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Competition between primary nucleation and autocatalysis in amyloid
fibril self-assembly

Kym Eden†*, Ryan Morris†, Jay Gillam†, Cait E. MacPhee†, and Rosalind J. Allen†

†SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

Abstract

Kinetic measurements of the self-assembly of proteins into amyloid fibrils are often used to make inferences about molecular
mechanisms. In particular, the lag time — the quiescent period before aggregates are detected — is often found to scale with
the protein concentration as a power law, whose exponent has been used to infer the presence or absence of autocatalytic
growth processes such as fibril fragmentation. Here we show that experimental data for lag time versus protein concentration
can show “kinks”: clear changes in scaling exponent, indicating changes in the dominant molecular mechanism determining
the lag time. Classical models for the kinetics of fibril assembly suggest that two mechanisms are at play during the lag time:
primary nucleation and autocatalytic growth. Using computer simulations and theoretical calculations, we investigate whether
the competition between these two processes can account for the kinks which we observe in our and others’ experimental data.
We derive theoretical conditions for the crossover between nucleation-dominated and growth-dominated regimes, and analyse
their dependence on system volume and autocatalysis mechanism. Comparing these predictions to the data, we find that the
experimentally observed kinks cannot be explained by a simple crossover between nucleation-dominated and autocatalytic
growth regimes. Our results show that existing kinetic models fail to explain detailed features of lag versus concentration
curves, suggesting that new mechanistic understanding is needed. More broadly, our work demonstrates that care is needed in
interpreting lag-time scaling exponents from protein assembly data.
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INTRODUCTION

Amyloid fibrils are structured polymeric aggregates of protein molecules, which form when proteins “misfold”, such that
they stack together in a universal cross-β-sheet conformation. Understanding the mechanisms involved in the self-assembly
of these fibrils is of great importance, both because they are implicated in many degenerative diseases (1), and because they
have potential applications in the design of new materials (2, 3). The molecular processes involved in the very early stages of
aggregation are of particular interest since increasing evidence suggests that early aggregates, rather than mature fibrils, are
the toxic species in fibril-linked diseases (4–6). In this paper, we investigate the interplay between two competing processes,
primary nucleation and autocatalytic growth, during the early stages of amyloid fibril aggregation, and assess whether this
interplay can account for so far unexplained features of our own and others’ experimental data.

Amyloid fibril formation is commonly studied by monitoring the kinetics of self-assembly in vitro. In these experiments,
a protein sample is placed under conditions where fibril formation is favoured, and measurements of fluorescence (with β-
sheet binding fluorescent dyes) or absorbance are made as a function of time. The resulting kinetic curves typically show a
sigmoidal shape, with an initial “lag time” in which little fibrillar material is detected, followed by a period of rapid growth,
and finally saturation as the pool of available unaggregated protein is exhausted. Addition of preformed fibril “seeds” at the
start of the experiment usually abolishes the lag phase, suggesting that aggregation is initiated by a nucleation process, in
which a rare fluctuation leads to the energetically unfavourable formation of the smallest stable growth-competent aggregate
(primary nucleus). Once a fibril has been formed, it is expected to grow by sequential addition of protein molecules at its ends
(and possibly by end-joining with other fibrils (7)).

Fitting observed kinetic data to theoretical models provides a powerful tool for elucidating the molecular mechanisms
involved in fibril self-assembly (8, 9). This approach has shown that the sigmoidal shape of typical kinetic curves cannot
be explained by models that involve only primary nucleation and fibril growth, but also requires autocatalytic formation of
new fibrils from existing ones (8, 10–13). The breaking of fibrils into shorter fragments (fragmentation) provides one such
autocatalysis mechanism, since it increases the number of growth-competent ends. Alternatively, or additionally, autocatalysis
could happen via the nucleation of new fibrils on the surfaces of existing ones (secondary nucleation) (11–13).

The results of in vitro kinetic experiments are often summarised by plotting the measured lag time τlag as a function of
the protein concentration mtot, defining τlag as the time at which the concentration of aggregated protein reaches a predefined
threshold (although other definitions are also used (11, 14–16)). The lag time decreases as the protein concentration increases,
and this relation is typically fitted to a power law function τlag ∝ m−γ

tot (i.e., one plots log (τlag) versus log (mtot) and obtains
the exponent γ from the gradient). Explaining experimentally observed lag time versus concentration behavior is an important
challenge for theoretical models, and different models make different predictions for the scaling exponent γ. In particular, if
the lag time is dominated by the formation of a primary nucleus, we expect γ > 1, while for models where the lag time is
dominated by autocatalytic growth by fragmentation, theory predicts that γ = 1/2 (8, 11–13).

In this paper, we show, using our own and others’ experimental datasets, that lag time versus concentration curves are
not always well-fitted by a simple power law. In contrast, we observe clear “kinks” in these curves, where the lag-time scal-
ing changes. These kinks apparently signify changes in the dominant molecular mechanism at play during the lag time. We
explore using theoretical arguments and computer simulations whether the kinks can be explained by the interplay between
the two mechanisms identified in existing models as being important during the lag phase: primary nucleation and autocat-
alytic growth. Our results show that the position and shape of the kinks are not well explained by the competition between
nucleation and growth, as represented in existing models. This suggests that new mechanistic insights are needed to fully
understand kinetic data on amyloid fibril assembly.

BACKGROUND

Theoretical models for amyloid fibril assembly

Theoretical models for the kinetics of amyloid fibril assembly often represent the key molecular processes as a set of chemical
reactions. This reaction set typically includes primary nucleation, fibril elongation and (possibly) fragmentation or secondary
nucleation, and can be written as:

nc m −→ fnc
(1)

fi + m −→ fi+1 (2)
fi −→ fj + fi−j (3)

fi + ns m −→ fi + fns
(4)

Biophysical Journal 00(00) 1–0
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Here, fi denotes a fibril of length i, m denotes a protein monomer, and it is implicitly assumed that concentrations of all
components are spatially homogeneous, i.e. that the system is “well-mixed”.

