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Learning Null Space Projections

Hsiu-Chin Lin, Matthew Howard and Sethu Vijayakumar

Abstract— Many everyday human skills can be considered in
terms of performing some task subject to a set of self-imposed
or environmental constraints. In recent years, a number of
new tools have become available in the learning and robotics
community that allow data from constrained and/or redundant
systems to be used to uncover underlying consistent behaviours
that may be otherwise masked by the constraints. However,
while a wide variety of work for generalisation of movements
have been proposed, few have explicitly considered learning
the constraints of the motion and ways to cope with unknown
environment. In this paper, we propose a method to learn the
constraints such that some previously learnt behaviours can
be adapted to new environment in an appropriate way. In
particular, we consider learning the null space projection matrix
of a kinematically constrained system, and see how previously
learnt policies can be adapted to novel constraints.

I. INTRODUCTION

Many everyday human skills can be considered in terms of
performing some task subject to a set of self-imposed or
environmental constraints. For example, when pouring water
from a bottle, self-imposed constraints apply to the position
and the orientation of the hand so that the water falls within
the glass. When wiping a table (Fig. 1), the surface of the
table acts as an environmental constraint that restricts the
hand movements when in contact with the surface.

A promising way to provide robots with skills is to take
examples of human demonstrations and attempt to learn a
control policy that somehow capture the behaviours [1], [2],
[3]. One common application is to control robot manipulator,
for example, given constraint in the end-effector space,
produce a set of joint-space movements that can satisfy
the constraints [4]. Behaviour may be subject to various
constraints that are usually non-linear in actuator space [5],
[6]. For example, maintaining balance of the robot (higher
priority) while accomplishing an end-effector task (lower
priority) [7] or avoiding obstacles [8].

In recent years, a number of new tools have become
available in the learning and robotics community that allow
data from constrained and/or redundant systems to be used
to uncover underlying consistent behaviours that may be
otherwise masked by the constraints [9], [10]. While a wide
variety of work for generalisation of constrained movements
have been proposed, few have explicitly considered learning
the constraints of the motion and ways to cope with unknown
environment.

The ability to deal with unknown environment is
favourable since re-learning a behaviour might be time-
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Fig. 1: Examples of wiping on different tables [13]. The be-
haviour (wiping) is subject to various constraint imposed by
the environment where the behaviour is performed (surfaces).

consuming or require many additional human demonstra-
tions. However, this is not trivial to obtain the precise
equations about the environment. For example, adapting the
wiping behaviour onto different tables (see Fig. 1) requires
prior knowledge of the surface itself. For a car washing robot,
the wiping behaviour is acting on various contact constraints,
due to the shapes and orientations of the car surface. It would
be unfeasible to assume that we have the full knowledge to
describe the shape of all areas of different cars. In addition,
consider the case of walking on uneven terrain, the feet are
constrained by the environment in an unpredictable way.

There are a few work related to the estimation of constraint
surface, which use force measurements from the end-effector
to calculate the plane normal to the constraint surface [11],
[12]. However, these are limited to force-control of robot ma-
nipulator acting on a smooth surface in a three-dimensional
space, and rely on force sensor measurements, which are
normally hard to obtain.

In this paper, we propose a method that is able to directly
learn the kinematic constraints present in movement obser-
vations, as represented by the null space projection matrix of
a kinematically constrained system. The proposed approach
requires no prior information about either the geometry, or
the dimensionality of the constraints, nor does it require
information about the control policy underlying observed
movement. In addition, we evaluate the proposed approach
for learning policies and constraints in problems of varying
dimensionality, and illustrate its use in generalisation and
predicting behavioural outcomes of policies across different
environments.

II. PROBLEM DEFINITION

We consider that the underlying policy is subjected to a set
of S-dimensional (S ≤ Q) constraints

A(x, t)u(x, t) = 0 (1)

where x ∈ RP represents state, u ∈ RQ represents the
action, and t is time. The constraint matrix A(x, t) ∈ RS×Q
is a matrix describing the constraints, which projects the



task-space policy onto the relevant part of the control space.
Inverting (1), results in the relation

u(x, t) = N(x, t)π(x) (2)

where A† is the Moore-Penrose pseudo-inverse of A,

N(x, t) := (I−A(x, t)†A(x, t)) ∈ RQ×Q (3)

is the projection matrix, and I ∈ RQ×Q is the identity
matrix. The projection matrix N projects the null space
policy onto the null space of A, which in general, has non-
linear dependence on both time and state.

