
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maintenance of order in a moving strong condensate

Citation for published version:
Whitehouse, J, Costa, A, Blythe, RA & Evans, MR 2014, 'Maintenance of order in a moving strong
condensate'  Journal of Statistical Mechanics: Theory and Experiment. DOI: 10.1088/1742-
5468/2014/11/P11029

Digital Object Identifier (DOI):
10.1088/1742-5468/2014/11/P11029

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
 Journal of Statistical Mechanics: Theory and Experiment

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43713478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1088/1742-5468/2014/11/P11029
https://www.research.ed.ac.uk/portal/en/publications/maintenance-of-order-in-a-moving-strong-condensate(ff69fd0f-4018-4e11-b6b8-2aaa52a2fe06).html


Maintenance of order in a moving strong condensate

Justin Whitehouse, André Costa, Richard A Blythe, Martin R

Evans

SUPA, School of Physics and Astronomy, University of Edinburgh, Mayfield Road,

Edinburgh EH9 3JZ, UK

Abstract. We investigate the conditions under which a moving condensate may exist

in a driven mass transport system. Our paradigm is a minimal mass transport model

in which n− 1 particles move simultaneously from a site containing n > 1 particles to

the neighbouring site in a preferred direction. In the spirit of a Zero-Range process

the rate u(n) of this move depends only on the occupation of the departure site. We

study a hopping rate u(n) = 1+b/nα numerically and find a moving strong condensate

phase for b > bc(α) for all α > 0. This phase is characterised by a condensate that

moves through the system and comprises a fraction of the system’s mass that tends

to unity. The mass lost by the condensate as it moves is constantly replenished from

the trailing tail of low occupancy sites that collectively comprise a vanishing fraction

of the mass. We formulate an approximate analytical treatment of the model that

allows a reasonable estimate of bc(α) to be obtained. We show numerically (for α = 1)

that the transition is of mixed order, exhibiting exhibiting a discontinuity in the order

parameter as well as a diverging length scale as b↘ bc.

PACS numbers: 02.50.Ey, 05.70.Fh, 64.60.De
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1. Introduction

In nonequilibrium statistical physics, condensation is used as a general term to describe

the localisation of a finite fraction of some quantity—typically mass—in a wide variety

of fundamental models of dynamical processes. These include the flow of wealth [1],

traffic flow [2–5], and the formation of hubs in complex networks [6, 7]. The archetypal

model of this class is the Zero-Range Process (ZRP) [8,9]. In this minimal model, single

units of mass hop between sites at a rate which is a function only of the total mass

on the site they are leaving (hence the name ‘zero-range’). Furthermore this model

satisfies the conditions required for the steady state to factorise, which simplifies the

analysis of its condensate phase [10–12]. Given an appropriate choice of the hopping

rate u(n), which decreases suitably slowly with n, this process alone is enough to

create a static condensate phase in which a finite fraction of the total mass of the

system occupies a single site. For the case u(n) = 1 + b/nα the transition has been

extensively studied. When α = 1 there is a critical value of the parameter b, bc = 2,

above which a condensation transition occurs when particle density ρ exceeds a critical

value ρc = 1/(b − 2). For ρ < ρc, the system is in a fluid phase where the mass is

evenly distributed across sites, whereas for ρ > ρc a condensate emerges. For α < 1 a

condensation transition occurs for all b [8].

There are certain cases in which the nature of the condensate phase is different from

the ‘standard’ condensation described above. For example: the fraction of the total

system mass in the condensate can be equal to 1, creating a strong condensate [13,14];

the condensed phase can exhibit a subextensive number of smaller mesocondensates [15]

or an extensive number of finite-sized quasi-condensates [16]. Also, it should be noted

that the existence of a condensate phase is not unique to models based on the ZRP or

with factorised steady states. For example, a non-Markovian simple exclusion process

has been shown to exhibit an immobile condensate phase [17].

In all these examples, the condensates are static: they reside at the same point

in space for a long period until dissolving through a large fluctuation and reforming

elsewhere [18]. However, in physical settings moving condensates or aggregates are often

observed, for example in traffic jams [19], gravitational clustering [20], sedimentation [21]

and droplet formation [22]. In general, moving condensates are less well understood than

the static variety and it is unclear what the physical mechanisms are that will allow the

maintenance of the condensate.