Reaction 1 describes the spontaneous formation of a primary nucleus (fnc
), from nc monomers (i.e., we assume that the

nucleus consists of the smallest stable growth-competent fibril which is of length nc). The total rate of this process is given
by (kn/nc!) × m(t)nc , where kn is a nucleation rate constant and m(t) is the time-dependent monomer concentration. This
representation of nucleation as a single-step reaction whose rate depends on the nc-th power of m arises from a “classical
nucleation” picture in which pre-nuclear aggregates are in rapid equilibrium prior to formation of the nucleus (17). The fac-
tor of nc! in the nucleation rate, which is not used in some other work (8), arises from ignoring the order in which the nc
monomers come together. This is equivalent to rescaling kn.

Reaction 2 describes fibril growth by monomer addition at the ends. This process occurs at rate 2k+m(t)fi, where k+ is
the elongation rate constant and fi is the concentration of fibrils of length i. The factor of 2 arises because each fibril has two
ends; omitting this amounts to a rescaling of k+.

Reaction 3 describes fragmentation, in which a fibril of length i breaks into two shorter fibrils of length j and i − j. The
fibril is assumed to break with equal probability at all sites along its length, so that the total rate of this process is given by
(i−1)kf×fi where kf is the fragmentation rate constant and the factor (i−1) arises because there are i−1 possible breakage
sites in a fibril of length i. In the case that one of the fragments is shorter than the nucleus size nc, this fragment is assumed
to split immediately into monomers — i.e., Reaction 3 should be replaced by fi −→ jm + fi−j or fi −→ fj + (i − j)m, as
appropriate.

Reaction 4 describes the autocatalytic formation of new fibrils by secondary nucleation on the surface of existing ones.
Here, ns monomers combine to form a fibril of length ns, catalysed by the presence of a fibril of length i. The rate at which
this process happens is assumed to be i(ks/ns!) × m(t)ns , where ks is the secondary nucleation rate; this form of the rate
equation is analogous to that for primary nucleation except for the factor of i, which accounts for the fact that longer fibrils
have more sites where secondary nucleation can take place.

In this paper, we base our theoretical analysis on the model described by reactions 1-4 (using either the fragmentation reac-
tion (3) or the secondary nucleation reaction (4), but not both). It is important to note, however, that others have also considered
models including fibril end-joining (18), inhomogeneous fragmentation (19), MORE THINGS? and spatial propagation of the
fibrillation process (20).

Predictions for lag-time scaling with protein concentration

The model described by reactions 1–4 leads to a number of analytical predictions for the scaling of the lag time with protein
concentration, in different parameter regimes. As in many experimental studies, we define the lag time as the time taken for
the total amount of aggregated protein to reach a predetermined threshold (typically 10% of full aggregation).

Lag-time scaling without autocatalysis

We first discuss the case where new fibrils form only by primary nucleation (reaction 1) and grow by elongation (reaction 2)
— i.e., the autocatalytic mechanisms, reaction 3 and 4, are absent. This case has two possible regimes depending on the
relative rates of primary nucleation and fibril elongation.

If primary nucleation is slow relative to the rate of fibril growth once a nucleus has formed, then we expect the lag time
to be dominated by the time to formation of the first primary nucleus. As discussed above, the primary nucleation rate is
assumed to be proportional to m(t)nc . At early stages in the aggregation process, almost all protein is present as monomers
and m(t) ≈ mtot. We therefore expect that the lag time τlag ∼ m−nc

tot — i.e., in this regime the model predicts a lag-time
versus concentration scaling exponent γ = nc.

If, on the other hand, primary nucleation occurs on a similar or faster timescale than fibril growth, so that the fibril growth
process makes a significant contribution to the lag time, a different prediction holds. In classic work, Oosawa (21, 22) showed
that in this scenario, the kinetic curves for fibril growth can be described by the following:

M(t) = mtot

[
1− sech

2/nc

[(
δ (nc/2)

1/2
)
t
]]

(5)

Biophysical Journal 00(00) 1–0
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where M(t) is the total concentration of fibrillar protein and δ−1 ≡ (2k+knm
nc
tot/nc!)

− 1/2 defines a characteristic time scale.
From Eq. 5, one can show that the lag-time scales with the protein concentration as τlag ∼ m

−nc/2
tot — i.e., that in this regime

the scaling exponent γ = nc/2 (11, 21) 1.

Lag-time scaling with autocatalysis

We now turn to the case where in addition to primary nucleation, and elongation, autocatalytic fibril formation can occur via
fragmentation (reaction 3) or secondary nucleation (reaction 4). We assume that these mechanisms do not occur simultane-
ously — i.e., we have either reaction 3 or reaction 4 but not both. Knowles et al. have presented an analytical solution to the
deterministic differential equations corresponding to reactions 1, 2, and either 3 or 4, under the assumptions that monomer
depletion can be ignored at early times, and that kn � k+ (8). This solution can be written as follows:

M(t) = mtot

(
1− exp

(
C−e

−κt − C+e
κt +

δ2

κ2

))
. (6)

Here, two timescales come into play. The first is given by δ−1, where δ is the same as in the Oosawa model (Eq. 5), and
represents the characteristic timescale of fibril growth in the absence of autocatalysis. The second timescale is given by κ−1

where κ takes different forms for fragmentation and secondary nucleation: κ = (2k+kfmtot)
1/2 and κ = (2k+ksmns+1

tot /ns!)
1/2

respectively. This is the characteristic timescale for the autocatalytic growth process and depends on the rates of both growth
and autocatalytic fibril formation. Finally the constants C± are given by C± = (N0k+/κ)± [M0/(2mtot) + δ2/(2κ2)], where N0

and M0 are the initial numbers of fibrils, and total fibrillar protein, per unit volume.
Defining a threshold concentration of aggregated protein M∗, we can compute from Eq. 6 the lag time τlag as the time at

which M(t) reaches M∗ (provided M0 �M∗):

τlag =
1

κ
log

(
D − Φ +

(
(Φ−D)2 + 4C+C−

)1/2
2C+

)
(7)

where D = δ2/κ2 and Φ = log(1 − M∗
/mtot) (note that all logarithms are to base e). For unseeded aggregation, M0 = 0

and N0 = 0. If we further assume that the timescale of autocatalytic growth is faster than the “Oosawa timescale”, i.e., that
δ � κ, and that M∗ � mtot, we obtain the following, simpler prediction:

τlag ≈ −
1

κ
log

[
C+

Φ∗
M

]
, (8)

where Φ∗
M = M∗/mtot. In Eq. 8, the dominant contribution to the lag-time scaling comes from the dependence of the pref-

actor κ−1 on the protein concentration mtot (while C+ also varies with mtot, the logarithm means that this contribution is
weak). κ−1 scales differently with protein concentration for the two autocatalysis models. For fragmentation, κ−1 ∼ m

−1/2
tot ,

leading to a prediction for the lag-time scaling exponent γ = 1/2 (8, 11–13). For secondary nucleation, κ−1 ∼ m
−(ns + 1)/2
tot ,

so that the model instead predicts γ = (ns + 1)/2 (12).

