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WEAK SOLUTIONS TO THE STATIONARY INCOMPRESSIBLE

EULER EQUATIONS

A. CHOFFRUT AND L. SZÉKELYHIDI JR.

Abstract. We consider weak stationary solutions to the incompressible Euler equations

and show that the analogue of the h-principle obtained by the second author in joint work

with C. De Lellis for time-dependent weak solutions in L
∞ continues to hold. The key

difference arises in dimension d = 2, where it turns out that the relaxation is strictly

smaller than what one obtains in the time-dependent case.

1. Introduction

It is well-known since the work of V. I. Arnold that the Euler equations in 2 dimensions

for ideal fluids exhibit a very rich geometric structure. This arises from the interpretation

of the Euler equations as the equations of geodesics on the space of volume-preserving

diffeomorphisms. In particular, coupled with the fact that in 2d the vorticity is transported

by the flow, one obtains, at least formally, a very explicit geometric picture as a space of

diffeomorphisms foliated by distributions of vorticities, and on each single leaf the equation

can be thought of as a Hamiltonian system.

A first step towards an analytic verification of this formal picture was taken in [3] for

stationary solutions, i.e. solutions of the system

(v · ∇)v +∇p = 0 , div v = 0 . (1)

Under some non-degeneracy assumptions it was shown that locally near each stationary

solution there exists a manifold of stationary solutions transversal to the foliation. In

analytical terms this amounts to an implicit function theorem, showing that there is locally

a one-to-one correspondence between leaves of the foliation and solutions of (1). This is the

geometric picture in the class of smooth solutions of (1).

In this short note we would like to explore an entirely different scenario, namely the

picture suggested by Gromov’s h-principle as applied to fluid mechanics in [7], implying

that there is an abundant set of weak stationary solutions in the neighbourhood of any

smooth stationary solution. The fact that weak forms of the h-principle apply to the non-

stationary Euler equations has been discovered in [5], see also the survey [7]. Our main

result is the following
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2 A. CHOFFRUT AND L. SZÉKELYHIDI JR.

Theorem 1. Let d ≥ 2 and v0 a smooth stationary Euler flow on Td, and consider a

smooth function e(x) > |v0(x)|2 for x ∈ Td. Then, for every σ > 0, there exist infinitely

many weak stationary flows v ∈ L∞(Td;Rd) such that |v(x)|2 = e(x) for a.e. x ∈ Td and

‖v − v0‖H−1(Td) < σ.

Theorem 1 should be seen as the natural counterpart to the h-principle obtained in [5]

for L∞-solutions to the non-stationary (i.e. time-dependent) Euler equations

∂tv + (v · ∇)v +∇p = 0 , div v = 0 .

It turns out, however, that the methods that have been introduced for the non-stationary

case do not directly transfer to the stationary case in 2d. In technical terms, the relax-

ation set obtained when passing from solutions to subsolutions is strictly smaller than the

convex hull. See Section 3 for a precise formulation. This observation resembles the rigid-

ity results obtained by A. Shnirelman [14] concerning the geometry of measure-preserving

homeomorphisms in the 2d versus the much more flexible 3d case.

On the other hand, for dimensions d ≥ 3 one can essentially retain the framework devel-

oped in [5, 6].

We remark, that the approximation in Theorem 1 can be taken in any negative Sobolev

norm. Recall also that v ∈ L∞(Td;Rd) is a weak solution to (1) if
∫

Td

v ⊗ v : ∇Φ dx = 0

∫

Td

v · ∇f dx = 0

for every divergence-free vector field Φ ∈ C∞(Td;Rd) and every scalar function f ∈ C∞(Td).

Finally, concerning the pressure we note that, using the equation ∆p = −div[(v · ∇)v] =

−div div (v ⊗ v), the pressure p can be recovered using standard estimates as a function

p ∈ Lq(Td) for all q < ∞. In fact, as in [5] one can even construct p ∈ L∞(Td), but we will

not pursue this further in this paper.

We note in passing that in the time-dependent case [8, 11, 1] has lead to solutions with

Hölder regularity, a question that has been the focus of interest in view of Onsager’s con-

jecture on anomalous dissipation in turbulence. However, the methods of [8, 9, 11, 1] do

not apply to the stationary case. Indeed, a very delicate part in these proofs is to use the

transport operator ∂t + v · ∇ to absorb the main (linear) part of the error in the itera-

tion. Although the stationary case is not directly related to Onsager’s conjecture, there is

a natural analogue of the problem for Hölder-continuous stationary flows [2].

2. The reformulation as a differential inclusion

Our proof of Theorem 1 is based on the convex integration framework for the Euler

equations, as developed in [5]. For the convenience of the reader we recall the setting in

this section, specializing on the time-independent case.
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We denote by

Sd
0 =

{

u ∈ Rd×d : u⊤ = u, tru = 0
}

the set of symmetric, trace-free d× d-matrices. By |u| we shall mean the operator norm of

u ∈ Sd
0 . The following is elementary.

