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Ovodefensins, an oviduct specific antimicrobial gene family have evolved in birds and 

reptiles to protect the egg by both sequence and intra six cysteine sequence motif spacing1. 

 

Running title: Oviduct ovodefensin evolution 

Keywords: Defensin, egg, antimicrobial, chicken, oviduct, E. coli, steroid, evolution, S. aureus. 

 

Natasha Whenham2,3, Tian Chee Lu3, Maisarah B. M. Maidin3, Peter W. Wilson3, Maureen M. 

Bain4, Lynn Stevenson4, Mark P. Stevens3, Michael R. Bedford
5
 and Ian C. Dunn3 

3Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, 

Midlothian, Scotland, UK. 4College of Medical, Veterinary and Life Sciences (MVLS), 

University of Glasgow, Glasgow, Scotland, UK.  5AB Vista Feed Ingredients, Marlborough, 

Wiltshire, England, UK 

Summary sentence: Bird and reptile oviduct specific antimicrobial gene family, the 

ovodefensins, have evolved both their sequence and the amino acid spacing between a conserved 

cysteine sequence motif. 

Some of the data in the paper has been presented at the Avian Immunology Research Group 

Meeting, July 16-19 2014, Guelph, Canada: Ovodefensins; egg specific antimicrobial peptides of 

birds and reptiles. 

1Funded by a CASE award to NW from the BBSRC and AB Vista. The Roslin Institute is funded 

by a core strategic grant from the BBSRC.  

2Correspondence: Natasha Whenham, Roslin Institute and Royal (Dick) School of Veterinary 

Studies, University of Edinburgh, Easter Bush Campus, The Roslin Building, Midlothian EH25 

9RG, Scotland, UK, E-mail: natasha.whenham@roslin.ed.ac.uk 



2 

 

Abstract   

Ovodefensins are a novel beta defensin related family of antimicrobial peptides containing 

conserved glycine and six cysteine residues. Originally thought to be restricted to the albumen 

producing region of the avian oviduct, expression was found in chicken, turkey, duck and zebra 

finch in large quantities in many parts of the oviduct, but this varied between species and 5 

between gene forms in the same species. Using new search strategies the ovodefensin family 

now has 35 members including reptiles, but no representatives outside birds and reptiles have 

been found.  Analysis of their evolution shows that ovodefensins divide into 6 groups based on 

the intra cysteine amino acid spacing, representing a unique mechanism alongside traditional 

evolution of sequence. The groups have been used to base a nomenclature for the family.  10 

Antimicrobial activity for three ovodefensins from chicken and duck was confirmed against E. 

coli and a pathogenic E. coli strain as well as a gram +ve organism, S. aureus, for the first time. 

However, activity varied greatly between peptides, with Gallus gallus OvoDA1 being the most 

potent, suggesting a link with the different structures. Expression of Gallus gallus OvoDA1 

(gallin) in the oviduct was increased by oestrogen and progesterone and in the reproductive state.  15 

Overall the results support the hypothesis that ovodefensins evolved to protect the egg but they 

are not necessarily restricted to the egg white.  There divergent motif structure and sequence 

present an interesting area of research for antimicrobial peptide design and understanding 

protection of the cleidoic egg. 

  20 
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Introduction 

The avian egg has many mechanisms in place to protect itself from bacterial invasion as does the 

reproductive tract; these can effectively be considered as either physical or chemical [1].  An 

important part of the eggs chemical defense is provided by antimicrobial peptides (AMPs), 

otherwise known as host defense peptides (HDPs).  A particular group of these, the 25 

ovodefensins, was recently shown to be a new family of egg specific defensins [2].  The family 

had been shown to be conserved across divergent avian species and was thought to be avian 

specific [2].  Proteomic methods had confirmed the presence of the chicken, turkey and duck 

members of the ovodefensin family in the egg [3-5] and quantitative reverse transcriptase PCR 

confirmed that the expression of the chicken member, gallin was restricted to the oviduct of the 30 

hen [2].  In contrast classical defensins are widely distributed across many tissues and can be 

found in all vertebrates [6].  Currently, only three of the classical chicken defensins are found in 

the egg; AvBD9, 10 and 11 [7].    It has yet to be determined if the expression of other avian 

members of the ovodefensin family are also restricted to the oviduct, which would imply that the 

whole family is likely to be expressed principally for inclusion in the egg.  If this is the case 35 

ovodefensins are likely to be influenced by gonadal steroids and would be expected to show 

expression patterns in response to steroids typical of egg specific genes such as ovalbumin [8] 

and ‘transiently expressed in neural precursors’ (TENP) [9].  Although the connection had not 

previously been made with classical vertebrate defensins, ovodefensins were classed as a new 

branch of this family largely because of the conservation of a characteristic 6 cysteine sequence 40 

motif and a common glycine residue between C1 and C2 attributed to all vertebrate -defensins 

[2]. Their position in the genome was also close to the -defensin cluster on chromosome 3 [2].   

The ovodefensins differ from classical vertebrate defensins in the spacing of amino acids within 
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the 6 cysteine sequence motif and are slightly shorter in length, the mature peptides ranging from 

only 39-41 amino acids, although they are still highly cationic as is expected with defensins.  45 

Two cysteine sequence motifs were observed in ovodefensins; C-X5-C-X3-C-X11-C-X3-CC and 

C-X3-C-X3-C-X11-C-X4-CC [2] which may be due to the fact that antimicrobial peptides are 

often under high selective pressure to evolve due to the ongoing arms race between pathogen and 

host, such as observed in classical vertebrate -defensins [10].  Interestingly the 3D structure of 

the chicken ovodefensin gallin has recently been solved which confirmed the presence of the 50 

three-stranded antiparallel β-sheet observed in all classical -defensins reinforcing its 

relationship with the -defensins [7].  However, gallin contains an additional short two-stranded 

β-sheet [7], this five-stranded arrangement supports the hypothesis that gallin, and presumably 

the other ovodefensins, form a structurally distinct sub-family of β-defensins.   

Host defense peptides such as the defensins have been suggested previously as an interesting 55 

template for new classes of antimicrobial drugs as they often possess a wide spectrum of 

antimicrobial activity [11, 12].  Cationic host defense peptides are small, typically containing a 

high abundance of positively charged and hydrophobic residues [13].  Gallin, the chicken 

representative of the ovodefensin family was shown to be highly antibacterial against a 

laboratory-adapted strain of E. coli [2].  It has since been suggested that its direct antimicrobial 60 

actions are limited to E. coli [7], however few studies have been carried out relating to the 

antimicrobial capabilities of gallin and indeed this novel family of defensins.   

Our overall aim of this study was therefore; to determine the extent of the ovodefensin family 

using the possibility that evolution acting on spacing as well as sequence may reveal the 

presence of further molecules with novel cysteine sequence motifs; to determine if ovodefensins 65 

are avian specific, as was previously speculated, and to determine if ovodefensins are restricted 
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to the oviduct and are therefore egg specific as was the case with gallin.  Finally we wished to 

determine the antibacterial capabilities of gallin, a newly discovered chicken ovodefensin 

member (OvoDB1) and duck BPS2 and the pH and salt sensitivity of gallin.   

 70 

Materials and Methods 

Discovery of new ovodefensin family members 

Available genome databases Ensembl [14], PreEnsembl [15] and UCSC [16] were searched 

using TBLASTN and BlastP [17] to locate potential homologs using the 41 amino acid mature 

peptide sequence of gallin (GenBank: CBE70283.1) and the previously published 39 amino acid 75 

mature peptide sequence of taeniopygin 2 [2].  Further iterative searches were made with the 

homologues discovered.  Protein database Uni-prot [18] was also searched using BlastP to 

identify peptide sequences previously unidentified as ovodefensins. 

Phylogenetic analysis of the evolution of spacing between conserved residues. 