METHODS

Experiments

Insulin sample preparation. Bovine insulin was obtained from Sigma-Aldrich (I5,500, lot no. 0001434060) with zinc content
∼0.5% (w/w). The samples in this study were dissolved in 25 mM HCl (pH1.6) immediately before the experiment. All
solvents and solutions were filtered through a 0.22 mm filter (Millipore). Concentrations were checked via UV-vis absorption
spectroscopy. ThT was added to each solution to a final concentration of 20 mM.
Lysozyme sample preparation. Lysozyme was obtained from Seikagaku corp. (100940, lot no. E00 301), 6x crystallised. All
samples in this study were dissolved in 20 mM HCl-KCl (pH2.0) buffer and 1 M NaCl, immediately before the experi-
ment. All solvents and solutions were filtered through a 0.22 mm filter (Millipore). Concentrations were checked via UV-vis
absorption spectroscopy. ThT was added to each solution to a final concentration of 55 uM.

1Some versions of this model have instead γ = nc+1
2

. This arises from a subtlety in the definition of the nucleus. Here we have assumed that the
nucleus, of size nc, is a growth-competent fibril. One could alternatively assume that the nucleus only becomes growth-competent upon addition of a further
monomer. The latter scenario results in γ = nc+1

2
.
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ThT fluorescence kinetic measurements for bovine insulin and lysozyme. The ThT fluorescence measurements were con-
ducted using a BMG Labtech Fluostar plate reader and Corning NBS 96-well plates (Corning 3641). Each well of the plate
was filled with 100 µl of solution. Experiments for each protein concentration of bovine insulin were replicated across 2–
3 whole plates, while those for lysozyme were replicated with several protein concentrations on the same plate. The final
number of individual experiments for a given concentration of bovine insulin ranged from 140–200, and those of lysozyme
ranged from 12–60. The plates were incubated at 60 °C and fluorescence readings were taken from the bottom of the plate at
wavelengths of 450 nm for excitation and 485 nm for emission. Readings were taken every 10 minutes in the case of bovine
insulin, and 3 minutes for lysozyme.
Lag times for β2-microglobulin. The lag-time data for β2-microglobulin was kindly provided by Xue et al. (9). These data
were obtained from ThT fluorescence kinetics at pH 2.0 and 37 °C with 50 mM NaCl and 0.02% NaN3. The data set contains
20 different protein concentrations in the range 8 µM to 244 µM, totalling 235 measurements.

Computer simulations

Simulation algorithm. We carried out stochastic computer simulations of the model defined by the chemical reaction set 1–4
(including either reaction 3 or reaction 4 but not both), using a kinetic Monte Carlo algorithm (23). As we have shown in
previous work, these simulations can quantitatively reproduce experimental kinetic curves (14). Here, we extend the param-
eter range, allowing us to explore the full range of possible behaviours of the model. Because our simulations are stochastic
and account for discrete numbers of molecules, we can resolve individual molecular events such as the formation of the first
primary nucleus. Because we focus on the lag time, simulations were terminated once half of the total protein was aggregated.
For each parameter combination, 150 replicate simulation runs were performed.
Baseline parameter set. Our baseline parameter set for these simulations was obtained as in our previous work (14), by fit-
ting Eq. 6 to averaged experimental data for the aggregation kinetics of bovine insulin at concentration of 0.1, 0.2, 0.4, and
0.75 mg ml−1, assuming fragmentation but not secondary nucleation, and a primary nucleus size nc = 2. This fitting resulted
in parameter values for fibril elongation and fragmentation k+ = 5×104 M−1 s−1 and kf = 3×10−8 s−1. The primary nucle-
ation rate kn was varied in our simulations as described in Results. All protein was assumed to start in the monomeric form.
For computational convenience, in most of our simulations we chose a small simulation volume V = 0.83 pl, comparable
with that of a human cell.
Determination of lag times and scaling exponent. For each simulation trajectory, the total amount of fibrillar protein was
obtained as a function of time by summing over all fibril lengths. The lag time was then determined as the time at which 3%
of the total protein had been incorporated into fibrils (however our results do not depend strongly on the choice of threshold).
The lag time was computed for each simulation run and then averaged over replicate runs. To obtain the lag-time scaling
exponent γ, we repeated our simulations over a range of protein concentrations mtot, and using the Levenberg-Marquardt
algorithm to fit our data to the functional form log (τlag) = log (A)− γ log (mtot), where A is a constant, mtot is the protein
concentration and τlag denotes the lag time, averaged over replicate simulations, for a given protein concentration.

RESULTS

Experimental data shows kinks in lag time versus concentration plots

Fig. 1 shows lag time versus protein concentration data, obtained from our own experiments with bovine insulin and lysozyme
(Fig. 1 a and b respectively), and experiments by Xue et al. on β2 microglobulin (9) (Fig. 1 c). These experiments involved
a large number of replicate experiments, and covered a wide range of protein concentrations (for details see the caption of
Fig. 1). These data show clear evidence for “kinks”: well-defined points in the lag-time versus concentration curves where
the lag-time scaling changes. Since different lag-time scaling exponents are predicted to arise from different molecular mech-
anisms, this observation suggests that the dominant mechanism in early self-assembly kinetics changes with the protein
concentration. Current theoretical models suggest that three mechanisms may be at play during the lag time: primary nucle-
ation, sequential addition of monomers to existing fibrils, and autocatalytic growth via fragmentation or secondary nucleation.
These mechanisms produce different lag-time scaling exponents (respectively, γ = nc, γ = nc/2 and γ = 1/2 or (ns + 1)/2).
Our starting hypothesis is therefore that the kinks that we observe in Fig. 1 arise from a crossover between regimes in which
one or other of these mechanisms is dominant. In the rest of the paper, we test this hypothesis, by assessing whether current
models indeed predict kinks similar to those seen in the experimental data, first from a qualitative and then from a quantitative
point of view.

