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Performance Analysis of IA Techniques in the
MIMO IBC With Imperfect CSI

Paula Aquilina, Student Member, IEEE, and Tharmalingam Ratnarajah, Senior Member, IEEE

Abstract—In this work we consider the multiple-input
multiple-output (MIMO) interference broadcast channel (IBC)
and analyse the performance of interference alignment (IA)
under imperfect channel state information (CSI), where the
variance of the CSI error depends on the signal-to-noise ratio
(SNR). First, we derive an upper bound on asymptotic mean
loss in sum rate compared to the perfect CSI case and then
we quantify the achievable degrees of freedom (DoF) with
imperfect CSI. Both sum rate loss and achievable DoF are
found to be dependent on the number of cells in the system
and the amount of users per cell, in addition to the CSI error
parameters themselves. Results show that when error variance
is inversely proportional to SNR, full DoF are achievable and
the asymptotic sum rate loss is bounded by a derived value.
Additionally if the CSI imperfection does not disappear for
asymptotically high SNR, then the full DoF gain promised by IA
cannot be achieved; we quantify this loss in relation to the CSI
mismatch itself. The analytically derived bounds are validated
via system simulation, with the cellular counterparts of the
maximum signal-to-interference-plus-noise ratio (Max-SINR)
and the minimum weighted leakage interference (Min-WLI)
algorithms being the IA techniques of choice. Secondly, inspired
by the CSI mismatch model used to derive the bounds, we present
a novel Max-SINR algorithm with stochastic CSI error knowledge
(Max-SINR-SCEK) for the MIMO IBC. Simulations show that
the proposed algorithm improves performance over the standard
one under imperfect CSI conditions, without any additional
computational costs.

Index Terms—Degrees of freedom, imperfect CSI, interference
alignment, MIMO interference broadcast channel.

I. INTRODUCTION

S PECTRAL efficiency is a key performance metric when
it comes to the design of cellular systems. However, the

users’ throughput capability is greatly limited by interference
from other co-channel users within the same cell or from neigh-
bouring ones. Thus finding ways to handle this interference
effectively is fundamental. Interference alignment (IA) is a
relatively recent solution to the problem [1]. It aims to align
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unwanted signals into a restricted subspace that is smaller than
the number of interferers themselves. Additionally it has been
shown that via the use of IA the achievable degrees of freedom
(DoF) scale up linearly with the number of users for the
interference channel (IC) [2], rendering it a highly promising
technique in theory.

Nonetheless there are a number of issues which impact the
applicability of IA in a realistic setting [3]. One of the most
common prerequisites for the implementation of IA solutions
is the instantaneous availability of perfect channel state infor-
mation (CSI) at both the transmitter and the receiver to achieve
full DoF. This perfect CSI assumption is highly idealistic; in
practice the available CSI is usually an imperfect estimate
which causes performance loss both in terms of sum rate and
achievable DoF. Thus it is important to fully understand to what
extent imperfect CSI knowledge degrades IA performance. A
substantial amount of work in literature focuses on imperfection
due to quantisation. For example it has been shown that for IA
techniques with quantised CSI feedback, optimal DoF can still
be achieved as long as the feedback bit rate scales sufficiently
fast with signal-to-noise ratio (SNR) for both single-input
single-output (SISO) [4] and multiple-input multiple-output
(MIMO) ICs [5]. Aside from imperfection due to quantisation,
performance analysis of IA under generalised CSI mismatch
is of great interest, however due to the complex nature of
the issue different works deal with various CSI uncertainty
aspects separately. For example the DoF achievable by IA over
correlated channels with imperfect CSI has been investigated
in [6], while [7] deals with the performance analysis of IA in
systems with analog channel state feedback. Also, [8] derives
upper and lower bounds on the sum mutual information where
the variance of the CSI error is considered as a constant.

Most of the works mentioned so far deal with multiple point-
to-point interfering links, however IA can also be used to
increase throughput within the context of cellular systems with
more than one user per cell. For example, [9] develops an uplink
scheme that approaches interference-free DoF as the number of
users in each cell increases. Other works directly investigate the
achievable DoF for the MIMO interference broadcast channel
(IBC), initially for simple two-cell systems [10], [11] and more
recently for cellular systems with a varying number of cells
[13]–[16].

When it comes to IA and its usability, it is not sufficient
to solely characterise the achievable DoF; we also require
knowledge of the minimum number of transmit and receive
antennas that guarantee IA feasibility. Such analysis for the
MIMO IBC is complex due to the nature of the channel itself.
For example [17] and [18] provide feasibility conditions for

0090-6778 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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linear IA in various subclasses of the fully-connected MIMO
IBC, while [19] deals with partially-connected systems.

This work focuses on the performance analysis of IA tech-
niques in the presence of imperfect CSI in a MIMO IBC
setup. The CSI mismatch model used is versatile and allows
us to treat error variance either as a function of SNR or as
independent of it. Thus for example, just by changing the
error parameter specifications it can be used to represent both
reciprocal channels and channels which acquire CSI at the
transmitter via quantised feedback. A similar model has been
applied to the MIMO IC in [20] and also to vector perturbation
precoding in [21]. Given this error model, in the first part of our
work we derive bounds on the sum rate loss and the achievable
DoF for the MIMO IBC. Results show that when the error
variance is inversely proportional to SNR, full DoF can be
achieved, moreover the asymptotic sum rate loss is shown to be
bounded by a derived value dependent on the system parameters
and the CSI imperfection. Additionally in cases where the CSI
imperfection does not disappear with asymptotically high SNR,
full DoF cannot be obtained. This occurs when error variance
depends on SNR to the power of a proper fraction; we quantify
this DoF loss and also show that for the same scenario the
asymptotic sum rate loss is unbounded.

In the second part of this work we consider various IA
schemes that can be applied to the MIMO IBC. We start by
outlining two standard IA techniques that are later used to
verify the validity of the derived bounds. The chosen methods
are the maximum signal-to-interference-plus-noise ratio (Max-
SINR) and the minimum weighted leakage interference (Min-
WLI) algorithms. Both were initially proposed for the MIMO
IC in [22] and are widely used as benchmark algorithms. A
straightforward extension to the MIMO IBC does not provide
optimal results [23]–[25]. Thus, here we present and apply their
cellular multi-stream counterparts.