A distance matrix based on the amino acid sequence length between each cysteine and the 80 

conserved glycine residue was built with the statistical computing software R [19] for all known 

and newly discovered ovodefensins (Supplementary Data 1).  Hierarchical clustering for each 

distance matrix was calculated using R [19] which was then used to produce a cladogram of the 

phylogenetic relationships using the R ‘hclust’ function (Figure 1A).  Similarly cladograms 

based on spacing were produced separately for avian species (Figure 1C) and reptiles (Figure 85 

1D).  The resulting ovodefensin ‘sub-families’ were used to propose new nomenclature for 

existing and newly discovered ovodefensin molecules (Table 1) which currently have trivial 

names based on  a range of criteria determined by the discoverer.  We propose that each gene has 

the prefix OvoD to identify it as an ovodefensin and is attributed a letter from A-F to identify the 
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sub-family to which it belongs.  Within a sub-family each gene is given a numerical identifier 90 

allowing multiple forms of the same gene to be identified.  For example gallin would become 

Gallus gallus OvoDA1 and the additional copies OvoDA1_2 and OvoDA1_3.  Through the use of 

this nomenclature meleagrin is Meleagris gallopavo OvoDA1 allowing it to be easily identified 

as a member of the same sub-family and a gallin ortholog aiding comparison across species.  

This nomenclature will be used throughout the remainder of this manuscript to aid clarity. 95 

In addition to this a phylogram was constructed using Mega5 [20] and the core peptide sequence 

from the conserved glycine until the fourth cysteine residue inclusively for sequences where the 

number of amino acids within this region was identical (Figure 1B).  Mega5 was also used to 

construct phylograms based on the whole mature peptide sequences for OvoDA family members 

(Figure 1E) and also OvoDB (Figure 1F). 100 

ClustalW alignments of each of the 6 cysteine sequence motifs (OvoDA-OvoDF) and a global 

alignment of all ovodefensin peptides can be found in supplementary data 2.  

 

Animals and tissue collection 

To determine Gallus gallus OvoDA1 and OvoDB1expression the following tissues were taken 105 

from four sexually mature White Leghorn LSL hens (Lohmann): Oviduct (magnum, isthmus, 

shell gland vagina), ovarian stroma, crop, duodenal loop, gizzard, caeca, cloaca, lung, adrenals, 

cerebellum, retina, spleen, liver, kidney, and heart.   

For analysis of Anas platyrhynchos OvoDB1 (dBPS1) and OvoDA1 (dBPS2) expression, tissues 

were collected from three sexually mature Pekin ducks (Cherry Valley): Oviduct (magnum, 110 

isthmus, shell gland, vagina), ovarian stroma, crop, proventriculus, small intestine, duodenal 
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loop, gizzard, large intestine, caeca, cloaca, gall bladder, lung, trachea, pituitary, adrenals, 

cerebellum, hypothalamus, tongue, spleen, breast muscle, liver, kidney and heart.   

Combined expression of Meleagris gallopavo OvoDA1 (Meleagrin) and OvoDA2 and expression 

of OvoDB1 was determined using tissues from four sexually mature turkeys: Oviduct (magnum, 115 

isthmus, shell gland, vagina), ovarian stroma, oesophagus, crop, duodenal loop, gizzard, caeca, 

cloaca, lung, adrenals, cerebellum, tongue, spleen, breast muscle, skin, liver, kidney and heart.   

Taeniopygia guttata OvoDA1 (Taeniopygin 1) and OvoDB1 (Taeniopygin 2) expression was 

measured using five adult female zebra finches courtesy of Dr Karen Spencer, University of St 

Andrews, Scotland: Oviduct (magnum, isthmus shell gland), ovarian stroma, small intestine, 120 

duodenal loop, gizzard, lung, spleen, breast muscle, skin, liver, kidney and heart.   

After dissection all tissue was placed in RNA later (Ambion) and stored at 4°C overnight before 

storage at -80°C.  Samples weighed no more than 100mg. 

Time of oviposition 

Magnum tissue was obtained from sexually mature white leghorn hens with an ovum at various 125 

positions in the oviduct, see Gong et al [2] for details.  Briefly, magnum tissue was collected 

either when the egg was in the magnum (n=5), in the shell gland where the stage of calcification 

was determined by electron microscopy and recorded as early (n=8), mid (n=9) and late (n=10) 

calcification or during a pause day (n=11) when there was no evidence of ovulation. 

Effect of oviduct development 130 

To determine if Gallus gallus OvoDA1 (gallin) and Gallus gallus OvoDB1 expression differed 

between in lay hens (n=11) and those where the oviduct had regressed due to incubation 

behavior (n=11) magnum and shell gland tissue were collected from hens of a Silkie x White 
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Leghorn cross, see Whenham, et al [9].  After dissection tissue was frozen in liquid N2 and 

stored at -80°C.  Samples weighed no more than 100mg. 135 

Induction with steroid hormones 

The protocol for examining induction of  Gallus gallus OvoDA1 (gallin) with steroid hormones 

was adapted from a method described by Kunnas, et al [21].  Three week old ISA brown chicks 

(n=60) were given an intramuscular injection of 0.5mg diethylstilbestrol (DES; Sigma-Aldrich 

D4268)) in 0.5 ml propylene glycol (vehicle) daily for seven days (primary stimulation) and then 140 

split into two groups.  Ten days following the primary DES treatment one group of birds (n=30) 

were re-stimulated on two consecutive days with DES (primed group) and group two (non-

primed) birds (n=30) received vehicle. The next day within both groups a subset were given a 

single intramuscular injection of progesterone (Sigma-Aldrich P3972, 20mg/kg) (n=10), 

estradiol (Sigma-Aldrich E8515, 10mg/kg) (n=10) or vehicle (propylene glycol; 1ml/kg) (n=10).  145 

All chicks were killed 12-16 hours after the single injection; magnum tissue was removed and 

immediately frozen in liquid N2 then stored at -80°C. 

Ethics: All animals were killed in accordance with Schedule 1 of the Animals (Scientific 

Procedures) Act 1986, UK under project license PPL 60/3964. All procedures were approved by 

the institute’s ethics committee. 150 

 

RNA preparation 

Tissues were homogenized in Ultraspec II total RNA isolation reagent (AMS Biotechnology) 

using an Ultraturrax homogenizer (IKA®-Werke GmbH & Co. KG).  Samples were then 

processed as per manufacturer’s protocol.  155 
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RT-PCR transcript detection and sequencing characterization 

1µg samples of chicken, duck, turkey and zebra finch magnum RNA were reverse transcribed 

using a high capacity cDNA reverse transcription kit (Applied Biosystems) according to the 

manufacturer’s protocol.  Primers (Table 2) were designed to ensure complete coverage of each 160 

ovodefensin’s coding sequence.  PCR amplification was performed using the following 

conditions:  an initial denaturation at 95°C for 4 minutes, followed by 40 cycles of 30s at 95°C, 

30s at 58°C and 30s at 72°C, followed by an extension of 7 minutes at 72°C.  All products were 

separated by 2% agarose-gel electrophoresis and visualized using SYBR Safe DNA gel stain 

(Invitrogen). 165 

The amplified PCR fragments were sequenced with their respective forward and reverse primers.  

Sequences were assembled by Staden [22] to produce consensus sequences.   

 

5’/3’ RACE 

Rapid amplification of cDNA ends (RACE) was carried out using a 5’/3’ RACE 2nd Generation 170 

kit (Roche Diagnostics) to determine the number of exons encoding Gallus gallus OvoDA1 

(gallin).  Briefly, for 5’RACE, synthesis of first strand cDNA was carried out on magnum RNA 

using primer gallinSP1 and the mRNA template degraded.  cDNA was purified using a High 

Pure PCR Product Purification kit (Roche Diagnostics) and polyA tailed at the 3’ end.  The tailed 

cDNA was amplified by PCR using the oligo (dt)-anchor primer provided and a further nested 175 

primer OvoDA1SP2.  The product from this PCR was run using 3% agarose-gel electrophoresis 

and visualized using SYBR Safe DNA gel stain (Invitrogen).  PCR product was excised from the 

gel and cleaned from the agarose using a QIAEX II Gel Extraction Kit (Qiagen) and sequenced 

using primer OvoDA1SP2.  
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3’RACE used the oligo(dT)-anchor primer to initiate cDNA synthesis at the poly(A)-tail of 180 

magnum RNA.  Amplification using a PCR anchor primer and OvoDA1SP5 was then performed 

directly.  PCR product was excised from the gel and cleaned from the agarose using a QIAEX II 

Gel Extraction Kit (Qiagen) and sequenced using primer OvoDA1 SP5. Primer sequences for 

RACE can be found in Table 2. 

