

Edinburgh Research Explorer

Accumulating bindings

Citation for published version:
Lindley, S 2009, Accumulating bindings. in 2009 Workshop on Normalization by Evaluation: August 15,
2009 Los Angeles, California .

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
2009 Workshop on Normalization by Evaluation

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43713409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/accumulating-bindings(7a950dfe-68be-424b-9fa4-f9169f004e00).html

Accumulating bindings

Sam Lindley
The University of Edinburgh

Sam.Lindley@ed.ac.uk

Abstract

We give a Haskell implementation of Filinski’s nor-
malisation by evaluation algorithm for the computational
lambda-calculus with sums. Taking advantage of extensions
to the GHC compiler, our implementation represents object
language types as Haskell types and ensures that type errors
are detected statically.

Following Filinski, the implementation is parameterised
over a residualising monad. The standard residualising
monad for sums is a continuation monad. Defunctionalising
the uses of the continuation monad we present the binding
tree monad as an alternative.

1 Introduction

Filinski [12] introduced normalisation by evaluation for
the computational lambda calculus, using layered mon-
ads [11] for formalising name generation and for collecting
bindings. He extended his algorithm to handle products and
sums, and outlined how to prove correctness using a Kripke
logical relation. Filinski’s algorithm is parameterised by a
residualising monad that is used for interpreting computa-
tions.

In the absence of sums he gives two concrete residual-
ising monads: one a continuation monad and the other an
accumulation monad over a list of bindings, henceforth the
binding list monad. He further shows how by using the in-
ternal monad of the metalanguage it is possible to give cor-
responding algorithms for type-directed partial evaluation.
If the metalanguage supports delimited continuations then
we can use shift and reset [9] in place of the continuation
monad. If the metalanguage supports state then we can use
a mutable list of bindings in place of the binding list monad.

Filinski demonstrated how to extend his algorithm to
support sums, but only in the case of the continuation
monad (or delimited continuations). He writes:

Products could be added to an accumulation-
based interpretation without too much trouble,

but sums apparently require the full power of ap-
plying a single continuation multiple times.

In my PhD thesis I observed [14, Chapter 4] that by gen-
eralising the accumulation-based interpretation from a list
to a tree that it is possible to use an accumulation-based
interpretation for normalising sums. There I focused on
an implementation using the state supported by the inter-
nal monad of the metalanguage. The implementation uses
Huet’s zipper [13] to navigate a mutable binding tree. Here
we present a Haskell implementation of normalisation by
evaluation for the computational lambda calculus using a
generalisation of Filinski’s binding list monad to incorpo-
rate a tree rather than a list of bindings.

(One motivation for using state instead of continuations
is performance. We might expect a state-based implementa-
tion to be faster than an alternative delimited continuation-
based implementation. For instance, Sumii and Kobay-
ishi [17] claim a 3-4 times speed-up for state-based versus
continuation-based let-insertion. The results of my exper-
iments [14] suggest that in the case of sums it depends on
the low-level implementation of the host language. For SM-
L/NJ, which uses a CPS-based intermediate representation,
the delimited continuations-based implementation outper-
formed the state-based implementation. The inefficiency of
the state-based implementation is in part due to it having
to duplicate computation (something which seems hard to
avoid if we have sums). However, for MLton, which does
not use a CPS-based intermediate representation, the state-
based implementation was faster. The implementation of
delimited continuations in MLton is an order of magnitude
slower than that of SML/NJ.)

The main contributions of this article are rather modest:

• A clean implementation of Filinski’s algorithm for nor-
malisation by evaluation for the compuational lambda
calculus with sums in Haskell.

• A generalisation of the binding list monad from bind-
ing lists to binding trees allowing it to be plugged into
Filinski’s algorithm.

