
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type Inference for ZFH
Citation for published version:
Obua, S, Fleuriot, J, Scott, P & Aspinall, D 2015, Type Inference for ZFH. in Intelligent Computer
Mathematics : International Conference, CICM 2015, Washington, DC, USA, July 13-17, 2015,
Proceedings. Lecture Notes in Computer Science, vol. 9150, Springer International Publishing, pp. 87-101,
Conference on Intelligent Computer Mathematics, Washington, United States, 13/07/15. DOI: 10.1007/978-
3-319-20615-8_6

Digital Object Identifier (DOI):
10.1007/978-3-319-20615-8_6

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Intelligent Computer Mathematics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43713428?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-20615-8_6
https://www.research.ed.ac.uk/portal/en/publications/type-inference-for-zfh(5b441e85-bb4b-4388-83d9-29ae58bb3023).html


Type Inference for ZFH

Steven Obua, Jacques Fleuriot, Phil Scott, and David Aspinall

School of Informatics, Edinburgh University
10 Crichton Street, EH8 9AB Edinburgh, Scotland, UK

www.proofpeer.net

Abstract. ZFH stands for Zermelo-Fraenkel set theory implemented in
higher-order logic. It is a descendant of Agerholm’s and Gordon’s HOL-
ST but does not allow the use of type variables nor the definition of new
types. We first motivate why we are using ZFH for ProofPeer, the collab-
orative theorem proving system we are building. We then focus on the
type inference algorithm we have developed for ZFH. In ZFH’s syntax,
function application, written as juxtaposition, is overloaded to be either
set-theoretic or higher-order. Our algorithm extends Hindley-Milner type
inference to cope with this particular overloading of function application.
We describe the algorithm, prove its correctness, and discuss why prior
general approaches to type inference in the presence of coercions or over-
loading do not cover our particular case.

1 Introduction

The ProofPeer project [1, 2] is our attempt to combine interactive theorem prov-
ing (ITP) and the modern web, making ITP technology more accessible than it
has been. We will first explain why we have chosen ZFH as the logic of ProofPeer,
and then introduce the problem this paper solves.

1.1 Why ZFH?

Despite a few prominent counter examples [3, 4] it is particularly astonishing
how few mathematicians are aware of or even use ITP systems. We believe
that one reason for this is that traditionally the development and application
of ITP technology has been driven by computer scientists, not mathematicians.
Major successful ITP systems like Isabelle and Coq are based on variants of type
theory, while most mathematicians feel more familiar with set theory. Simple
mathematical standards like point set topology cannot be formalized in either
system without the result feeling alien to most mathematicians.

We have therefore decided that the logic used in the ProofPeer system should
be based on Zermelo-Fraenkel set theory which is more or less familiar to all
mathematicians. At the same time we want to build on the considerable techni-
cal advances that contemporary ITP systems have achieved. Therefore we em-
bed set theory within simply-typed classical higher-order logic by introducing
a special type U which forms the universe of Zermelo-Fraenkel sets, additional
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constants like the element-of operator ∈: U → U → P, and additional axioms
describing the properties of these new constants. The symbol P denotes the type
of propositions / booleans, and for any two types α and β we can form the type
of higher-order functions α→ β. For a full list of all new constants and axioms
see theory root [9] in the ProofPeer system.

Because technically, all we have done is add an additional type together with
a few new constants and axioms, all of the machinery present in systems like
HOL-4 or Isabelle/HOL can be ported to work in our system. For example,
Isabelle/HOL’s facilities for defining partial and nested recursive functions [8]
could be translated to ProofPeer.

This approach was first advocated by Agerholm and Gordon [5]. They called
the resulting logic HOL-ST. A related approach is pursued by Isabelle/ZF which
embeds set theory within its intuitionistic higher-order meta logic [7]. The Is-
abelle/ZF approach seems more involved than our approach: it begins at base
with intuitionistic higher-order logic, over which first-order classical logic is in-
troduced, which in turn, is used to formalise set theory. We instead skip the
middle step and base set theory directly on classical higher-order logic, obtain-
ing a more powerful logic by simpler means. This is just how HOL-ST works as
well, but that opens up a new dilemma: HOL-ST is so powerful that often it is
not clear how concepts should best be formalised. Take for example the natural
numbers: should they be formalised as a type, or should they be formalised as a
set, i.e. as an element of U ? Or take lists: should they be formalised as a type
α list together with polymorphic operations like cons : α → α list → α list, or
should they be formalised as a constant list : U → U such that list α denotes
the set of lists over elements of α? Note how in the latter case we can extend
our discussion to the class of all (heterogeneous) lists by defining

isList l = ∃α. l ∈ list α

The type of cons would now be U → U → U and for reasonable definitions of
list we could prove theorems like