 185 

Reverse transcription quantitative polymerase chain reaction (RT-QPCR). 

A first strand cDNA synthesis kit (GE Healthcare Life Sciences) was used for reverse 

transcription of a 0.5µg sample of total RNA as per manufacturer’s instructions.  Reverse 

transcribed samples were diluted by a factor of 10 with H2O prior to use.  Primer3 was used to 

design primers for quantification, sequences can be found in Table 2.  RT-QPCR was carried out 190 

with 8µl of the diluted cDNA and a primer concentration of 20mM according to Agilent Brilliant 

III SYBR® Green QPCR master mix (Agilent) instructions.  The following conditions were used 

for RT-QPCR; 95°C for 2 min, then 40 cycles of 95°C for 15s, 60°C for 30s using an MX3000 

(Stratagene).  Reactions containing no template were run as a control.  Standard PCR conditions 

were used to obtain products for the construction of a standard curve and Lamin B-receptor 195 

(LBR) expression was measured in the same way to normalize concentrations (as described 

previously) [9] in order to determine the absolute concentration of the different ovodefensin 

transcripts.  Products were run on an agarose gel to confirm only products of the correct length 

with no primer-dimer were amplified as well as ensuring that there was only a single peak 

dissociation curve, correct amplification was also confirmed through sequencing of the PCR 200 

product. 
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Production and titres of polyclonal antibodies 

Production of antibodies was carried out by Dundee Cell Products Ltd; epitopes for raising 

antibodies were chosen on their surface probability, hydrophilicity and antigenicity with 205 

consideration of the peptide solubility.  Briefly, two rabbits per peptide were immunized four 

times at three week intervals by intramuscular injection of synthesized Gallus gallus OvoDB1 

(R108 and R109) epitope (CNKKDEWSFHQ) and Taeniopygia guttata OvoDB1 (R112 and 

R113) epitope (KGEREEHTED) synthesized by Dundee Cell Products Ltd. and emulsified in 

Freunds adjuvant.  Serum was collected after each immunization.  Antiserum was purified via a 210 

two-step affinity purification using cognate peptides coupled to beads.   

To measure the titres of anti-Gallus gallus OvoDB1 and anti-Taeniopygia guttata OvoDB1 in 

their respective antisera, the synthesized epitopes were diluted with 50mM Na2CO3 (pH9.6) to a 

final concentration of 1ng/µl (0.5ng/µl of each epitope) and 50µl of the solution was added to 

each well of a 96 well plate.  The plate was covered and stored overnight at 4°C.  This was 215 

aspirated and the wells incubated for 2 hours at room temperature with 200µl tris-buffered saline 

(pH7.5), 0.5% Tween 20 (TBST), 1% bovine serum albumin (BSA) to block unsaturated binding 

sites.  Pre-immune (null) sera and antisera were serially diluted 1/1000 to 1/32000 with TBST, 

1% BSA, pH7.5.  To each well, 10µl of diluted null sera or antisera were added and the plate 

incubated for 2 hours at room temperature.  The plate was washed 5 times with TBST.  Horse 220 

radish peroxidase (HRP) conjugated Anti-rabbit IgG- (SAPU) diluted 1/2000 with TBST, 1% 

BSA, pH7.5. 100µl was applied to each well and the plate incubated at room temperature for 2 

hours.  After five washings with TBST, peroxidase activity was detected by adding 100µl 

detection solution (100mM citric acid, 200mM Na2HPO4, O-Phenylenediamine (OPD), H2O2)).  
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The reaction was stopped with 50µl 2M H2SO4 and absorbance (490nm) measured 225 

spectrophotometrically. 

 

Immunohistochemistry (IHC) 

Wax embedded tissues were sectioned at 3 microns  using a Thermoshandon finesse microtome, 

lifted onto Vectabond slides (Vector Laboratories) and incubated at 600C for 1 hour before they 230 

were de-waxed and taken down to water.  Heat induced epitope retrieval (HIER) was carried out 

using a Menarini Access Retrieval Unit, in buffer (Sodium Citrate pH6) for 1 minute 40 seconds 

at 125oC full pressure. Each section was then loaded onto a Dako Autostainer (Dako).  A 

standard IHC protocol was then applied; optimal staining was achieved at a 1:500 dilution for the 

polyclonal anti-Taeniopygia guttata OvoDB1 (113_KGE _2.1) and 1:1000 for the anti-Gallus 235 

gallus OvoDB1 (108 CNK-1.3).  The sections were viewed using a Leica DM 4000 B 

microscope and images captured using a Leica DC480 camera with Qwin program for PC 

(Leica). 

 

Peptide production 240 

Gallus gallus OvoDA1, OvoDB1 and Anas platyrhynchos OvoDA1 were commercially obtained 

from Almac Group (East Lothian, Scotland).  The peptides were synthesized on a 0.2mmol scale 

using an automated Applied Biosystems 433 peptide synthesizer and fluorenylmethoxy (Fmoc) 

solid phase peptide synthesis protocols.  Each amino acid was coupled after activation with 

diisopropylcarbodiimide/Oxyma pure.  Upon completion of the synthesis the peptide was 245 

cleaved from the resin and the side chain protecting groups removed using a cocktail of 

trifluoroacetic acid, ethanedithiol triisopropylsilane and H2O.  The peptide was folded in the 
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presence of oxidised and reduced glutathione at pH8 and the final product isolated using 

preparative HPLC and a gradient of H2O, acetonitrile and 0.1% trifluoroacetic acid.  Freeze dried 

peptides were reconstituted in 10% dimethyl sulfoxide (DMSO). 250 

 

Antimicrobial activity assay 

The antimicrobial assay, adapted from methods described previously [2, 24, 25] was used to 

determine the efficacy of Gallus gallus OvoDA1, OvoDB1 and Anas platyrhynchos OvoDB1.  

Five different strains were used to assess antimicrobial activity: E. coli K-12 strain DH5, avian 255 

pathogenic E. coli (APEC) O78:H9 strain χ7122, Salmonella enterica serovars Enteritidis 

(SE125109) and Typhimurium (ST4/74) and Staphylococcus aureus (8325-4).  E. coli DH5 and 

S. aureus 8325-4 are non-pathogenic laboratory strains of bacteria and APEC, SE125109 and 

ST4/74 are pathogenic strains known ability to colonise chickens.  Bacteria were cultured 

overnight at 37°C in Luria broth (LB) or tryptone soya broth (TSB) (S. aureus);  two hundred 260 

and fifty µl of overnight culture was sub-cultured into 20ml of LB or TSB and incubated at 37°C 

for 3 hours.  After the second incubation 20µl of culture was diluted with 2ml of phosphate 

buffered saline (PBS), pH7.4.  Ten µl of Gallus gallus OvoDA1, OvoDB1 or Anas 

platyrhynchos OvoDB1 peptide (3, 6, 15, 30, 60, 150, 300 and 600µM) or DMSO (control) or 

PBS was added to 50µl of diluted culture to produce final concentrations of 0.5, 1, 2.5, 5, 10, 25, 265 

50 and 100µM respectively.  For S.aureus final concentrations of 10, 25, 50, 100, 150 and 

200µM were used.   After vortexing this was incubated at 37°C for 3 hours and then the 

suspensions were serially diluted to 1x10-4 with PBS, all dilutions were plated on LB or tryptone 

soya agar plates.  Plates were incubated overnight at 37°C and the colonies were counted.  
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Results are expressed as a reduction in colony forming units per ml (CFU/ml) and where 270 

possible the effective dose 50 (ED50) was calculated using the DRC program in R [26]. 