It would be useful to know the decomposition of A,
N, and π; however, the true quantities of those variables
are unavailable by assumption. Several studies have been
devoted to learning the null space policy π, but, to the
authors’ knowledge, none have been able to explicitly es-
timate A or N. In [10], for instance, the null space policy
learning method decomposes the observations u into two
orthogonal components u ≡ uts + uns such that uts ≡ A† b,
uns ≡ Nπ, and uts ⊥ uns. This method has been adapted
in [14] to learn the decomposition of uns, and then estimates
the projection matrix N for analysing human walking. In [15]
a method for learning N is outlined for the special case of
a one-dimensional constraint in a 2-DOF system (i.e., where
A ∈ R1×2). In this paper, this work is extended to estimate
the projection matrix in a more generic way. Namely, a
method is proposed whereby N can be learnt for A ∈ RS×Q
where 1 < S < Q.

III. METHOD

The proposed method works on data given as N pairs of
observed states xn and observed actions un. It is assumed
that (i) the observations can be decomposed as u = Nπ
(ii) u are generated using the same null space policy π,
(iii) each observation might have been constrained for some
A 6= 0, and (iv) A (and N) are not explicitly known for any
given observation.

The key to the proposed approach is to use properties of
the projection matrix N in order to find A. By definition
u = Nπ, so u is the vector π projected onto the image
space of N. However, it is also the case that the projection
of u also lies in this image space, i.e.,

Nu = u. (4)

Based on this insight, N can be approximated by seeking an
estimate such that this condition holds.

Specifically, given samples {xn,un}Nn=1 it is proposed to
form an estimate Ñ that minimises the difference between
Ñu and the raw observations u, i.e.,

E[Ñ] =

N∑
n=1

||un − Ñun||2. (5)

Using (3), the nth term of (5) can be written

||un − (I− Ã†Ã)un||2 = ||un − un + Ã†Ãun||2

= ||Ã†Ãun||2 (6)

where Ã ∈ RS×Q is an estimate of the constraint matrix A.
Expanding the norm ||Ã†Ãun||2 = u>n (Ã†Ã)>Ã†Ãun,

and using the identities (A†A)> = A†A and A†AA† =
A†, (5) can be expressed in simplified form

E[Ñ] =

N∑
n=1

u>n Ã†Ãun. (7)

The constraint projection matrix can therefore be estimated
by seeking an estimate Ã that minimises (7). Note that,
through use of the latter, no prior knowledge of the under-
lying π, nor of the true projection matrix N is required.

A. Representation of Ã

Until this point, no specific assumptions have been made on
the form of the estimated matrix Ã. Here, an appropriate
structure of this matrix is outlined, that ensures that the esti-
mate is interpretable in terms of the constraints. Specifically,
Ã is assumed to be formed from a set of S vectors

Ã =
(
α>1 α>2 · · · α>S

)>
(8)

where αs = (αs,1, αs,2, ..., αs,Q) corresponds to the sth
constraint in the observations, and αi ⊥ αj for all i 6= j.

Since Ã consists of linearly independent row vectors,
(ÃÃ>) is invertible, and the pseudoinverse has the explicit
formula Ã† = Ã>(ÃÃ>)−1, i.e.,

Ã† =


α1

α2

...
αS


>

α1α
>
1 α1α

>
2 . . . α1α

>
S

α2α
>
1 α2α

>
2 . . . α2α

>
S

...
. . .

...

αSα
>
1 αSα

>
2 . . . αSα

>
S


−1

. (9)

Noting that αiα>i = ||αi||2 and αiα
>
j = 0 for i 6= j, it can

be shown that

Ã† =
(

α>
1

||α1||2
α>

2

||α2||2 . . .
α>

S
||αS ||2

)
. (10)

From (3), the projection matrix is

Ñ = I−
(

α>
1

||α1||2
α>

2

||α2||2 . . .
α>

S
||αS ||2

)

α1

α2

...
αS

 = I−
S∑
s=1

α̂>s α̂s

(11)
where αi = ||αi||α̂i is used. The last equality of (11),
makes it clear that the projection matrix is independent of the
magnitude of each of the αs since only unit vectors appear
in the expression. Hence, only the direction of these vectors
need be approximated.

B. Forming the Estimate Ñ

In the following, methods for forming the estimate Ñ are
outlined, according to the problem setting.