∀l. isList l→ ∀x. isList(cons x l)
∀l α. l ∈ list α→ ∀x ∈ α. cons x l ∈ list α

We want people to perceive ProofPeer as a system based on set theory; the only
reason we also employ simply-typed higher-order logic is because of its technical
convenience and simplicity. Therefore for us there is an easy and coherent way out
of the dilemma that HOL-ST has: we forbid the introduction of new types besides
the ones we already described, and we furthermore do not use type variables as
part of our internal term representation. The only polymorphic constants in our
logic are equality (=), universal quantification (∀) and existential quantification
(∃), and we do not provide any means for defining additional ones.

Abstaining from polymorphic terms in favour of monomorphic ones has a fur-
ther advantage noticed already by Gordon [6, Section 3]: We can treat theories as
simple (albeit large) theorems. The axioms of the theory become the antecedents
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of the theorem, and constants declared in the theory can be treated as univer-
sally quantified variables. This doesn’t work in polymorphic simply-typed higher
order logic because polymorphic constants can appear with different types in the
theory but variables must appear always with the same type in the theorem.

We choose the name ZFH for the logical system we obtain by embedding set
theory into classical higher-order logic in the way outlined above. ZFH represents
the same logic as HOL-ST minus type variables and minus a mechanism for
defining custom types. In particular this means that ZFH and HOL-ST are
equiconsistent, and that both HOL and ZFC can be formalized and proven to
be consistent within ZFH.

1.2 Set-theoretic vs. Higher-order Function Application

There are two kinds of function application in ZFH:

– application of a higher-order function f : α→ β to its argument x : α, and
– application of a set-theoretic function f : U to its argument x : U .

In ZFH, set-theoretic functions are governed by two properties:

∀Xf. fun Xf = {(x, f x) | x ∈ X}
∀Xf. ∀x ∈ X. apply (fun X f) x = f x

Here fun : U → (U → U ) → U takes a domain X : U and a higher-order
function f : U → U as its arguments and produces the corresponding set-
theoretic function on that domain. Set-theoretic functions created thus can then
be applied via apply : U → U → U .

In the actual ProofPeer theory [9], the second property is written like this:

∀Xf. ∀x ∈ X. fun X f x = f x

Instead of explicitly mentioning apply we write application of a set-theoretic
function in exactly the same way as application of a higher-order function! This
is possible because in the above fun X f is a set, which leads type inference to
conclude that set-theoretic function application must be meant, not higher-order
function application.

In general, the situation is not so clear-cut. Consider the following term:

∀x. ∃f. f x = x

Informally the above says that every x is the fixpoint of some function f . But
which types should we assign to f and x? There are infinitely many valid ones:

1. f : U and x : U
2. f : P→ P and x : P
3. f : U → U and x : U
4. f : (U → U )→ (U → U ) and x : U → U
5. f : (P→ U )→ (P→ U ) and x : P→ U
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. . . and so on

Even if we had type variables at our disposal to formulate the typing (which we
don’t) there would still be two equally valid typings to choose from:

1. f : U and x : U
2. f : α→ α and x : α

Which one should we pick?
In the next section we will present a type inference algorithm for ZFH with

the following properties:

– If there is a valid typing at all, the algorithm will find one, and will otherwise
fail. In particular, all function applications will be resolved to be either set-
theoretic or higher-order.

– Preference is given to the type U over all other types, and to set-theoretic
function application over higher-order function application.

Note that the second property is a desirable one in our case, as this again em-
phasises the set theory focus of ProofPeer.

In our above example the algorithm yields then the typing f : U and x : U .

2 The Type Inference Algorithm

We first introduce the types and terms our algorithm operates on. Then we
introduce the type equations which guide the algorithm, and recall how to solve
type equations. After highlighting the basic difficulties of the problem we state
the algorithm. Finally we prove that the algorithm terminates, that it is sound,
and in what sense it is complete.