In this work we investigate conditions under which a condensate may maintain its

order as it moves through the system. To understand why this is a pertinent question

we first review how condensates move in a variety of simple model systems related to

the ZRP.

In an important early contribution, Majumdar, Krishnamurthy and Barma [23]

introduced a chipping model in which all the mass from a site can move, or ‘diffuse’, to

an adjacent site. Additionally, a single unit of mass can ‘chip’ off from the departure

site and hop to an adjacent site. For symmetric diffusion of the mass, a condensed phase
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was observed. However for asymmetric diffusion, which leads to a condensate moving

on average, a careful analysis revealed that, although a condensate is still observed on

a finite system [24], the critical density at which the condensation transition occurs

diverges in the thermodynamic limit [25]. This is because the chipping process (in

one-dimension) dissipates clusters faster than the diffusion process creates them [26].

However subsequent work on a chipping model with a chipping rate of the classical

zero-range type, u(n) = 1 + b/n, suggests that a condensate may be possible for large

enough b with the critical value bc somewhere close to two [27].

Meanwhile, Hirschberg et al. have investigated what kinds of dynamical processes

will permit a moving condensate phase using variants of the ZRP with non-Markovian

hopping rates [28,29] and with hopping rates affected by spatial correlations [30]. Both

models exhibit a condensate phase which drifts with a finite, nonvanishing velocity. In

the former, temporal correlations between departure and arrival sites allow the formation

of a condensate over two adjacent sites, which then moves with a ‘slinky’-like motion

through the system. In the latter, the effect of spatial correlations is that the condensate

also moves with a slinky-like motion, but with certain differences in the details depending

on the values of certain hopping parameters. Condensate motion of a similar slinky

nature has also been observed in a totally asymmetric model [31,32] in which the hopping

rate is a monotonically increasing function of the mass at both departure and arrival

sites. The condensation found in this model is found to be “explosive” in as much as

the condensate moves with a superextensive velocity and forms instantaneously in an

infinite system.

Taken together these studies pose the intriguing question that we pursue here:

What are the key dynamical processes that permit a moving condensate phase, and

which processes will destabilise the phase? This question is of broader relevance to

phenomena such as flock formation and schooling of fish [33].

In this work, we introduce a minimal mass-transport model in the spirit of the

ZRP which allows large-mass hopping events. The new feature is the incorporation

of a ‘backchip’ move described below and illustrated in figure 1b. We find that the

model exhibits a moving condensate phase with a distinctive mechanism of formation

and maintenance. Most notably, the moving condensate is a strong condensate in the

sense that a fraction tending to one of the particles occupy a single site. This condensate

travels through the system followed by a tail of low occupancy sites that collectively

comprise a vanishing fraction of the mass. As we show below, the dynamics of the mass

within this tail is responsible for maintaining the structure of the condensate. Using

numerical simulations, we find that above a critical value for a rate parameter b, and

at all densities, a strong condensate forms. Numerically we are able to classify the

transition as being of mixed order, exhibiting features of both first and second order

phase transitions. We further provide an approximate theory of the mechanism which

gives a reasonable prediction for the critical value, and also discuss the behaviour of the

system below this critical rate.
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u(1)

(a)

u(3)

(b)

Figure 1: The elementary dynamical processes. (a) Hop: When a site contains only one

particle, this particle hops onto the next site with rate u(1) and leaves behind an empty

site. (b) Backchip: When a site contains n (here, 3) particles, n − 1 of these particles

move together with rate u(n) onto the next site and leave behind a single particle.

2. Model and motivation

To motivate the specific features of our model let us first consider the limit of zero

chipping rate in the models of [24, 27]. In the absence of any chipping, the dynamics

is simply diffusion combined with irreversible aggregation. The stationary state of this

process on a finite system comprises a single condensate containing all the system’s

mass. The work of [25, 26] has shown that the condensate is unstable to the effect

of single particles chipping away from an aggregate with rate u = 1 + b/n, where n

is the number of particles contained within the aggregate, unless b is greater than a

critical value bc > 0. Therefore it is of interest to consider what other perturbations

may destabilise the condensate exhibited in diffusion with irreversible aggregation.