(a) (b) (c)

Fig. 2: Examples of (a) θ = 0 °, (b) θ = 45 °, and (c) θ =
90 ° in polar representation and the corresponding null-space
(dashed line).

(a)
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x

z

(b)

Fig. 3: Examples of α in spherical representation and its null
space where θ1 = 45 °, (a) θ2 = 0 ° and (b) θ2 = 45 °.

1) Estimation for A ∈ R1×2 : To begin, consider the sim-
plest case where A represents a one-dimensional constraint
in a two degree of freedom system, i.e., A ∈ R1×2. As noted
in [15], in this case α̂ is simply the unit vector

α̂ = (cos θ, sin θ) (12)

where θ is the angle encoding the direction (see Fig. 2).
A simple method for forming the estimate Ã is to perform

a line search whereby a set of L sample θ are generated,
and that which minimises the error criterion (7) is chosen
for the approximation. Note that, the search need only be
restricted to the half-space 0 ≤ θ < π since this covers
all possible cases (the projections corresponding to the half-
space π ≤ θ < 2π are identical to those in the former).

2) Estimation for A ∈ R1×Q with Q > 2: For problems
with Q > 2 but with S = 1 the same approach can be
applied by extending the α̂ in (12) to handle higher degrees
of freedom (DOF).

For example, to extend the formulation to Ã ∈ R1×3,
the search should be conducted over the set of possible unit
vectors α̂ ∈ R3. Using spherical coordinates, the latter can
be represented as

α̂ = (cos θ1, sin θ1 cos θ2, sin θ1 sin θ2) (13)

where θ1 ∈ (0, π] and θ2 ∈ (0, π] encode the direction of
the vector in the three dimensional space. For instance, in
Fig. 3, the additional variable θ2 specifies the angle between
α and xz-plane.

Similarly, for S = 4 the vector α̂ can be represented by
three angles θ1, θ2 and θ3 with elements as indicated in the
third column of Table I.

More generally, for Q > 2, the unit vector α̂ =
(α̂1, α̂2, · · · , α̂Q) can be represented by Q − 1 parameters

R2 R3 R4

α̂1 cos θ1 cos θ1 cos θ1
α̂2 sin θ1 sin θ1 cos θ2 sin θ1 cos θ2
α̂3 - sin θ1 sin θ2 sin θ1 sin θ2 cos θ3
α̂4 - - sin θ1 sin θ2 sin θ3

TABLE I: Representation of unit vector in R2, R3, and R4.

θ = (θ1, θ2, · · · , θQ−1)> where

α̂1 = cos θ1

α̂2 = sin θ1 cos θ2

α̂3 = sin θ1 sin θ2 cos θ3
...

α̂Q−1 =

Q−2∏
q=1

sin θq cos θQ−1

α̂Q =

Q−1∏
q=1

sin θq (14)

Note that, in this case, if an exhaustive search over an L-
sided grid in the (Q − 1)-dimensional space of parameters
is used for selecting θ, the sequential running time increases
to O(LQ−1).

3) Estimation for A ∈ RS×Q with Q > 2 and S >
1: For systems subject to multidimensional constraints, A
consists of a set of S orthogonal vectors as in (8), see
§III-A. The same optimisation approach can be used to
form the estimate Ñ as in the preceding sections, namely,
by defining an orthogonal unit vector α̂s for each of the
S constraints, and seeking the optimal parameters θs =
(θs,1, θs,2, · · · , θs,Q−1)> that minimise (7).

In this case, an iterative approach to learning may be
employed, whereby a series of of constraint vectors α̂s are
fitted to the data to form an estimate Ã, where an (s+ 1)th

vector is only added if it does not reduce the fit under (7).
This exploits a second property of the projection matrix
N, namely that for multidimensional constraints the total
projection can be decomposed into a set of unidimensional
projections

N = N1N2 · · ·NS , (15)

or equivalently,

u = Nπ = N1(N2 · · · (· · ·NSπ) · · · )) (16)

through (2). This suggests that a reasonable approximation
Ñ may be formed by (i) first finding the optimal α̂1 (i.e.,
θ∗1) under (7) through the fitting procedure described in
§III-B.2, then (ii) finding the optimal α̂2 (i.e., θ∗2), subject
to α̂1 ⊥ α̂∗2, and (iii) repeating until the addition of a new
constraint α̂∗s+1 fails to reduce the error under (7) any further.
The process is summarised in Algorithm 1.