2.1 Types and Terms

Although we do not allow type variables as part of proper ZFH terms, we do
allow them for type inference purposes. In particular a pretype τ is either the
universal type U , the propositional/boolean type P, a function type τ1 → τ2, or
a type variable α:

τ ::= U | P | τ1 → τ2 | α.
A type is a pretype which does not contain any type variables. A preterm t
is either a constant c, a polymorphic constant p[τ ], an explicit typing t : τ ,
a higher-order function x : τ1 7→ t : τ2, a variable x, a higher-order function
application t1 �H t2 : τ , a set-theoretic function application t1 �ZF t2 : τ , or a
function application t1 �? t2 : τ where it is unspecified if it is of higher-order or
set-theoretic kind:

t ::= c | p[τ ] | t : τ | x : τ1 7→ t : τ2 | x | t1 �H t2 : τ | t1 �ZF t2 : τ | t1 �? t2 : τ.

A term is a preterm which does not contain any type variables, nor any function
applications of unspecified kind.
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Example 1. Our introductory example ∀x. ∃f. fx = x corresponds to the preterm:

∀[α1] �H (x : α2 7→ (∃[α3] �H
(f : α4 7→ ((= [α5] �H (f �? x : α6) : α7) �H x : α8) : α9) : α10) : α11) : α12.

Note that everywhere our preterm format requires a type, we simply used a fresh
type variable.

2.2 Type Equations

A substitution σ associates every type variable α with a pretype σα. Applying
a substitution to a pretype τ means replacing every type variable in τ by its
associated pretype (fig. 1), and applying a substitution to a preterm t means
applying the substitution to every pretype in t (fig. 2).

Fig. 1. Applying a substitution σ to a pretype

σ(U ) = U

σ(P) = P
σ(τ1 → τ2) = σ(τ1)→ σ(τ2)

σ(α) = σα

Fig. 2. Applying a substitution σ to a preterm

σ(c) = c

σ(p[τ ]) = p[σ(τ)]

σ(t : τ) = σ(t) : σ(τ)

σ(x : τ1 7→ t : τ2) = x : σ(τ1) 7→ σ(t) : σ(τ2)

σ(x) = x

σ(t1 �H t2 : τ) = σ(t1) �H σ(t2) : σ(τ)

σ(t1 �ZF t2 : τ) = σ(t1) �ZF σ(t2) : σ(τ)

σ(t1 �? t2 : τ) = σ(t1) �? σ(t2) : σ(τ)

With each constant c a fixed type C(c) is associated, e.g. C(apply) = U → U →
U . Assuming also a partial map V from variables to pretypes we can associate
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with each preterm t its type ΓC,V(t) and a set of equations between pretypes
EC,V(t) as shown in Fig. 3. In the following we will assume an implicitly given C
and define

E(t) = EC,∅(t)

where ∅ in this context denotes the empty map.

Fig. 3. Definition of ΓC,V and EC,V

ΓC,V(c) = C(c)
EC,V(c) = ∅

ΓC,V(p[τ ]) =

{
(τ → P)→ P if p ∈ {∀, ∃}
τ → τ → P if p ∈ {=}

EC,V(p[τ ]) = ∅
ΓC,V(t : τ) = τ

EC,V(t : τ) = EC,V(t) ∪ {ΓC,V(t) ≡ τ}
ΓC,V(x : τ1 7→ t : τ2) = τ1 → τ2

EC,V(x : τ1 7→ t : τ2) = EC,W(t) ∪ {ΓC,W(t) ≡ τ2} where W = V[x := τ1]

ΓC,V(x) =

{
V(x) if V is defined at x

U otherwise

EC,V(x) =

{
∅ if V is defined at x

{U ≡ P} otherwise

ΓC,V(t1 �H t2 : τ) = τ

EC,V(t1 �H t2 : τ) = EC,V(t1) ∪ EC,V(t2) ∪ {ΓC,V(t1) ≡ ΓC,V(t2)→ τ}
ΓC,V(t1 �ZF t2 : τ) = τ

EC,V(t1 �ZF t2 : τ) = EC,V(t1) ∪ EC,V(t2) ∪ {ΓC,V(t1) ≡ U , ΓC,V(t2) ≡ U , τ ≡ U }
ΓC,V(t1 �? t2 : τ) = τ

EC,V(t1 �? t2 : τ) = EC,V(t1) ∪ EC,V(t2)

A substitution σ is a unifier of a set E of equations of pretypes iff for all
equations l ≡ r ∈ E the left hand side and the right hand side of the equation
become identical after substitution, i.e. σ(l) = σ(r) holds. We call E solvable if
it has a unifier. Defining σ(E) = {σ(l) ≡ σ(r) | l ≡ r ∈ E} allows the following
rephrasing: σ is a unifier of E iff σ(E) is a set of identities.