 

Effect of pH and salt on antimicrobial activity 

The antimicrobial assay as outlined above (2.9.1) was adapted to test the effect of pH on the 

efficacy of Gallus gallus OvoDA1 against E. coli DH5.  The assay was carried out as before 275 

but using PBS at pH 6.4, 7.4 and 8.4.  Gallus gallus OvoDA1 was tested at final concentrations 

of 1.9, 5.6, 16.7 and 50µM.The antimicrobial assay (2.9.1) was adapted to test the effect of salt 

sensitivity on Gallus gallus OvoDA1 efficacy.  PBS with NaCl concentrations of 50, 100 and 

150mM, pH 6.4 were used. 

 280 

Sequencing and database submission 

All sequencing was carried out by GATC biotech  and consensus sequences were submitted to 

EMBL, Gallus gallus OvoDB1 (EMBL accession no. LN717248), Meleagris gallopavo OvoDB1 

(EMBL accession no. LN717250), Taeniopygia guttata OvoDA1 (EMBL accession no. 

LN717251), OvoDA1_2 (EMBL accession no. LN717252) and OvoDB1 (EMBL accession no. 285 

LN717253). Putative budgerigar, medium ground finch, anole lizard, american alligator, collared 

flycatcher, painted turtle and chinese soft-shelled turtle sequences were not submitted because 

they remain predicted but can be found in the supplementary data (Supplementary Data 1). 

 

Statistical analysis 290 
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One way or two way ANOVA and least significant difference to test between the means were 

used as appropriate for statistical analysis using Genstat (13th edition, VSN International Ltd). 

Log transformed data was used where appropriate to equalize the variance. 

 

Results 295 

Bioinformatic analysis and transcript confirmation 

TBLASTN similarity searches of available genomes located twenty four new ovodefensin 

homologues (Supplementary Data 1, Table 3).  Hierarchical clustering based on the distance 

between each cysteine identifies six specific sub-families termed OvoDA-OvoDF (Figure 1A).  

In the chicken the first representative of OvoDB, a cysteine sequence motif with a shorter 300 

spacing between C1-C2 and a longer spacing between C4-C5 (C-X3-C-X3-C-X11-C-X4-CC) 

was identified on chromosome 3, where OvoDA1 (C-X5-C-X3-C-X11-C-X3-CC) and the 

classical chicken beta defensins are also located.  This was named OvoDB1 in accordance with 

the proposed nomenclature outlined in 2.1.2 (Figure 1A, C, Table 3).  The first turkey 

representative of the OvoDB1 motif (Figure 1A, C, Table 3) was discovered on chromosome 2 305 

the same chromosome as Meleagris gallopavo OvoDA1 (meleagrin).  A further potential paralog 

of Meleagris gallopavo OvoDA1 was also located on this chromosome; the mature peptide 

sequence shares a 95% identity with OvoDA1 and was named Meleagris gallopavo OvoDA2 

(Figure 1A, C, Table 3).  A budgerigar representative of sub-family B, Melopsittacus undulatus 

OvoDB1 (Figure 1A, C, Table 3) was discovered during this analysis however a representative 310 

from the same subfamily (A) as gallin has yet to be located for this species.  Three putative 

copies of a sub-family A ovodefensin were found in the April 2012 assembly of the medium 

ground finch genome; Geospiza fortis OvoDA1, OvoDA1_2 and OvoDA1_3 (Figure 1A, C, Table 
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3).  A search of the flycatcher genome discovered a member from both the A and B sub-families, 

these were named Ficedula albicollis OvoDA1 and OvoDB1 respectively (Figure 1A, C, Table 315 

3).  For the first time reptile representatives of the ovodefensin family were identified.  Two 

copies of Pelodiscus sinensis OvoDB1 (Figure 1A, D, Table 3) were identified in the Chinese 

soft-shell turtle genome.  In the painted turtle genome a sub-family B member was also located; 

Chrysemys picta bellii OvoDB1 (Figure 1A, D, Table 3) in addition to this a new cysteine 

spacing motif (C-X3-C-X3-C-X13-C-X3-CC), which we have termed sub-family C was 320 

uncovered.  Within this the painted turtle sub-family C contains two copies of the OvoDC1 gene 

and an OvoDC2 gene (Figure 1A, D, Table 3).  TBLASTN searches of the American alligator 

genome identified two members of yet another new cysteine sequence motif, sub-family D (C-

X3-C-X3-C-X11-C-X3-CC); Alligator mississippiensis OvoDD1 and OvoDD2 (Figure 1A, D, 

Table 3).  Finally two further motifs were uncovered in the anole lizard genome; sub-family E 325 

(C-X6-C-X3-C-X11-C-X2-CC) and F (C-X6-C-X4-C-X11-C-X2-CC).  Within sub-family E one 

copy of Anolis carolinensis OvoDE1 was located, three copies of OvoDE2 and one copy of 

OvoDE3 (Figure 1A, D, Table 3).  One copy of each of the sub-family F members was 

identified, OvoDF1, OvoDF2 and OvoDF3 (Figure 1A, D, Table 3).  Genome build and 

chromosome/scaffold locations for each ovodefensin are outlined in Tables 1 and 3. 330 

Three homologs not previously classified as ovodefensins were also identified during this study.  

Shapiro et al [27] produced a rock pigeon reference genome from which a putative sub-family A 

member was identified.  This had been named cygnin due to its homology with black swan 

cygnin, we now propose the name Columba livia OvoDA1 (Figure 1A, C, Table 3).  From this 

genome a putative sub-family B member, named small basic protein was also located, the name 335 

Columba livia OvoDB1 (Figure 1A, C, Table 3) is proposed for this ovodefensin homolog.  In 
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addition to this TEWP, a loggerhead turtle peptide was isolated from egg white and shown to be 

a defensin [28], this peptide has the motif of a sub-family B ovodefensin and we therefore 

suggest the name Caretta caretta OvoDB1(Figure 1A, C, Table 3). 

 340 

5’/3’ RACE 

5’/3’ RACE using magnum RNA and primers resulted in a PCR product with 100% identity to 

the published Gallus gallus OvoDA1 (gallin) sequence (ENSGALG00000028311.1), the 5’ and 

3’ sequence of which was derived by prediction.  Alignment with the chicken genome confirmed 

that Gallus gallus OvoDA1 is encoded for by two exons. 345 

 

Tissue expression 

Gallus gallus OvoDB1 expression was restricted to magnum and isthmus as previously 

documented with OvoDA1 (Figure 2). In contrast to this both Anas platyrhynchos OvoDA1 and 

OvoDB1 expression was greatest in the shell gland, although some expression was observed in 350 

both the magnum and the isthmus (Figure 2) and no expression was detected outside of the 

oviduct (data not shown).  The combined expression of Meleagris gallopavo OvoDA1 and 

OvoDA1_2 and expression of OvoDB1 was high across all oviduct tissues, the greatest 

expression for these turkey ovodefensins was measured in the shell gland, magnum and isthmus 

(Figure 2).  Taeniopygia guttata OvoDA1 and OvoDB1 expression was also restricted to the 355 

oviduct with expression being observed most highly in the shell gland for both genes (Figure 2).  

It should be noted that vagina tissue was not available for the zebra finch.  For all the 

ovodefensin transcripts analyzed, no expression was detected in tissues outside the reproductive 

tract (data not shown). 
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There was no significant effect of the position of the egg in the oviduct or the lack of an egg in 360 

the oviduct on Gallus gallus OvoDB1 expression in the magnum (Figure 3) (ANOVA = 

P=0.269). The level of Gallus gallus OvoDA1 and OvoDB1 expression in the magnum was 

higher (P<0.001) in birds in-lay than in those with an oviduct in the regressed state (Figure 4).  

When estrogen and progesterone were administered to juvenile hens Gallus gallus OvoDA1 

expression (Figure 5) was higher in birds treated with the two steroids (P<0.001) and where 365 

priming with an estrogenic compound had been performed overall expression increased 

(P<0.001). 