Lemma 2. Let d ≥ 2. Let e ∈ C(Td) be a positive function. Suppose v ∈ L∞(Td;Rd),

u ∈ L∞(Td;Sd
0 ), and q ∈ D′(Td) a distribution solve weakly

div u+∇ q = 0, div v = 0 . (2)

If

u = v ⊗ v − e

d
Id a.e. in Td, (3)

then v and p := q − e
d
solve (1) weakly, and |v(x)|2 = e(x) for a.e. x ∈ Td.

We will call a pair w = (v, u) : Td → Rd × Sd
0 a stationary subsolution, if there exists a

distribution q ∈ D′(Td) such that the triple (v, u, q) is a weak solution of (2) (cf. [6] Section

3.1 and [7] Section 4).

Lemma 2 allows us to formulate the problem as a differential inclusion. For any r > 0 let

Kr :=
{

(v, u) ∈ Rd × Sd
0 : u = v ⊗ v − r

d
Id
}

⊂ Rd∗ (d ≥ 2) (4)

where

d∗ =
d(d+ 1)

2
− 1.

Note that for each r > 0 the set Kr is a compact, smooth submanifold of Rd∗ of dimension

d. A weak solution to the Euler equations (1) with energy profile e(x) is therefore (identified

with) a subsolution w = (v, u) which satisfies the pointwise inclusion

w(x) ∈ Ke(x) for a.e. x . (5)

The idea is to relax the constraint set Ke(x) in (5) to a suitable nonempty open subset of

the convex hull:

Ue(x) ⊂ K
co
e(x).

The key property required of the sets Ur ⊂ K co
r is the following, based on the notion of

stability of gradients introduced by B. Kirchheim in Section 3.3 of [12] (see also [15, 16]).

Perturbation Property (P): There is a continuous strictly increasing function Φ :

[0,∞) → [0,∞) with Φ(0) = 0 with the following property. Let Q = (0, 1)d be the open

unit cube in Rd. For every w̄ := (v̄, ū) ∈ Ur there exists a subsolution w = (v, u) ∈
C∞
c (Q;Rd × Sd

0 ) with associated pressure q ∈ C∞
c (Q) such that

• w̄ + w(x) ∈ Ur for all x ∈ Q;

•
∫

Q
|w(x)|2 dx ≥ Φ(dist (w̄,Kr)).
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In [6] it was shown that, in the case of the time-dependent Euler equations, the perturba-

tion property is satisfied with Ur = int K co
r , and the convex hull was explicitly calculated

K
co
r =

{

(v, u) ∈ Rd × Sd
0 : v ⊗ v − u ≤ r

d
Id
}

. (6)

A useful consequence of this formula is that, provided w̄ = (v̄, ū) ∈ K co
r , we have |v̄|2 = r

implies w̄ ∈ Kr. Consequently there exists a continuous strictly increasing function Ψ :

[0,∞) → [0,∞) with Ψ(0) = 0 such that

dist (w̄,Kr) ≤ Ψ(r − |v̄|2) for all w̄ = (v̄, ū) ∈ K
co
r . (7)

Hence, in property (P) we may replace dist (w̄,Kr) by r − |v̄|2.
It turns out the the arguments used in [6] are insufficient to deal analogously with the

stationary case - the main reason is that, while the constraint set Kr is the same in both

cases, the associated wave-cone Λ (see Section 3 below) is smaller in the stationary case.

In fact as a result it turns out that in the 2-dimensional situation (P) is not satisfied with

Ur = int K co
r (see Section 6).

If property (P) is satisfied for some family of open sets Ur, r > 0, the by now standard

Baire-category argument leads to the existence of a residual set of weak solutions. In order

to obtain the precise statement of Theorem 1 we require, in addition to (P), the following:

Kr ⊂ Ur′ for r < r′. (*)

Property (*) will ensure that smooth stationary flows belong to the set of subsolutions given

by the relaxed set Ur, see Step 2 of the proof of Theorem 1.

We now sketch the argument for the convenience of the reader, but wish to emphasize

that this proof is by now standard.

Proof of Theorem 1, assuming (P) and (*).

Step 1: The functional analytic setup. Let e = e(x) > 0 be a positive smooth

function, and define

X0 =
{

w ∈ C∞(Td;Rd × Sd
0 ) : w subsolution such that w(x) ∈ Ue(x) for all x ∈ Td

}

.