Substitutions can be composed. The composition δ ◦ σ of a substitution σ
with a substitution δ is defined via

(δ ◦ σ)α = δ(σα).
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A unifier σ1 is called more general than a unifier σ2, in symbols σ1 ≥ σ2, iff there
is a substitution δ such that σ2 = δ ◦ σ1.

Lemma 1. If E is solvable then it has an idempotent most general unifier mguE ,
i.e. the following two properties hold for mguE :

1. mguE ≥ σ for any unifier σ of E, and
2. mguE ◦mguE = mguE .

Proof. See [10, section 4.5]. ut

If E(t) is solvable for a given preterm t, then we define

S(t) = mguE(t)(t).

Note that S(t) is unique up to a renaming of type variables. Computation of
S(t) is known as Hindley-Milner type inference [11].

Example 2. Given the preterm t from Example 1, the type equations E(t) are:

(α1 → P)→ P ≡ (α2 → α11)→ α12

α10 ≡ α11

(α3 → P)→ P ≡ (α4 → α9)→ α10

α8 ≡ α9

α7 ≡ α2 → α8

α5 → α5 → P ≡ α6 → α7

A most general unifier for these equations of pretypes is given by

mguE(t)(αi) =


α if i ∈ {1, 2, 5, 6}
β if i ∈ {3, 4}
α→ P if i = 7

P if i ∈ {8, 9, 10, 11, 12}

and therefore

S(t) = ∀[α] �H (x : α 7→ (∃[β] �H
(f : β 7→ ((= [α] �H (f �? x : α) : α→ P) �H x : P) : P) : P) : P) : P.

2.3 A First Attempt

An obvious first attempt to solve our type inference problem for a given preterm
t would be to single out all n occurrences of �? in t and to form all 2n possibilities
ti by replacing �? with either �H or �ZF.

If none of the sets of type equations E(ti) is solvable, type inference fails.
Otherwise let tj denote those ti for which E(ti) is solvable. This gives us up to
2n almost-solutions sj where

sj = S(tj).
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Because the sj possibly contain type variables, but proper ZFH terms may not
contain type variables, we need to somehow eliminate all type variables from the
sj . One rather arbitrary way of doing so would be to replace all type variables
by U , i.e. to form

rj = U(sj)

where U is the substitution which replaces all type variables by U :

Uα = U for all type variables α.

This leaves us finally with up to 2n possible solutions rj to our type inference
problem. Computing all of these solutions is not practical for obvious perfor-
mance reasons; furthermore, even if we did compute all of them, it is not clear
which one among them we should pick as the result of the type inference.

2.4 The Algorithm

In our above attempt at a type inference algorithm we computed S(ti) only for
preterms ti which did not contain any occurrences of �?. This was an arbitrary
choice we made and it did not pay off.

Instead, given a preterm t which may still contain occurrences of �?, let us
directly compute t0 = S(t) if E(t) is solvable. If t contained any occurrences of
�?, then so will t0, but we now might have more type information available to
decide whether an occurrence of �? should really be replaced by �H or �ZF!

To exploit type information present in a preterm t we define a function D(t)
which is able to decide in certain situations whether an occurrence of �? in t
should be converted into �H or into �ZF (fig. 4). Analogously to the definition of
E(t) in terms of EC,V(t) we define D(t) in terms of DC,V(t). The main work in D

Fig. 4. Definition of D

D(t) = DC,∅(t)

DC,V(c) = c

DC,V(p[τ ]) = p[τ ]

DC,V(t : τ) = DC,V(t) : τ

DC,V(x : τ1 7→ b : τ2) = x : τ1 7→ DC,W(b) : τ2 where W = V[x := τ1]

DC,V(x) = x

DC,V(t1 �H t2 : τ) = DC,V(t1) �H DC,V(t2) : τ

DC,V(t1 �ZF t2 : τ) = DC,V(t1) �ZF DC,V(t2) : τ

DC,V(t1 �? t2 : τ) = DC,V(t1) � (ΓC,V(t1), ΓC,V(t2), τ) DC,V(t2) : τ
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is done by the function

�(τ1, τ2, τ3) ∈ {�H, �ZF, �?}

which takes three pretypes τ1, τ2, τ3 as arguments and tries to determine which
kind of function application fx must be when the type of f is known to be
τ1, the type of x is known to be τ2 and the type of fx is known to be τ3. If
any of the τi cannot be the type U , in symbols ¬U (τi), then we know that
fx cannot be set-theoretic function application and therefore can only be (if
any at all) higher-order function application. On the other hand, if the type of
τ1 cannot be a function type, in symbols ¬→(τ1), then fx cannot be higher-
order function application and can therefore be only (if any at all) set-theoretic
function application (fig. 5).