C. Evaluation Criteria

The goal of this work is to predict the projection matrix N
underlying the constrained observations in order that these
may be reproduced through a suitable learning scheme (e.g.,
[9], [16]). For testing the performance of learning, therefore,
the following evaluation criteria may be defined.



Algorithm 1 Projection Matrix Learning

Input: State, action samples {un}Nn=1

Output: α̂i: the set of constraint vectors
1: Estimate α̂1 by minimising (7). Set s← 1.
2: while E[Ñ] in (7) is not increasing do
3: s← s+ 1.
4: Learn α∗s minimising (7) such that α∗s ⊥ αi ∀i < s.
5: Set Ã← [α̂>1 , · · · , α̂

>
s ]>.

6: end while
7: Return α̂i.

1) Normalised Projected Policy Error: This error measure
measures the difference between the policy subject to the true
constraints, and that of the policy subject to the estimated
constraints. Formally, the normalised projected policy error
(NPPE) can be defined as

EPPE =
1

Nσ2
u

N∑
n=1

||Nπn − Ñπn||2 (17)

where N is the number of data points, πn are samples
of the policy, and N and Ñ are the true and the learnt
projection matrices, respectively. The error is normalised by
the variance of the observations under the true constraints
σ2
u. Note that, since u = Nπ, (17) can also be written

EPPE =
1

Nσ2
u

N∑
n=1

||un − Ñπn||2 (18)

which corresponds directly to the normalised constrained
policy error (NCPE) [9], between the constrained observa-
tions and the policy subject to the learnt constraints. Note
that, (17) can only be computed given the ground truth πn
and N, so is used here primarily for validation purposes.

2) Normalised Projected Observation Error: To evaluate
the fit in absence of samples of πn and N, an alternative
criterion must be used. It is proposed, therefore, to instead
use the normalised projected observation error (NPOE),

EPOE =
1

Nσ2
u

N∑
n=1

||un − Ñun||2. (19)

The NPOE indicates the quality of fit of Ñ, i.e., the extent to
which the constraints in the training data are captured by the
model, reaching zero only1 when the model exactly satisfies
the condition (4).

IV. EVALUATION

In this section, some numerical results are presented to
evaluate the learning performance.

A. Toy Example

Our first experiment demonstrates our approach for learning
null space projections from constrained data. For this, we
set up a two-dimensional system with a one-dimensional
constraint (i.e., A ∈ R1×2). As ground truth null space
policies π, we considered three difference policy types:

1Assuming un 6= 0 for some n.

Policy NPPE NPOE
Linear 2.09± 0.004 1.04± 0.05
Limit-cycle 2.09± 0.004 1.05± 0.03
Sinusoid 2.11± 0.011 1.09± 0.02

TABLE II: Normalised PPE and POE in predicting the
projection matrix. Results are (mean±s.d.)×10−6 over 50
trials.

(i) a linear policy: π = −L(x−x∗) where L is a positive
definite gain matrix.

(ii) a limit-cycle policy: ṙ = r(ρ − r2) with radius ρ =
0.1m, angular velocity θ̇ = −2 rad/s, where r and
θ are the polar representation of the state, i.e., x =
(r cos θ, r sin θ)>.

(iii) a sinusoidal policy:
π=0.5(cosx1 cosx2, sinx1 sinx2)>

The training data consists of 50 data points, drawn uniform-
randomly across the space (x)i ∼ U(−2, 2), i ∈ {1, 2} and
subjected to a 1-D constraint A = α̂ ∈ R1×2, in the direction
of the unit vector α̂. The latter is drawn uniform-randomly,
θ ∼ U(0, π] rad, at the start of each trial of learning. A
sample data set for the limit-cycle policy is presented in
Fig. 4 (left) where projected sample points un are shown in
red, with the corresponding unconstrained null space policy
predictions π overlaid in grey.

The projection matrix Ñ is then learnt using this data
through minimisation of the objective function (7) according
to the scheme outlined in §III. For this, a grid search over
180 different values for θ, uniformly spaced between 0 and
π is conducted to recover the optimal θ∗.

The experiment is repeated 50 times and the average NPPE
and NPOE are evaluated on a set of 500 test data points,
generated through the same procedure as described above.