Here we consider a different perturbation of the diffusion with aggregation

dynamics: when the aggregate moves forward it leaves one unit of mass behind—see

figure 1. We retain the zero-range feature that the rate of movement u(n) only depends

on the number of particles within the aggregate.

To be precise, we consider a system of N particles upon a one-dimensional lattice

of L discrete sites. We are interested in the large N ,L behaviour where the density

ρ = N/L is fixed. In the case where the site has occupancy n > 1, a ‘backchip’ takes

place: n − 1 of the particles move to the next site, and leave behind a single particle

(figure 1b). This occurs with rate with rate u(n) given by

u(n) = 1 +
b

nα
, (1)

where n is the total number of particles on the departure site. With this form, larger

values of the rate parameter b bias the dynamics towards faster hopping from less

occupied sites, causing larger groups of mass to move slowly in comparison.

The dynamical rule has of course to be modified for a single unit of mass at a site,

i.e. when the site’s occupancy is n = 1. This single particle moves to the next site and

leaves behind an empty one (figure 1a). We take the rate of this ‘hopping’ process to
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Figure 2: Illustration of the condensate phase. (a) A typical configuration of the system

in the strong condensate regime, sketched using data taken directly from a simulation

with L = 1000, N = 1000, b = 2.0 and α = 1.0. The columns represent the mass

occupying the site, with the exact size shown above, and the direction of motion is

indicated by the arrow. (b) The average mass mk at a site k sites behind the condensate

for ρ = 1, 2, 5, 10. In the strong condensate regime all of the system’s mass is typically

in the condensate, with any remaining units of mass trailing closely behind.

be u(1).

Our choice of hop rates allows us to compare our model to the standard formulation

of the ZRP where only a single particle can hop at a time. This type of hop is often

referred to as a ‘chip’, as in [23–26], and is in some sense symmetric to our definition of

a backchip. The name ‘chip’ can be conceptually understood in the context of a single

mass unit chipping off from a site with large occupancy. We first study the case where

α = 1, as it can be shown exactly that with the hop rate given in (1) and α = 1 the

standard ZRP undergoes a condensation transition at ρc = 1/(b− 2) for b > 2 [9].

3. Monte Carlo simulations

We implemented Monte Carlo simulations of the system on a one-dimensional periodic

lattice. From these we see that, above a critical value of b, the system exhibits a strong

condensate, where almost all the mass occupies a single site, which moves through the

system. This is immediately followed by a short tail of sites with very low occupancy,

leaving all other sites empty (figure 2). This behaviour can also be seen from the plots

of the site occupancy distribution (figure 3), which is strongly peaked at n/N = 1,

indicating that we have a strong condensate. It tells us that typically at an instant in

time nearly all of the mass occupies a single site.

The maintenance of order in the strong condensate phase can be attributed to the

dynamics of this tail of mass which trails directly behind the condensate itself. Since a

larger hopping rate b biases the rate function u(n) towards hops from sites with a low

occupancy n, hops from sites with low n will occur much more frequently than from
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Figure 3: Plot of the distribution p(n) of site occupancies n in the strong condensate

regime at b = 2.0 for a system of size L = 1000. N is the total number of particles in the

system. The points at and near n/N = 1 indicate the presence of s strong condensate

which contains effectively all of the system’s mass.

those sites with large n. When the condensate hops, it leaves behind a site of occupancy

1. A single unit of mass has the largest possible hop rate, and thus it seems plausible

that it is much more likely for the single mass unit immediately behind the condensate

to recombine with it than it is for the condensate to hop again and away from the mass

it left behind. In this way, it appears that the strong condensation is a consequence of

the condensate being unable to escape from the tail of mass trailing behind. As such,

the structure of a very strongly occupied condensate and its very short tail of a few

masses is maintained as they move through the system. We provide further evidence

for this intuitive picture of strong condensation within a theoretical treatment below.