Fig. 5. Definition of �(τ1, τ2, τ3)

¬U (τ) =


true if τ = P
true if τ = ω1 → ω2 for some pretypes ω1 and ω2

false otherwise

¬→(τ) =


true if τ = P
true if τ = U

false otherwise

�(τ1, τ2, τ3) =


�H if ¬U (τ1) or ¬U (τ2) or ¬U (τ3)

�ZF else if ¬→(τ1)

�? otherwise

We have now gathered all the pieces to formulate our type inference algorithm
as shown in Fig. 6.

Example 3. Continuing Example 2 we compute now TypeInfer(t). Having already
computed s = S(t) we now need to compute D(s). There is only one occurrence
of �? in s and the corresponding invocation of � yields

�(β, α, α) = �?

and thus D(s) = s. This means that no recursive call to TypeInfer is necessary
and therefore

TypeInfer(t) = D(U(s)) = ∀[U ] �H (x : U 7→ (∃[U ] �H
(f : U 7→ ((= [U ] �H (f �ZF x : U ) : U → P) �H x : P) : P) : P) : P) : P.
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Fig. 6. The Type Inference Algorithm

TypeInfer(t) =
if E(t) is not solvable then

fail
else

s = S(t)
d = D(s)
if s = d then
D(U(d))

else
TypeInfer(d)

end
end

2.5 Termination

Let us first show that our algorithm actually terminates. There are only finitely
many occurrences of �? in a preterm t, let us denote the number of such occur-
rences by N(t). For two preterms s and t let us write s v t if s arises from t
by replacing some (or none) of the occurrences of �? in t by either �H or �ZF.
Obviously s v t together with s 6= t implies N(s) < N(t).

Lemma 2. TypeInfer(t) terminates for every preterm t.

Proof. Given some preterm s, D(s) v s holds. Therefore s 6= D(s) implies

N(D(s)) < N(s).

We also know that N(t) = N(S(t)) because S only possibly instantiates type
variables and leaves occurrences of �? unchanged. Together this means that for
each recursive call to TypeInfer its argument strictly decreases as measured by
N and therefore the algorithm must terminate. ut

2.6 Soundness and Completeness

Given two preterms t and t′ we say that t′ is an instance of t, in symbols

t′ ≤ t

iff there is a substitution σ such that t′ v σ(t).
What does it mean for our type inference algorithm to be sound? Given a

preterm t as input it should output a preterm t′ such that

1. t′ is a term,
2. t′ ≤ t, and
3. E(t′) is solvable.
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If there is no such t′ the algorithm should fail. If there are several possible
candidates for t′ it would also be good to have a simple and sensible criterion
for which of the candidates the algorithm will pick. Our algorithm fulfills such a
criterion: it will pick the unique candidate t′ which is minimal with respect to the
relation � which is first defined on types (fig. 7) and then lifted to terms (fig. 8).
The reflexive, transitive and antisymmetric relation � expresses formally what
we referred to earlier as “U is preferred over any other type, and set-theoretic
function application is preferred over higher-order function application”.

Fig. 7. Definition of � for Types

P � P
τ is a type

U � τ
τ1 � ω1 and τ2 � ω2

τ1 → τ2 � ω1 → ω2

Fig. 8. Definition of � for Terms

c � c x � x
τ1 � τ2

p[τ1] � p[τ2]

t1 � t2 and τ1 � τ2
t1 : τ1 � t2 : τ2

τ1 � τ2 and t1 � t2 and ω1 � ω2

x : τ1 7→ t1 : ω1 � x : τ2 7→ t2 : ω2

t1 � s1 and t2 � s2 and τ1 � τ2
t1 �H t2 : τ1 � s1 �H s2 : τ2

t1 � s1 and t2 � s2 and τ1 � τ2 and � ∈ {�H, �ZF}
t1 �ZF t2 : τ1 � s1 � s2 : τ2

Lemma 3. Let σ be a substitution and t a preterm. Then E(σ(t)) = σ(E(t)).