Biophysical Journal 00(00) 1–0
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Figure 1: Lag time as a function of protein concentration for (a) bovine insulin, (b) lysozyme, and (c) β2 microglobulin, in all
cases averaged over replicate experiments. The data in (c) was kindly provided by Xue et al. (9). The error bars indicate the
standard deviation among replicate experiments at a given concentration, and the lines indicate the best fit of the power law
τlag ∝ m−γ

tot to data for a specified range of protein concentrations. (a) shows two data sets for bovine insulin: the black data
fitted by the single power law over all protein concentrations (resulting in γ = 0.36) indicates experiments in the absence of
NaCl, while those in red fitted by two power laws indicate self-assembly in the presence of 0.49 M NaCl; each point corre-
sponds to the mean and standard deviation of 140–200 kinetic traces at each of 6 protein concentrations (see Methods). Fitting
the data for bovine insulin in the presence of NaCl in the range mtot ≤ 160 µM results in γ = 0.90(2) (dashed line); while
fitting the data in the rangemtot ≥ 160 µM results in γ = 0.42(10) (dotted line). (b) shows data for lysozyme (for conditions
see Methods), where each point corresponds to the mean and standard deviation of 12–60 kinetic traces at each of 25 protein
concentrations (see Methods). Fitting this data for in the range mtot ≤ 300 µM results in γ = 0.41(6) (dashed line); while
fitting the data in the range mtot ≥ 300 µM results in γ = 0.06(5) (dotted line). (c) shows data for β2 microglobulin, where
each point corresponds to the mean and standard deviation of 235 kinetic traces at 20 different protein concentrations (for
conditions see Methods and Xue et al. (9)). Fitting the data in the range mtot ≤ 40 µM gives γ = 0.77(14) (dashed line),
while fitting the data in the range mtot ≥ 40 µM gives γ = 0.54(5) (dotted line).
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Figure 2: Lag-time scaling with protein concentration for the fragmentation model depends on the primary nucleation rate
constant. (a) Lag-time versus concentration curves obtained from stochastic simulations, for several values of the nucleation
rate constant kn: kn increases top to bottom in factors of 100, from 10−12 M−1 s−1 (purple) to 1 M−1 s−1 (red). (b) Lag-
time scaling exponent γ as a function of primary nucleation rate constant kn. Black symbols: simulation results obtained
by fitting the data shown in (a) to log (τlag) = log (A) − γ log (mtot). The error bars are dominated by the confidence in
the fit, rather than the error in the lag-time measurements. Red line: γ(kn) extracted from the full prediction of the frag-
mentation model, Eq. 7. Magenta line: γ(kn) extracted from the approximate prediction of the fragmentation model, Eq. 8.
Blue line: γ(kn) extracted from the lag-time expression Eq. 9 — i.e., the full fragmentation model solution augmented by
an extra term to describe the first primary nucleation event. For all the data shown, the protein concentration range was
1 × 10−5 ≤ mtot ≤ 7.5 × 10−4 M and the parameters were nc = 2, k+ = 5 × 104 M−1 s−1, kf = 3 × 10−8 s−1 and the
volume V = 0.83 pl.

Model predicts kinks due to competition between primary nucleation and autocatalysis

Simulations reveal changes in lag-time scaling exponent due to interplay between nucleation and growth

We first explore, for current theoretical models, how the interplay between different molecular mechanisms leads to changes
in the lag-time scaling exponent. We carried out stochastic simulations of the chemical reaction set 1–3, i.e., of a model which
includes primary nucleation, fibril growth by elongation, and fragmentation (for simulation details, see Methods). For now
we neglect secondary nucleation, but this will be considered later. As a simple way to control the interplay between different
molecular mechanisms, we systematically varied the primary nucleation rate constant kn over a wide range (15 orders of
magnitude), keeping all other parameters fixed. Primary nucleation rates are poorly determined by fitting theoretical predic-
tions such as Eq. 6 to experimental data (8), so reliable estimates of their true values are lacking, but the information that is
available does suggest a wide range of possible nucleation rate constants: 10−4 s−1–10−14 s−1 (8, 24, 25) for various protein
systems. For each value of the nucleation rate constant kn, we repeated our simulations for protein concentrations mtot in the
range 1× 10−5 ≤ mtot ≤ 7.5× 10−4 M (commensurate with concentration ranges used in our own and others’ experiments
(9, 14)), and computed the lag-time scaling exponent γ using linear fits to our simulation data for log (τlag) versus log (mtot),
as described in Methods.

Fig. 2a shows plots of lag-time versus concentration obtained in our simulations, for increasing values of the primary
nucleation rate constant (top to bottom; also colour-coded purple to red). As expected, we see clear changes in lag-time
scaling behaviour as the nucleation rate constant changes, reflecting the shift in relative importance of primary nucleation
and growth in determining the lag time. These changes in lag-time scaling can be seen in more detail in Fig. 2b. Here, the
black symbols (with error bars) show the scaling exponent γ, extracted from the gradients of the curves in Fig. 2a, plotted
as a function of the primary nucleation rate constant kn (note that, for clarity, Fig. 2a shows only a subset of our simulated
nucleation rates). Several features are immediately apparent. Firstly, the limits of high and low nucleation rate constant are
consistent with theoretical predictions. If nucleation is very slow, γ tends to 2; this is consistent with the prediction γ = nc
(= 2 in this case), for the regime in which the lag time is dominated by the time to formation of the first primary nucleus. In
contrast, if nucleation is very rapid, we obtain γ = 1, consistent with the Oosawa prediction γ = nc/2 of nucleation-dependent
polymerisation in the absence of autocatalysis. Secondly, for intermediate values of the nucleation rate constant, the scaling
exponent dips down towards the prediction of the “fragmentation” model, γ = 1/2, but never reaches this value.