4. Analysis of the moving strong condensate

The fact that the system exhibits a coherent moving structure, comprising a condensate

and its tail, implies that the occupancies of the sites near the condensate are likely to be

correlated. An exact solution for the stationary distribution of this model is therefore

unlikely to be easily attainable. In order to construct an approximate theory that

allows us to estimate the critical value bc at which the transition to a strong condensate

occurs, we make two main assumptions. First, we work in the frame of reference of the

condensate, labelling sites k = 1, 2, 3, . . . according to how far behind the condensate

they are, and assuming that almost all of the mass occupies site k = 0 (i.e., that a strong

condensate has formed). Second, we allow the probability distribution for the number
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of particles n on each site k to take a different form, pk(n), on each site but, to allow

analytical progress, we assume that the occupancies on different sites are uncorrelated.

We distinguish between the dynamics of particles in the tail, and of the condensate

itself. When mass is transferred in the tail (either by a single particle hop, or by a

backchip), it moves in the negative k direction, towards the condensate, from k+ 1→ k.

This leads to a mass current Jk due to hopping from site k to k − 1 given by

Jk = u(1)pk(1) +
∞∑
n=1

(n− 1)u(n)pk(n) . (2)

Meanwhile, the condensate hops with rate ' 1 since its mass is of order N and we

consider the limit of large N . In the frame of reference of the condensate, this causes

the whole tail to shift its position which is accounted for by relabelling the indices

k → k − 1. Consequently, the total average current arriving at site k in the positive k

direction i.e. from site k − 1 to k is

Kk−1 = nk−1 − Jk . (3)

By continuity, the mean occupancy of site k changes with time as

d

dt
nk = Kk−1 −Kk . (4)

In the steady state d
dt
nk = 0, so we find Kk = K for all sites k. Thus, (3) becomes

K = nk−1 − Jk . (5)

Inserting the explicit form (1) for u(n) (with α = 1) into (2) we obtain

Jk = (1 + b)pk(1) + nk − (1− b)(1− pk(0))− bn̂−1
k (6)

where

n̂−1
k =

∞∑
n=1

pk(n)

n
, (7)

that is, an average of 1/n over the part of the distribution where n > 0. To proceed we

must also determine an appropriate form for pk(n). We have performed some numerical

analysis of pk(n) in the sites immediately preceding the condensate to allow us to make

the appropriate choice. As shown in figure 4, we find that it is not easy to fit a simple

function to the distribution pk(n), but to make progress we assume

pk(n) = (1− ak)ank , (8)

a geometric distribution, which describes the mass in different parts of the tail of the

condensate reasonably well (figure 4). This is much easier to work with analytically than

other possible assumed distributions as it has the useful property that the parameter

ak can be expressed in terms of the mean occupancy nk at site k as ak = nk/(1 + nk).

This allows us to express the current (6) entirely in terms of nk and b, using

pk(0) =
1

1 + nk
(9)



Order in a moving condensate 8

Figure 4: Plots of the probability distributions pk(n) for having n particles at site k

behind the condensate. Here we have plotted the data for the sites closest behind the

condensate, and to the measured distribution for k = 2 (large blue +) have fitted the

function c(1−a)an (red solid line) to the middle of the tail, and (1−a)an (green dashed

line) to the front of the tail. (Similar fits can be made for other values of k.) Above

n ∼ 15 the data is too noisy to be fitted to reliably. The data shown is for sites k = 2, 4, 6

and a system with ρ = 0.5, L = 1000, b = 1.0, α = 1.0.

pk(1) =
nk

(1 + nk)2
(10)

n̂−1
k =

ln(1 + nk)

1 + nk
. (11)

Inserting these expressions into (6), we find

Jk = nk +
(1 + b)nk
(nk + 1)2

− (1− b)nk
(nk + 1)

− b ln(nk + 1)

(nk + 1)
. (12)

Next, we make the continuum approximation k → x in (5) by Taylor expanding

nk−1 about x = k to first order. This leads to the equation

∂n

∂x
= f(n)−K (13)

where

f(n) = −(1 + b)n

(n+ 1)2
+

(1− b)n
(n+ 1)

+
b ln(n+ 1)

(n+ 1)
. (14)

The boundary condition is n0 = 1 which comes from the fact that every time the

condensate hops it leaves one particle behind. In the continuum limit, this boundary

condition becomes n(0) = 1.
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(a) (b)

Figure 5: Using the boundary condition n̄(x = 0) = n0 = 1 we see graphically that (a)

if nc < n0 then as x increases, as we move further away from the condensate, so too does

n̄. It does so indefinitely, resulting in an infinite mean occupancy infinitely far from the

condensate. (b) If nc > n0, then we see that as x increases, n̄(x) decreases to 0.