Next, we place our focus on the performance of the Max-
SINR algorithm under CSI mismatch. This technique is inter-
esting because rather than minimizing the leaked interference
directly, it aims to maximise the signal-to-interference-plus-
noise ratio on a stream-by-stream basis. It is given high rele-
vance in literature since it has been found to outperform other
techniques. For example, [26] establishes its optimality within
the class of linear beamforming algorithms at high SNR and
[27] shows that it achieves better throughput than sum rate
gradient algorithms at low-to-intermediate SNRs. Its conver-
gence behaviour has also been analysed in [28]. However, most
prior works are for the IC in a perfect CSI scenario. Therefore
inspired by the imperfect CSI model used to derive the bounds,
we propose a novel version of the Max-SINR algorithm for
the IBC. Our algorithm exploits stochastic knowledge on the
CSI mismatch to counter its negative impact. Results show
that the proposed method does indeed provide performance
improvements when compared to the standard version and at
no extra computational cost.

The rest of this paper is organised as follows. Section II
specifies the MIMO IBC system and the CSI mismatch model
used, while Section III gives an overview of the performance
of IA under perfect CSI. In Section IV we deal with the
performance analysis of IA under imperfect CSI conditions,

presenting two theorems that separately define the asymptotic
sum rate loss and quantify the achievable DoF. Next, Section V
gives an overview of IA schemes for the MIMO IBC; the first
part focuses on standard schemes used to verify the derived
theorems, while the second part introduces a novel version of
the Max-SINR algorithm which exploits stochastic knowledge
on the CSI uncertainty. In Section VI we provide simulation
results confirming the validity of the presented theorems and
the performance benefits of the novel Max-SINR algorithm.
Finally, Section VII provides some concluding remarks. Addi-
tionally, there are also three appendices, the first one outlines
some useful lemmas, while the last two offer proofs of the
analytical results.

Notation: We use lower case standard font for scalars, lower
case bold font for vectors and upper case bold font for matri-
ces. | · | denotes the absolute value, while ‖ · ‖ indicates the
Euclidean 2-norm. Tr(A) represents the trace of matrix A. A†

indicates the pseudo-inverse of A. Also, Vn[A] is defined as
the set of eigenvectors corresponding to the n smallest eigen-
values of A.

II. SYSTEM MODEL

We consider a symmetric G-cell MIMO IBC network, where
every cell has K users, each equipped with N antennas. There
is one base-station (BS) having M antennas per cell. For this
system, D is defined as the number of streams intended for
each user separately and it is assumed that the choice of system
parameters is such that IA is feasible.

The received signal for user k in cell g is given by

x̂kg
= UH

kg
Hkg,gVkg

xkg︸ ︷︷ ︸
desired signal

+

K∑
l=1
l �=k

UH
kg
Hkg,gVlgxlg

︸ ︷︷ ︸
intra−cell interference

+

G∑
j=1
j �=g

K∑
l=1

UH
kg
Hkg,jVljxlj

︸ ︷︷ ︸
inter−cell interference

+UH
kg
wkg︸ ︷︷ ︸

noise

(1)

where xlj ∈ C
D×1 is the transmitted symbol vector for user

l in cell j, satisfying E{xH
lj
xlj} ≤ PD; Vlj ∈ C

M×D is the
unit-norm transmit beamforming matrix for user lj satisfying
Tr(VljV

H
lj
) = D; Ukg

∈ C
N×D is the receive beamforming

matrix for user kg; Hkg,j ∈ C
N×M is the channel link from

BS j to user kg , with each element being drawn from a normal
distribution with zero mean and variance one, and finally wkg

∈
C

N×1 represents additive white Gaussian noise (AWGN) with
variance σ2. A simple MIMO IBC with G = 2 is shown
in Fig. 1.

For the system specified in (1) the following conditions need
to be satisfied to achieve IA

rank
(
UH

kg
Hkg,gVkg

)
=D, ∀ k, g

UH
kg
Hkg,gVlg =0, ∀ l �= k

UH
kg
Hkg,jVlj =0, ∀ j �= g. (2)
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Fig. 1. Two-cell MIMO IBC with green solid lines representing direct links
and red dashed lines representing inter-cell links.

In this work we are concerned with the effect of imperfect
CSI on IA performance, thus we define the following model for
the CSI mismatch

Ĥ = H+E (3)

where Ĥ represents the observed mismatched CSI, H ∼
CN (0, I) is the actual channel matrix and E is the error matrix
representing the degree of inaccuracy in the observed CSI. The
error matrix E is assumed to be independent of H. Defining the

nominal SNR as ρ
Δ
= P

σ2 , then E is modelled as

E ∼ CN (0, ηI) with η
Δ
= βρ−α. (4)

With this model the error variance, η, can be used to capture
a variety of CSI acquisition scenarios for any constants α ≥ 0
and β > 0. Of particular interest are the instances highlight-
ed next.

1) Perfect CSI: As α→∞ perfect CSI is obtained, for ρ>1.
2) Reciprocal Channels: For reciprocal systems (e.g. time-

division duplex) users transmit pilots over the uplink, based
on which channel information is obtained at the BS. This CSI
knowledge is applicable for both uplink and downlink channels,
due to reciprocity. Therefore in this case CSI error is dependent
on the ratio of pilot power to noise level at the BS, i.e. it
is inversely proportional to SNR, which can be modelled by
setting α = 1 in (4).

3) CSI Feedback: In non-reciprocal systems (e.g.
frequency-division duplex) uplink and downlink are considered
to be independent. Pilots are transmitted by the BS to the users,
allowing the receivers to obtain the downlink information.
Given the lack of reciprocity, this information can only be
supplied to the BS via a dedicated feedback link. Data sent
over this link is quantised, thus the major contributor to the CSI
mismatch is the quantisation process itself. The resulting error
is independent of SNR, thereby the scenario can be modelled
by setting α = 0 in (4).

Alternatively the error variance, η, as a whole can be inter-
preted as a single parameter that encapsulates the quality of
the CSI. Its value may be assumed to be known a priori and

can be determined depending on the channel dynamics and the
channel estimation schemes applied (see for example [29] and
references within).