Table II summarises the normalised PPE (17) and nor-
malised POE (19) for each policy. The results are average
using the hold-out testing over 50 trails. We can see that,
our method can learn a good approximation of the projection
matrix in terms of both PPE and POE, and the performance
is not significantly affected by the policy.

In Fig. 4, the predictions of the policy under the true
constraint Nπ (black), and the learnt projection matrix Ñπ
(red) are plotted for the limit cycle policy. As can be seen,
there is good agreement between the two, verifying that
in using the learnt constraint, there is little degradation in
predicting constrained motion.

To further characterise the performance of the proposed
approach, we also looked at the effect of varying the density
of sample points in the grid search for θ for the limit cycle
policy. We test our method for 10 < L < 250. The results
over 50 trials are plotted in Fig. 5a. It can be seen that
the NPPE and NPOE rapidly decrease as the number of θ
sampled increases (please note the log scale). This is to be
expected, since a higher resolution grid allows the learner
to form a more accurate estimate of the constraint direction.
Note, however, that even at relatively course sampling (L <
50), the error is still very low.



(a)

(b)
Fig. 4: A visualisation of the (a) limit-cycle and (b) sinusoid
data. The left figures are the training data and the right
figures are the testing data. The colours denote the true policy
(grey), the true constrained policy (red), and the predicted
constrained policy (black).
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Fig. 5: Normalised PPE and POE for (a) increasing number
of sampling θ and (b) increasing noise levels in the observed
u. Curves are mean±s.d. over 50 trials.

We also test how the levels of noise present in the training
data affect the performance of our method. For this, we
contaminated the limit-cycle policy π with Gaussian noise,
the scale of which we varied to match up to 20% of the data.
The resulting NPPE and NPOE follows the noise level, as
plotted in Fig. 5b. It should be noted, however, that the error
is still relatively low (NPPE< 10−2), even when the noise
is as high as 5% of the variance of the data.

B. Kuka Lightweight Robot

The goal of this experiment is to assess the performance
of the proposed approach for learning with higher degrees
of freedom, and more realistic constraints with varying
dimensionality.

For this, constrained motion data from a kinematic simu-
lation of the 7-DOF Kuka Lightweight Robot (LWR-III) is
used (Fig. 1). Here, the state and action space correspond
to the joint angles and velocities, respectively, i.e., x,u ∈
R7, and data is gathered from the arm subject to varying
constraints on its end-effector motion.
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Fig. 6: Example trajectories generated from 4 different types
of constraints

Specifically, constraints are imposed on motion in the task
space r = (rx, ry, rz)

> where rx, ry and rz denote the
translational coordinates of the end-effector. Mathematically,
they are described through constraint matrices of the form

A(x) = ΛJ(x) (20)

where J(x) ∈ R3×7 is the manipulator Jacobian, and Λ ∈
RS×3 is a matrix specifying the coordinates to be con-
strained. For example, choosing Λ = (0, 0, 1), ensures that
the end-effector does not move in the vertical (rz) direction
(a ‘one-dimensional’ constraint). Using Λ = (λ>1 ,λ

>
2 )>

with λ1 = (1, 0, 0) and λ2 = (0, 1, 0) prevents movement
of the end-effector in both rx and ry . Note that, neither the
dimensionality of the constraint, nor the subspace in which
it acts, is provided a priori to the learner. The experimental
procedure is as follows.

Data is gathered by recording motion of the arm, sub-
ject to different constraints, from a number of random
start states. The latter are drawn randomly from the
robot joint space in the half-range of the joint limits,
i.e., (x)i ∼ U(−0.5(xmax)i, 0.5(xmax)i) where xmax =
(170◦, 120◦, 170◦, 120◦, 170◦, 120◦, 170◦)>. For each start
state, a trajectory is recorded from a point attractor policy
π = −L(x−x∗) where x∗ = 0 and L = I under the active
constraint. In each data set, the latter consisted of one of the
following constraints:

(i) ΛA = (0, 0, 1),
(ii) ΛB = (0, sin π

3 , cos π3 ),
(iii) ΛC = ((1, 0, 0), (0, 1, 0))>, and
(iv) ΛD = (λ1,λ2)> with λ1 = (0, sin π

3 , cos π3 ) and λ2 =
(sin π

2 sin π
3 , sin

π
2 cos π3 , cos π2 ).