For the case of the strong condensate, there is no mass at x → ∞ which means

that K = 0 and therefore that ∂n
∂x

= f(n). The form of f(n) is illustrated in figure 5.

We note the limits f(0) = 0 and f(n)→ 1− b for n→∞. We also observe that there is

an unstable fixed point at nc, the non-zero root of f(n̄), at which dn̄
dx

= 0. As illustrated

in figure 5, the value of nc relative to the boundary condition n0 = 1 will iteratively

determine the values of n̄(x) at successively larger x.

If nc < n0 (figure 5a) then dn̄
dx

> 0 for all n̄ > nc. This means that n̄ will

increase indefinitely as x increases, resulting in an infinite mean occupancy far from

the condensate. This contradicts our assumption that there is no mass as x → ∞ and

therefore we discard this solution as unphysical.

If nc > n0 (figure 5b) then the gradient of n̄ is negative, and it remains negative

up to the stable fixed point at n̄ = 0. This means that successively further from the

condensate n̄ decreases continuously to 0. This is the physical solution. The consistency

condition for this solution gives us a condition for the existence of the strong condensate:

nc > n0 = 1. This can be translated into a condition on b by using the fact that

f(nc) = 0. Substituting n = n0 = 1 in (14) and setting the resulting expression to zero,

we find an equation for the critical value b = bc such that we have a strong condensate

for b > bc. The result is

bc =
1

3− 2 ln 2
' 0.62 . (15)

This prediction for bc agrees fairly well with our numerical results displayed in

figure 6 and figure 7. In that figure the sample variance σ2 =
∑

i (ni/N − ρ)2 of the

occupancy per particle n/N is plotted against b and shown to increase sharply from

σ ' 0 to σ ' 1 at a value of b ' 0.5. This corresponds to the transition from the

fluid, in which the mass is evenly distributed and the sample variance is small, to the

strong condensate phase in which the sample variance approaches 1. This transition
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point appears to be independent of ρ and sharpens as the system size increases.

5. Classification of the phase transition

Figure 6: Plots of the order parameter σ against the rate parameter b, for various system

sizes L with density ρ = 0.5. A transition is seen to occur for all system sizes, with a

clear crossover point in the σ-b curves at b = 0.5, which is indicative of the critical value

bc = 0.5.

To learn more about the critical value bc and the nature of the transition we analyse

data from different system sizes L at the same density ρ = 0.5. First, by studying a plot

of the order parameter σ against b for this data in figure 6, we see the transition occurs

over a similar range of b for all system sizes L. Furthermore, the transition sharpens with

increasing system size and there is a stable intersection of the curves at b = 0.5. This

strongly suggests that in the thermodynamic limit the transition would be discontinuous

in σ at bc = 0.5. Our confidence in our measurement of bc is reinforced by the result

of applying a finite size scaling procedure to the same data, as shown in figure 7. We

plot the order parameter σ against a rescaled hop rate parameter b
′

= LX(b− bc) and,

through our choice of bc and X, find the best data collapse when bc = 0.5, and the

scaling exponent X = 0.75.

Interestingly, looking at the distribution of mass at a site k behind the condensate

(figure 8) we see that there is a decay length associated with the average shape of the

tail of mass behind, which increases as b ↘ 0.5. To better understand how this decay

length changes as the b approaches the (numerical) critical value bc from above, we fit an

exponential distribution to the tail at different values of b, and then plot the dependence

of the fitted decay length λ on b.
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Figure 7: Plots of the order parameter σ against the rate parameter b, for various

system sizes L with density ρ = 0.5. (b) We perform a finite size scaling procedure on

b, rescaling it to (b− bc)LX . The choice of parameters for the best collapse of the data

onto a single curve is bc = 0.5 and X = 0.75.

Figure 8: A plot of the mean occupancy at a site k behind the condensate site, measured

numerically. The decay length in the region 0 < k < 500 can be seen to slowly increase

as b↘ 0.5.