For our performance analysis we require the statistical prop-
erties of the actual channel H conditioned on Ĥ. Since Ĥ =
H+E, with H and E being statistically independent Gaussian
variables, then Ĥ and H are jointly Gaussian. Therefore condi-
tioned on Ĥ, H is Gaussian distributed with mean Ĥ/(1 + η)
and statistically independent elements of variance η/(1 + η)
[30]. Thus the actual channel can be expressed as

H =
1

1 + η
Ĥ+Υ (5)

where Υ is independent of Ĥ, with distribution

Υ ∼ CN
(
0,

η

1 + η
I

)
. (6)

III. ACHIEVABLE DOF AND SUM RATE

WITH PERFECT CSI

Our analysis is concerned with the performance degradation
in systems where the available CSI is imperfect. Since we focus
on the sum rate and DoF loss, it is useful to first define the per-
formance achieved with perfect CSI for comparison purposes.
Assuming diagonalised sub-channels, the IA conditions in (2)
can be expressed on a per-stream basis as∣∣∣udH

kg
Hkg,gv

d
kg

∣∣∣ > 0, ∀ d, k, g

udH
kg

Hkg,jv
m
lj

=0, ∀ (d, k, g) �= (m, l, j) (7)

where ud
kg

refers to the dth column of Ukg
and vm

lj
refers to the

mth column of Vlj .
Considering i.i.d. Gaussian inputs and the fact there is no

interference leakage with perfect CSI, then the achievable sum
rate is given by

Rperfect CSI =

G∑
g=1

K∑
k=1

D∑
d=1

log2

⎛⎜⎝1 +
P
∣∣∣udH

kg
Hkg,gv

d
kg

∣∣∣2
σ2

⎞⎟⎠ .

(8)

We are also interested in the DoF analysis. This property is
related to sum rate as

DoF = lim
P→∞

R

log2 P
. (9)

Provided that the IA feasibility conditions are met, we can
use the sum rate to DoF relationship in (9) to calculate the DoF
achievable with perfect CSI as

DoFperfect CSI = lim
P→∞

Rperfect CSI

log2 P
= GKD (10)

where Rperfect CSI is defined in (8). The last equality fol-
lows by taking expectations, using the easily shown fact that
|ud H

kg
Hkg,gv

d
kg
|2 is exponentially distributed with zero mean

and variance one, and finally taking the limit P → ∞.
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IV. PERFORMANCE ANALYSIS UNDER IMPERFECT CSI

When it comes to the imperfect CSI scenario, the information
available for the calculation of precoders and combiners is
only an imperfect observation of the actual channel state; thus
all beamformers are calculated using Ĥ rather than H. This
implies that instead of the original IA conditions in (7), the
alignment conditions observed are∣∣∣ûdH

kg
Ĥkg,gv̂

d
kg

∣∣∣ > 0, ∀ d, k, g

ûdH
kg

Ĥkg,j v̂
m
lj

=0, ∀ (d, k, g) �= (m, l, j) (11)

where the beamformers û and v̂ are calculated using the mis-
matched channel information, Ĥ. Satisfying the modified IA
conditions in (11) leads to some residual leakage interference,
equivalent to (12) below.

Ĵd
kg

=

D∑
m=1
m �=d

P
∣∣∣ûdH

kg
Hkg,gv̂

m
kg

∣∣∣2 + K∑
l=1
l �=k

D∑
m=1

P
∣∣∣ûdH

kg
Hkg,gv̂

m
lg

∣∣∣2
+

G∑
j=1
j �=g

K∑
l=1

D∑
m=1

P
∣∣∣ûdH

kg
Hkg,jv̂

m
lj

∣∣∣2 (12)

Residual leakage has a negative impact on the sum rate and
DoF achievable by the system. Understanding the extent of
this loss is fundamental, because it gives a more realistic
characterisation of system performance. Here we present two
theorems that separately quantify the asymptotic sum rate loss
and the decrease in achievable DoF.

A. Sum Rate Loss With Imperfect CSI

Sum rate loss, ΔR, is defined as the difference between the
sum rate achievable with perfect CSI from (8) and the sum rate
achievable with imperfect CSI given by

Rimperfect CSI=
G∑

g=1

K∑
k=1

D∑
d=1

log2

⎛⎜⎝1+
P
∣∣∣ûdH

kg
Hkg,gv̂

d
kg

∣∣∣2
Ĵd
kg

+ σ2

⎞⎟⎠ .

(13)

Given this definition, we can now refer to the following theorem.
Theorem 1: For the symmetric MIMO IBC under imperfect

CSI with error variance, η = βρ−α, at asymptotically high
SNR: ΔR tends to zero for α > 1, tends to infinity for 0 ≤ α <
1 and for α = 1 is finite and upper bounded by GKD log2(1 +
β(GKD − 1)), i.e.

lim
SNR→∞

ΔR

{
= 0 α > 1
≤ GKD log2(1+β(GKD−1)) α = 1
= ∞ 0 ≤ α < 1.

(14)

Proof: The proof is given in Appendix B. �

B. DoF Loss With Imperfect CSI

The DoF loss, ΔDoF , is defined as the difference between
the DoF achievable with perfect CSI and the DoF achievable

under imperfect CSI. Given this definition, we can now refer to
the following theorem.

Theorem 2: For the symmetric MIMO IBC under imperfect
CSI with error variance, η = βρ−α, full DoF can be achieved
for values of α ≥ 1, while in the range of 0 ≤ α < 1 the DoF
loss is equivalent to a fraction of (1− α) of the full DoF, which
can be summarised as

ΔDoF =

{
0 α ≥ 1
(1− α)DoFperfect CSI 0 ≤ α < 1. (15)

Proof: The proof is given in Appendix C. �
Remark 1: Note that the implications of the two theorems

presented in this section are intrinsically related. For example,
in the range of α ≥ 1 Theorem 1 indicates the sum rate loss is
either zero or finite, which is directly reflected in Theorem 2
where no DoF loss is expected within the same α range. On the
other hand for the case where 0 ≤ α < 1, Theorem 2 indicates
that a DoF loss is inevitable. This is also reflected in Theorem 1,
which states that the sum rate loss increases unboundedly with
SNR for the same range of α values.

V. IA SCHEMES FOR THE MIMO IBC

To test the bounds presented in Section IV we require the
use of IA schemes for the MIMO IBC. Here we apply adapted
versions of the Max-SINR and Min-WLI algorithms originally
proposed for the IC in [22]. While the first part of this sec-
tion provides an outline of these two schemes; in the second
subsection we focus solely on the Max-SINR algorithm and
present a novel version that exploits stochastic knowledge of
the CSI uncertainty to improve performance. We refer to this
algorithm as Max-SINR with stochastic CSI error knowledge
(Max-SINR-SCEK).

A. Standard IA Schemes Adapted to the MIMO IBC

Since the original Max-SINR and Min-WLI algorithms from
[22] were developed for the IC, they are unable to cater for
intra-cell interference. When it comes to adapting them to the
IBC, various works in literature propose different ways on how
to handle this additional interference component. Thus in this
subsection we outline an adapted version of each, which we
later use to obtain the simulation results in Section VI-A.