2 Implementation

Danvy et al [10] give an implementation of normalisa-
tion by evaluation for call-by-name simply-typed lambda-
calculus in Haskell. Input terms are represented as
closed Haskell expressions. The type-indexed reify and
reflect functions are written as instances of a type class.
The output terms are represented as typed higher-order ab-
stract syntax terms in normal form. As the types and struc-
ture of normal forms are enforced by the Haskell type sys-
tem they can be sure that their algorithm: a) preserves typ-
ing and b) outputs normal forms.

In this section we use some similar ideas, but our goals
are slightly different. Our implementation is for call-by-
value computational lambda-calculus with sums. Our im-
plementation takes typed HOAS as input and outputs FOAS
terms in normal form. We use a GADT in conjunction with
a type class in order to explicitly represent Haskell types as
terms. Thus we can leverage the Haskell type checker to
statically check that the input term is well-typed and that its
type matches up with the input type explicitly supplied to
the normalisation function. As in the Danvy et al’s imple-
mentation, it is necessary to explicitly write the type of the
term being normalised somewhere, as the type Haskell will
infer will be polymorphic, whereas our object language is
monomorphic.

The full Haskell source is available at the follow-
ing URL: http://homepages.inf.ed.ac.uk/slindley/

nbe/nbe-sums.hs.
We begin by defining an algebraic datatype for repre-

senting computational lambda calculus terms extended with
sums.

type Var = String

data Exp = Var Var
| Lam Var Exp
| App Exp Exp
| Inl Exp
| Inr Exp
| Case Exp Var Exp Var Exp
| Let Var Exp Exp

We use the Haskell String type to represent variables.
Terms are constructed from variables, lambda, application,
left injection, right injection, case and let. As Filinski re-
marks, let is redundant; it is included in order to give nicer
normal forms. We chose not to include products in the pre-
sentation because there is little of interest to say about them
and it is straightforward to add them.

The first-order Exp datatype is rather a verbose way
of writing syntax and makes no guarantees about binding.
We choose to use higher-order abstract syntax as our in-
put syntax, which automatically restricts us to closed terms
and makes use of Haskell’s built-in binding. Following

Carette et al [8] we use a type class, relying on parametricity
to exclude so-called “exotic terms” [5].

class CompLam exp where
lam :: (exp → exp) → exp
app :: exp → exp → exp
inl :: exp → exp
inr :: exp → exp
case_ ::
exp → (exp → exp) → (exp → exp) → exp

let_ :: exp → (exp → exp) → exp

type Hoas = ∀exp . CompLam exp ⇒ exp

Following Atkey et al [6] it is straightforward to convert
from the HOAS representation to the FOAS representation
by defining a suitable instance of the CompLam type class.

hoasToExp :: Hoas → Exp
hoasToExp v = evalGen v 0

instance CompLam (Gen Exp) where
lam f = do x ← nextName

e ← f (return (Var x))
return$ Lam x e

v1 ‘app‘ v2 = do e1 ← v1
e2 ← v2
return$ App e1 e2

inl v = do e ← v
return$ Inl e

inr v = do e ← v
return$ Inr e

case_ v l r = do e ← v
x1 ← nextName
x2 ← nextName
e1 ← l (return (Var x1))
e2 ← r (return (Var x2))
return$ Case e x1 e1 x2 e2

let_ v f = do e ← v
x ← nextName
e’ ← f (return (Var x))
return$ Let x e e’

Instead of outputting a de Bruijn representation, here we
choose to use a name generation monad, targetting a repre-
sentation with explicit names in order to fit in with Filinski’s
monadic treatment of names.

type Gen = State Int

nextName :: Gen Var
nextName =
do { i ← get; put (i+1); return ("x" ++ show i) }

evalGen :: Gen a → Int → a
evalGen = evalState

The simple types of our source language are given by the
grammar

σ, τ ::= A | B | C | σ → τ | σ + τ

2

http://homepages.inf.ed.ac.uk/slindley/nbe/nbe-sums.hs
http://homepages.inf.ed.ac.uk/slindley/nbe/nbe-sums.hs

where A,B,C are abstract base types. In Haskell, for +
we write ⊕ (in order to avoid clashing with the built-in +)
which is syntactic sugar for the Either datatype.