These correspond to various real world tasks, for example,
ΛA applies when interacting with a flat (horizontal) surface
(e.g., as when wiping or writing on a table). The ΛB corre-
sponds to the case where the surface is inclined by π/3 rad.
In this way, data sets containing K = 100 trajectories of
length T = 40 sample points are generated, for each of
the constraints are collected, and a random N = 10 data
points are selected as training data. Examples of end-effector
trajectories for each constraint are plotted in Fig. 6.

With this training data, Algorithm 1 is then used to form
an estimate of Λ. For each θs,i defining the unit vectors α̂s,
180 different values are tested, uniformly spaced in the range
θs,i ∈ [0, π). Note that, as described in §III, constraints α̂s
are iteratively added, subject to α∗s ⊥ αi ∀i < s until an
increase in (7) is seen. In this way, no prior knowledge of
the constraint dimensionality is needed for learning.



NUPE NCPE NMSE
ΛA 7.50± 0.14 6.00± 0.09 6.00± 0.09
ΛB 7.26± 0.12 5.77± 0.10 5.77± 0.10
ΛC 6.74± 0.07 4.45± 0.05 4.45± 0.05
ΛD 6.72± 0.09 4.40± 0.08 4.40± 0.08

TABLE III: Normalised UPE and CPE for generalising the
joint-limit avoidance policy and the NMSE when applied the
learnt constraints (from linear attractor policy) on the learnt
policies. The results are (mean±s.d.)×10−1 over 50 trails
with different data sets.

To assess the performance, the errors are computed accord-
ing to the evaluation criteria described in §III-C on indepen-
dent test data generated according to the same procedure as
above.

The experiment was repeated for 50 trials for each data set,
and each constraint. In all cases, the proposed method was
able to estimate the constraint with NPPE < 10−3 and NPOE
< 10−4. To verify the effectiveness of the stopping condition,
we also evaluated the error under (7) for each new α̂s added.
For example, for ΛC , the correct constraint dimensionality
is S = 2, and the average errors at the first two iterations
of learning this constraint are lower than 10−10. However at
s = 3 the average error jumps to 0.281 ± 0.218, signifying
that the dimensionality of the learnt constraint is higher than
the ground truth, and there is no need to search further.

In many scenarios, it would be useful to predict the be-
havioural outcomes of using a new policy π′ to a previously
seen environment where the constraints Ñ have been learnt.
This is especially the case for evaluating the use of previously
untested policies (e.g., those resulting from optimisation or
reinforcement learning) may be too risky to directly evaluate
on the robot prior to simulation.

To test the use of the proposed approach for this, we also
evaluated the quality of the learnt constraint, in predicting
the constrained actions of a new policy, not present in the
training data. In the results reported here, the accuracy in
predicting the constrained action of a joint-limit avoidance
policy, π(x) = −0.5 5 Φ(x) with the potential given by
Φ(x) =

∑7
i=1 |xi|2, under the learnt constraint, is evaluated.

We apply the constraints learnt from the linear attractor
policy to this policy, and the resulting NPPE and NPOE
were < 10−3, indicating good prediction performance of
the behavioural outcomes of the new policy under the learnt
constraints.

C. Combined Constraint and Policy Learning

The goal of this final experiment is to demonstrate the use of
the proposed approach in the context of constrained motion
imitation learning. As described in §I, in many every day
behaviours, it is useful to be able to form an estimate both
of the policy underlying motion, as well as the constraint
itself. In this way, generalisation can be achieved both
across constraints (i.e., applying the learnt policy to new
constraints), as well as within constraints (i.e., applying new
policies to the learnt constraint). To test this, the proposed
approach is combined with that proposed in [9] for learning
models of both π and N.

Using the data collected under constraints ΛA, ΛB , ΛC

and ΛD from the preceding experiment (ref. §IV-B), con-
straint consistent learning [9] is used to estimate a model
of the policy π. In more detail, we used linear regression
to learn a policy π̃ for the data set generated from the
linear policy. For the joint limit avoidance policy, we used
parametric models consisting of 250 Gaussian RBFs with
centres chosen according to k-means and with widths taken
as the mean of the distances between centres. To assess learn-
ing performance, the normalised unconstrained policy error
(NUPE), constrained policy error (NCPE) and mean squared
error (NMSE) are evaluated (see Appendix, equations (21),
(22) and (23), respectively) over 50 trials of learning.