1) Max-SINR for the MIMO IBC: This algorithm focuses
on maximising the signal-to-interference-plus-noise ratio on
a per stream basis, to create a desired signal subspace that
contains the required number of interference free dimensions.
A direct extension from [22] would involve calculating both
the transmit and receive filters based on the total interference
plus noise covariance matrix, which for the MIMO IBC also
includes intra-cell interference. Our simulations of the direct
extension have shown that is not always able to achieve the
desired alignment results over the whole SNR range. For tightly
feasible cases, as SNR increases the sum rate saturates due
to convergence issues. This under performance has also been
reported in [23] and [24] for single-stream cellular systems.

Solutions proposed separately in [23] and [24] avoid this
behaviour by ignoring intra-cell interference in the transmit
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subspace. The adapted Max-SINR algorithm outlined in
Algorithm 1 applies a similar principle, while still retaining
an underlying multi-stream structure that mirrors the original
algorithm from [22]. Thus the receive filters are concerned
only with inter-cell interference, while the transmit filters deal
with both inter-cell and intra-cell interference when calculating
the forward and backward interference plus noise covariance
matrices, given by Qd

kg
in (16) and Bd

kg
in (17) respectively.

Qd
kg

=
G∑

j=1
j �=g

K∑
l=1

D∑
m=1

PHkg,jv
m
lj
vm H
lj

HH
kg,j

+ σ2IN (16)

Bd
kg

=
D∑

m=1
m �=d

PHH
g,kg

um
kg
um H
kg

Hg,kg

+
K∑
l=1
l �=k

D∑
m=1

PHH
g,lg

um
lg
um H
lg

Hg,lg

+

G∑
j=1
j �=g

K∑
l=1

D∑
m=1

PHH
g,lj

um
lj
um H
lj

Hg,lj + σ2IM (17)

Algorithm 1 Max-SINR algorithm for the MIMO IBC

1: Initialise vd
kg

as random unit-norm vectors, ∀ d, k, g.
2: Compute the inter-cell interference plus noise covari-

ance matrix in the forward communication channel, Qd
kg

from (16) ∀ d, k, g.
3: Calculate the receive filters ∀ d, k, g using

ud
kg

=

(
Qd

kg

)−1

Hkg,gv
d
kg∥∥∥∥(Qd

kg

)−1

Hkg,gv
d
kg

∥∥∥∥ .
4: Reverse the direction of communication and compute

the total interference plus noise covariance matrix, Bd
kg

from (17) ∀ d, k, g.
5: Calculate the transmit beamformers ∀ d, k, g using

vd
kg

=

(
Bkg

)−1
HH

g,kg
ud
kg∥∥∥(Bkg

)−1
HH

g,kg
ud
kg

∥∥∥ .
6: Repeat the process from step 2 until convergence or for a

fixed number of iterates.

2) Min-WLI for the MIMO IBC: The principle behind this
algorithm is to use specifically designed beamformers at each
user to limit the interference experienced from all other users
within the same system. The original algorithm was proposed
for the IC in [22] and therefore does not cater for intra-cell
interference. The key aspect in adapting it to the IBC is to
treat intra-cell and inter-cell interference separately. This can
be achieved by applying iterative leakage minimisation only

with respect to inter-cell leakage and then using an additional
cascaded precoder to handle intra-cell interference on its own.
The idea of leakage minimisation with cascaded filters has
been proposed in [25] for the single-stream MIMO IBC; in
this work we apply its multi-stream counterpart as outlined in
Algorithm 2.

Algorithm 2 Min-WLI algorithm for the MIMO IBC

1: Initialise Ṽg as a random unitary matrix ∀ g.
2: Calculate the inter-cell interference covariance matrix in

the forward communication channel on a per-user basis
as, Qkg

=
∑G

j=1,j �=g Hkg,jṼjṼ
H
j HH

kg,j
∀ k, g.

3: The receive filter at each user is given by Ukg = VD[Qkg
].

4: Reverse the direction of communication and compute
the inter-cell interference covariance matrix at BS g as,
Bg=

∑G
j=1,j�=g

∑K
k=1 H

H
g,lj

UljU
H
lj
Hg,lj for g=1, . . . , G.

5: The first part of the transmit beamformer at BS g is given
by Ṽg = VKD [Bg].

6: Repeat the process from step 2 until convergence or for a
fixed number of iterates.

7: Calculate V̄g , the additional zero-forcing precoder that
handles intra-cell interference using

V̄g =

⎡⎢⎣ UH
1g
Hg,1gṼg

...
UH

Kg
Hg,Kg

Ṽg

⎤⎥⎦
†

.

8: The overall transmit beamformer at BS g is given by,
Vg = ṼgV̄g . Taking D consecutive columns of Vg sep-
arately for each user k, we obtain Vkg

.
9: Finally normalise Vkg

and Ukg .

B. Max-SINR Algorithm With Stochastic CSI Error
Knowledge (Max-SINR-SCEK)

Inspired by the CSI mismatch model used for the perfor-
mance analysis, we now focus on the Max-SINR algorithm
and propose a novel version that is able to handle the effect
of imperfect CSI better than the standard one.

The key difference between the two algorithms is in the way
the interference plus noise covariance matrices are calculated
in both the forward and reverse directions when the available
CSI is imperfect. For the standard Max-SINR algorithm, the
imperfect CSI is used directly in place of the actual channel
without any additional considerations for the effects that chan-
nel mismatch may have; thus the beamformers are calculated by
replacing H with Ĥ directly in (16) and (17). However, in the
design of the Max-SINR-SCEK algorithm we take advantage of
statistical knowledge with respect to the CSI mismatch and re-
place the actual channel H with the expression in (5). This leads
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to the calculation of more accurate interference plus noise co-
variance matrices in both the forward and backward directions.