data A
data B
data C

type a ⊕ b = Either a b

Following Atkey et al [6], we define a GADT Rep
of representations of simple types along with a typeclass
Representable a which allows us to smoothly bridge
the gap between Haskell types and object language type rep-
resentations.

data Rep :: ? → ? where
A :: Rep A
B :: Rep B
C :: Rep C
() :: Rep a → Rep b → Rep (a → b)
(⊕) :: Rep a → Rep b → Rep (a ⊕ b)

class Representable a where
rep :: Rep a

instance Representable A where rep = A
instance Representable B where rep = B
instance Representable C where rep = C

instance (Representable a, Representable b) ⇒
Representable (a → b) where
rep = rep rep

instance (Representable a, Representable b) ⇒
Representable (a ⊕ b) where
rep = rep ⊕ rep

For instance, we can now write down a Haskell term rep-
resenting the type

((A → B) → A) → A

as

rep :: Rep (((A → B) → A) → A)

Note that the Representable type class is closed by
construction, as the Rep GADT only admits simple type
representations.

2.1 Residualising monads

Filinski’s algorithm is parameterised by a monad, called
a residualising monad. The idea is that a residualising
monad will be used to interpret computations and that it
must contain enough hooks in order to allow us to recover
syntax from the semantics. Filinski gives a fairly abstract
characteration of residualising monads in terms of several
operations. We capture his notion via a typeclass of residu-
alising monads.

class Monad m ⇒ Residualising m where
gamma :: Gen a → m a
collect :: m Exp → Gen Exp
bind :: Exp → m Var
binds :: Exp → m (Var ⊕ Var)

Filinski assumes that a residualising monad is layered
atop [11] a name generation monad.

The gamma operation is a monad morphism lifting a
computation of type a in the name generation monad to a
computation of type a in the residualising monad.

The bind and binds operations respectively introduce
let and case bindings, by storing the bound term and return-
ing its name inside the residualising monad.

The collect operation collects all the bindings from
the residualising monad.

The collect, bind and binds operations must sat-
isfy the following equations.

collect (return e) = return e
collect (bind e>>=f) =
do x ← nextName

e’ ← collect (f x)
return (Let x e e’)

collect (binds e>>=f) =
do x1 ← nextName

x2 ← nextName
e1 ← collect (f (Left x1))
e2 ← collect (f (Right x2))
return (Case e x1 e1 x2 e2)

These equations give a rather direct correspondence be-
tween the syntactic and semantic representations of bind-
ings. One can construct a tree of bindings in the semantics
using bind, binds, >>= and return, and then reify it
as syntax. For instance:

collect (do s ← binds e
case s of
Left x1 →

do z ← bind e’; return (Var z)
Right x2 → return (Var x2))

=
do x1 ← nextName

x2 ← nextName
z ← nextName
return (Case e x1 (Let z e’ (Var z)) x2 (Var x2))

2.2 A monadic evaluator

The evaluator is a standard evaluator for the computa-
tional lambda-calculus parameterised by a monad as well
as operations for boxing and unboxing functions and sums.
In order to perform normalisation by evaluation we instan-
tiate it with a residualising monad.

type Env a = [(Var, a)]