Biophysical Journal 00(00) 1–0
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These results show clearly that changes in the dominant molecular mechanism can indeed produce shifts in the scaling
exponent. Interestingly, they also show that the regime where autocatalysis (in the form of fibril fragmentation) is dominant
can become “masked” by the effects of primary nucleation, leading to an apparent scaling exponent significantly larger than
1/2, even for systems where fragmentation plays an important role.

Modification of standard theory is needed to reproduce simulation results

Fig. 2b (red line) also shows the lag-time scaling exponents which emerge from the analytical expression for the lag time,
Eq. 7, derived for a model which includes nucleation, fibril elongation and fragmentation, all treated deterministically. Lag-
times derived from the limit of this expression in the case of rapid autocatalysis (Eq. 7; magenta line) produce similar results.
These results were obtained by using the analytical expressions to plot log (τlag) versus log (mtot), from which predictions
for γ were extracted numerically, for different values of the nucleation rate constant kn. The predictions of this deterministic
model are in good agreement with our simulation results for higher nucleation rate constants, showing that the analytical
solution to the fragmentation model does correctly capture the crossover to an Oosawa-like regime 2. However the determin-
istic model does not capture the shift to the primary nucleation-dominated regime (γ = nc = 2) at low values of kn, instead
tending towards the “fragmentation-like” value of γ = 1/2 as kn decreases.

Why does the analytical result fail to capture the simulation behaviour at low nucleation rates? This discrepancy arises
because the deterministic differential equations used to generate the theoretical prediction, Eq. 7, do not take account of the
discrete nature of the primary nucleation process. In the deterministic differential equation representation, all concentrations
are continuous variables that can be arbitrarily small — thus the concentration of nuclei increases continuously from time zero
and initially corresponds to less than one nucleus in the corresponding simulated volume. In the continuous model, the auto-
catalytic growth processes are able to operate on this very low concentration of nuclei, leading to a lag time that is dominated
by κ (the timescale of autocatalytic growth) rather than by slow primary nucleation. In contrast, in our stochastic simulations,
as in reality, the autocatalytic growth processes cannot start until the first nucleus has been generated — thus the lag time is
dominated by the formation of the first primary nucleus, leading to γ = nc = 2.

Fortunately, it turns out that this problem can easily be remedied. The formation of the first primary nucleus in the volume
V occurs as a Poisson process, with mean waiting time nc! (V NAknm

nc
tot)

−1, where V is the volume and NA is Avogadro’s
number (this follows from our definition of the nucleation reaction 1). In the regime where the nucleation rate is very low,
we expect that a single nucleus forms, and grows autocatalytically until the threshold is reached (i.e., we do not expect to see
multiple primary nucleation events). Once the nucleus has formed, its growth should be well described by the deterministic
model prediction, Eq. 7. We can therefore simply add the predicted waiting time for formation of a single nucleus to Eq. 7 to
obtain the following, new prediction:

τlag =
1

κ
log

(
D − Φ +

(
(Φ−D)2 + 4C+C−

)1/2
2C+

)
+

nc!

V NAknm
nc
tot

where as before D = δ2/κ2 and Φ = log(1−M∗
/mtot). Since we are considering the unseeded case, C± = ±δ2/2κ2 = ±D/2,

and we can rewrite Eq. 9, thus:

τlag =
1

κ
log

(
1− ΦD−1 +

((
ΦD−1

)2 − 2ΦD−1
)1/2

)
+

nc!

V NAknm
nc
tot

If kn is large such that δ � κ, we expect the second term in Eq. 9 to become negligible, leading to the same scaling
behaviour as Eq. 8 (red line in Fig. 2b).

If, on the other hand, kn is small such that δ � κ, Eq. 9 can be simplified by neglecting small terms in the logarithm:

τlag ≈
1

δ2

[
Dκ log

(
ΦD−1

)
+

2k+
V NA

]
(9)

As kn → 0, the logarithmic term can be neglected completely, yielding τlag ≈ 2k+/(V NAδ
2) and hence γ = nc as

expected when primary nucleation is very slow. For large nucleation rates kn, the logarithmic term dominates, leading to
the autocatalysis-dominated scaling regime with γ = 1/2.

The blue line in Fig. 2b shows the lag-time scaling exponent extracted from the modified lag-time expression (9), as a
function of the nucleation rate constant kn. This prediction is indeed in excellent agreement with our simulation results over
the entire range of primary nucleation rates.

2The crossover to the Oosawa-like regime can be seen in the analytical expression Eq. 7 by noting that at high values of kn, δ � κ, and in this limit D
in Eq. 7 becomes large which gives τlag ≈ (2Φ)

1/2 δ−1 and γ = 1.
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Figure 3: Transitions between different scaling regimes appear as kinks in lag-time versus concentration curves. Lag-time
versus concentration curves predicted by Eq. 9 are plotted for a range of primary nucleation rates kn. kn increases top right to
bottom left and is colour-coded from kn = 10−30 M−1 s−1 (blue) to kn = 1010 M−1 s−1 (red), being increased by factors of
100. The two panels show results for different system volume V : (a) corresponds to V = 0.83 pl (approximately the size of
a human cell) while (b) corresponds to the much larger volume V = 83 µl (a typical volume used in in vitro protein aggrega-
tion experiments). In (a), the crosses correspond to the simulation data given of Fig. 2a. In all cases, k+ = 5×104 M−1 s−1,
kf = 3×10−8 s−1 and nc = 2.