Therefore starting with the forward channel inter-cell inter-
ference covariance matrix in (16) and replacing H with (5), we
get (18), given at the bottom of the page. This can be further
expanded into (19), also shown at the bottom of this page.
Exploiting the statistical properties of the separate components
in (19) it is possible to obtain a simplified expression for the
inter-cell interference plus noise covariance matrix. Since the
only information available with respect to the channel uncer-
tainty is statistical, we replace all elements of (19) containing
Υ by their expected values. Using Lemma 1 from Appendix A,
E
H|Ĥ[A] = η/(1 + η)I. Also from Lemma 2, E

H|Ĥ[B] = 0.
This allows us to obtain an improved expression for the inter-
cell interference plus noise covariance matrix in the forward
direction as in (20), shown at the bottom of this page, where

γ =
P

(1 + η)2
(21)

and

ξf = P
η

(1 + η)
(G− 1)KD + σ2. (22)

Reversing the direction of communication we can calculate
the interference plus noise covariance matrix for the backward
channel. This is done using a method similar to the one applied
in the forward communication channel to obtain (23), shown at
the bottom of this page, where γ is defined as in (21) and

ξb = P
η

(1 + η)
(GKD − 1) + σ2. (24)

Having obtained improved expressions for the interference
plus noise matrices in both directions, the novel Max-SINR-
SCEK algorithm is therefore as outlined in Algorithm 3.

Algorithm 3 Max-SINR-SCEK algorithm for the MIMO IBC

1: Set γ, ξf and ξb according to (21), (22) and (24).
2: Initialise vd

kg
as random unit-norm vectors, ∀ d, k, g.

3: Calculate Qd
kg using the improved expression in (20)

∀ d, k, g.
4: Obtain the receive filters ∀ d, k, g using

ud
kg =

(
Qd

kg

)−1

Ĥkg,gv
d
kg∥∥∥∥(Qd

kg

)−1

Ĥkg,gv
d
kg

∥∥∥∥ .
5: Compute Bd

kg using the improved expression in (23)
∀ d, k, g.

6: Obtain the precoders ∀ d, k, g using

vd
kg =

(
Bd

kg

)−1

ĤH
g,kg

ud
kg∥∥∥∥(Bd

kg

)−1

ĤH
g,kg

ud
kg

∥∥∥∥ .
7: Repeat the process from step 3 until convergence or for a

fixed number of iterates.

Remark 2: We refer to γ, ξf and ξb collectively as the
stochastic CSI error knowledge (SCEK) parameters, because it
is the key introduction of these three elements which differenti-

Qd
kg

=

G∑
j=1
j �=g

K∑
l=1

D∑
m=1

P

(
1

1 + η
Ĥkg,j +Υkg,j

)
vm
lj
vm H
lj

(
1

1 + η
Ĥkg,j +Υkg,j

)H

+ σ2IN (18)

=

G∑
j=1
j �=g

K∑
l=1

D∑
m=1

P

⎡⎢⎣ 1

(1 + η)2
Ĥkg,jv

m
lj
vm H
lj

ĤH
kg,j

+Υkg,jv
m
lj
vm H
lj

ΥH
kg,j︸ ︷︷ ︸

A

+
1

(1 + η)

(
Ĥkg,jv

m
lj
vm H
lj

ΥH
kg,j

+Υkg,jv
m
lj
vm H
lj

ĤH
kg,j

)
︸ ︷︷ ︸

B

⎤⎥⎥⎦+ σ2IN (19)

=

G∑
j=1
j �=g

K∑
l=1

D∑
m=1

γĤkg,jv
m
lj
vm H
lj

ĤH
kg,j

+ ξfIN (20)

Bd
kg

=

D∑
m=1
m �=d

γĤH
g,kg

um
kg
um H
kg

Ĥg,kg
+

K∑
l=1
l �=k

D∑
m=1

γĤH
g,lg

um
lg
um H
lg

Ĥg,lg +

G∑
j=1
j �=g

K∑
l=1

D∑
m=1

γĤH
g,lj

um
lj
um H
lj

Ĥg,lj + ξbIM (23)
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ates the Max-SINR-SCEK algorithm from the standard version
in Algorithm 1. The advantage of the Max-SINR-SCEK algo-
rithm is its ability to calculate improved interference covariance
matrices by proper specification of these three parameters.
Setting γ = P and ξf = ξb = σ2 in the first step of Algorithm
3 would cause it to behave exactly in the same manner as the
standard version in Algorithm 1. Therefore any performance
advantages obtained by the use of the novel version are obtained
at no extra computational cost.

VI. SIMULATION RESULTS

This section provides simulation results to validate the anal-
yses presented so far. It is divided into two main parts; first we
confirm the validity of the bounds derived in Section IV, next in
the second part we show that the Max-SINR-SCEK algorithm
proposed in Section V-B does indeed provide performance
improvement compared to the standard one under imperfect
CSI conditions.

Throughout all our simulations the noise variance, σ2, is
fixed at 1 making the transmit signal power equivalent to the
network SNR. All results presented are averaged over 250
channel realisations.

Assuming all interference is treated as noise, throughout our
simulations we calculate the achievable sum rate across all
users as

R =
G∑

g=1

K∑
k=1

log2

∣∣∣ID +
(
σ2ID + Fkg

)−1
Skg

∣∣∣ (25)

where

Fkg
=

G∑
j=1

K∑
l=1

(j,l) �=(g,k)

PUH
kg
Hkg,jVljV

H
lj
HH

kg,j
Ukg

(26)

Skg
=PUH

kg
Hkg,gVkg

VH
kg
HH

kg,g
Ukg

. (27)

Note that Fkg
and Skg

are respectively the interference and
the signal covariance matrices for user k in cell g. Also for
imperfect CSI situations, the transmit and receive filters U and
V in (26) and (27) are replaced by Û and V̂, since they are
calculated based on the available imperfect CSI.

A. Simulation Results on the Theoretically Derived Bounds

In this subsection we verify the validity of the bounds derived
in Theorems 1 and 2 using the two standard IA schemes
outlined in Section V-A. While several MIMO IBC scenarios
have been simulated, here we only present results for two
specific cases.

Case 1) G = 3, K = 2, D = 1, M = 4 and N = 4
Case 2) G = 2, K = 2, D = 2, M = 4 and N = 6

In both scenarios the choice of the number of transmit and
receive antennas is such that the IA feasibility conditions are
met. While the two test cases were simulated with both the
Max-SINR and Min-WLI algorithms, here we present only one
result for each case; Fig. 2 is for Case 1 tested with the Max-

Fig. 2. Average sum rates achieved by Max-SINR algorithm under various
imperfect CSI conditions for system in Case 1.

Fig. 3. Average sum rates achieved by Min-WLI algorithm under various
imperfect CSI conditions for system in Case 2.

SINR algorithm, while Fig. 3 is for the Min-WLI algorithm
applied to Case 2.

Note that since error variance depends on the inverse of the
SNR, η = βρ−α, to ensure that the effect of the CSI mismatch
is experienced across a wide range of SNRs, then the larger the
value of α, the much larger is the corresponding β value.