It is not difficult to check that X0 is bounded in L2(Td). Indeed, let ē = maxx∈Td e(x) and

observe that, if w(x) = (v(x), u(x)) ∈ Ue(x) ⊂ K co
ē (using (6)), then

|v|2 ≤ ē, |u| ≤ 2ē,

and hence w = (v, u) ∈ X0 implies ‖v‖2L∞ , ‖u‖L∞ ≤ 2ē. Standard elliptic estimates and

the equation div div u = −∆q then imply that ‖q‖L2 ≤ Cē. See also Lemma 6.5 in [16].

We define X to be the closure of X0 in the weak L2 topology (which is metrizable by the

boundedness).
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Step 2: X contains smooth stationary flows. Let v0 be a smooth solution of (1)

with (smooth) pressure p0 and let e = e(x) be a smooth function such that e(x) > |v0(x)|
for all x ∈ Td. Let

u0 = v0 ⊗ v0 −
|v0|2
d

Id, q0 = p0 +
|v0|2
d

.

By definition w0 = (v0, u0) is a subsolution and

w0(x) ∈ K|v0|2(x) for all x ∈ Td.

Assumption (*) then implies that w0(x) ∈ Ue(x) for all x ∈ Td, hence

w0 ∈ X0.

Step 3: Continuity points of w 7→
∫

|w|2 dx. We note that the mapping w 7→
∫

|w|2 dx
is a Baire-1 map in X, hence its continuity points form a residual set in X. On the other

hand property (P) with an easy covering and rescaling argument leads to the following:

there exists a continuous strictly increasing function Φ̃ : [0,∞) → [0,∞) with Φ̃(0) = 0

such that, for every w ∈ X0 there exists a sequence wk ∈ X0 such that

• wk ⇀ w weakly in L2(Td);

•
∫

Td |wk − w|2 dx ≥ Φ̃
(∫

Td dist (w(x),Ke(x))
)

.

(For instance, one may take Φ̃ to be the convex envelope of Φ - up to rescaling. See

[6, 16, 15]). Consequently, using a diagonal argument and the metrizability of X, see

[12, 6, 16], continuity points of the map w 7→
∫

|w|2 dx in X are subsolutions w such that

w(x) ∈ Ke(x) for almost every x ∈ Td. Since a residual set in X is dense, there exist a

sequence wk = (vk, uk) ∈ X with wk(x) ∈ Ke(x) a.e., such that wk ⇀ w0. In particular this

means that vk is a weak stationary solution of the Euler equations with |vk(x)|2 = e(x) for

a.e. x ∈ Td.

�

The rest of the paper is thus devoted to constructing a family of open sets Ur with the

properties (P) and (*). The perturbation property (P) requires a large class of subsolutions

with specific oscillatory behaviour at our disposal. In Section 3 we show how such stationary

subsolutions can be constructed in general dimension d ≥ 2, based on the notion of laminates

of finite order. Then, in Sections 4 and 5 we will treat separately the cases d ≥ 3 and d = 2,

respectively.

3. The wave-cone and laminates

To the linear system (2) we associate the wave cone Λ defined as the set

Λ =

{

(v̄, ū) ∈ (Rd \ {0}) × Sd
0 : ∃ q̄ ∈ R, η ∈ Rd \ {0} s.t. ūη + q̄η = 0 , v̄ · η = 0

}

. (8)
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As in [5], this set corresponds to plane-wave solutions of (2). Note that, in contrast with

the time-dependent case, here we have Λ 6= (Rd \ {0}) × Sd
0 (for the equality in the time-

dependent case, see Remark 1 in [5]). Nevertheless, we can localize plane-waves by using

the same potentials as in the time-dependent case, by simply restricting to potentials which

are independent of time. We obtain:

Lemma 3. Let d ≥ 2. Let w̄ = (v̄, ū) ∈ Λ. Then

(1) ∃ η ∈ Rd \ {0} such that for any h ∈ C∞(R)

w(x) := w̄h(x · η)

is a subsolution;

(2) There exists a second order homogeneous linear differential operator Lw̄ such that

w := Lw̄[φ]

is a subsolution for any φ ∈ C∞(Rd);

(3) Moreover, if φ(x) = H(x · η) for some H ∈ C∞(R), then

Lw̄[φ](x) = w̄H ′′(x · η).

Proof. See [5] Proposition 3.2 and [17] Proposition 20. �

Lemma 3 allows us to construct stationary subsolutions with specific oscillatory be-

haviour. For the time-dependent Euler equations this was done in Section 3.3 of [17]. In

the following we denote by Q = (0, 1)d the open unit cube in Rd, and for w1, w2 ∈ Rd × Sd
0

by [w1, w2] := {λw1 + (1− λ)w2 : λ ∈ [0, 1]} the line segment joining w1 and w2.