Theory predicts kinks in lag-time versus concentration plots

Using the modified analytical lag-time expression, Eq. 9, which correctly accounts for the stochasticity of primary nucleation,
we now investigate whether current theoretical models can account for the kinks which we observe in experimental lag time
versus concentration plots. Fig. 3a shows lag-time versus concentration curves predicted by Eq. 9, plotted over a wide range
of protein concentrations (9 orders of magnitude). Results are shown for various values of the nucleation rate constant kn,
indicated by the colours; kn increases top right to bottom left. The symbols show stochastic simulation results, which are in
good agreement with the predictions of Eq. 9. It is immediately apparent from Fig. 3a that the model does indeed predict
kinks in the lag-time versus concentration curves. These kinks appear for intermediate values of the nucleation rate constant.
In these curves, the lag-time scaling changes smoothly, over about an order of magnitude in protein concentration, between
the fragmentation-dominated scaling γ = 1/2 and either the primary nucleation-dominated scaling γ = nc or the Oosawa
(elongation-dominated) scaling γ = nc/2. For very low or very high values of the nucleation rate constant, the lag-time versus
concentration curves in Fig. 3a do not show kinks, showing instead either primary nucleation-dominated scaling, γ = nc = 2,
or Oosawa scaling, γ = nc/2 = 1, respectively. Thus our analysis shows that current models are consistent with the occurrence
of kinks in lag-time versus concentration curves. These curves may show no kinks, one kink or two kinks, depending on the
molecular parameters and the protein concentration range observed.
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Fragmentation-dominated scaling is more apparent at larger volumes

In vitro protein aggregation experiments are typically performed using system volumes of between 10 µl and 10 ml (10−5

to 10−2 litres), while the typical volume of a human cell is ∼ 10–100 pl (10−11–10−10 litres). To investigate the effect of
sample volume, we repeated our analysis for a larger volume of 83µl. For this volume, stochastic simulations are not practical
but the analytical result Eq. 9 still holds. We expect that changing the sample volume will have a strong effect on the kinks in
the lag-time versus concentration curves, because the time to formation of the first primary nucleus scales inversely with the
volume (see Eq. 9), but, once a nucleus has been formed, the average time for the autocatalytic growth process to reach the
threshold is independent of the volume (see for example Eq. 7). This implies that changing the system volume will shift the
crossover points between the regimes in which the lag time is dominated by primary nucleation and by fragmentation — i.e
it will shift the kinks in the lag-time versus concentration curves. For larger systems, we expect the fragmentation-dominated
regime to extend over a wider range of protein concentrations than for smaller systems.

Fig. 3b shows lag-time versus concentration curves, computed using Eq. 9 for a volume of 83µl, for the same parameter
set as in Fig. 3a. For the larger volume, we still see the two primary nucleation-dominated regimes γ = nc and γ = nc/2 at
low and high nucleation rates respectively, but for intermediate nucleation rates the fragmentation-dominated scaling regime
γ = 1/2 typically extends over a wide range of concentrations (for some nucleation rates we even see γ = 1/2 over the entire
9 orders of magnitude of protein concentration).

Interestingly, these results suggest that lag-times for amyloid fibril formation are likely to scale quite differently with
protein concentration in small volume samples than in in vitro experiments where the volume is large. While fragmentation-
dominated lag-time scaling, with exponent γ = 1/2, may be a common feature of in vitro experiments, it is likely to be much
less prevalent in smaller volumes on the scale of human cell, which are of clinical relevance.

Similar results are obtained for autocatalysis via secondary nucleation

Up to now, we have focused on the case where the autocatalytic growth mechanism is provided by fibril fragmentation. We
now show that similar phenomena occur when autocatalysis instead occurs by secondary nucleation on the surface of existing
fibrils. Fig. 4a shows predicted lag-time versus concentration curves, for different values of the nucleation rate constant, for
a model with primary nucleation, fibril elongation, and secondary nucleation (i.e., reactions 1, 2 and 4). In this case the same
theoretical prediction for the lag time, Eq. 9, holds, but we use the alternative expression for the timescale of autocatalytic
growth, κ = (2k+ksmns+1

tot /ns!)
1/2. The predicted values of γ in the primary nucleation-dominated regimes are the same as

for the fragmentation case: for very low nucleation rates (or low protein concentrations) we expect γ = nc = 2 while for
high nucleation rates (or high protein concentrations) we expect γ = nc/2 = 1. However, the scaling in the intermediate,
autocatalysis-dominated regime is now predicted to be γ = (ns + 1)/2, where ns is the size of the secondary nucleus (here
assumed to be ns = 2 so that we predict γ = 3/2). These three regimes are indeed apparent in Fig. 4a. As in the fragmentation
case, increasing the system size increases the range of parameters (i.e., kn and protein concentration) for which autocatalysis
dominates the lag time (Fig. 4b).

Interestingly, the predicted lag-time scaling in the high concentration limit is somewhat different in the case of secondary
nucleation, compared to fragmentation. In the fragmentation case, at very high protein concentrations, we expect to obtain
the “Oosawa”-like scaling γ = nc/2 (see Figure 3). In contrast, for secondary nucleation, some of our lag time versus concen-
tration curves never reach the Oosawa-like scaling limit but instead converge to the secondary nucleation-dominated scaling
exponent γ = (ns + 1)/2 = 3/2 in the high concentration limit (this is most apparent in Figure 4b). The crossover between the
Oosawa-like and autocatalysis-dominated regimes occurs when δ = κ. These two parameters scale differently with protein
concentration: δ scales as mnc/2

tot while κ scales as m(ns+1)/2
tot for secondary nucleation and m1/2

tot for fragmentation. For frag-
mentation, because nc/2 > 1/2, at high enough protein concentration there will always be a regime where δ > κ, leading to
Oosawa-like scaling. For secondary nucleation, however, we may be in a situation where nc/2 < (ns + 1)/2 (this is indeed the
case for our parameter set). In this case, for some parameter combinations, there may be no protein concentration range for
which δ > κ; thus the Oosawa-like scaling regime may never be reached. In this case, we expect to see only a single kink in
the lag time versus concentration curve, at the transition between the primary nucleation- and secondary nucleation-dominated
regimes.
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Figure 4: Kinks are also predicted in lag-time versus concentration curves for a model where the autocatalysis mechanism is
provided by secondary nucleation. Lag-time versus concentration curves predicted by Eq. 9 are shown for a series of values
of the primary nucleation rate kn (increasing top right to bottom left) from 10−30 M−1 s−1 (blue) to 106 M−1 s−1 (red),
increasing by factors of 100. The two panels show results for different system volume V : (a) corresponds to V = 0.83 pl
(approximately the size of a human cell) while (b) corresponds to the much larger volume V = 83 µl (a typical volume used
in in vitro protein aggregation experiments). The other parameters are k+ = 5×104 M−1 s−1, ks = 24 M−1 s−1, nc = 2
and ns = 2.

Are the kinks in experimental data explained by current models?