Considering Fig. 2, the full DoF achievable with perfect CSI
is equal to GKD = 6. Theorem 2 predicts no DoF loss for
values of α ≥ 1, which can easily be verified by focusing on
the α = 1.5 and α = 1 results in Fig. 2. The slope for both is
exactly equal to the one achieved with perfect CSI, confirming
the validity of the claim in Theorem 2. One important difference
between the α = 1.5 and α = 1 curves is the fact at high
SNR the former is exactly in line with the perfect CSI result;
while the latter runs parallel to it, achieving lower sum rate
values overall. This behaviour is expected from the bound in
Theorem 1. For α > 1, no sum rate loss is expected at high
SNR, which is exactly what happens for α = 1.5. However,
at α = 1 the same theorem indicates that there should be a
finite asymptotic sum rate loss bounded by GKD log2(1 +
β(GKD − 1)) � 34.03 bits per channel use for Case 1 with
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β = 10. Measuring the actual loss at high SNR from Fig. 2 we
obtain a value of 32.76 bits per channel use. This approaches
the derived upper bound closely, verifying that it is not too
loose. In addition running the same test case with the Min-
WLI algorithm gave an asymptotic sum rate loss equal to
33.28 bits per channel use, showing that the bound in Theorem
1 is respected regardless of the IA technique used to test it.

When it comes to the α < 1 range, from Theorem 1 we ex-
pect the sum rate loss to be unbounded. This can be confirmed
via the α = 0.75 and α = 0 curves in Fig. 2. All three diverge
from the perfect CSI result, indicating that the sum rate loss is
growing with increasing SNR. Within the same α range, a DoF
loss is expected from Theorem 2. For example at α = 0.75,
DoF equal to 3

4GKD = 4.5 may be achieved, this can be easily
verified from the slope of the curve itself at high SNR. The same
theorem predicts zero DoF are achievable at α = 0, which is
directly reflected in the flatness of the corresponding two curves
in the high SNR region of Fig. 2.

Comparing the two curves gives an insight into the impact
of the β parameter; while for asymptotic analysis its effect
is limited and not significant in determining the general trend
of the sum rate performance, it can be noticed that at α = 0,
β has a heavier impact. In such situations the error variance
η is no longer inversely proportional to SNR; thus for any
fixed β, α = 0 represents the worst case scenario, where the
error variance is equal to β itself. For the two specific α = 0
examples in Fig. 2 at β = 0.05 there is a much larger error
variance than at β = 0.001. The larger the level of the CSI
mismatch, the more difficult it is to achieve IA. Thus the
sum rate curve for α = 0, β = 0.05 is nearly flat throughout
indicating the error is too large for IA to take place across
the whole SNR range. However at α = 0, β = 0.001 IA is
achievable in the lower SNR region, up to around 20 dB, after
which the saturation occurs. Since all users are allocated equal
power, increasing the desired signal power inherently causes an
increase in the power of the interfering signals. This makes the
network interference limited, causing saturation in sum rate and
leading to no advantage overall.

Fig. 3 simulates the scenario in Case 2 using the Min-WLI
algorithm. Curves for α ≥ 1 all have the same slope as the
perfect CSI curve, indicating that full DoF has been achieved
as expected from Theorem 2. In addition, at asymptotically
high SNR for the α = 1.5 curve there is no asymptotic sum
rate loss as expected from Theorem 1. For α = 1, β = 10
the same theorem indicates that the asymptotic sum rate loss
should be bounded by 49.19 bits per channel use. Measuring
the actual gap from Fig. 3 a value of 37.38 bits per channel
use is obtained. Additionally for the same scenario with the
Max-SINR algorithm, the sum rate gap is equal to 37.61 bits
per channel use. These results, combined with those obtained
for the Case 1 scenario, further confirm that the bound is not
excessively loose. Finally Theorem 1 states that the asymptotic
sum rate loss is unbounded for the range of α < 1; this can be
confirmed from the α = 0.75 and α = 0 curves in Fig. 3, both
of which diverge from the perfect CSI result. Within the same
α range we expect the achievable DoF to be equal to αGKD.
Thus at α = 0.75 DoF equal to 6 are achievable, as verified
from the slope of the curve in Fig. 3. Similarly both α = 0

Fig. 4. Average sum rates achieved for system with G = 3, K = 3, D = 1
and M = N = 5 under various CSI imperfection scenarios.

results saturate at high SNR, denoting that αGKD = 0 DoF
are obtained i.e. IA is no longer achievable.

Remark 3: The various CSI quality scenarios simulated here
can be related to the CSI acquisition techniques outlined earlier
in Section II. For example, α = 0 corresponds to the CSI feed-
back scenario. Looking at the corresponding results in Fig. 2
and Fig. 3 it is clear that with this CSI acquisition technique IA
works better in the lower SNR region. The overall performance
depends on the quality of the CSI, which for the case of α = 0
is a function of the amount of quantisation. The lower the β,
the smaller is the error due to quantisation and the better IA
performs. On the other hand for reciprocal channels, modelled
by α = 1, IA fares better in the higher SNR region. In this
case the CSI error is inversely proportional to SNR, therefore
its effect decreases with increasing SNR, leading to a better
performance by the IA techniques.

B. Simulation Results on the Performance of the
Max-SINR-SCEK Algorithm

In this subsection, we compare the novel Max-SINR-SCEK
algorithm proposed in Algorithm 3 to the standard one outlined
in Algorithm 1. A system configuration with G = 3, K = 3,
D = 1 and M = N = 5 is used to produce the sum rate and
BER results in Fig. 4 and Fig. 5 respectively. We focus on the
range α ≤ 1, since both Theorem 1 and Theorem 2 indicate that
the system becomes asymptotically equivalent to the perfect
CSI case for α > 1.

As can be seen from Fig. 4 and Fig. 5 the Max-SINR-
SCEK algorithm outperforms the standard one, both in terms
of sum rate and BER. In fact the Max-SINR-SCEK algorithm
achieves higher sum rates throughout, for example at α = 1,
β = 10 we obtain an 8.7 bits per channel use gain at an SNR
of 40 dB, while for α = 0.75, β = 10 the gain is equal to
13.9 bits per channel use at the same SNR. When it comes to
the α = 0, β = 0.1 case we observe that as SNR increases, the
sum rate achievable by both versions of the algorithm settles at
a steady value. This value is 13.8 bits per channel use higher for
the Max-SINR-SCEK algorithm in comparison to the standard
one. As observed earlier in Section VI-A, at α = 0 we get the
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Fig. 5. BER achieved for system with G = 3, K = 3, D = 1 and M =
N = 5 under various CSI imperfection scenarios.

highest level of channel uncertainty for any given β. At this
level of uncertainty the network becomes interference limited
and increasing transmission power provides no advantage. This
effect is also mirrored into the BER results in Fig. 5, whereby
the curves for α = 0 both become flat for increasing SNR.
However curves for the Max-SINR-SCEK algorithm settle at
lower BER values than for the standard one, indicating the
superior performance of the former.