Lemma 4. Let d ≥ 2. Let wi = (vi, ui) ∈ Rd × Sd
0 and µi ≥ 0 such that

w2 − w1 ∈ Λ, µ1w1 + µ2w2 = 0, µ1 + µ2 = 1.

For any ε > 0 there exists a subsolution w ∈ C∞
c (Q;Rd × Sd

0 ) such that

(i) dist (w(x), [w1, w2]) < ε for all x ∈ Q;

(ii) There exist disjoint open subsets A1, A2 ⊂ Q such that for i = 1, 2

w(x) = wi for all x ∈ Ai, ||Ai| − µi| < ε.

Using Lemma 4 as the basic building-block, more complicated oscillatory behaviour can

be achieved. The key concept is the notion of laminates of finite order [13] (called prelam-

inates in [12]). We recall

Definition 5. Let d ≥ 2. Let U ⊂ Rd × Sd
0 be a set. The set of laminates of finite order,

denoted by L(U ), is the smallest class of (atomic) probability measures supported on U

that

• contains all Dirac-masses supported on U ;

• is closed under splitting along Λ-segments inside U .



WEAK STATIONARY SOLUTIONS 7

The latter means the following: if ν =
∑N

i=1 νiδwi
∈ L(U ), and wN ∈ [z1, z2] ⊂ U with

z2 − z1 ∈ Λ, then
N−1
∑

i=1

νiδwi
+ νN (λδz1 + (1− λ)δz2) ∈ L(U ),

where λ ∈ [0, 1] such that wN = λz1 + (1− λ)z2.

A simple induction argument and Lemma 4 then leads to

Proposition 6. Let d ≥ 2. Let U ⊂ Rd × Sd
0 be open and

ν =

N
∑

i=1

µiδwi
∈ L(U )

be a laminate of finite order with barycenter ν = 0. For any ε > 0 there exists a subsolution

w ∈ C∞
c (Q;Rd × Sd

0 ) such that

(i) w(x) ∈ U for all x ∈ Q;

(ii) there exist pairwise disjoint open subsets A1, . . . , AN ⊂ Q such that for i = 1, . . . , N

w(x) = wi for all x ∈ Ai, ||Ai| − µi| < ε.

In light of Proposition 6 we obtain immediately a useful sufficient condition for Property

(P):

Proposition 7. Let d ≥ 2. Let Ur ⊂ K co
r an open set with the following property: there

exists a continuous strictly increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0 such that

for any w0 ∈ Ur there exists a laminate of finite order ν ∈ L(Ur) with barycenter ν̄ = w0

such that
∫

|w −w0|2 dν(w) ≥ Φ(dist (w0,Kr)).

Then Ur has Property (P).

Next, we recall the definition of the lamination-convex hull of a set.

Definition 8. Let d ≥ 2. Let U ⊂ Rd×Sd
0 be a set. The lamination convex hull U lc (with

respect to the wave-cone Λ) is defined as

U
lc =

∞
⋃

i=0

U
(i),

where U (i) is defined inductively as: U (0) = U and

U
(i+1) := U

(i) ∪
{

tξ + (1− t)ξ′ : ξ, ξ′ ∈ U
(i), ξ − ξ′ ∈ Λ, t ∈ [0, 1]

}

.

Note that in general we have U lc ⊆ U co. The following is an elementary consequence of

Definitions 5 and 8:
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Lemma 9. Let d ≥ 2. Let U ⊂ Rd × Sd
0 be an open set. Then U lc is open. Moreover, for

any w ∈ U lc there exists a laminate of finite order ν ∈ L(U lc) with barycenter ν̄ = w such

that supp ν ⊂ U .

We will see in the sections below that, for the set Kr corresponding to the Euler equations

(4) with the wave cone Λ in (8) (corresponding to stationary solutions), we have

• If d ≥ 3, K lc
r = K co

r (c.f. Section 4);

• If d = 2, K lc
r ( K co

r (c.f. Section 6).

In particular, in the case d ≥ 3 one can essentially reduce to the case of time-dependent

solutions as done in [5, 6]. On the other hand for d = 2 we will need to construct an explicit

set Ur satisfying the perturbation property (P) in Section 5. This will require a more careful

analysis of compatible oscillations, more precisely an analysis of laminates of finite order.

4. The case d ≥ 3

Let us first consider the case of dimension d ≥ 3. It turns out that in this case the proof

of Theorem 1 can be essentially reduced to the time-dependent case.

We recall some terminology from [6] Section 4.3. Given r > 0 we call a line segment

σ ⊂ Rd × Sd
0 admissible if

• σ is contained in the interior of K co
r ;

• σ is parallel to (a, a ⊗ a) − (b, b ⊗ b) for some a, b ∈ Rd with |a|2 = |b|2 = r and

b 6= ±a.