 

Immunohistochemistry 

The chicken anti-OvoDB1 antiserum (108 CNK-1.3) produced positive staining in the tubular 370 

gland cells of the magnum (Figure 6A, C).  The ciliated and non-ciliated cells lining the magnum 

region of the oviduct did not react to the primary antibody. No staining was observed in the 

isthmus, shell gland or caecum (data not shown).  In contrast to this the zebra finch anti-OvoDB1 

antiserum (113_KGE _2.1) produced positive staining in the tubular gland cells and surface 

epithelium of the magnum, isthmus and shell gland (Figure 7A, C, E).  No convincing staining 375 

was observed in the breast muscle (Figure 7G). 

 

Antimicrobial activity 

Gallus gallus OvoDA1 (gallin) peptide achieved a relatively large effect on E. coli DH5 with 

around a 98% reduction in CFU/ml at 100M (Figure 8A, Table 4), this is comparable to the 380 

results reported previously with BL21 [2].  Gallus gallus OvoDA1 achieved around a 40% 

reduction in viability of avian pathogenic E. coli O78:H9 strain χ7122 when used at 50 or 
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100M (Figure 8A, Table 4) and a >90% reduction in viability against S. aureus 8325-4 a Gram-

positive organism when used at 100 or 200M (Figure 8B, Table 4).   No reduction was 

observed against either of the Salmonella strains used in this study (data not shown).  A 35% 385 

reduction in viability of E. coli DH5 was achieved with 100µM Gallus gallus OvoDB1 (Table 

4), and a very small reduction was observed in APEC numbers (~3%).  No reduction was 

observed against S. aureus the Salmonella strains tested (data not shown).  A duck representative 

of the ovodefensin family, Anas platyrhynchos OvoDB1 (dBPS2) showed a >80% reduction in 

viability of E. coli DH5 (Table 4) but no convincing activity was seen against any of the other 390 

strains tested. 

Gallus gallus OvoDA1 potency as measured by ED50 did not differ significantly due to pH 

(P=0.42), the ED50 (± SEM) of Gallus gallus OvoDA1 at pH 6.4, 7.4 and 8.4 was 7.38µM 

(±15.3), 3.57µM (±1.4) and 3.67µM (±0.96) respectively (Figure 9A).  The potency of Gallus 

gallus OvoDA1 at ED50 level was also not effected by salt concentration (P=0.49), the ED50 of 395 

Gallus gallus OvoDA1 at 50, 100 and 150mM NaCl was 3.55µM (±2.39), 3.88µM (±29.8), and 

3.27µM (±14.9) respectively (Figure 9B). However at higher concentrations of Gallus gallus 

OvoDA1 the maximum antibacterial activity appeared to be diminished by higher salt 

concentration (Figure 9B). 

 400 

Discussion 

Seven ovodefensins had previously been identified within divergent avian species and it had 

been observed that two cysteine sequence motifs exist [2], suggesting within the ovodefensins 

there may be further divisions in structure and function (Table 1).  This study identified a further 

25 ovodefensin members (Table 3) through genome analysis, and attributed a further 3 405 
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previously known sequences to the group expanding the ovodefensin family to include reptile 

species for the first time.  It was first suggested by Gong et al. that the ovodefensins appeared to 

be a new family of defensin molecules, most likely belonging to the β-defensin group [2].  

However it was predicted that ovodefensins share the genomic organization of mammalian β-

defensins, being encoded for by two exons [2] rather than the four exons which encode for 410 

classical avian defensins [6].  This study confirmed the exon arrangement of Gallus gallus 

OvoDA1 by defining the transcription start site thus confirming the two exons predictions.  

Where available, predictions of the newly discovered avian and reptilian ovodefensins also 

support the 2 exon arrangement.  In addition to an altered exon arrangement the ovodefensins 

differ to classical avian defensins in the spacing within the cysteine sequence motif.  When the 415 

3D structure and specific cysteine pairing was solved by Hervé et al it was observed that Gallus 

gallus OvoDA1 (gallin) had the classical disulphide pairing (C1-C5, C2-C4, C3-C6) of β-

defensins.  It was however demonstrated that Gallus gallus OvoDA1 contained an additional two 

stranded parallel β-sheet compared to known beta-defensin structures, and no amino-terminal 

helix [7], it is therefore possible that the ovodefensins form a new structural sub-family of 420 

defensins.  Now phylogenetic analysis of both the spacing and sequence of the ovodefensins 

suggests that multiple sub-families may exist within the family (Figure 1A, C, D).  These sub-

families include four new ovodefensin-like motifs OvoDC (C-X3-C-X3-C-X13-C-X3-CC), 

OvoDD (C-X3-C-X3-C-X11-C-X3-CC), OvoDE (C-X6-C-X3-C-X11-C-X2-CC) and OvoDF 

(C-X6-C-X4-C-X11-C-X2-CC) revealing that the ovodefensin family is much more diverse than 425 

was first thought.  All four new cysteine spacing motifs appear to be reptile specific (Figure 1A, 

D) whereas of the originally identified motifs OvoDA, (C-X5-C-X3-C-X11-C-X3-CC) was 
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avian specific (Figure 1A, C) and OvoDB (C-X3-C-X3-C-X11-C-X4-C) contained both avian 

and reptilian counterparts (Figure 1A, C, D).     

Phylogenetic analysis of spacing (Figure 1A) suggests that a common ancestor gave rise to two 430 

progenitor molecules which appear in turn to have independently evolved three cysteine 

sequence motifs.  However if you view this in the context of sequence analysis (Figure 1B) it 

would appear that the OvoDB cysteine sequence motif has in fact evolved separately within both 

avian and reptilian lineages suggesting spacing is an important feature of the ovodefensin 

molecules. In a sense this seems like a form of convergent evolution, albeit the available 435 

repertoire of spacing is relatively limited.  In order to assess all the ovodefensin molecules 

together either spacing (Figure 1A) or a core region (Figure 1B) was used however we recognize 

that this may influence the outcome of analysis depending on the evolutionary constraints of 

each selection.  In particular analysis based on the core region of the molecule (Figure 1B) 

produced some unexpected outliers, for example within the OvoDA cluster we see that the 440 

turkey molecules appear closer to the duck and swan than the chicken.  However when the full 

length peptides of the OvoDA sub-family are analyzed separately (Figure 1E) a more classical 

species arrangement is observed.  This demonstrates the complex nature of what appears to be 

the co-evolution of sequence and spacing and the need for both aspects to be studied in 

combination.  Overall the evolution within birds, and now in this study within another egg laying 445 

clade the reptiles, of a large repertoire of peptides that not only vary in sequence but the spacing 

between conserved cysteine residues suggests that the spacing between these cysteine residues 

may be critical for function. The region between the 1st and 2nd cysteine which varies from 3-6 

amino acids in length for example has been demonstrated in Gallus gallus OvoDA1 to be 

important because of the basic residue in an otherwise hydrophobic region [7].  Interestingly the 450 
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spacing between the 3rd and 4th cysteines residues is constant (X11) in each ovodefensin sub-

family with the exception of OvoDC which has 13 residues in this region.  Spacing between all 

cysteine residues is quite variable between ovodefensin sub-families, indeed it forms the basis of 

the proposed nomenclature however it should be noted that as this is an otherwise unvarying 

region and OvoDC has so far only been identified in reptiles we may be observing a distinct 455 

ovodefensin-like family of peptides. It has been difficult to find examples in the literature of 

situations where the amino acid distance between conserved residues of a motif are altering or 

under selection, possibly because this is rare or possibly because the methods of finding 

homologous genes rely heavily on the conservation of sequence, not pattern recognition.  Some 

flexibility is observed within the general sequence of vertebrate β-defensins with a relaxed 460 

consensus of C-X(4-8)-C-X(3-5)-C-X(9-13)-C-X(4-7)-CC being observed [29] yet TBLASTN 

searches with these β-defensins do not identify ovodefensin genes.  A study by Maxwell et al 

used hidden Markov models to identify novel mouse and human β-defensin genes and suggested 

that murine and human β-defensin families could be divided into two sub-groups based on the 

strong sequence conservation of exon 1 [10].  Regions that vary in their spacing between 465 

residues however are within the mature peptide and are encoded for by exon 2; this exon shows 

substantial divergence which is consistent with rapidly evolving genes under positive selection 

[10].  Other approaches have been developed to get round the problem in aligning large proteins 

where there were differences in spacing between conserved features important for protein 

secondary structure [30] and these alignments appeared to have a better agreement with the 470 

accepted view of evolution than if this was not undertaken. In large proteins this has been used to 

demonstrate evolution by insertion of new domains in molecules which have effects on structure 

and the authors conclude that using structure is likely to be more robust than sequence when 
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molecules cannot be unambiguously aligned [31].  Whilst appreciating that this is not 

comparable directly to the situation described in this paper of a short peptide, it does offer an 475 

analogy that may be useful in terms of understanding the ways in which evolution can work on 

gene products.  In the case of the relatively small ovodefensins it also seems that this is the case.  