For larger values of α, the Max-SINR-SCEK algorithm still
achieves a lower BER than the standard one. For example,
at α = 1, β = 10 the standard algorithm requires an SNR of
approximately 25.6 dB to achieve a BER of 10−2, while Max-
SINR-SCEK achieves the same BER at around 21 dB. Similarly
for α = 0.75, β = 10 Max-SINR-SCEK requires 20 dB less
than standard Max-SINR to achieve a BER of 10−2.

VII. CONCLUSION

IA is a very promising technique and while it has been shown
that it can provide many benefits with perfect CSI, it is also
important to consider the more realistic imperfect CSI scenario.
In this paper we analyse the performance of IA under imperfect
CSI for the MIMO IBC. A bound on the asymptotic mean
loss in sum rate compared to the perfect CSI case is derived
and the achievable DoF under CSI mismatch are characterised.
These properties are found to be dependent on the number
of cells and the amount of users per cell, in addition to the
CSI mismatch parameters themselves. Results show that the
way error variance scales with SNR is highly important when
analysing the effects of imperfect CSI on system performance.
When they are inversely proportional, full DoF can be achieved
and the asymptotic sum rate loss is finite. However in cases
where the error variance depends inversely on SNR to the
power of a proper fraction, full DoF cannot be achieved and the
asymptotic sum rate loss is unbounded. Additionally, inspired
by the CSI mismatch model used, we also present a novel Max-
SINR algorithm with stochastic CSI error knowledge. This
algorithm performs better than the standard one under CSI
mismatch and at no additional computational cost.

APPENDIX A
USEFUL LEMMAS

Lemma 1: If F ∈ C
M×N is a Gaussian matrix whose el-

ements are i.i.d. with zero mean and variance ν, and g ∈
C

N×1 is a unit-norm vector that is independent of F, then
EF[Fgg

HFH ] = νI .
Proof: Consider a unitary matrix G ∈ C

N×N that is in-
dependent of F. Since F is a Gaussian matrix, it is bi-unitarily
invariant [31], hence the joint distribution of the product FG is
equal to that of F itself. Additionally, since matrix G consists
of N unit-norm vectors of size N × 1, the vector g described in
the definition of Lemma 1 above can take the role of any column
vector within G itself. Thus, vector Fg can be considered to
be a column vector of matrix FG, which finally allows to
establish the fact that Fg is a Gaussian vector with zero mean
and covariance matrix νI . �

Lemma 2: E
H|Ĥ[Ĥkg,jv

m
lj
vm H
lj

ΥH
kg,j

] = E
H|Ĥ[Υkg,jv

m
lj

vm H
lj

ĤH
kg,j

] = 0 ∀m, l, j.
Proof: Beamforming elements are calculated using

Ĥkg,j , thus they are automatically independent of Υkg,j from
the definition of the imperfect CSI model in Section II. �

Lemma 3: E[|ûd H
kg

Υkg,j v̂
m
lj
|2] is equal to η/(1 + η).

Proof: From the error model definition in Section II we
know that Ĥkg,j and Υkg,j are independent. Since ûd

kg
and v̂m

lj

are calculated on Ĥkg,j , this makes the transmit and receive
beamformers automatically independent of Υkg,j . In addition
Υkg,j is Gaussian and bi-unitarily invariant [31], thereby the

product ûd H
kg

Υkg,j v̂
m
lj

∀ d, k, g,m, l, j is a Gaussian random
variable with zero mean and variance η/(1 + η). Finally using
central absolute moments, we can evaluate E[|ûd H

kg
Υkg,j v̂

m
lj
|2]

which is equal to η/(1 + η). �

APPENDIX B
PROOF OF THEOREM 1

Sum rate loss is defined as the difference between the sum
rate achievable with perfect CSI and the sum rate achievable
with imperfect CSI, taking expectations this is equivalent to

ΔR = EH

⎡⎢⎣ G∑
g=1

K∑
k=1

D∑
d=1

log2

⎛⎜⎝1 +
P
∣∣∣udH

kg
Hkg,gv

d
kg

∣∣∣2
σ2

⎞⎟⎠
⎤⎥⎦

−E
H|Ĥ

⎡⎢⎣ G∑
g=1

K∑
k=1

D∑
d=1

log2

⎛⎜⎝1+
P
∣∣∣ûdH

kg
Hkg,gv̂

d
kg

∣∣∣2
Ĵd
kg

+ σ2

⎞⎟⎠
⎤⎥⎦ (28)

where ud
kg

and vd
kg

are single column elements of Ukg
and Vkg

obtained using perfect CSI, ûd
kg

and v̂d
kg

are their imperfect CSI

equivalents and Ĵd
kg

represents the leaked interference due to
imperfect CSI. After some algebraic manipulations (28) can be
expressed as in (29) on the following page.
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ΔR = EH

⎡⎢⎣ G∑
g=1

K∑
k=1

D∑
d=1

log2

⎛⎜⎝1 +
P
∣∣∣udH

kg
Hkg,gv

d
kg

∣∣∣2
σ2

⎞⎟⎠
⎤⎥⎦

︸ ︷︷ ︸
A

−E
H|Ĥ

⎡⎢⎣ G∑
g=1

K∑
k=1

D∑
d=1

log2

⎛⎜⎝1+
Ĵd
kg
+P

∣∣∣ûdH
kg

Hkg,gv̂
d
kg

∣∣∣2
σ2

⎞⎟⎠
⎤⎥⎦

︸ ︷︷ ︸
B

+ E
H|Ĥ

[
G∑

g=1

K∑
k=1

D∑
d=1

log2

(
1 +

Ĵd
kg

σ2

)]
(29)

Considering parts A and B from (29) separately we can
establish an upper bound on each by applying Jensen’s
inequality. It can easily be shown that |ud H

kg
Hkg,gv

d
kg
|2 and

|ûd H
kg

Hkg,gv̂
d
kg
|2 are exponentially distributed with zero

mean and variance one. Applying this information into the
upper bounds for A and B, allows us to express the following
inequality.