3

empty :: Env a
empty = []

extend :: [(Var, a)] → Var → a → [(Var, a)]
extend env x v = (x, v):env

class FunInt v m where
injFun :: (v → m v) → m v
projFun :: v → (v → m v)

class SumInt v where
injSum :: v ⊕ v → v
projSum :: v → v ⊕ v

eval ::
(Monad m, FunInt a m, SumInt a) ⇒

Env a → Exp → m a
eval env (Var x) =

return (fromJust (lookup x env))
eval env (Lam x e) =

injFun (λv → eval (extend env x v) e)
eval env (App e1 e2) =

do
v1 ← eval env e1
v2 ← eval env e2
projFun v1 v2

eval env (Let x e1 e2) =
do
v ← eval env e1
eval (extend env x v) e2

eval env (Inl e) =
do
v ← eval env e
return (injSum (Left v))

eval env (Inr e) =
do
v ← eval env e
return (injSum (Right v))

eval env (Case e x1 e1 x2 e2) =
do
v ← eval env e
case projSum v of
Left v → eval (extend env x1 v) e1
Right v → eval (extend env x2 v) e2

2.3 The normalisation function

We define the semantics in Haskell using a datatype
SemV m for values and a datatype SemC m for computa-
tions. The parameter m is the residualising monad.

data SemV m = Neutral Exp
| Fun (SemV m → SemC m)
| Sum (SemV m ⊕ SemV m)

type SemC m = m (SemV m)

Base types are interpreted as expressions, functions as
Haskell functions from values to computations, and sums

using the Haskell Either datatype. Computations are in-
terpreted in the residualising monad. The boxing and un-
boxing functions are straightforward.

instance Residualising m ⇒ FunInt (SemV m) m where
injFun f = return (Fun f)
projFun = λ(Fun f) → f

instance Residualising m ⇒ SumInt (SemV m) where
injSum = Sum
projSum = λ(Sum s) → s

Each residualising monad m gives rise to a residualising
evaluator.

type ResEval m = Env (SemV m) → Exp → SemC m

Having pinned down the interpretation, we now need to
define a function reifyC mapping semantic computations
to syntactic normal forms. The reifyC function is type-
indexed. The supplied computation is run inside the residu-
alising monad, binding the result to a value which is reified
as an expression with the function reifyV lifted into the
residualising monad by gamma. Any bindings that are gen-
erated are collected through the collect function.

reifyC ::
Residualising m ⇒ Rep a → SemC m → Gen Exp

reifyC a c = collect (do v ← c; gamma (reifyV a v))

The reifyV function (in conjunction with its partner,
the reflectV function) does most of the actual work. It
follows the usual pattern for normalisation by evaluation.
On base types it is the identity (modulo unboxing and lifting
into the name generation monad). On functions it generates
a fresh name for a lambda expression that is reflected as a
value and fed into the function before reifying the result.
On sums it does a case split on the supplied value, reifying
at the appropriate type according to whether it is a left or a
right injection.

reifyV ::
Residualising m ⇒ Rep a → SemV m → Gen Exp

reifyV A (Neutral e) = return e
reifyV B (Neutral e) = return e
reifyV C (Neutral e) = return e
reifyV (a b) (Fun f) =

do x ← nextName
e ← reifyC b (do v ← reflectV a x; f v)
return$ Lam x e

reifyV (a ⊕ b) (Sum (Left v)) =
do e ← reifyV a v

return$ Inl e
reifyV (a ⊕ b) (Sum (Right v)) =

do e ← reifyV b v
return$ Inr e

As the body of a function in the semantics is a computa-
tion, we call reifyC here instead of reifyV.

4

Of course, we also need to define the function
reflectV for reflecting neutral expressions as semantics.
In fact, the only neutral value expressions we have are vari-
ables, so we specialise the type of reflectV to take a
variable rather than an expression. Again reflectV fol-
lows the usual pattern for normalisation by evaluation. At
base types it gives the variable itself. At function types it
gives a function that returns the result of reflecting the in-
put variable applied to the reified argument of the function.
At sum type it calls binds on the input variable and then
performs a case split reflecting at the appropriate type ac-
cording to whether the value bound by binds is a left or a
right injection.