We now assess quantitatively whether the kinks that we observe in the experimental data of Fig. 1 are consistent with the
shifts between regimes dominated by primary nucleation, autocatalytic growth and sequential monomer addition, predicted
by the model.

We first consider the values of the scaling exponent to the left and right of the kink, which we denote γL and γR. For insulin
(Fig. 1a), we obtain γL = 0.90(2) and γR = 0.42(10). These exponents are roughly consistent with a shift from a primary
nucleation-dominated regime at low concentration, with γL = nc ≈ 1 to a fragmentation-dominated regime at higher concen-
tration, with γR ≈ 1/2. Similarly, the exponents for β2 microglobulin (Fig. 1c), γL = 0.77(14) and γR = 0.54(5), are roughly
consistent with the same scenario. In contrast, for lysozyme (Fig. 1b), we obtain quite different exponents, γL = 0.41(6)
and γR = 0.06(5). In this case, while γL could conceivably correspond to a fragmentation-dominated regime (γ ≈ 1/2), the
observed value of γR = 0.06(5) appears to be too small to correspond to any of the regimes predicted by the model.

We next consider the protein concentration at which the kink happens (the “position” of the kink) in the plots of Fig. 1.
If the kinks do indeed signify a transition between primary nucleation- and fragmentation-dominated regimes (at least for
insulin and β2 microglobulin), we can use our analytical model results to predict the concentration at which this should hap-
pen. Returning to our lag-time prediction, Eq. (9), the two terms inside the square brackets arise from autocatalytic growth
and primary nucleation respectively. The crossover in dominance between these mechanisms should happen when these two
terms are equal in magnitude i.e., when the following condition is satisfied:

2k+
V NA

= Dκ log
(
Φ−1D

)
. (10)
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Here, Φ = log(1 − M∗
/mtot) is a constant relating to the lag-time threshold M∗, and D = δ2/κ2 measures the relative

importance of the characteristic timescales for Oosawa-like growth δ−1 ≡ (2k+knm
nc
tot/nc!)

− 1/2 and fragmentation-dominated
growth κ−1 = (2k+kfmtot)

− 1/2. We would like to determine whether Eq. 10 is satisfied, for the kinks which we observe in
the experimental data of Fig. 1.

A direct test of Eq. 10 requires knowledge of the kinetic parameters κ, k+ and kn, for each of the protein systems shown
in Fig. 1. The value of κ can be extracted to a high degree of accuracy by fitting the predictions of the deterministic model,
Eq. (6), to kinetic curves, and it seems reasonable to assume that the elongation rate k+ takes a similar value to that of insulin,
for which it is known (14). Kinetic fits do not, however, accurately determine the nucleation rate constant kn, which is believed
to vary widely among proteins (8, 24, 25). We are therefore obliged to take an indirect approach to testing Eq. 10. First, we ask
what value of the nucleation rate constant kn would be required in order for Eq. 10 to be satisfied, for the data of Fig. 1. Next,
we ask whether this resulting prediction for kn is reasonable. If it is not reasonable, we can conclude that the kinks observed
in the data of Fig. 1 cannot be explained by a transition between primary nucleation- and autocatalytic growth-dominated lag
time regimes.

To this end, we extracted from the datasets of Fig. 1 the protein concentration (i.e. the value ofmtot) at which the kink was
observed. Using these values, together with the known values of the sample volume V and lag-time thresholdM∗, values of κ
obtained by fitting kinetic curves (either in our own work (14) or that of Xue et al. (9)), and the value of k+ obtained by fitting
the kinetic curves of insulin (14), we solved Eq. 10 numerically for D, from which we obtained a value of the nucleation rate
constant consistent with the position of the kink on the protein concentration axis, for each dataset. Based on our observations
for the scaling exponents left of the kink, γL, we chose to use a nucleus size nc = 1, but we also repeated our calculations for
larger values of nc. The parameters used in these calculations, together with the resulting values of kn, are presented in Table
1. Note that the predicted value of kn has different dimensionality depending on the assumed nucleus size.

To determine whether the resulting predictions for the nucleation rate constant kn were reasonable, we used them to cal-
culate an estimated time to formation of the first nucleus, in a sample of the same volume and protein concentration as the
experiment . This time is given by nc!/[knmnc

totNAV ], and, due to a cancellation with the nc-dependence of kn, it is independent
of the chosen value of nc. Table 1 lists the resulting times to formation of the first nucleus. For insulin and β2 microglobulin,
it is immediately apparent that the predicted waiting times are not reasonable, since they are significantly longer than the
observed lag time at the kink. Moreover, we can also directly calculate the predicted lag time at the kink, by inputting our
predicted value of kn (together with the other parameters) into Eq. 9. The results are presented in Table 1 and compared with
the observed lag times at the kink, extracted from the data of Fig. 1 (again, these predictions are independent of nc). Again,
for insulin and β2 microglobulin, the predicted lag time is far longer than the observed lag time, suggesting that Eq. 10 is
not satisfied for a reasonable choice of primary nucleation rate constant. Interestingly, for lysozyme, this procedure actually
predicts a lag time that is within a factor of 2 of that observed experimentally (and is shorter rather than longer than the
experimental value). While this might suggest that the kink observed for lysozyme could be explained by a transition between
primary nucleation- and autocatalytic growth-dominated regimes, we note that for lysozyme, unlike the other proteins, the
scaling exponents to the left and right of the kink do not seem to be consistent with such a transition.

To conclude, our analysis shows that the kinks which we observe in the experimental lag-time versus concentration plots
of Fig. 1 are not quantitatively consistent with a transition from primary nucleation- to growth-dominated lag time regimes.
For bovine insulin and β2 microglobulin, such a transition requires a primary nucleation rate constant that is too small to be
consistent with the data, while for lysozyme the scaling exponents to the left and right of the kink are inconsistent with this
transition. Understanding the origin of these kinks is likely to require new mechanistic understanding, beyond that provided
by existing kinetic models.

