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OGSA-DAI 

• Web Services interface to databases 

• An extensible framework for data access and integration 

• Expose heterogeneous data resources to a grid through web services 

– Relational 

– XML 

– File based 

– User provided (extensibility point) 

• Interact with data resources 

– Queries and updates 

– Data transformation / compression 

– Data delivery 

– Application-specific functionality 

• A base for higher-level services 

– Federation, mining, visualisation,… 
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Common usage patterns 

• Have selected two typical use patterns 

– Use these as a basis for improving the performance 

 

• First use pattern: SQL query  

– Client runs an SQL query on a remote OGSA-DAI service 

– OGSA-DAI service returns the query results to the client 

– Results are contained in an XML document 

 

• Second use pattern: User accesses binary data 

– Binary data could be files or BLOBs in a database 

– Data is exposed by an OGSA-DAI service 

– Encoded data is delivered to a client in an XML document 
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First use pattern: Executing an SQL Query 
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Improvement 1: Faster Conversion 

Bottleneck: 

• Conversion between ResultSet (object) and WebRowSet (XML) 

– Large number of String to bytes conversions 

 

Improvements: 

• Restricted conversion framework to text based formats only 

– Data represented internally as char sequence 

 

• Improved the performance of XML production 

– To produce valid documents special XML characters need to be escaped 

– Previously used regular expressions Java API to do this 

– For large number of rows this process becomes very expensive 

– Have implemented a much more efficient parser to perform this task 
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Bottleneck 

• WebRowSet format is only used for intermediate delivery 

– Adds significant amount of mark-up to describe data 

– More data hence it affects message transfer times 

– XML is still expensive to parse 

Improvement 

• Instead use CSV (Comma Separated Values) as an alternative 

– More lightweight 

– Easier to parse document format 

• For example to represent one row: 

  CSV (# of columns*3) XML (# of columns*27)+25 

   “one”,”two”\n  <currentRow> 

     <columnValue>one</columnValue> 

     <columnValue>two</columnValue></currentRow> 

Drawbacks 

• No metadata (optional line with column names) 

– Could be delivered in separate stream as WebRowSet metadata 

• CSV is not standardised - used consistently within OGSA-DAI 

Improvement 2: Change in Data Format 
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Experimental Setup 

• Container 

–Apache Tomcat 5.0.28 

• Globus 

–Globus Toolkit WS-Core 4.0.1 

• OGSA-DAI 

–OGSA-DAI WSRF v2.1 

–OGSA-DAI WSRF v2.2 

• Machines 

–Server 

–Sun Fire V240 with dual 1.5GHz UltraSPARC IIIi and 8GB RAM 

–Solaris 10 and J2SE 1.4.2_05 

–Client 

–Dual 2.4GHz Intel Xeon system with 

–RedHat 9 Linux and J2SE 1.4.2_08 

http://tomcat.apache.org/
http://www.ogsadai.org.uk/index.php
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Experimental setup (cont.) 

JVM flags 

• -server -Xms256m -Xmx256m 

Network 

• LAN network packets traversed two routers.  

– Average network bandwidth 94 Mbits/s  

– Average round-trip latency <1 ms 

Database 

• MySQL 5.0.15 

– MySQL Connector/J ver. 3.1.10 

– Mean table row length (text) used in experiments was 66 bytes 

 

• JVMs were warmed up before taking measurements.  

• Results reported are the average of these runs 

• Error bars indicating +/- standard deviation  
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Performance: Client + Server 
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Performance: Client + Server 
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Server side time split 

• Used Apache Axis 
org.apache.axis.TIME log category 

• Records the time to execute incoming 

message 

• Axis splits time into preamble, invoke, post  

and send phases 

• In our plots 

 

 Axis Parsing          = preamble 

OGSA-DAI Server = invoke 

Message Transfer = post + send 
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Performance: Server side details 
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Use Pattern 2: Transferring Binary Data 
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Improvement 3 

Bottleneck 

• Binary data needs to be Base64 encoded  

– Necessary to be included in a SOAP message 

• Encoding and decoding requires additional computation 

• The size of a data to be transferred grows by approximately 35%. 

– Base64 encoding uses 4 ASCII characters to represent 3 bytes 

 

Improvement 

• Both concerns addressed by using SOAP messages with attachments  

– No special encoding needed for binary data attached to a SOAP message 

 

Drawback 

• SOAP messages with attachments is not a standard feature of all SOAP 
engines 

• This may affect interoperability 



7-May-15 15 

Performance: Client + Server 
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Performance: Client + Server 
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Performance: Server side details 
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Delivering SQL Results as attachments 

• Would expect to see additional improvement when delivering 

SQL Query results in attachments 

– SOAP message is smaller and easier to parse 

 

• Last experiments tested if we gain performance when we 

– Transfer WebRowSet documents as SOAP attachments 

– Transfer CSV documents as SOAP attachments 

 

• In these experiments we test combined impact of all 

introduced improvements 
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Performance: Client + Server 
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Performance: Client + Server 
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Conclusions 

• Status summary of an ongoing process to improve the 

OGSA-DAI performance 

• Have analysed two typical use patterns: 

– These were profiled 

– Results used to implement a set of performance improvements 

• Benefit demonstrated by comparing the performance of: 

– Current OGSA-DAI release (WSRF 2.2) 

– Previous OGSA-DAI release (WSRF 2.1) 

• For the SQL use case reduced execution time by 65% by: 

– Optimising conversion routines 

– Using CSV format instead of WebRowSet 

• SOAP with attachments gave a 75% improvement (for 8MB)  

– Significant reduction in the time needed to deliver binary data 
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General lessons learned 

• Start by optimising conversion routines in your code 
– Especially if these are used often  

• Profile your client and server code 
– Java profilers using Java Tool Interface (J2SE 5.0) are very powerful 

– Profiler manufactures often offer free licenses to open source projects 

– Results may surprise you!! 

• Avoid using regular expressions for replacing characters 
– When called iteratively, accumulated cost may be significant 

– Writing dedicated parsers is usually easy and benefits are great 

• Do not feel forced to use XML document formats 
– XML versatile but can be expensive in terms of space and processing 

– Use more lightweight formats when you do not need versatility 

• Use SOAP with attachments to transfer binary data 
– And other large documents 
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