reflectV ::
Residualising m ⇒ Rep a → Var → SemC m

reflectV A x = return (Neutral (Var x))
reflectV B x = return (Neutral (Var x))
reflectV C x = return (Neutral (Var x))
reflectV (a b) x =

return (Fun (λv → do e ← gamma (reifyV a v)
reflectC b x e))

reflectV (a ⊕ b) x =
do v ← binds (Var x)

case v of
Left x1 →

do v1 ← reflectV a x1
return (Sum (Left v1))

Right x2 →
do v2 ← reflectV b x2

return (Sum (Right v2))

For the body of a function we need to reflect a compu-
tation expression in the form of a variable applied to an ex-
pression. The reflectC function binds the application
before calling reflectV on the resulting variable.

reflectC ::
Residualising m ⇒ Rep a → Var → Exp → SemC m

reflectC a x e =
do x ← bind (App (Var x) e)

reflectV a x

We are now in a position to define a normalisation func-
tion.

normU ::
Residualising m ⇒
ResEval m → Rep a → Hoas → Exp

normU eval a e =
evalGen (reifyC a (eval empty (hoasToExp e))) 0

The function normU takes a residualising evaluator, a type
and a HOAS term, and returns a FOAS term in normal form.
The first argument is a hack to allow us to choose different
residualising monads at run-time. We will always pass in
the same eval function, but with a different type annota-
tion in order to tell GHC which residualising monad to use.

2.4 Two residualising monads

Filinski gives two residualising monads for the computa-
tional lambda-calculus without sums: a continuation monad
with answer type Gen Exp and an accumulation monad
over lists of let bindings, with name generation layered atop
it.

He shows how to use the former to handle sums. Here,
we also show how to generalise the latter to handle sums.

The continuation monad The continuation monad is
built into Haskell. We just need to instantiate it at the ap-
propriate answer type, and then define the residualising op-
erations.

type ContGenExp = Cont (Gen Exp)

instance Residualising ContGenExp where
gamma f = Cont (λk → do m ← f; k m)
collect (Cont f) = f return
bind e =
Cont (λk →

do x ← nextName
e’ ← k x
return (Let x e e’))

binds e =
Cont (λk →

do x1 ← nextName
x2 ← nextName
e1 ← k (Left x1)
e2 ← k (Right x2)
return (Case e x1 e1 x2 e2))

The binding tree monad The datatype underlying Filin-
ski’s binding list monad can be expressed in Haskell as fol-
lows.

data Acc’ a = Val a
| LetB Var Exp (Acc’ a)

This encodes a binding list (of let bindings) alongside a
value of type a.

In order to extend Acc’ to handle sums we need to accu-
mulate trees rather than lists of bindings. The tree structure
arises from case bindings which bind one variable for each
of the two branches of a case. Rather than accumulating a
binding list alongside a single value, we now accumulate a
binding tree alongside a list of values — one for each leaf
of the tree.

data Acc a = Val a
| LetB Var Exp (Acc a)
| CaseB Exp Var (Acc a) Var (Acc a)

The nodes of the tree are let and case bindings and the
leaves are values. It is now straightforward to define a
monad instance for Acc.

5

instance Monad Acc where
return v = Val v
Val v>>=f = f v
LetB x e m>>=f =
LetB x e (m>>=f)

CaseB e x1 m1 x2 m2>>=f =
CaseB e x1 (m1>>=f) x2 (m2>>=f)

The >>= operator is recursively defined over the continu-
ations of each binding. The operation t >>= f simply
descends to the leaves replacing each leaf Val v with the
tree f v.

It is worth noting that both the binding list monad and
the binding tree monad are free monads [18]. The former is
the free monad over the functor underlying the datatype:

data L a = LetL Var Exp a

and the latter is the free monad over the functor underlying
the datatype:

data T a = LetT Var Exp a
| CaseT Exp Var a Var a

The connection with free monads is unsurprising given that
NBE hinges on including enough syntactic hooks in a deno-
tational semantics, and free monads constitute prototypical
“syntactic” monads.