Proof. Immediate from the definitions. ut

Lemma 4. Let t be a preterm such that E(t) is solvable. Then E(S(t)) is a set
of identities.

Proof. E(S(t)) = E(mguE(t)(t)) = mguE(t)(E(t)). ut

Lemma 5. Let t be a preterm such that E(t) is solvable and S(t) = t. Then
mguE(t) = id and E(t) is a set of identities.

Proof. id(E(t)) = E(t) = E(S(t)) ut
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Lemma 6. Let s and t be preterms such that s v t. Then E(t) ⊆ E(s). In
particular, if E(s) is solvable then so is E(t).

Proof. Immediate from the definitions. ut

Lemma 7. If t is a preterm without any type variables then D(t) is a term.

Proof. If τ1 does not contain any type variables then either ¬U (τ1) or ¬→(τ1)
is true, and therefore �(τ1, τ2, τ3) ∈ {�H, �ZF}. ut

Lemma 8. If t is a preterm without any type variables, and t′ is a term such
that E(t′) is solvable and t′ v t then t′ = D(t).

Proof. The terms t′ and D(t) could only possibly differ in places where t has an
occurrence of �?. In those places, choosing differently from D would make the
resulting equations unsolvable; however, E(t′) is solvable. ut

Lemma 9. For any preterm t and any substitution σ

D(σ(t)) v σ(D(t)).

Proof. This follows from the fact that �(τ1, τ2, τ3) ∈ {�H, �ZF} implies

�(σ(τ1), σ(τ2), σ(τ3)) = �(τ1, τ2, τ3).

ut

Lemma 10. Let t be a preterm and t′ a term such that t′ ≤ t and E(t′) is
solvable. Then E(t) is solvable and both t′ ≤ S(t) and t′ ≤ D(t) hold.

Proof. Because t′ ≤ t there exist σ and t′′ such that t′′ = σ(t) and t′ v t′′.
Because E(t′) is solvable so is E(t′′). Because t′ is a term, neither t′ nor t′′

contain any type variables and thus S(t′′) = t′′ which implies that E(t′′) =
E(σ(t)) = σ(E(t)) are all sets of identities, and therefore σ is a unifier of E(t).
This means there is a substitution δ such that σ = δ ◦ mguE(t) which implies
t′′ = σ(t) = δ(S(t)). Thus t′ ≤ S(t). Furthermore,

t′ = D(t′′) = D(σ(t)) v σ(D(t)),

and thus t′ ≤ D(t). ut

Lemma 11. TypeInfer is sound. It is also complete in the sense that it will
compute the unique �-minimal solution if there is any solution at all.

Proof. Given a preterm t, TypeInfer will check if E(t) is solvable.
If it is not, it will fail; this is correct, because then there can be no solution

t′ with t′ ≤ t and E(t′) solvable because otherwise E(t) would be solvable as well
because of Lemma 10.

If on the other hand E(t) is solvable it will either recursively call itself with
argument d where d = D(S(t)) or perform a final calculation and return the
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result. In the case of a recursive call, we know because of Lemma 10 that every
solution t′ of t is also a solution of d.

So let us look at the final calculation now. We know that d = s holds where
s = S(t). In other words, d is a fixpoint of D which means that

�(τ1, τ2, τ3) = �?

holds for all invocations of � during the computation of D(d) which implies
that all of τ1, τ2 and τ3 are either equal to U or equal to a type variable. The
substitution U will therefore make all τi in those invocations equal to U and
thus the effect of applying D to U(d) is to switch all occurrences of �? to �ZF. In
particular, E(D(U(d))) is solvable because E(d) is a set of identities and

E(D(U(d))) = U(E(d)) ∪ {U ≡ U }.

That means that t0 is a solution where t0 = D(U(d)). Furthermore t0 is minimal
with respect to � because for any solution t′ we know t′ ≤ d and because for
any term a and any preterm b such that a ≤ b it follows that DZF(U(b)) � a
where DZF replaces all occurrences of �? in its argument by �ZF. Because of the
antisymmetry of �, minimality implies uniqueness. ut

2.7 Examples

We present three more examples of applying TypeInfer. We will use abbreviated
notations for preterms in the following.