We have the following:

Lemma 10 (Lemma 6 in [6]). Let d ≥ 2. There exists a constant C = C(d, r) > 0, such

that for any w = (v, u) ∈ int K co
r there exists an admissible line segment σ = [w−w̄, w+w̄],

w̄ = (v̄, ū), such that

|v̄| ≥ C
(

r − |v|2
)

and dist (σ, ∂K
co
r ) ≥ 1

2
dist (w, ∂K

co
r ).

The key observation is that, even in the stationary case with d ≥ 3, admissible line

segments are in Λ-directions:

Lemma 11. Let d ≥ 3. Let a, b ∈ Rd with |a|2 = |b|2 = r and b 6= ±a, and let (v̄, ū) =

(a, a⊗ a)− (b, b⊗ b). Then (v̄, ū) ∈ Λ.

Proof. Recall from (8) that (v̄, ū) ∈ Λ if there exists a vector η 6= 0 such that v̄ · η = 0 and

ūη = q̄η for some q̄ ∈ R. Choose η ∈ Rd \ {0} such that η · a = η · b = 0. Then obviously

η · v̄ = 0 and ūη = (a⊗ a− b⊗ b)η = 0. This proves that (v̄, ū) ∈ Λ (with q̄ = 0). �

Corollary 12. Let d ≥ 3. Then Ur := intK co
r has the perturbation property (P) and

property (*).
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Proof. Property (*) follows easily from the explicit formula (6).

To show property (P), let w̄ ∈ Ur. Using Lemmas 11 and 10 we find the existence of

w̃ ∈ Λ, such that

[w̄ − w̃, w̄ + w̃] ⊂ Ur, dist ([w̄ − w̃, w̄ + w̃], ∂K
co
r ) ≥ 1

2
dist (w̄, ∂K

co
r ),

and

|w̃| ≥ 1

4
C(r − |v̄|2).

Using Lemma 4 with a suitable ε < 1
4dist (w̄, ∂K co

r ) we construct a subsolution w = (v, u) ∈
C∞
c (Q;Rd × Sd

0 ) such that w̄ + w(x) ∈ Ur for all x ∈ Q and
∫

Q

|w(x)|2 dx ≥ 1

2
|w̃|2 ≥ C ′(r − |v̄|2)2

for some constant C ′ > 0. Using the observation in (7) we deduce property (P) as required.

�

5. Laminates in the two-dimensional case

Let us now consider the case d = 2. Given a vector v̄ ∈ R2 \ {0} we denote by v̄⊥ =

(v̄2,−v̄1) the perpendicular.

We start with the following observation:

Lemma 13. Let d = 2. Then Λ in (8) can be written as

Λ =
{

(v̄, ū) ∈ (R2 \ {0})× S2
0 : ūv̄ · v̄⊥ = 0

}

.

Proof. According to (8), (v̄, ū) ∈ Λ precisely if ū possesses an eigenvector perpendicular to

v̄. In two dimensions this means that v̄⊥ is an eigenvector of ū. The claim follows. �

5.1. Suitable coordinates in state-space. We proceed by introducing coordinates on

the state-space R2 × S2
0 . The state variables (v, u) can be written in coordinates as

v =

(

a

b

)

, u =

(

c d

d −c

)

.

It is then convenient to identify the state space R2 × S2
0 with C× C, by introducing

z = a+ ib, ζ = c+ id,

so that, in the following, we will write

w = (z, ζ) ∈ R2 × S2
0 .

In these variables we have

Kr =
{

(z, ζ) : |z|2 = r and ζ = 1
2z

2
}

Λ =
{

(z, ζ) : ℑ(z2ζ̄) = 0
}

.
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It is easy to see that both Kr and Λ are invariant under the transformations

Rθ : (z, ζ) 7→ (zeiθ, ζe2iθ), θ ∈ [0, 2π], (9)

and

(z, ζ) 7→ (z̄, ζ̄). (10)

In light of (9) it is natural to consider the 3-dimensional subspace

L =
{

(z, ζ) ∈ C× C : ℑ(ζ) = 0
}

where we can use the coordinates (a+ ib, c) ∈ C× R ∼= L. Note that in these coordinates

Kr ∩ L =
{

(
√
r, 12r), (−

√
r, 12r), (i

√
r,−1

2r), (−i
√
r,−1

2r)
}

and

Λ ∩ L =
{

(a+ ib, c) : abc = 0
}

. (11)

5.2. Laminates in L. We begin with an explicit construction. Fix r > 0. We define for

(a+ ib, c) with |c| < r/2

fr(a+ ib, c) :=

√
r|a|

r
2 + c

+

√
r|b|

r
2 − c

and set

Vr =
{

(z, c) ∈ L : fr(z, c) < 1, |c| < r/2
}

. (12)

a

b

c

√
r

√
r

r/2

Figure 1. The set Vr, bounded by 4 ruled surfaces - see Proposition 14 (iv).