If the values at the leaves of a tree are expressions, then
we can flatten the tree to a single expression.

flatten :: Acc Exp → Exp
flatten (Val e) = e
flatten (LetB x e t) = Let x e (flatten t)
flatten (CaseB v x1 t1 x2 t2) =
Case v x1 (flatten t1) x2 (flatten t2)

In order to obtain a residualising monad we layer the
name generation monad atop the binding tree monad.

newtype GenAcc a = GA {unGA :: Gen (Acc a)}
instance Monad GenAcc where
return = GA . return . return
m>>=k =
GA (do c ← unGA m

case c of
Val v → unGA (k v)
LetB x e m →
do t ← unGA (GA (return m)>>=k)

return (LetB x e t)
CaseB e x1 m1 x2 m2 →
do t1 ← unGA (GA (return m1)>>=k)

t2 ← unGA (GA (return m2)>>=k)
return (CaseB e x1 t1 x2 t2))

Now we can define the residualising operations.

instance Residualising GenAcc where
gamma f = GA (do v ← f; return (return v))
collect (GA f) = do t ← f

return (flatten t)

bind e =
GA (do x ← nextName

return$ LetB x e (Val x))
binds e =
GA (do x1 ← nextName

x2 ← nextName
return$ CaseB e x1 (Val (Left x1))

x2 (Val (Left x2)))

Notice the similarity between these definitions and those
for the continuation monad. In essence they do the same
thing. Where the continuation monad manipulates bind-
ings implicitly using functional continuations, the binding
tree monad manipulates them explicitly using a binding tree
data structure. The binding tree is really just a defunction-
alised [16] version of the continuation monad.

Having defined two residualising monads we are now in
a position to instantiate our normalisation function with ei-
ther of them:

normAccU = normU (eval :: ResEval GenAcc)
normContU = normU (eval :: ResEval ContGenExp)

Examples

> normAccU (rep :: Rep (A → A)) (lam (λx → x))
λx0 → x0
> normContU (rep :: Rep (A → A)) (lam (λx → x))
λx0 → x0

> normAccU
(rep :: Rep (A ⊕ B → A ⊕ B))
(lam (λx → x))

λx0 → case x0 of
Left x1 → Left x1;
Right x2 → Right x2

> normContU
(rep :: Rep ((A ⊕ (B → C)) → (A ⊕ (B → C))))
(lam (λx → x))

λx0 → case x0 of
Left x1 → Left x1;
Right x2 →
Right (λx3 → let x4 = x2 x3 in x4)

Unfortunately type errors are manifested as runtime er-
rors:

> normAccU
(rep :: Rep (A → B → A))
(lam (λx → x))

λx0 → ??? Exception: tacc.hs:(306,0)-(318,19):
Non-exhaustive patterns in function reifyV

> normAccU
(rep :: Rep (A → A))
(lam (λx → app x x))

λx0 → ??? Exception: tacc.hs:361:14-26:
Non-exhaustive patterns in lambda

6

Fortunately, it is easy to do better.

2.5 Static typing

Though we have successfully demonstrated how to use a
Haskell type as the argument to the normalisation function
our current implementation does not check either that the
input term is well-typed or that the supplied type matches
up with the type of the input term, whose representation is
untyped.

Following Atkey et al [6], we augment our HOAS repre-
sentation with type information, taking advantage of para-
metricity and our encoding of representable types to pre-
clude “exotic types”.

class TCompLam exp where
tlam :: (Representable a, Representable b) ⇒

(exp a → exp b) → exp (a → b)
tapp :: (Representable a, Representable b) ⇒

exp (a → b) → exp a → exp b
tinl :: (Representable a, Representable b) ⇒

exp a → exp (a ⊕ b)
tinr :: (Representable a, Representable b) ⇒

exp b → exp (a ⊕ b)
tcase :: (Representable a, Representable b,

Representable c) ⇒
exp (a ⊕ b) → (exp a → exp c) →

(exp b → exp c) → exp c
tlet :: (Representable a, Representable b) ⇒

exp a → (exp a → exp b) → exp b

type THoas a =
∀(exp :: ? → ?) . TCompLam exp ⇒ exp a

For now, our goal is to ensure that the type of the repre-
sentation passed to the normalisation function matches up
with the type of the HOAS input term. We are not attempt-
ing to use the Haskell type system to enforce well-typedness
of the resulting FOAS representation.