DISCUSSION

In experimental studies of amyloid fibril self-assembly kinetics, measurements of lag time as a function of protein concen-
tration are often used to diagnose the underlying molecular mechanism (26). Based on the predictions of theoretical models
which include primary nucleation, elongation by monomer addition and autocatalytic growth via fragmentation (or secondary
nucleation), a scaling exponent γ < 1 is usually taken to imply a fragmentation-dominated mechanism, while an exponent
γ > 1 suggests that fragmentation is not involved. In this paper, we find that a more complex picture emerges from experi-
mental lag time versus concentration curves, when they are averaged over many replicates and measured over a wide range
of protein concentrations. For three different protein systems (including both our own and others’ data), we observe “kinks”
in the lag time versus concentration curves, at which the scaling exponent γ changes. Other published datasets also show
tantalising hints of kinks, but with insufficient statistical certainty, or without a sufficiently wide concentration range to be
sure (9, 27–29).
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Insulin Lysozyme β2 microglobulin
mtot at kink (from Fig. 1) 160 µM 300 µM 40 µM
κ from kinetic fit (9, 14) 1.3×10−4 s−1 1.2×10−3 s−1 7.2×10−5 s−1

k+ from insulin kinetic fit (14) 5×104 M−1 s−1 5×104 M−1 s−1 5×104 M−1 s−1

V 100 µl 100 µl 100 µl
M∗/mtot 0.1 0.1 0.1

solution for kn for nc = 1 5.2×10−22 s−1 2.3×10−21 s−1 1.2×10−21 s−1

solution for kn for nc = 2 6.4×10−18 M−1 s−1 1.6×10−17 M−1 s−1 5.8×10−17 M−1 s−1

solution for kn for nc = 3 1.2×10−13 M−2 s−1 1.6×10−13 M−2 s−1 4.4×10−12 M−2 s−1

Average time to nucleus = nc!/[knmnc
totNAV ] 56 hours 7 hours 98 hours

Predicted lag time at kink 112 hours 13 hours 197 hours
Lag time at kink (from Fig. 1) ∼ 25 hours ∼ 20 hours ∼ 10 hours

Table 1: Testing whether the condition (10) is consistent with the kinks observed in the experimental data of Fig. 1. The top
5 rows show the parameter values used. The middle 3 rows show the resulting values of the nucleation rate constant kn from
numerical solution of Eq. 10, for nc = 1, nc = 2 and nc = 3. The bottom rows show the implied predictions for the time
to formation of the first nucleus and the lag time at the kink. The latter is compared to the experimental value extracted from
Fig. 1. WHY NO FACTORIAL? PLEASE PUT IN CORRECT LAG TIME FROM FIG 1

The presence of a kink in the lag time versus concentration curve apparently signifies a change in the dominant molecular
mechanism at play during the lag phase of fibril assembly. To test whether these kinks are consistent with the existing theoret-
ical picture, we carried out a detailed analysis of the lag time scaling behaviour of the “standard” model, including nucleation,
elongation and fragmentation (or secondary nucleation). Our analysis shows that indeed this model does predict changes in
lag time versus concentration scaling, and that these kinks in the lag time versus concentration curve are due to crossovers
between primary nucleation-dominated, autocatalysis-dominated and elongation-dominated regimes. Capturing these kinks
correctly requires us to modify the deterministic expression for the lag time to take account of stochastic primary nucleation
events.

Importantly, however, an inconsistency is revealed upon quantitative comparison between the properties of the kinks which
we observe in our and others’ experimental data, and the model predictions. For our data on bovine insulin (14)(Fig. 1a) and
the data of Xue et al. on β2 microglobulin (9) (Fig. 1c), the scaling exponents to the left and right of the kink are broadly
consistent with a transition from a primary nucleation-dominated regime at low protein concentration to a fragmentation-
dominated regime at higher concentration. However, fitting the protein concentration at which this transition is observed to
happen to the prediction of the theoretical model requires us to assume a primary nucleation rate constant that is too low to
account for the observed magnitude of the lag time. Thus for these protein systems, the theoretical model prediction is not
quantitatively consistent with the data. For lysozyme (Fig. 1b) the model also fails to account for the data, but in a different
way: while the position of the kink is predicted correctly within a factor of 2, the scaling exponent to the right of the kink
is inconsistent with any of the regimes predicted by the model. Thus, while the “standard” theoretical model generally does
a good job of explaining kinetic curves for amyloid fibril formation, new mechanistic understanding is needed to explain
detailed features of the the lag-time concentration curves.

What mechanisms could account for the kinks that we see in the data of Fig. 1? The “standard” theoretical model investi-
gated in this work is incomplete in that it does not include fibril end-joining (18) or length-dependent fragmentation; however,
neither of these factors is expected to have a significant influence during the lag phase (30). Another factor not included in
our model is spatial heterogeneity. For insulin fibril formation tracked microscopically in microdroplets, fibril formation has
been shown to propagate out from an initial nucleation site as a spatial wave (20, 31). It would be very interesting to inves-
tigate the consequences of this spatial propagation for the apparent lag-time scaling; however it seems unlikely that it would
affect the scaling in the apparent nucleation-dominated regime (left of the kink), where we obtain lower-than-expected scaling
exponents for insulin and β2 microglobulin. It seems possible that our results may reflect the nature of the primary nucleation
event itself. While this is often assumed to be a homogeneous, stochastic event occurring at a rate proportional to mnc (i.e.
involving the spontaneous union of nc monomers), fitting in vitro kinetic data is actually highly insensitive to the nature of
the nucleation event. Factors such as nucleation on the surface of the sample chamber, the presence of pre-existing nuclei, or
slow conformational changes during the nucleation process could result in lag-time scaling with exponents lower than those
predicted by the standard model. Indeed, lag-time scaling exponents smaller than 1/2 are quite frequently observed both in our
own experimental work (14), and in that of others (8, 16, 32–36).
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From an immediate practical point of view, our results demonstrate that great care is needed in interpreting lag-time
scaling exponents from protein assembly data. More broadly, our work highlights a need to better understand the molecular
mechanisms at play during the lag phase of amyloid fibril assembly. The lag phase of fibril assembly is of particular impor-
tance in the clinical context, both because lag-time variability may be associated with variable time of neurodegenerative
disease onset (30), and also because it has been suggested that toxicity of early-stage aggregates rather than fully assembled
fibrils may be causative in disease (5, 37, 38). Detailed measurements of lag-time versus concentration scaling, combined
with the development of new mechanistic models, may provide a way to probe what is going on during this crucial stage of
the assembly process.
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