Example 4. Let t be the preterm ∀x : α. ∃f : β. f �? x : γ. Then

S(t) = ∀x : α. ∃f : β. f �? x : P.

Because of �(β, α,P) = �H we know

t′ = D(S(t)) = ∀x : α. ∃f : β. f �H x : P 6= S(t)

Computing TypeInfer(t′) yields first S(t′) = ∀x : α. ∃f : α→ P. f �H x and then

TypeInfer(t) = TypeInfer(t′) = U(S(t′)) = ∀x : U . ∃f : U → P. f �H x.

Example 5. Let t be a : α 7→ b : β 7→ c : γ 7→ d : δ 7→ a �? b �? c �? d. Then

t′ = D(S(t)) = a : α 7→ b : β 7→ c : γ 7→ d : δ 7→ a �? b �? c �? d
TypeInfer(t) = D(U(t′)) = a : U 7→ b : U 7→ c : U 7→ d : U 7→ a �ZF b �ZF c �ZF d

Example 6. Let us modify the previous example and infer the type of

a : α 7→ b : β 7→ c : γ 7→ d : δ 7→ a �? b �? c �? d ∧ d.

This time the algorithm needs three recursive calls and yields finally

a : U → U → P→ P 7→ b : U 7→ c : U 7→ d : P 7→ a �H b �H c �H d ∧ d

This example can be generalized to produce for any n an example with n occur-
rences of �? such that TypeInfer needs n recursive calls.
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3 Related Work

In HOL-ST [5], set-theoretic and higher-order function application have different
syntax; in particular, higher-order function application is written fx and set-
theoretic function application is denoted by f � x. Because HOL-ST has type
variables and capabilities for defining new types, the type U is just one type
besides many others; our type inference algorithm does not yield a desirable
result in such a setting. Of course, as HOL-ST is a strict superset of ZFH, one
could work in it as one works in ZFH; our type inference algorithm can be
directly translated to HOL-ST to support such a scenario.

Isabelle/ZF [7] also uses two different notations, fx for higher-order and f ‘x
for set-theoretic function application. Although Isabelle/ZF is embedded in poly-
morphic intuitionistic higher-order logic it is used in an essentially monomorphic
way using an identical type system to ZFH. Isabelle has a flexible mechanism for
syntax extension by adding context-free grammar rules so it should be possible
to introduce syntax to write set-theoretic function application via juxtaposition
as well. Type information is used in Isabelle to disambiguate between several
possible parse trees. Using this built-in mechanism would lead to a situation
similar to what we described in Section 2.3: whenever there are multiple possi-
ble typings parsing would fail. But in principle it should be possible to write a
system-level Isabelle extension which implements our type inference algorithm
for Isabelle/ZF.

Our operator for set-theoretic function application apply : U → U → U
could be viewed as a coercion from U to U → U . There has been previous work
with regard to the general problem of extending Hindley-Milner type inference
in the presence of coercions. In [12] coercions between types which only differ in
their base types but not in their type constructors are considered; because U
does not contain the type constructor → but U → U does, their work is not
applicable to our case. In [13] more general coercions are considered but their
algorithm has the property that no coercions are inserted if Hindley-Milner type
inference alone already yields a valid typing; this is not what we would like in
our setting as this property means that their algorithm would choose the typing
f : α → α and x : α over the typing f : U and x : U in our introductory
example. And then there would still be the question of how that polymorphic
type should be converted into a monomorphic one.

Another way of looking at our scenario is from an overloading point of view
where the generic operator �? of type α → β → γ has two different instances
�ZF : U → U → U and �H : (α → β) → α → β. But typical algorithms which
extend Hindley-Milner to take overloading into account like in [14] compute a
principal type of which all other possible valid typings are instances. This is not
what our algorithm does; instead we minimize a preference relation � which is
different from the is-an-instance-of relation a principal type maximizes.
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4 Conclusion

We have implemented TypeInfer as part of the implementation of ProofScript,
the proof language of ProofPeer. Combining the strengths of set theory with
the strengths of higher-order logic has always had a certain appeal to ITP re-
searchers. We believe that the answer has been staring into our faces for quite
some time now in the form of ZFH; all we had to do to arrive at ZFH was to
take HOL-ST and take away powers which HOL practitioneers take for granted
but which are of little use in the context of set theory. The existence of TypeInfer
which allows us to fuse the notations for higher-order function application and
set-theory function application into a single one because of the absence of those
powers supports our belief.
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