The sets Vr, r > 0, have following properties:

Proposition 14. For any r > 0 we have

(i) Vr is open (relatively in L ∼= C× R);

(ii) Vr ⊃ (Kr ∩ L):

(iii) Vr′ ⊂ Vr for any 0 < r′ < r;
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(iv) Vr ⊂ (Kr ∩ L)lc.

More precisely, for any w ∈ Vr there exists a laminate of at most fourth order ν ∈ L(Vr)

such that ν̄ = w and supp ν ⊂ Kr ∩ L.

Proof. (i) and (ii). The assertions (i) and (ii) are elementary after one observes that fr

is a continuous function on {(z, c) ∈ L : |c| < r/2} and

Vr =
{

fr(a, b, c) ≤ 1, |c| < r/2
}

∪

∪
{

|a| ≤
√
r, b = 0, c = r/2

}

∪
{

a = 0, |b| ≤
√
r, c = −r/2

}

.
(13)

(iii). Note that

∂

∂r
fr(a+ ib, c) = − (12r − c)

2
√
r(12r + c)2

|a| − (12r + c)

2
√
r(12r − c)2

|b| < 0

provided |c| < 1
2r and |a| + |b| > 0. Now let (a + ib, c) ∈ Vr′ for some r′ < r. Then

fr′(a+ ib, c) ≤ 1. If |a|+ |b| 6= 0 and |c| < 1
2r

′, we see that the function r 7→ fr(a+ ib, c) is

strictly monotonic decreasing, consequently fr(a+ ib, c) < 1 and hence (a+ ib, c) ∈ Vr. If on

the other hand |a|+ |b| = 0 and |c| ≤ 1
2r

′, then fr(a+ ib, c) = 0 so that again (a+ ib, c) ∈ Vr.

Finally, consider the case when (a + ib, c) ∈ Vr′ and |c| = 1
2r

′. If c = 1
2r

′, using (13) we

deduce |a| ≤
√
r′ and b = 0, from which it is easy to deduce that fr(a+ ib, c) < 1 by direct

calculation. Similarly if c = −1
2r

′. In both cases we see that (a+ ib, c) ∈ Vr. This concludes

the proof of (iii).

(iv). Let (a+ ib, c) ∈ Vr. Then |c| < r/2 and, on the (horizontal) c-slice the point (a, b)

lies inside the rhombus defined by the equation

|a|
(√

r

2 − c√
r

)

+ |b|
(√

r

2 + c√
r

)

≤
(

r
4 − c2

r

)

.

Since any direction of the form (ā+ ib̄, 0) is contained in Λ (c.f. (11)), we find two points

√
r/2+c/

√
r

√
r/2-c/

√
r

-
√
r/2-c/

√
r

-
√
r/2+c/

√
r

a

b

fr(a, b, c) < 1

Figure 2. The rhombus arising as a c-slice of Vr with 0 < c < r/2.

(a1 + ib1, c) and (a2 + ib2, c) on the boundary of the rhombus, so that the line segment

joining the two points contains (a + ib, c) and is in a Λ-direction. Therefore it suffices to

show that the assertion holds for (a+ ib, c) ∈ ∂Vr.
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Let (a+ ib, c) ∈ ∂Vr. Using (9) and (10) we may assume without loss of generality that

a, b ≥ 0, so that we have |c| ≤ r/2 and

a
(√

r

2 − c√
r

)

+ b
(√

r

2 + c√
r

)

=
(

r
4 − c2

r

)

.

It is easy to see that then (a, b, c) lies on the (horizontal, hence Λ-) line segment connecting

the two points
(

√
r

2
+

c√
r
, 0, c

)

and
(

0,

√
r

2
− c√

r
, c
)

.

Also,

(

√
r

2
+

c√
r
, 0, c

)

∈
[

(
√
r, 0,

r

2
), (0, 0,−r

2
)

]

(14)

(

0,

√
r

2
− c√

r
, c
)

∈
[

(0, 0,
r

2
), (0,

√
r,−r

2
)

]

(15)

and

(0, 0,
r

2
) ∈

[

(−
√
r, 0,

r

2
), (

√
r, 0,

r

2
)
]

(16)

(0, 0,−r

2
) ∈

[

(0,−
√
r,−r

2
), (0,

√
r,−r

2
)
]

(17)

Using (11) we check that the line segments in (14)-(17) are in Λ-directions. Consequently

(a+ ib, c) ∈ (Kr ∩ L)lc. The statement of the Proposition follows easily. �

5.3. Construction of Ur. Let r > 0 and set

Vr =
{

(zeiθ, ce2iθ) ∈ C× C : (z, c) ∈ Vr, 0 < |c| < r

2
, θ ∈ R

}

, Ur := V lc
r . (18)

Observe that, although in the definition of Vr we excluded the case c = 0, because of (iii)

of Proposition 14 we nevertheless have Vr ⊂ Ur. Moreover, Vr and Ur are easily seen to be

invariant w.r.t. the maps (9).