As shown in figure 9 the decay length λ appears to diverge like a power law as

b↘ 0.5 before beginning to flatten off as b− 0.5 becomes very small. We attribute this
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Figure 9: The decay length λ(b) measured from the tails in figure 8 fits a power law

in the scaling regime but ‘flattens out’ as b ↘ 0.5. Numerically, the system size only

affects the b dependence of λ as b approaches 0.5. As the system size is increased the

λ(b) at b↘ 0.5 becomes closer to the power law.

flattening off effect to the finite system size: in figure 8 it is clear that as b ↘ 0.5

the tails develop some additional structure far from the condensate (in the region

500 < k < 1000), and in figure 9 the data points move closer to the power law fit

as the system size is increased in such a way that we expect the infinite system would

show the power law divergence without the flattening out effect.

A diverging length scale of this nature is a characteristic of second order phase

transitions, seemingly at odds with the early evidence for the transition being first

order in nature. The resolution is to conclude that the phase transition here exhibits

the characteristics of a mixed order or hybrid phase transition. Transitions of this

nature are not unprecedented, for example, in [34, 35] mixed order transitions in long

range lattice models are considered. In another example a phase transition in the size

of the giant viable cluster of a multiplex network, is shown to be discontinuous in the

order parameter but also to exhibit critical behaviour above the critical point [36].

This asymmetry is attributed to the specifics of the dynamics, which only provide a

mechanism for critical behaviour above the critical point and not below.

We speculate that the mixed order transition in the present work may also be

attributed to the difference in mechanisms above and below the transition: from above,

the transition is brought about by the divergence of a length scale in a coherent structure,

namely the tail; from below we see no coherent structures until the condensate itself is

formed.

Another interesting observation is that the critical exponent here is measured to
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be approximately 1.7, which is similar to the value 1.7338 of the numerically measured

critical exponent associated with the temporal correlation length in directed percolation

(DP) [37]. Similarities can be seen between the dynamics of the mass in the tail in

the frame of reference of the condensate and the dynamics of the driven asymmetric

contact process (DACP) which exhibits a phase transition in the DP universality class,

specifically with the temporal exponent measured at 1.7(2) [38]. Here, the backchip

process generates new singly-occupied sites which, in the language of the DACP, become

“inactive” by recombining with other occupied sites, over timescales which are short

compared to the timescales at which mass moves from greater-than-singly occupied

sites. It may be of interest to investigate such potential similarities in greater depth in

the future.

5.1. Divergence in the approximate theory

To see whether our approximate theory also captures the existence of a mixed order

transition we numerically integrated (14) in order to measure how a length scale in

the profile of the solution for n(x) changes as b ↘ bc. In contrast to the results from

simulation (figure 9), we find (figure 10) that according to the theory the length scale

λ(b) of the tail diverges as

λ(b) ∼ log

(
1

b− bc

)
. (16)

The divergence is still indicative of a mixed-order transition, but it points to one which

has a weakly diverging length scale.

This can also be seen in the approximate theory by studying the mass in the tail

very close to the condensate. By considering ε = b− bc � 1 and η = n0− n̄ = 1− n̄� 1

we can make a Taylor expansion of f(n̄, b) given in (14), to find

f(1− η, bc + ε) = f(1, bc)− Aε+Bη +O(η2, ε2, εη) , (17)

where

A =
1

4bc
, B =

1− bc ln 2

4
, and f(1, bc) = 0 . (18)

Using the relationship f(n̄, b) = dn̄
dx

we can then write

dη

dx
= Aε+Bη (19)

and integrate to find

η(x) =
A

B
ε(eBx − 1) . (20)

A characteristic length scale λ can then be defined by the value of x at wich η reaches

some arbitrary finite value, yielding A
B
εeBλ = constant. Thus

λ(ε) =
| ln ε|
B

+ constant (21)

So we see that as ε↘ Bη
A

, the characteristic length scale λ diverges slowly as a logarithm.
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Figure 10: By numerically integrating (14) we measure a length scale in the tail to

diverge logarithmically as b↘ bc. The length scale is defined as the distance from x = 0

to the position behind the condensate at which the absolute value of dn/dx is largest,

which was the most distinct and well defined feature of n(x).

