

Edinburgh Research Explorer

Extensional Rewriting with Sums

Citation for published version:
Lindley, S 2007, Extensional Rewriting with Sums. in Typed Lambda Calculi and Applications: 8th
International Conference, TLCA 2007, Paris, France, June 26-28, 2007, Proceedings. vol. 4583, Springer
Berlin Heidelberg, pp. 255-271. DOI: 10.1007/978-3-540-73228-0_19

Digital Object Identifier (DOI):
10.1007/978-3-540-73228-0_19

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Typed Lambda Calculi and Applications

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43713403?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-540-73228-0_19
https://www.research.ed.ac.uk/portal/en/publications/extensional-rewriting-with-sums(0e1dbeb8-fe8a-4c73-bfc1-49f803d5dca2).html

Extensional rewriting with sums

Sam Lindley

Laboratory for Foundations of Computer Science,
School of Informatics, The University of Edinburgh

Sam.Lindley@ed.ac.uk?

Abstract. Inspired by recent work on normalisation by evaluation for
sums, we propose a normalising and confluent extensional rewriting the-
ory for the simply-typed λ-calculus extended with sum types. As a corol-
lary of confluence we obtain decidability for the extensional equational
theory of simply-typed λ-calculus extended with sum types. Unlike pre-
vious decidability results, which rely on advanced rewriting techniques
or advanced category theory, we only use standard techniques.

1 Introduction

It is easy to add sum types to the equational theory of the simply-typed λ-
calculus, in the presence of η-rules, or to add sum types to the rewriting theory
of simply-typed λ-calculus, in the absence of η-rules. However, adding sum types
to the rewriting theory is difficult in the presence of η-rules. Existing rewriting
theories, with the exception of Ghani’s [5], are either incomplete with respect
to the equational theory or non-confluent. Quoting Altenkirch et al [1], Ghani’s
work involves ‘intricate rewriting techniques whose details are daunting’. Our
aim is to introduce a straightforward rewriting theory using standard techniques.

The essential reason why the problem with confluence arises is that reorder-
ing independent nested cases does not change the semantics of a term. For in-
stance, let = be equivalence in the equational theory, writing δ(p, x1.n2, x2.n2)
for case p of in1(x1)⇒ n2 | in2(x2)⇒ n2, then

δ(p1, x1.δ(p2,y1.n1,y2.n2), x2.δ(p2,y1.m1,y2.m2))

= δ(p2,y1.δ(p1, x1.n1, x2.m1),y2.δ(p1, x1.n2, x2.m2))

where x1, x2,y1,y2,m1,m2,n1,n2,p1,p2 are distinct object variables. The struc-
ture of the terms on each side of the equation is identical, so it is not possible
to capture the equivalence with a rewrite rule.

This article explores several solutions to the case ordering problem, all sug-
gested by the work of Altenkirch et al [1] and Balat et al [2] on normalisation
by evaluation for the simply-typed λ-calculus extended with sums. The goal of
normalisation by evaluation [4] is to find a unique normal form with respect to
the equational theory. In contrast, we shall be interested in normal forms with
respect to a rewriting theory.

In fact, the case ordering problem also manifests itself in the equational
setting. In the example above, either the left hand side or the right hand side
? Supported by EPSRC grant number EP/D046769/1

of the equivalence should be a normal form. But the terms are structurally
identical so some non-structural property must be used to define normal forms.
One possibility is to define an ordering on terms via an ordering on variable
names. The ordering on terms can then be used to assign an ordering to nested
cases. Such an ordering is undesirable as it requires us to dispense with α-
conversion.

Altenkirch et al solve the problem by adding a new construct to the object
language — a parallel case that simultaneously eliminates a set of sums. Using
the extended language both sides of the equivalence are represented by the same
parallel case. A big advantage of this approach is that it leads to a syntax which
much more closely captures the semantics of the calculus. The main disadvantage
is that it drastically increases the complexity of the machinery used by the syntax
of the language. In Altenkirch et al’s presentation functions appear in the syntax.
These functions can be represented more concretely using sets or lists, but the
resulting syntax is still significantly more complex than the standard one.