Proposition 15. For any r > 0 we have

(i) Ur ⊂ C× C is open;

(ii) Kr′ ⊂ Ur for all 0 ≤ r′ ≤ r;

(iii) For every w ∈ Ur and every ε > 0 there exists r − ε < r′ < r and a laminate of

finite order ν ∈ L(Ur) such that ν̄ = w and supp ν ⊂ Kr′ .

Proof. (i). We note that the map (z, c, θ) 7→ (zeiθ, ce2iθ) is a local immersion in the set

{(z, c, θ) : |c| 6= 0}. Since Vr is (relatively) open in L, it follows that Vr is open in C × C.

Openness of Ur then follows from Lemma 9.

(ii). By the invariance w.r.t. (9) it suffices to show that Ur ∩ L ⊃ Kr′ ∩ L. But

Ur ∩ L ⊃ Vr. So the claim follows from Proposition 14 (ii) and (iii).

(iii). Since the set of laminates of finite order L(Ur) is closed under splitting in Ur = V lc
r ,

by using Lemma 9 and the invariance w.r.t. (9) we may reduce without loss of generality
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to the case w ∈ Vr. Choose r − ε < r′ < r such that w ∈ Vr′ . By Proposition 14 (iv) there

exists a laminate ν ∈ L(Vr′) of finite order such that ν̄ = w and supp ν ⊂ Kr′ ∩ L. Since

r′ < r, Proposition 14 (ii) and (iii) imply Vr′ ⊂ Ur and hence ν ∈ L(Ur). The statement of

the Proposition follows.

�

Corollary 16. The set Ur defined in (18) satisfies the perturbation property (P) and also

property (*).

Proof. Let w0 ∈ Ur. Using Proposition 15 (iii) for any ε > 0 there exists r − ε < r′ < r

and a laminate of finite order ν ∈ L(Ur) with barycenter ν̄ = w0 such that supp ν ⊂ Kr′ .

Consequently, writing w = (z, ζ),
∫

|w − w0|2 dν(w) ≥
∫

|z − z0|2 dν(z, ζ)

=

∫

|z|2 − 2Re (zz̄0) + |z0|2 dν(z, ζ) = r′ − |z0|2

Since ε > 0 is arbitrary and we have (7), Proposition 7 applies and implies property (P).

Property (*) is a direct consequence of Proposition 14 (iii) and Proposition 15 (ii).

�

6. Failure of Property (P)

In this section we show that in the case d = 2 the Property (P) fails for the interior of

the convex hull of Kr. In the language of compensated compactness this amounts to an

additional non-trivial constraint on the relaxation - in the framework of gradient differential

inclusions of the type Du ∈ K [12, 13, 16] this amounts to the statement that the quasicon-

vex hull of K is strictly smaller than the convex hull. We do not know what the (analogue

of) the quasiconvex hull of Kr is in this case.

Theorem 17. Let d = 2 and Ur := int K co
r . Then Property (P) is not valid.

Proof. 1. We will treat the case r = 1, the general case follows easily by scaling. To start

with we will analyse the boundary ∂K co
1 . Recalling the expression for K co

1 from (6) we see

that if (v̄, ū) ∈ ∂K co
1 \K1, then, after using the maps (9) in the form θ 7→ Rθ(v̄⊗ v̄− ū)RT

θ

we have

v̄ ⊗ v̄ − ū =

(

1/2 0

0 λ

)

(19)

for some λ < 1/2. Let (ṽ, ũ) ∈ R2×S2
0 be a direction (e.g. normalized so that |ṽ| = 1) such

that (v̄ + tṽ, ū+ tũ) ∈ ∂K co
1 for all |t| < δ for some δ > 0. This amounts to

(v̄ + tṽ)⊗ (v̄ + tṽ)− (ū+ tũ) =

(

1/2 0

0 λ

)

+ tA+ t2B ≤
(

1/2 0

0 1/2

)

, (20)
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where

A = ṽ ⊗ v̄ + v̄ ⊗ ṽ − ũ, B = ṽ ⊗ ṽ.

