construct its final answer. The QA system
would be capable of defining its level of confidence in answers
that it retrieves depending on the sources of information. These
techniques will improve the range of questions that question
answering systems can handle successfully.

To realize this system, we will focus next on researching the
best approach for identifying heuristics that will help to narrow
the search for useful knowledge. We will also explore question
decomposition strategies and their corresponding knowledge
combination functions that constrain the QA problem to known
machine learning inference methods such as regression. We will
also select the appropriate third-party tools and software
libraries that we can reuse for the non-core modules of our
system.

REFERENCES

[1] “Wolfram|Alpha.” [Online]. Available: https://www.wolframalpha.com/.
[Accessed: 23-Apr-2015].

[2] A. Bundy, “The interaction of representation and reasoning,” Proceedings
of the Royal Society A, no. July, 2013.

[3] “RDF/XML Syntax Specification (Revised).” [Online]. Available:
http://www.w3.org/TR/REC-rdf-syntax/. [Accessed: 04-Oct-2014].

[4] D. L. McGuinness, F. Van Harmelen, and others, “OWL web ontology
language overview,” W3C recommendation, vol. 10, no. 10, p. 2004,
2004.

[5] D. Nardi and R. Brachman, “An Introduction to Description Logics.,”
Description Logic Handbook, 2003.

[6] M. Banko, E. Brill, S. Dumais, J. Lin, and M. Way, “AskMSR : Question
Answering Using the Worldwide Web,” no. March, 2002.

[7] B. Katz and B. Katz, “Annotating the World Wide Web Using Natural
Language,” in Proceedings of the 5th RIAO Conference on Computer
Assisted Information Searching on the Internet (RIAO ’97), 1997.

[8] I. B. M. Watson and F. Jeopardy, “Fact-based question decomposition in
DeepQA,” vol. 56, no. 3, pp. 1–11, 2012.

[9] E. Saquete, P. Martínez-Barco, R. Muñoz, and J. L. Vicedo, “Splitting
complex temporal questions for question answering systems,”
Proceedings of the 42nd Annual Meeting on Association for
Computational Linguistics - ACL ’04, p. 566–es, 2004.

[10] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and
S. Hellmann, “DBpedia - A crystallization point for the Web of Data,”
Web Semantics: Science, Services and Agents on the World Wide Web,
vol. 7, no. 3, pp. 154–165, Sep. 2009.

[11] F. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic
knowledge,” Proceedings of the 16th international conference on World
Wide Web, no. November, 2007.

[12] D. Lenat and R. Guha, “Cyc: A midterm report,” AI magazine, vol. 11,
no. 3, 1990.

[13] A. Bundy, G. Sasnauskas, and M. Chan, “Solving guesstimation problems
using the Semantic Web: Four lessons from an application,” Semantic
Web, pp. 1–20, 2013.

[14] V. Lopez, M. Fernández, E. Motta, and N. Stieler, “PowerAqua:
Supporting users in querying and exploring the Semantic Web,” Semantic
Web, vol. 3, pp. 249–265, 2012.

[15] N. Preda and G. Kasneci, “Active knowledge: dynamically enriching RDF
knowledge bases by web services,” SIGMOD, Indianapolis, 2010.

[16] B. Katz, G. Borchardt, and S. Felshin, “Syntactic and semantic
decomposition strategies for question answering from multiple
resources,” in Proceedings of the AAAI 2005 Workshop on Inference for
Textual Question Answering, 2005.

[17] C. C. Green and B. Raphael, “The use of theorem-proving techniques in
question-answering systems,” in Proceedings of the 1968 23rd ACM
national conference, 1968, pp. 169–181.

[18] J. R. Slagle, “Experiments with a deductive question-answering
program,” Communications of the ACM, vol. 8, no. 12, pp. 792–798,
1965.

[19] R. F. Simmons, “Natural language question-answering systems: 1969,”
Communications of the ACM, vol. 13, no. 1, pp. 15–30, Jan. 1970.

[20] A. Wilson, E. Gilboa, J. P. Cunningham, and A. Nehorai, “Fast Kernel
Learning for Multidimensional Pattern Extrapolation,” Advances in
Neural Information Processing Systems, pp. 3626–3634, 2014.

[21] R. B. Grosse, R. Salakhutdinov, W. T. Freeman, and J. B. Tenenbaum,
“Exploiting compositionality to explore a large space of model
structures,” arXiv preprint arXiv:1210.4856, 2012.

[22] G. Gigerenzer and P. M. Todd, Simple heuristics that make us smart.
Oxford University Press, 1999.

[23] J. Pearl, “Heuristics: intelligent search strategies for computer problem
solving,” 1984.

[24] A. Tversky and D. Kahneman, “Judgment under uncertainty: Heuristics
and biases,” science, vol. 185, no. 4157, pp. 1124–1131, 1974.

[25] H. A. Simon, “Invariants of human behavior,” Annual review of
psychology, vol. 41, pp. 1–19, 1990.

[26] H. Liu and P. Singh, “ConceptNet—a practical commonsense reasoning
tool-kit,” BT technology journal, vol. 22, no. 4, pp. 211–226, 2004.

[27] S. Glesner and D. Koller, “Constructing flexible dynamic belief networks
from first-order probabilistic knowledge bases,” Symbolic and
Quantitative Approaches to Reasoning and Uncertainty, 1995.

[28] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D.
McClosky, “The Stanford CoreNLP Natural Language Processing
Toolkit,” In Proceedings of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, pp. 55–60.

[29] K. A. Nuamah and L. Fu, “Biased-Incremental Clustering: A Flexible
Knowledge Extraction Algorithm,” International Journal of Computer
and Communication Engineering, vol. 1, no. 1, pp. 8–12, 2012.

[30] E. Prud’Hommeaux, A. Seaborne, and others, “SPARQL query language
for RDF,” W3C recommendation, vol. 15, 2008.

[31] F. Lécué and J. Pan, “Predicting knowledge in an ontology stream,”
Proceedings of the Twenty-Third international joint conference on
Artificial Intelligence, pp. 2662–2669, 2013.

[32] J. Ko, L. Si, and E. Nyberg, “Combining evidence with a probabilistic
framework for answer ranking and answer merging in question
answering,” Information Processing & Management, vol. 46, no. 5, pp.
541–554, Sep. 2010.

[33] M. Surdeanu, M. Ciaramita, and H. Zaragoza, “Learning to rank answers
to non-factoid questions from web collections,” Computational
Linguistics, no. September 2010, 2011.

	I. Introduction
	II. Inference in Existing QA Models
	III. Rich Inference
	A. Reasoning and Curation
	B. Heuristics and Commonsense Knowledge
	C. Handling Uncertainty

	IV. Key Modules of Proposed QA System
	V. Conclusion and Future Work
	References