 This study demonstrated very different levels of activity between the ovodefensin peptides 

tested.  However both Gallus gallus and Anas platyrhynchos OvoDA1 are from the same sub-

family suggesting that spacing alone does not define direct antimicrobial activity.  Another 480 

possibility for differing levels of activity is charge which varies from +4 to +10 within the 

currently identified ovodefensin members.  However charge alone is unlikely to explain all of the 

difference in activity as in this study Gallus gallus OvoDA1 and Anas platyrhynchos OvoDA1 

had a very similar charge of +7 and +6 respectively yet differed greatly in their activity.  

Additionally an increased charge of +10 did not result in increased activity for Gallus gallus 485 

OvoDB1. 

RT-qPCR analysis on chicken, duck, turkey and zebra finch representatives of the ovodefensin 

family demonstrate that in all cases expression is restricted to the oviduct of the bird.  However, 

interestingly, levels and patterns of expression within the oviduct vary between genes and 

species.  As previously seen with Gallus gallus OvoDA1 [2], Gallus gallus OvoDB1 was 490 

expressed more highly in the magnum of the oviduct where the egg white is formed (Figure 2), 

however expression of Gallus gallus OvoDA1 was more than 40 times that of Gallus gallus 

OvoDB1 (Figure 4). In contrast to this both the duck and zebra finch ovodefensins were 

expressed most highly in the shell gland and the turkey ovodefensins had very high levels of 

expression in the magnum, isthmus and shell gland regions of the oviduct (Figure 2).  495 

Immunohistochemistry confirmed the expression of Gallus gallus OvoDB1 (Figure 6) and 
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Taeniopygia guttata OvoDB1 (Figure 7) at a peptide level in specific regions of the oviduct.  

Gallus gallus OvoDB1 peptide distribution was restricted to the tubular gland cells of the 

magnum suggesting it is secreted into the egg white as previously seen with Gallus gallus 

OvoDA1[2].  In contrast Taeniopygia guttata OvoDB1 was expressed in both the tubular gland 500 

cells and surface epithelium of the magnum, isthmus and shell gland suggesting this may play a 

greater role in local protection of the oviduct as well as the innate defense of the egg.   

Gallus gallus OvoDB1 expression in the magnum of the oviduct did not differ significantly in 

relation to the position of the egg in the oviduct at the time of sampling (Figure 3); this was also 

the case for Gallus gallus OvoDA1 [2].  This expression profile is typical of egg proteins such as 505 

TENP [9] or ovalbumin [8].  Both Gallus gallus OvoDA1 and OvoDB1 expression in the 

magnum was significantly higher when the hen is in-lay compared to when the oviduct is 

regressed (Figure 4), suggesting that these genes are under the control of gonadal steroids, 

therefore being specifically up-regulated during egg production when steroid levels are elevated 

[32].  This observation was confirmed for Gallus gallus OvoDA1 by measurement of expression 510 

after the administration of estrogen and progesterone to juvenile hens, with estrogen producing 

the largest increase in expression.  The increase in Gallus gallus OvoDA1 expression was 

greatest when the hens had previously been primed with an estrogenic compound, showing the 

synergistic activity of estrogen and progesterone expected of a gene controlled by gonadal 

steroids in the oviduct [21, 33]. We cannot conclude if this is a direct effect of steroids on the 515 

promoter or an indirect effect and indeed no classical ERE were observed in the proximal 

promoter. 

In support of an egg defense role, Gallus gallus OvoDA1 was previously shown by Gong et al to 

be antimicrobial against a strain of E. coli [2], an observation that was confirmed in another three 
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strains of E. coli by Hervé et al [7].  The data outlined in this study also demonstrated 520 

antimicrobial activity of Gallus gallus OvoDA1 against laboratory-adapted and pathogenic E. 

coli (Figure 8A), and in agreement with the former publication [7], found no activity against 

Salmonella serovars Enteritidis and Typhimurium.  However this study did demonstrate 

antimicrobial activity of Gallus gallus OvoDA1 against S. aureus (Figure 8B).  Although it had 

been previously documented that Gallus gallus OvoDA1 did not possess antimicrobial activity 525 

against S. aureus [7] both the method (solid vs liquid phase) used to measure antimicrobial 

activity and the strain of S. aureus differ.  This is the first time activity has been recorded for a 

Gram-positive organism with an ovodefensin, and indeed for an organism other than E. coli 

demonstrating the need for more in depth analysis of the spectrum of activity of the 

ovodefensins.   530 

For the first time this study examined the antimicrobial activity of two other avian members of 

the ovodefensin family, Gallus gallus OvoDB1 and Anas platyrhynchos OvoDA1.  Gallus gallus 

OvoDB1 represents a member of the sub-family B cysteine sequence motif (C-X3-C-X3-C-X11-

C-X4-CC) whereas Anas platyrhynchos OvoDA1 contains the same sub-family A cysteine 

sequence motif as Gallus gallus OvoDA1 (C-X5-C-X3-C-X11-C-X3-CC).  Although Gallus 535 

gallus OvoDB1 possessed antimicrobial activity against E.coli DH5 (35% reduction in 

CFU/ml) it was not as potent as OvoDA1 from the same species at the same concentration 

(100µM) and no activity was recorded against APEC, S. aureus or either of the Salmonella 

strains tested in this study.  Anas platyrhynchos OvoDA1 demonstrated good activity against 

E.coli DH5 (>80% reduction) yet no activity was recorded against any of the other strains used 540 

in this study.  It should be noted that a study was previously carried out on duck ovodefensins 

which observed no antimicrobial activity [34], however this study did not report on the method 
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used to assess activity or whether the bacterial strains used were laboratory or pathogenic.  We 

were only able to observe activity for Anas platyrhynchos OvoDA1 (dBPS2) against the 

laboratory strain of E. coli are therefore the strains used in the previous study would be of 545 

interest.  The antimicrobial results from this study suggest that the family is as diverse in its 

activity as it is in sequence and raises the question of whether the sequence or perhaps spacing 

within the cysteine sequence motifs of these molecules affects their ability to kill 

microorganisms, perhaps evolving to counter the specific challenges each organism faces.  

Overall Gallus gallus OvoDA1 with motif C-X5-C-X3-C-X11-C-X3-CC was most active in the 550 

assay used and was therefore assessed in further detail, but neither pH or salt significantly 

affected the ED50 in the range used in this study (Figure 9A).  Overall potency of the peptide did 

diminish slightly at pH 6.4.  The pH of egg white ranges from approximately 7.6-8.5 

immediately after lay and becomes increasingly more alkaline (~9.6) as CO2 is lost [35]; this 

natural variation in pH may account for the apparent insensitivity of Gallus gallus OvoDA1 to 555 

the pH range used in this study.   Although the ED50 value did not differ significantly between 

salt concentrations it is clear that salt concentration did significantly affect the maximal potency 

of the peptide (Figure 9B).  Salt sensitivity of classical mammalian defensins such as mouse β-

defensin 1 [36] has been well documented and it is postulated that this is a feature common to all 

defensin molecules [37].  Salt concentration in the egg is relatively low (~50mM) [38] and the 560 

data presented in this paper would suggest that ovodefensins are relatively unaffected by 

increased salt but share with defensin a sensitivity to salt concentration. 