Balat et al [2] build on Altenkirch et al’s work. Instead of adding parallel
cases, they define a congruence over terms which contains the equivalence given
in the example above as a special case. They identify normal forms up to this
congruence, leading to a rather elegant presentation.

We adopt an extension ∼ of Balat et al’s congruence, and perform rewrit-
ing modulo ∼. Sect. 2 introduces the equational theory λ→×+ of simply-typed
lambda-calculus extended with products and sums, and decomposes the general
η axiom for sums into a number of simpler axioms. Sect. 3 describes a non-local
rewriting theory that generates the equational theory. Sect. 4 gives a reducibility
proof of strong normalisation for a fragment of the rewriting theory following
the approach of Lindley and Stark [8, Chaper 3][9]. Sect. 5 uses strong normali-
sation results for fragments of the rewriting theory to prove weak normalisation
and confluence modulo ∼ for the full rewriting theory, and hence decidability for
the equational theory. Sect. 6 describes three variations of the rewriting theory.
Sect. 7 concludes.

2 The object language

The simply typed lambda calculus extended with products and sums is stan-
dard [5]. We write λ→×+ for the equational theory.

(Types) A,B ::= O | A→ B | A× B | A+ B

Types are constructed from a base type O, functions A→ B from type A to type
B, products A× B of types A and B, and sums of types A and B. We omit the
unit and empty types, but restoring them does not radically change our proofs
(though the empty type requires a little more care in the handling of typing

contexts).

(Terms) m,n,p ::= x

| λx.m | mn | 〈m,n〉 | π1(m) | π2(m)

| ι1(m) | ι2(m) | δ(m, x1.n1, x2.n2)

Terms are constructed from variables x, lambda abstractions λx.m, applications
mn, pairs 〈m,n〉, projections πi(m), injections ιi(m) and cases δ(m, x1.n1, x2.n2).
Terms are identified up to α-conversion.

The free fv(m) and bound variables bv(m) are defined in the usual way.
We write m[x := n] for the capture-avoiding substition of n for x in m, and
m[x1 :=n1, . . . , xk :=nk] for the simultaneous capture-avoiding substition of ni
for xi in m (1 6 i 6 k). We write size(m) for the size of the term m. The
typing rules are standard. Each type constructor has an introduction rule and
an elimination rule.

Γ , x : A ` x : A
Γ , x : A ` m : B
Γ ` λx.m : A→ B

Γ ` m : A→ B Γ ` n : A
Γ ` mn : B

Γ ` m : A Γ ` n : B
Γ ` 〈m,n〉 : A× B

Γ ` m : A1 ×A2

Γ ` πi(m) : Ai
i ∈ {1, 2}

Γ ` m : Ai
Γ ` ιi(m) : A1 +A2

i ∈ {1, 2}

Γ ` m : A1 +A2 Γ , xi : Ai ` ni : B i ∈ {1, 2}

Γ ` δ(m, x1.n1, x2.n2) : B

Axioms The axioms for λ→×+ consist of a β-axiom and an η-axiom for each
type constructor.

(→.β) (λx.m)n = m[x := n]

(×.βi) πi(〈m1,m2〉) = mi, i ∈ {1, 2}

(+.βi) δ(ιi(m), x1.n1, x2.n2) = ni[xi :=m], i ∈ {1, 2}

(→.η) m = λx.mx, x /∈ fv(m)

(×.η) m = 〈π1(m),π2(m)〉
(+.η†) n[x := p] = δ(p, x1.n[x := ι1(x1)], x2.n[x := ι2(x2)])

The equation m = n is shorthand for the equality judgement Γ ` m = n : A
where Γ ` m : A and Γ ` n : A. The equational theory is given by the least
(typed) congruence satisfying the axioms.