6. Condensation transition for the generic hop rate

The transition to a strong condensate phase is found for the generic hop rate (1) for all

α > 0. We can repeat the α = 1 calculation we performed previously but with α > 0

and use the definition of the polylogarithm function Lis(z) =
∑∞

n=1
zn

ns to find

Jk = nk − 1 +
(1 + b)nk
(nk + 1)2

+
1

(nk + 1)

+
b

(nk + 1)

[
Liα−1

(
nk

nk + 1

)
− Liα

(
nk

nk + 1

)]
. (22)

By making the same continuum approximation as before (13) we find

f(n) = 1− (2 + b)

(n+ 1)
+

(1 + b)

(n+ 1)2

− b

(n+ 1)

[
Liα−1

(
n

n+ 1

)
− Liα

(
n

n+ 1

)]
. (23)

Finally, using the boundary condition n(0) = 1 and the constraint on the stable fixed

point nc(b, α), we obtain

bc(α) =

[
1 + 2

(
Liα−1

(
1

2

)
− Liα

(
1

2

))]−1

. (24)

This function (figure 11) is monotonically increasing from bc(0) = 1
3

and is bounded

from above by 1.
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Figure 11: A plot of bc(α) (red, solid). bc increases monotonically from bc(0) = 1/3 and

asymptotically approaches bc = 1 (blue, dashed).

It is important to note that (24) holds for α > 0 and the point α = 0 is singular,

because for α > 0 the condensate moves with rate 1 whereas for α = 0 all masses,

including any condensate, move with rate 1 + b. Thus at α = 0 our mechanism for the

maintenance of a moving condensate is no longer valid, as there is no reason small masses

would tend to catch up to large masses ahead. This is confirmed by our simulation

results, shown in figure 12a, for α = 0. Measuring the variance of the mass distribution

we see no evidence of a condensate forming above a certain value of b.

On the other hand, we can probe the validity of (24) as α ↘ 0 by simulating the

dynamics with the modified hop rate

ulog(n) = 1 +
b

ln(n+ 1)
. (25)

As lnn increases more slowly than any power of n we can consider (25) as approximating

the limit of an arbitrarily small, positive choice of α. The results from our simulations

with ulog(n) presented in figure 12b show that there is a transition to the strong

condensate phase in the region b ∼ 0.3 − 0.4, which gives us yet more confidence in

our analytic result (24).

We have also performed simulations at α values larger than 1 (figure 13). We find

that the transition becomes more gradual for larger values of α, and occurs over a region

of values of b which are larger than the value of bc predicted by (24). By studying various

system sizes (figure 13c) we see that evidence that the gradual nature of the transition is

a finite size effect, as it becomes more sharp when we increase the system size. The hop

rate u(1) = 1 + b for all α, but for large α the hop rate from sites with low occupancies

(greater than 1) is reduced significantly. This has the effect of suppressing all single

occupancy sites because single units of mass always catch up with a site ahead of mass

greater than one, in the same way that the condensate is maintained. We note that

although our prediction for bc seems to agree well with simulations for α = 0 and α = 1,
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(a) (b)

Figure 12: Plots of the variance σ2 of the occupancy distribution against the rate

parameter b, for systems of size L = 1000. (a) With α = 0 all masses move with the

same rate. Thus there is no mechanism for the formation of the strong condensate, and

no transition is observed in b. (b) Using the modified hop rate ulog(n) given in (25) we

can probe bc(α) as α↘ 0. A transition occurs when b is in between 0.3 and 0.4, in good

agreement with the prediction bc(α = 0) = 1/3 from (24).

for larger α, bc appears to overshoot the asymptote bc = 1 predicted by the approximate

theory.

(a) (b) (c)

Figure 13: Plots of the variance σ2 of the occupancy distribution against the rate

parameter b. (a) α = 2, L = 500. (b) α = 10, L = 1000. The formula (24) predicts that

bc(α = 2) = 0.8185 and bc(α = 10) = 0.9995. We find that the transition becomes less

sharp as α is increased, and takes place over a range of values of b which are greater

than the bc predicted by (24). (c) α = 10. By increasing the system size the transition

becomes sharper, which is evidence that its gradual nature is a finite size effect. We can

estimate bc ∼ 1.5± 0.1 from the crossover of the curves.
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Figure 14: As the system size is increased, the position of the peak in the probability

distribution decreases logarithmically with L. This means that the critical density ρc
has L dependence of the form ρc(L) ∼ ln(L).