In particular we require diag(0, 1/2 − λ)− tA to be positive semidefinite for all sufficiently

small |t|. Expanding t 7→ det(diag(0, 1/2 − λ) − tA) in a quadratic polynomial, we obtain

the necessary conditions A11 = A12 = A21 = 0. Then (20) reduces to

0 ≤
(

−t2ṽ21 −t2ṽ1ṽ2

−t2ṽ1ṽ2
1
2 − λ− tA22 − t2ṽ22

)

We deduce ṽ1 = 0. Plugging into the definition of A and using that A = diag(0, A22) we

finally obtain

ṽ =

(

0

1

)

, ũ =

(

0 v̄1

v̄1 0

)

. (21)

Therefore the boundary of K co
1 at (v̄, ū) consists of a single line segment in the direction

(ṽ, ũ). Observe that (ṽ, ũ) /∈ Λ, unless v1 = 0.

2. We now argue by contradiction. Assume that the perturbation property (P) holds

and let w̄ = (v̄, ū) ∈ ∂K co
1 \ K1, without loss of generality satisfying (19). Assume further

that v̄1 6= 0 (it is easy to see that such w̄ ∈ ∂K co
1 \ K1 exists).

Let w̄(k) = (v̄(k), ū(k)) ∈ intK co
1 be a sequence such that w̄(k) → w̄. Then there exists

δ > 0 and for each k ∈ N there exists a subsolution w(k) ∈ C∞
c (Q;R2 × S2

0 ) such that

w̄(k) + w(k)(x) ∈ K co
1 and

∫

Q
|w(k)(x)|2 dx ≥ δ. Define the probability measures νk on

R2 × S2
0 × R by duality using the formula

∫

f(v, u, q) dνk(v, u, q) :=

∫

Q

f(v(k)(x), u(k)(x), q(k)(x)) dx ∀ f ∈ Cc(R
2×S2

0×R), (22)

where q(k)(x) is the associated pressure, i.e. the solution of the equation

∆q(k) = −div div u(k) on Q

q(k) = 0 on ∂Q.

(Here one should recall that the pressure in property (P) is required to satisfy Dirichlet

boundary conditions). Note that supp νk ⊂ K co
1 × R for all k ∈ N.

Using the weak* sequential compactness of the dual space Cc(R
2 ×S2

0 ×R)∗ we obtain a

weakly* convergent subsequence νk
∗
⇀ ν. We note in passing that the probability measure

ν is a stationary measure-valued (sub)solution of the Euler equations. (c.f. [4]).

Using that (v̄(k), ū(k)) + (v(k), u(k)) ∈ K co
1 , we see that the sequence (v(k), u(k)) is uni-

formly bounded in L∞(Q). Then, from the standard Lp-estimate ‖q(k)‖Lp(Q) ≤ Cp‖u(k)‖Lp(Q)

for any p < ∞, we deduce that the sequence q(k) is uniformly bounded in Lp(Q) for any

p < ∞. Consequently in (22) one may extend to test functions f ∈ C(R2 ×S2
0 ×R) with at

most polynomial growth. On the probability measure ν we deduce

ν̄ = (v̄, ū, q̄), supp ν ⊂ K
co
1 × R,

∫

|(v, u)|2 dν(v, u, q) ≥ δ (23)
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for some q̄ ∈ R. Here, ν̄ denotes the mean (barycenter) of the probability measure ν. Since

(v̄, ū) ∈ ∂K co
1 , we obtain, using 1., that supp ν ⊂ L × R, where L ⊂ R2 × S2

0 is the line

through (v̄, ū) in the direction given by (21).

3. Observe that the sequence (v(k), u(k), q(k)) satisfies ∂1v
(k)
1 + ∂2v

(k)
2 = 0 and

∂1(u
(k)
11 + q(k)) + ∂2u

(k)
12 = 0, ∂1u

(k)
12 + ∂2(q

(k) − u
(k)
11 ) = 0.

Using the div-curl lemma and standard tools from Young measure theory we deduce that

ν commutes with the functions

g1(v, u, q) := v1(q − u11)− v2u12, g2(v, u, q) := (u11 + q)(q − u11)− u212,

i.e.
∫

gi dν = gi(ν̄) for i = 1, 2 (c.f. [4], where this is referred to as the commutativity

relation). Hence ν also commutes with

g(v, u, q) := g2(v, u, q) − 2v̄1g1(v, u, q),

g being a linear combination of g1 and g2. However, on the support of ν, i.e. on L ×R the

function g becomes

(t, s) 7→ g(v̄ + tṽ, ū+ tũ, q̄ + s) = c0 + c1s+ c2t+ s2 + v̄21t
2,

where c0 = q̄+ v̄21(1/2+λ−2q̄)−1/4, c1 = 2(q̄− v̄21) and c2 = 2v̄21 v̄2. Here we have used the

identities (19) and (21). Observe that, since we have assumed v̄1 6= 0, the function (t, s) 7→ g

is strictly convex. Consequently, from Jensen’s inequality we deduce that ν = δ(v̄,ū,q̄) is a

Dirac measure. This contradicts (23), thus concluding the proof.

�
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