Alternative axioms The generalised η-axiom for sums +.η† is non-local and it
is not at all obvious how it might give rise to a confluent rewriting system. In
particular, note that substitutions appear both on the left and the right hand

side of the axiom. We break +.η† down into a number of simpler axioms.

(+.η) p = δ(p, x1.ι1(x1), x2.ι2(x2))

(move-case) F[δ(p, x1.n1, x2.n2)] = δ(p, x1.F[n1], x2.F[n2]),
x1, x2 /∈ fv(F[]) and bv(F[]) ∩ fv(p) = ∅

(repeated-guard)

δ(p, x1.δ(p,y1.n1,y2.n2), x2.δ(p, z1.p1, z2.p2))

= δ(p, x1.n1[y1 := x1], x2.p2[z2 := x2]), x1, x2 /∈ fv(p)

(redundant-guard) δ(p, x1.n, x2.n) = n, x1, x2 /∈ fv(n)

The local η axiom for sums +.η is a special case of +.η† in which n is just x.
The move-case axiom is a generalisation of the usual commuting conversions for
λ→×+ [6,11]. As well as allowing cases to move across elimination frames (F1[]),
move-case also allows them to be moved across neutral frames (F2[]), lambda
frames (F3[]) and continuation frames (F4[]).

(Frames) F[] ::= F1[] | F2[] | F3[] | F4[]

F1[] ::= []n | π1([]) | π2([]) | δ([], x1.n1, x2.n2)

F2[] ::= m [] | 〈[],n〉 | 〈m, []〉 | ι1([]) | ι2([])

F3[] ::= λx.[]

F4[] ::= δ(p, x1.[], x2.n2) | δ(p, x1.n1, x2.[])

We write move-casei for the restriction of move-case to frames of the form Fi.
Following Altenkirch et al, we use the word guard to refer to the first argument
of a case. The axiom repeated-guard allows guards to be copied or deleted. The
axiom redundant-guard is a special case of +.η† in which x does not occur free
in n.

Proposition 1. Replacing the axiom +.η† with the alternative axioms +.η,
move-case, repeated-guard, redundant-guard yields the same equational theory.

Proof. (sketch)
New axioms are sound:

– +.η and redundant-guard are instances of +.η†

– move-case, repeated-guard : apply +.η† from left to right using p as the
substituted term, eliminate resulting +.βi redexes, then α-convert

New axioms are complete:

– η expand all instances of p in n
– use move-case to hoist all instances of p to the top
– use repeated-guard and redundant-guard to get rid of the multiple copies of
p

– use redundant-guard for the case where x /∈ fv(n)

The axioms move-case, repeated-guard and redundant-guard , are implicit in
previous work on normalisation by evaluation with sums [1,2]. To the author’s
knowledge, they have not previously been used as the basis for a rewriting cal-
culus.

3 A rewriting theory

As a first attempt at a rewriting theory consider defining a rewrite rule for each
axiom by orienting from left to right (with the usual restrictions for η-expansion).
Unfortunately the resulting theory has infinite reduction sequences arising from
move-case4. For instance, the following reductions can be applied indefinitely as
m appears as a subterm of n.

m = δ(p, x.n, x.δ(p, x.n, x.n))

−→move-case4 δ(p, x.δ(p, x.n, x.n), x.δ(p, x.n, x.n))

−→move-case4 δ(p, x.m, x.m) = n

Ohta and Hasegawa [10] face a similar problem for a linear lambda calculus.
Their solution is to separate the axioms of their equational theory into a reduc-
tion relation and an equivalence relation, and use Huet’s technique for proving
confluence of the reduction relation modulo the equivalence relation [7]. Balat et
al use an equivalence for defining normal forms and implementing normalisation
by evaluation with sums. Their equivalence is the least congruence satisfying the
move-case4 and redundant-guard axioms. We introduce a congruence that also
includes the repeated-guard axiom.