EH

⎡⎢⎣ G∑
g=1

K∑
k=1

D∑
d=1

log2

⎛⎜⎝1+P
∣∣∣udH

kg
Hkg,gv

d
kg

∣∣∣2
σ2

⎞⎟⎠
⎤⎥⎦

≤E
H|Ĥ

⎡⎢⎣ G∑
g=1

K∑
k=1

D∑
d=1

log2

⎛⎜⎝1+ Ĵd
kg
+P

∣∣∣ûdH
kg

Hkg,gv̂
d
kg

∣∣∣2
σ2

⎞⎟⎠
⎤⎥⎦

(30)

Next, taking into account the inequality in (30), we can
express (29) as

ΔR ≤ E
H|Ĥ

[
G∑

g=1

K∑
k=1

D∑
d=1

log2

(
1 +

Ĵd
kg

σ2

)]
. (31)

This can be turned into the following expression by taking
only the expectation of the interference leakage term according
to Jensen’s inequality,

ΔR ≤
G∑

g=1

K∑
k=1

D∑
d=1

log2

⎛⎝1 +
E
H|Ĥ

[
Ĵd
kg

]
σ2

⎞⎠ . (32)

Therefore to quantify ΔR it is necessary to find an expres-
sion for E

H|Ĥ[Ĵd
kg
]. Ĵd

kg
itself has been previously defined in

(12). Combining this expression with the channel model from
(5) and then taking expectations we obtain

D∑
m=1
m �=d

PE
Ĥ,Υ

[∣∣∣∣ûdH
kg

(
1

1 + η
Ĥkg,g +Υkg,g

)
v̂m
kg

∣∣∣∣2
]

+

K∑
l=1
l �=k

D∑
m=1

PE
Ĥ,Υ

[∣∣∣∣ûdH
kg

(
1

1 + η
Ĥkg,g +Υkg,g

)
v̂m
lg

∣∣∣∣2
]

+

G∑
j=1
j �=g

K∑
l=1

D∑
m=1

PE
Ĥ,Υ

[∣∣∣∣ûdH
kg

(
1

1+η
Ĥkg,j +Υkg,j

)
v̂m
lj

∣∣∣∣2
]

(33)

which can be further simplified by considering the IA con-
ditions for imperfect CSI in (11). Applying the fact that
ûd H
kg

Ĥkg,j v̂
m
jl

= 0 ∀ (d, k, g) �= (m, l, j) leads to

E
H|Ĥ

[
Ĵd
kg

]
=

D∑
m=1
m �=d

PE
Ĥ,Υ

[∣∣∣ûdH
kg

Υkg,gv̂
m
kg

∣∣∣2]

+
K∑
l=1
l �=k

D∑
m=1

PE
Ĥ,Υ

[∣∣∣ûdH
kg

Υkg,gv̂
m
lg

∣∣∣2]

+
G∑

j=1
j �=g

K∑
l=1

D∑
m=1

PE
Ĥ,Υ

[∣∣∣ûdH
kg

Υkg,jv̂
m
lj

∣∣∣2] .
(34)

Integrating the result of Lemma 3 from Appendix A into
(34), then the expected value for the interference leakage can
be expressed as

E
H|Ĥ

[
Ĵd
kg

]
= P

η

(η + 1)
(GKD − 1). (35)

This can be applied into the inequality for sum rate loss from
(32) to get

ΔR ≤
G∑

g=1

K∑
k=1

D∑
d=1

log2

(
1 +

P

σ2

η

(η + 1)
(GKD − 1)

)
(36)

which after evaluating the summation and replacing η with
βρ−α, becomes

ΔR ≤ GKD log2

(
1 + (GKD − 1)

βρ(1−α)

1 + βρ−α

)
. (37)

Taking a high SNR approximation, the asymptotic sum rate
loss can be defined as in (14), proving Theorem 1 as originally
stated.

APPENDIX C
PROOF OF THEOREM 2

The DoF loss is defined as ΔDoF = DoFperfect CSI −
DoFimperfect CSI. From (10) we have already established that
the DoF achievable under perfect CSI is equal to GKD. Thus
we only need to evaluate the total achievable DoF under imper-
fect CSI, DoFimperfect CSI. Provided IA feasibility conditions
are met, this can represented as

DoFimperfect CSI = lim
P→∞

E
H|Ĥ [Rimperfect CSI]

log2 P
(38)

where Rimperfect CSI was defined earlier in (13).
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DoFimperfect CSI = lim
P→∞

E
H|Ĥ

[
G∑

g=1

K∑
k=1

D∑
d=1

log2

(
P
∣∣∣ûdH

kg
Hkg,gv̂

d
kg

∣∣∣2 + Ĵd
kg

+ σ2

)]
log2 P︸ ︷︷ ︸

A

− lim
P→∞

E
H|Ĥ

[
G∑

g=1

K∑
k=1

D∑
d=1

log2

(
Ĵd
kg

+ σ2
)]

log2 P︸ ︷︷ ︸
B

(39)

≥ lim
P→∞

E
H|Ĥ

[
G∑

g=1

K∑
k=1

D∑
d=1

log2

(
P |ûdH

kg
Hkg,gv̂

d
kg
|2
)]

log2 P
− lim

P→∞

G∑
g=1

K∑
k=1

D∑
d=1

log2

(
E
H|Ĥ

[
Ĵd
kg

]
+ σ2

)
log2 P

(40)

= GKD − lim
P→∞

G∑
g=1

K∑
k=1

D∑
d=1

log2

(
P η

(η+1) (GKD − 1) + σ2
)

log2 P
(41)

Including the imperfect CSI sum rate expression from (13)
into (38) and performing some additional algebraic manipu-
lations we obtain (39), shown at the top of this page. The
inequality in (40) follows by discarding the interference plus
noise term in part A and applying Jensen’s inequality to part B.

Finally the DoF expression can be transformed into (41),
shown at the top of this page, by using the fact that
|ûd H

kg
Hkg,gv̂

d
kg
|2 is exponentially distributed with zero mean

and variance one and also replacing E
H|Ĥ[Ĵd

kg
] by the actual

expression from (35).
After replacing η with βP−ασ2α in (41) and taking P → ∞,

the achievable DoF can be characterised as

DoFimperfect CSI =

{
GKD α ≥ 1
αGKD 0 ≤ α < 1.

(42)

Noting that DoFperfect CSI = GKD from (10), the result in
(15) is obtained, proving the DoF loss is as originally stated in
Theorem 2.
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