(It may be possible to push the types further. Atkey [3]
has made some progress in adapting the code from this ar-
ticle to take typed HOAS terms to typed HOAS terms in
normal form, along the lines of Danvy et al [10]. His solu-
tion relies on making a syntactic distinction between value
expressions and computation expressions and a somewhat
more complicated datatype for higher-order abstract syn-
tax.)

Thus we instantiate TCompLam with a newtype that
simply forgets its type argument.

thoasToExp :: THoas a → Exp
thoasToExp v = evalGen (unT v) 0

newtype T a = T {unT :: Gen Exp}

instance TCompLam T where
tlam f = T$

do x ← nextName
e ← unT$ f (T$ return (Var x))
return (Lam x e)

v1 ‘tapp‘ v2 = T$
do e1 ← unT v1

e2 ← unT v2
return (App e1 e2)

tinl v = T$
do e ← unT v

return (Inl e)
tinr v = T$
do e ← unT v

return (Inr e)
tcase v l r = T$
do e ← unT v

x1 ← nextName
x2 ← nextName
e1 ← unT$ l (T$ return (Var x1))
e2 ← unT$ r (T$ return (Var x2))
return (Case e x1 e1 x2 e2)

tlet v f = T$
do e ← unT v

x ← nextName
e’ ← unT$ f (T$ return (Var x))
return (Let x e e’)

It would be nice if we could get rid of the boxing (T)
and unboxing (unT) in the above instance. If Haskell had
better support for parameterised monads [4] then this would
be straightforward.

Now we can define normalisation functions that stati-
cally detect type errors both in the input term and between
the type of the input term and the type representation argu-
ment.

norm ::
Residualising m ⇒
ResEval m → Rep a → THoas a → Exp

norm eval a e =
evalGen (reifyC a (eval empty (thoasToExp e))) 0

normAcc = norm (eval :: ResEval GenAcc)
normCont = norm (eval :: ResEval ContGenExp)

The type errors from the previous examples are now re-
ported as type errors.

> normAcc
(rep :: Rep (A → B → A))
(tlam (λx → x))

<interactive>:1:48:
Couldn’t match expected type ‘B → A’
against inferred type ‘A’
Expected type: exp (B → A)
Inferred type: exp A

In the expression: x
In the first argument of ‘tlam’,
namely ‘(λ x → x)’

7

> normAcc
(rep :: Rep (A → A))
(tlam (λx → tapp x x))

<interactive>:1:48:
Couldn’t match expected type ‘a → A’
against inferred type ‘A’
Expected type: exp (a → A)
Inferred type: exp A

In the first argument of ‘tapp’, namely ‘x’
In the expression: tapp x x

3 Closing remarks

Internalising the binding tree monad It is possible to
internalise the accumulation-based implementation of nor-
malisation by evaluation for the computational lambda cal-
culus with sums. The idea is to simulate the binding tree
using the state monad. Internalising the binding list monad
is easy, and well-established as a means for implementing
type-directed partial evaluation in ML. One simply stores
the list of bindings in a state cell instead of the binding list
monad.

Things get more complicated with the binding tree
monad because although we can still store the binding tree
in a state cell, we now also have to handle multiple values
in tandem with the binding tree. To account for the multiple
values, the collect function must run its argument mul-
tiple times for each branch of the binding tree. As well as
storing the binding tree we also need to store which branch
of the binding tree we are currently in, i.e., which value we
are currently computing.