If ovodefensins behave as some classical vertebrate defensins it is possible to speculate that both 

the direct ability to kill microorganisms and also the ability to modulate the immune system may 

be dependent on the structure of the molecule.  Further investigation will be required to 565 
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determine whether the sub-families possess differing antimicrobial activity related to 

characteristics such as inter cysteine spacing, sequence or charge because the naturally occurring 

peptides tested have too many factors varying between them to draw a conclusion about each 

factor in isolation.  However the large natural diversity within the ovodefensin family makes it 

an interesting group to study in order to understand which ovodefensin properties are important 570 

for function and may provide a resource for novel antimicrobials as well as aiding understanding 

when engineering new, more potent derivatives, something of great value as the threat of 

antibiotic resistance intensifies.   

So to conclude, the ovodefensins are avian and reptilian specific members of the β-defensin 

family.  Expression of avian members has been demonstrated to be restricted to the oviduct and 575 

in the chicken is up-regulated in laying hens versus those with a regressed oviduct suggesting 

gonadal steroids control expression. This is confirmed by the increased expression of Gallus 

gallus OvoDA1 after administration of estrogen and progesterone in juveniles.  Although the 

chicken ovodefensins show the classic signature of an egg specific gene, the pattern across the 

range of species examined is more of an oviduct specific family.  This coupled with the 580 

antimicrobial activity demonstrated in this study and others suggests that ovodefensins have 

specifically evolved for a role in egg defense as a component of the eggs innate chemical 

defense; however they may also contribute to maintaining sterility in the oviduct through local 

tissue activity.  There is a large diversity within the ovodefensin family, with six motifs relating 

to spacing of the conserved cysteines discovered so far.  This suggests that evolution is acting 585 

not only on amino acid sequence but also spacing of the molecule.  This novel finding offers an 

additional avenue of investigation for the design of new antimicrobial compounds. 
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Figure 1:  Evolutionary relationship of ovodefensin homologues.  A distance matrix and 

hierarchical clustering of all known ovodefensin members based on spacing between cysteine 

residues (A) identifies six specific sub-families termed OvoDA-OvoDF.  A phylogram indicating 

the  evolutionary history of sub-families OvoDA, OvoDB, OvoDD and OvoDE was inferred 

using the Neighbor-Joining method [39] from the amino acid sequence of a core region from the 

conserved glycine residue until the fourth cysteine (B).  This suggested that the spacing with the 

cysteine sequence motif of OvoDB evolved independently in avian and reptilian lineages and 

which are presented separately (C) and (D).  Mature peptide sequences from sub-families 

OvoDA (E) and OvoDB (F) were analyzed individually in order to compare the full length of the 

molecule.   

 

For B, E and F the percentage of replicate trees in which the associated taxa clustered together in 

the bootstrap test (1000 replicates) are shown next to the branches [40]. The branch lengths are 

proportional to the evolutionary distances which were computed using the Poisson correction 

method [41].  The units are the number of amino acid substitutions per site.  All positions 

containing gaps and missing data were eliminated. Evolutionary analyses were conducted in 

MEGA5 [42].  A key for the abbreviations of the species Latin name can be found in 

supplementary data 3 and the sequences the alignments are based on in supplementary data 1. 

 

Figure 2:  Expression of ovodefensin mRNA in a range of adult chicken (n=4), turkey 

(n=4), duck (n=3) and zebra finch (n=5) tissues measured by RT-QPCR (mean ± sem). 

Expression was corrected for chicken, turkey, duck or zebra finch LBR expression to normalize 
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for any differences between tissues.  Note to accommodate the large differences in expression 

the data are presented on the log scale. 

 

Figure 3:  Expression of Gallus gallus OvoDB1 mRNA in magnum tissue at different stages 

of egg formation measured by RT-QPCR (n=8, mean ± sem).  Gallus gallus OvoDB1 

expression was corrected for LBR expression.  Pause represents a day when the hen did not 

ovulate so no egg is present. Magnum represents tissue taken when an egg is present in the 

magnum and early, mid and late describes the stage of shell formation in the shell gland and 

indicates the egg was not in the magnum when the sample was taken. ANOVA, P=0.269. 

 

Figure 4:  Expression of A) Gallus gallus OvoDA1 and B) Gallus gallus OvoDB1 in magnum 

tissue of laying (L) and out of lay (NL) birds measured by RT-QPCR (n=11, mean ± sem).  

Non-laying hens were those where the oviduct had regressed due to the withdrawal of 

gonadotrophic support with the onset of incubation behavior.  Expression was corrected using 

LBR gene expression. Note the large difference in the Y-axis scale between A and B.  

Significance between laying state is indicated at P<0.001, (***). 

 

Figure 5:  Expression of Gallus gallus OvoDA1 mRNA in the magnum of juvenile chicks 

treated with steroids measured by RT-QPCR (n=10, mean ± sem).  Gallus gallus OvoDA1 

expression was corrected using LBR expression. Female chicks at 3 weeks of age were either 

primed with diethylstilbestrol or vehicle then subsequently treated with either progesterone, 

estrogen or vehicle. ANOVA indicated priming was significant at P<0.001; steroid treatment at 
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P<0.001.  Significance between primed state within treatment is indicated, P<0.001(***) and 

significance between treatments regardless of primed state between the brackets, P<0.001(***). 

 

Figure 6:  Only the tubular gland cells of the magnum (A and C) region of the oviduct 

convincingly stained positive with the chicken anti-OvoDB1 antisera (108 CNK-1.3) 

whereas the surface epithelial cells (ciliated and non-ciliated) stained negative (A and C).  The 

corresponding negative controls for A and C are shown in B and D. 

 

Figure 7: The tubular gland cells and surface epithelium of the magnum (A), isthmus (C) 

and shell gland (E) regions of the oviduct stained positive with zebra finch anti-OvoDB1 

antisera (113_KGE_2.1). The corresponding negative controls are shown in image B, D, and 

F.  Breast muscle (G and H) was not reactive to the primary antibody.  

 

Figure 8: Gallus gallus OvoDA1 was incubated for 3 hours at 37°C with E. coli DH5, 

Avian Pathogenic E. coli χ7122 at 0.5-100µM (A) or S. aureus 8325-4 at 10-200µM (B) in 

PBS and the number of surviving bacteria were counted.  Results are represented as a 

reduction in CFU/ml when compared to a 10% DMSO control. 

 

Figure 9: The ED50 of Gallus gallus OvoDA1 did not significantly differ with a range of pH 

(P=0.42) (A) and NaCl concentrations (P=0.49) (B).   

 

Supplementary data 1:  All known and newly discovered ovodefensins 
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Supplementary data 2:  ClustalW alignments of each of the 6 cysteine sequence motifs 

(OvoDA-OvoDF) and a global alignment of all ovodefensin peptides.  A) CLUSTALW 

multiple sequence alignments of mature peptides of each cysteine sequence motif and B) a global 

alignment of ovodefensin peptides.  The conserved cysteines of each ovodefensin peptide are 

shaded in grey and the conserved glycine is shaded in black.  Complete conservation between 

molecules is indicated with ‘*’, strong similarity with ‘:’ and weak similarity with ‘.’. 

Supplementary data 3:  Key for the abbreviations of each species Latin name.   
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Table 1 – Nomenclature of previously identified ovodefensins and peptides now recognized 

as ovodefensins. 