For the linear attractor policy, we were able to obtain
nearly perfect generalisation with the NUPE, NCPE and
NMSE all < 10−9. The result confirms that with good
enough estimation of the constraints and policies, we can
accurately predict the constrained policy, even without prior
knowledge of the true policy π. The joint-limit-avoidance
policy turned out to be a harder problem to learn with
relatively high NMSE (ref. Table III).

We also evaluated whether we can use these learnt be-
haviours in a new environment which was not present in
the data for training the policies. For instance, given demon-
strated wiping motion on surface with 0 ° and 30 ° inclination
(e.g., ΛA and ΛB), can we adapt the learnt behaviour to
another surface with a different slope? For this, we created
a new constraint ΛE = (sin π

3 sin π
4 , cos π3 sin π

4 , cos π4 ) and
followed the same procedure to generate trajectories. We then
approximated the constraint, and applied the learnt policies
to predict the behavioural outcomes.

Fig. 7 shows the end-effector position when using the
learnt ΛE with the linear policy (Fig. 7a) and the joint-
limit avoidance policy (Fig. 7b). The plots from the left
to the right are the visualisation in x, y, and z position of
the end-effector. The red colour denotes the true constrained
movement generated from the true policy (Nπ), the black
colour denotes the estimated movement when the learnt
constraint is applied to the true policy (Ñπ), and the blue
colour denotes the estimation by learning both constraint and
the policy (Ñ π̃).

For the joint-limit avoidance policy (Fig. 7b), there is
a deviation in the end-effector position when applying the
learnt constraint on the learnt policy (the blue trajectories),
due to the errors in learnt policy. On the other hand, accurate
estimation of both constraints and policy, as is the case for
the linear policy (Fig. 7a), enables a close reproduction of
the ground truth end-effector movements in all directions.

V. CONCLUSION

In this paper, we explore the problem of learning the
constraints from movement observations in uncertain envi-
ronments, in order that the outcomes of behaviours can be
predicted and adapted to new environments in an appropriate
way. In particular, we consider how the null space projection
matrix of a kinematically constrained system, and have devel-
oped a method by which that matrix can be approximated in
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Fig. 7: Visualisation of end-effector trajectories from (a)
linear policy and (b) joint-limit avoidance policy. From the
left to the right are the x, y, and z position of the end-effector.
The colours denote constrained movement generated by the
true constraint and the true policy (red), the constrained
movement by applying the learnt constraint on the true policy
(black), and by applying the learnt constraint on the learnt
policy (blue).

the absence of any prior knowledge either on the underlying
movement policy, or the geometry or dimensionality of the
constraints.

Our evaluations have demonstrated the effectiveness of
the proposed approach on problems of differing dimension-
ality, and with different degrees of non-linearity. The have
also validated the use of our method in the generalisation
across constraints (i.e., applying the learnt policy to new
constraints), as well as within constraints (i.e., applying new
policies to the learnt constraint).

For future research, we plan to use the proposed method
on human data where the true policy and constraint are both
unknown, and to study variants of the approach that may
improve its efficiency through iterative learning approaches.
With some modification, we also aim to apply the proposed
method to analyse the constraints inherent in human walk-
ing.

APPENDIX

Unconstrained policy error : Our primary criteria to
evaluate a learnt policy is the normalised unconstrained
policy error (UPE), which directly compares the true and
the learnt policy

EUPE =
1

Nσ2
π

N∑
n

||πn− π̃n ||2 (21)

where σπ is the standard deviation of the true policy.
Constrained Policy Error: In some cases, it may be that

the variation in constraints is insufficient to fully uncover the
true policy π. However, in such cases, where the constraints
exhibit little variation, there may be no need to uncover the

hidden components of the fully unconstrained policy (since
those components are anyway eliminated by the constraints
in normal circumstances). In such circumstances, an alter-
native quality measure is the normalised constrained policy
error (CPE)

ECPE =
1

Nσ2
π

N∑
n

||unsn −Nn π̃n ||2 (22)

that measures the difference between the data and the es-
timated policy, when the latter is projected by the same
constraints as in the training data.

Normalised Mean-Squared Error: In many everyday be-
haviours, we will not have access to the true projections
nor the true policy. An alternative is to evaluate how well
our learnt projection can reproduce the demonstrated motion
without any prior knowledge. Assuming that the policy
has been estimated in some way, we measure the distance
between the observations and the estimated policy subject to
the estimated constraints, namely,

EMSE =
1

Nσ2
π

N∑
n=1

||un − Ñ π̃ ||2. (23)
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