7. Subcritical region

Our numerical data and analytical work has shown the existence of a strong condensate

phase when b > bc at all densities. When b < bc we find a transition from a homogeneous

fluid phase when ρ . 1 to a ‘standard’ condensate phase when ρ & 1. Although

this phase quantitatively and qualitatively looks like a standard condensate, numerical

analysis shows that the transition density ρc diverges as ln(L), in a similar way to that

observed for biased hopping rates in [26]. This can be seen from figure 14 where we

have analysed the size of the position of the peak, npeak, in the distribution of the

standard condensate phase. If the fluid contains on average Nc = Lρc(L) particles, then

npeak(L) ' (ρ− ρc(L))L/N = (1− ρc(L)/ρ). Our measurements of the value of npeak(L)

(figure 14) show that npeak(L) ∝ − ln(L), and thus that ρc ∝ ln(L).

Putting this finding together with the results of the previous sections, we are finally

able to sketch a phase diagram for the model in the ρ−b plane. This is shown in figure 15.

8. Conclusion

In conclusion, the hopping dynamics invoking ‘backchip’ processes that we have studied

in this work give rise to a strong condensate phase in which the condensate and its short

tail of trailing particles move together through the system. This phase is present at all

densities ρ when the parameter b in the hopping rate u(n) = 1 + b/nα is greater than

a critical value bc, which appears to be independent of the system size. Numerically we

have measured bc = 0.5 for the case α = 1. This is in fairly good agreement with the
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Figure 15: A sketch of the phase diagram for our system. Above the value bc, the system

exhibits a strong condensate phase. Below bc and for low densities the system exists

in a fluid phase with a homogeneous distribution of mass throughout. Above a certain

value ρc, the system exhibits the characteristics of a standard condensate phase. Note

however that this critical density diverges as L→∞.

value bc ' 0.62 found using the condensate frame analysis of section 4. We classify the

transition as being mixed order as it exhibits a discontinuity in the order parameter σ,

which is indicative of a 1st order phase transition, as well as a diverging length scale,

in this case the decay length of the tail of the condensate, which is a characteristic of a

2nd order transition.

Our results also show a number of additional interesting features. First, the

condensate and its tail comprise a coherent object that moves throughout the system,

and the stability of the condensate lies in the dynamics of the vanishingly small fraction

of particles in the tail. Once a few particles are left behind through backchipping

they quickly rejoin the condensate. This picture is substantiated by the theory of

section 4 which demonstrates that the tail of a moving strong condensate necessarily

decays quickly to zero for b greater than a critical value bc. Second, by extending our

analysis to values of α 6= 1 in (1), we find that the strong condensation phenomenon is

generically present for any α > 0. As illustrated in figure 11 the function bc(α) increases

monotonically from bc(0) = 1/3 and asymptotically approaches 1 as α→∞. We recall

that in the standard ZRP, condensation is present only for α < 1. Simulation results

confirm the existence of the strong condensate for α > 1, although the approximate

theory appears to underestimate the transition point.

Below the critical bc, we see behaviour more reminiscent of the standard ZRP, in

which there is an apparent transition from a fluid phase at low density, to a standard
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condensate phase above a critical value of ρ. However we see numerically that this

critical value ρc ∼ ln(L) as L→∞, in a similar way to that observed in [26]. Here, the

condensate is not a true feature of the system in the large L limit, but rather a finite

size effect. This suggests that systems in which aggregates diffuse and chip, the most

relevant quantity in determining whether condensation occurs is the rate of decay of the

chip rate with the aggregate size.

To understand the interaction between these dynamical processes better, it would

be interesting to study a generalisation of this model where n−a particles hop in unison

for n > a and a single particle hops for n ≤ a. We have shown here that in the case a = 1

a strong condensate forms and travels through the system, with its structure maintained

by the effects of hops from its tail. On the other hand the case a = N yields the zero

range process, where only one particle may hop at a time and a condensation occurs for

sufficiently large choice of b, but with a static condensate. It would be interesting then

to ask how a should scale with N for one to observe a moving, as opposed to static,

condensate and at what speed it would travel.
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