The binding tree, along with the current path, can be rep-
resented using a zipper structure. A single state cell is used
to store the cursor into the binding tree (see [14, Chapter 4]
and the code accompanying this article for further details).

Sums for call-by-name Sums are considerably harder to
handle in the pure call-by-name setting (vanilla simply-
typed lambda calculus). One reason why we can handle
them reasonably smoothly in the computational lambda-
calculus is that we interpret everything in a residualising
monad anyway, so we can “squirrel away” the bindings in
the monad. Another reason is that in computational lambda
calculus normal forms every application subterm is explic-
itly bound. If such a term has sum type then we can always
eliminate it immediately after it is bound using a case split.

In contrast, in the call-by-name setting there is no monad
in the standard interpretation of terms. Furthermore, appli-
cation subterms are not explicitly named and may in fact be
pure, so it is less clear where to insert a case split and one
has to be careful about managing redundant case splits.

Nevertheless, Altenkirch et al [2] have described a nor-
malisation by evaluation algorithm for call-by-name lambda
calculus using categorical techniques, and Balat et al [7]
have implemented type-directed partial evaluation for sums
using powerful delimited continuations operators. Lind-
ley [15] has given rewrite rules and shown that simply-typed
lambda calculus with sums is confluent and strongly nor-
malising. Altenkirch and Chapman [1] advocate a “big-
step” approach lying somewhere between small-step rewrit-
ing and full-on normalisation by evaluation. It would be
interesting to connect these separate lines of work.

References

[1] T. Altenkirch and J. Chapman. Big-step normalisation. JFP,
19(3 & 4):311–333, 2009.

[2] T. Altenkirch, P. Dybjer, M. Hofmann, and P. J. Scott. Nor-
malization by evaluation for typed lambda calculus with co-
products. In LICS, pages 303–310, 2001.

[3] R. Atkey, 2009. Personal communication.
[4] R. Atkey. Parameterised notions of computation. JFP, 19(3

& 4):335–376, 2009.
[5] R. Atkey. Syntax for free: Representing syntax with binding

using parametricity. In TLCA, 2009. To appear.
[6] R. Atkey, S. Lindley, and J. Yallop. Unembedding domain

specific languages. In Haskell, 2009. To appear.
[7] V. Balat, R. D. Cosmo, and M. P. Fiore. Extensional normal-

isation and type-directed partial evaluation for typed lambda
calculus with sums. In POPL, pages 64–76, 2004.

[8] J. Carette, O. Kiselyov, and C. chieh Shan. Finally tagless,
partially evaluated. JFP, 2009. To appear.

[9] O. Danvy and A. Filinski. Abstracting control. In LISP and
Functional Programming, pages 151–160, 1990.

[10] O. Danvy, M. Rhiger, and K. H. Rose. Normalization by
evaluation with typed abstract syntax. J. Funct. Program.,
11(6):673–680, 2001.

[11] A. Filinski. Representing layered monads. In POPL, pages
175–188, 1999.

[12] A. Filinski. Normalization by evaluation for the computa-
tional lambda-calculus. In TLCA, pages 151–165, 2001.

[13] G. P. Huet. The zipper. J. Funct. Program., 7(5):549–554,
1997.

[14] S. Lindley. Normalisation by Evaluation in the Compilation
of Typed Functional Programming Languages. PhD thesis,
University of Edinburgh, 2005.

[15] S. Lindley. Extensional rewriting with sums. In TLCA, pages
255–271, 2007.

[16] J. C. Reynolds. Definitional interpreters for higher-order
programming languages. Higher-Order and Symbolic Com-
putation, 11(4):363–397, 1998.

[17] E. Sumii and N. Kobayashi. A hybrid approach to online
and offline partial evaluation. Higher-Order and Symbolic
Computation, 14(2-3):101–142, 2001.

[18] W. Swierstra. Data types à la carte. Journal of Functional
Programming, 18(4):423–436, 2008.

8