New gene/ 

peptide 

name 

Species Previous 

name 

First defined Accession no. Genome location 

OvoDA1 Gallus gallus Gallin_1 Mann [3] GenBank 

CBE702(78-83) 

Chr3; 106740601-

106740723  

OvoDA1_2 Gallus gallus Gallin_2 Mann [3] GenBank 

CBE702(78-83) 

Chr 3; 106748086-

106748208 

OvoDA1_3 Gallus gallus Gallin_3 Mann [3] GenBank 

CBE702(78-83) 

Chr 3; 106751375-

106751497 

OvoDA1 Meleagris 

gallopavo 

Meleagrin Odani et al [4] UniProtKB/Swiss

-Prot: P21376.2 

Chr 2; 112906487-

112907670 

OvoDA1 Cygnus 

atratus 

Cygnin Simpson et al [43] UniProtKB/Swiss

-Prot: P02785.3 

- 

OvoDA1 Anas 

platyrhynchos 

dBPS2 Naknukool et al 

[5] 

UniProtKB/Swiss

-Prot: P85123.1 

Scaffold KB746044.1;  

6812-6934 

OvoDB1 Anas 

platyrhynchos 

dBPS1 Naknukool et al 

[5] 

UniProtKB/Swiss

-Prot: P85124.1 

Scaffold KB746044.1; 

12527-12649 

 

 

OvoDA1 Taeniopygia 

guttata 

Taeniopygin 

1 

Gong et al [2] EMBL: 

LN717251 

Chr 3; 111190828-

111191187 

OvoDA1_2 Taeniopygia 

guttata 

Taeniopygin 

1_2 

Gong et al [2] EMBL: 

LN717252 

Chr 3; 111176525-

111176647 

OvoDB1 Taeniopygia 

guttata 

Taeniopygin 

2 

Gong et al [2] EMBL: 

LN717253 

Chr 3; 111193797-

111194424 

OvoDA1 Columba livia Cygnin Shapiro et al [27] GenBank - 
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EMC87474.1 

OvoDB1 Columba livia Small basic 

protein 1 

Shapiro et al [27] GenBank: 

EMC87475.1 

- 

OvoDB1 Caretta 

caretta 

TEWP Chattopadhyay et 

al [28] 

UniProtKB/Swiss

-Prot: P0CAP0.1 

- 
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Table 2 – Names and sequences of primers used in the study. 

Forward primer name Forward primer sequence Reverse primer name Reverse primer sequence 

Chicken OvoDB1 F/RTF GTGCTCTTTGCTGTGCTCCT Chicken OvoDB1 R/RTR AGAGCTGCTCCTGCTCCAC 

Turkey OvoDA1 F TGGGCTAAGTTTCCCAGCTA Turkey OvoDA1 R AGTGACTGTGGCTGTCATCG 

Turkey OvoDA1_2 F AGCTCCTCTCCTCCAGCTCT Turkey OvoDA1_2 R TACTTTGCATGGGGTCAACA 

Turkey OvoDB1 F/RTF TGTGCTCCTGCTCTTTTCCT Turkey OvoDB1 R/RTR AGAGCCTCTCCTGCTCCACT 

Duck OvoDA1 F AGGGGGTGGCAGTTGAGTAG Duck OvoDA1 R GACGAAAGGCTGGAAAACAG 

Duck OvoDB1 F GAGATCCCCACCGTCCTC Duck OvoDB1 R TCAAAGCAACGAAACCGTCT 

Zebra finch OvoDA1 F AAATGGGGAAGAGCAATGG Zebra finch OvoDA1 R AATCGTGGGGACACCAGTAA 

Zebra finch OvoDB1 F GCTGTGGTCCTGGTGGATA Zebra finch OvoDB1 R TTGCTGCAAGCATCACTTTC 

Chicken OvoDA1 RTF CTCCAGCCTCGCTCACAC Chicken OvoDA1 RTR TTGAGAGGAGGGGATGACAC 

Turkey OvoDA1/1_2 RTF GCTGTCCTCCTGCTGGTCT Turkey OvoDA1/1_2 RTR CCTTGCAGTCGGAGGAGTAG 

Duck OvoDA1 RTF GCTACGGGTTTCCCCTTC Duck OvoDA1 RTR AGGTCGGGTACTGCTCCAG 

Duck OvoDB1 RTF GTGCTCCTGCTTTTCTCCAT Duck OvoDB1 RTR GCACGCAATGAACACAGC 

Zebra finch OvoDA1 RTF CCTTCCAGGCTATGGGAAGT Zebra finch OvoDA1 RTR GCAGTCGCCAGAGGTGTATT 

Zebra finch OvoDB1 RTF CGTTGTCTTTGCTGTTTTCCT Zebra finch OvoDB1 RTR GTGCTCCTCCCTCTCTCCTT 

Chicken OvoDA1 SP5 ACACGTGCTCCAAGACACAG Chicken OvoDA1 SP1 GCAGGCAGCAGTACATCTTG 

  Chicken OvoDA1 SP2 GCCCAGATCTGTGTCTTGGA 
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Table 3 – Nomenclature and genome location of newly identified ovodefensins. 

Gene/peptide 

name 

Species Accession no. Genome build/ location 

OvoDB1 

 

Gallus gallus EMBL: LN717248 Nov’11; Chr 3; 106744444-106744572 

OvoDB1 Meleagris gallopavo EMBL: LN717250 Dec’09; Chr 2; 112960926-112961582 

OvoDB1 Melopsittacus undulatus - melUnd1; Scaffold JH556573; 2958896-

2959015 

OvoDB1 Pelodiscus sinensis - PelSin_1.0; Scaffold JH212527; 3638-

3745 

OvoDB1_2 Pelodiscus sinensis - PelSin_1.0; Scaffold JH210373; 9969-

10076 

OvoDB1 Chrysemys picta bellii - Dec’11; Scaffold JH584573; 2758224-

2758331     

OvoDC1 Chrysemys picta bellii - Dec’11; Scaffold JH584573; 2800433-

2800549 

OvoDC1_2 Chrysemys picta bellii - Dec’11; Scaffold JH584573; 2828206-

2828322     

OvoDC2 Chrysemys picta bellii - Dec’11; Scaffold JH584573; 2778988-

2779104 

OvoDE1 Anolis carolinensis - May’10; Scaffold Un_GL343551; 

118450-118557 

OvoDE2 Anolis carolinensis - May’10; Scaffold Un_GL343551; 

106991-107098 

OvoDE2_2 Anolis carolinensis - May’10; Scaffold Un_GL343551; 

131862-131969 

OvoDE2_3 Anolis carolinensis - May’10; Scaffold Un_GL343551; 
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142606-142713 

OvoDE3 Anolis carolinensis - May’10; Scaffold Un_GL343551; 53724-

53831 

OvoDF1 Anolis carolinensis - May’10; Scaffold Un_GL343551; 64537-

64644 

OvoDF2 Anolis carolinensis - May’10; Scaffold Un_GL343553; 4868-

4966 

OvoDF3 Anolis carolinensis - May’10; Scaffold Un_GL343551; 60162-

60269 

OvoDD1 Alligator mississippiensis - Aug’12; Scaffold JH736037; 19230-

19340 

OvoDD2 Alligator mississippiensis - Aug’12; Scaffold JH736037; 4956-5063 

OvoDA1 Ficedula albicol - FicAlb_1.4; Scaffold JH603338; 

1433524-1433405 

OvoDB1 Ficedula albicol - FicAlb_1.4; Scaffold JH603338; 

1441614-1441721 

OvoDA1 Geospiza fortis - Apr’12; Scaffold JH760839; 55-174 

OvoDA1_2 Geospiza fortis - Apr’12; Scaffold JH739967; 2617679-

2617798 

OvoDA1_3 Geospiza fortis - Apr’12; Scaffold JH739967; 2632098-

2632217 
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Table 4 – Summary of antimicrobial activity of Gallus gallus OvoDA1, Gallus gallus 

OvoDB1 and Anas platyrhynchos OvoDA1.   

 

Strain#   Gallus gallus OvoDA1   Gallus gallus OvoDB1 Anas platyrhynchos OvoDA1 

 % reduction* ED50** % reduction* ED50** % reduction* ED50** 

DH5  98.6 3.0 (±0.77) 35.0 - 86.8 53.1(±55.0) 

APEC 42.3 - - - - - 

S.aureus  99.44 16.4 (±24.9) - - - - 

 

*Percent reduction in CFU/ml at 100µM is shown for each peptide when activity is observed.  

**The ED50 (µM, ± SEM) value was calculated where a fall in viability greater than 50% was 

observed.  #Bacterial strains used were E. coli K-12 (DH5), avian pathogenic E. coli O78:H9 

(χ7122) and Staphylococcus aureus (8325-4).   
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Figure 7 

 

 
 



47 

 

 

 

Figure 8 

 

 
 

 

 

 

 



48 

 

 

 

Figure 9 
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