Definition 2. The relation ∼ is the least congruence satisfying the axioms move-case4,
repeated-guard and redundant-guard.

Deciding equivalence modulo ∼ is straightforward. First we define some auxiliary
functions.

Definition 3.

Guards(m) ={
p ∪Guards(x1.n1) ∪Guards(x2.n2), if m = δ(p, x1.n1, x2.n2)
∅, otherwise

Guards(x.n) = {m ∈ Guards(n) | x /∈ fv(m)}

Paths(gs) = {ρ | ρ ∈ {1, 2}
gs

} ν(ps) = {px1
x2

| p ∈ ps/∼ and x1, x2 fresh}

Tailρ[p
x1
x2 7→i]

(δ(p ′, x ′1.n ′1, x ′2.n ′2)) = Tailρ[p
x1
x2 7→i]

(ni[x
′
i := xi]), if p ∼ p ′

Tailρ(m) = m

The function Guards(m) gives the set of independent guards at the top-level
of m. The definition of Guards is the same as that used by Balat et al. If
ps = Guards(m), then Paths(ν(ps)) represents the set of possible paths through
m dictated by ps. Given a path ρ through a term m, the subterm of m at the
end of that path, the tail of ρ, is given by Tailρ(m). We write ps/∼ for the
quotient set of ps by ∼.

Proposition 4.

m1 ∼ m2 ⇐⇒
∀ρ ∈ Paths(ν(Guards(m1) ∪Guards(m2))).Tailρ(m1) ∼ Tailρ(m2)

To decide whether m1 ∼ m2: if one of m1,m2 is a case, then use Prop. 4; oth-
erwise compare the top-level constructors and if equal recurse on the immediate
subterms ofm1,m2. Having defined the decidable equivalence ∼, we now present
the rewrite rules. The β- and η-rules are standard.

β-rules

(→.β) λx.mn −→ m[x := n]

(×.β1) π1(〈m1,m2〉) −→ m1

(×.β2) π2(〈m1,m2〉) −→ m2

(+.β1) δ(ι1(m), x1.n1, x2.n2) −→ n1[x1 :=m]

(+.β2) δ(ι2(m), x1.n1, x2.n2) −→ n2[x2 :=m]

η-rules The η-rules are type-directed expansions.

(→.η) mA→B −→ λx.mx, if x /∈ fv(m)

(×.η) mA×B −→ 〈π1(m),π2(m)〉
(+.η) mA+B −→ δ(m, x1.ι1(x1), x2.ι2(x2))

The annotation mA means m has type A. The η-rules are applicable only
if expansion does not create a new redex. More precisely, only variables, appli-
cations and projections (pure neutral terms) can be η-expanded, and only in a
non-elimination frame.

In order to instantiate the move-case axiom as a rewrite rule we read it
from left to right. This corresponds to hoisting a case over a frame. Of course,
we do not generally need to allow hoisting over continuation frames, as this is
captured by ∼. However, for confluence it is necessary to allow hoisting over
several continuation frames followed by a non-continuation frame.

Frames and contexts

(Hoisting frames) H[] ::= F1[] | F2[] | F3[]

(Discriminator contexts) D[] ::= [] | δ(p, x1.D[], x2.n2)

| δ(p, x1.n1, x2.D[])

(Hoisting contexts) HD[] ::= H[D[]]

γ-rules We refer to reduction rules that arise from the move-case-, repeated-guard -
and redundant-guard -axioms as γ-rules.

(hoist-case)

HD[δ(p, x1.n1, x2.n2)] −→ δ(p, x1.HD[n1], x2.HD[n2]),
x1, x2 /∈ fv(HD) and bv(HD) ∩ fv(p) = ∅

The hoist-case-rule is obtained from the move-case axiom. It is a generali-
sation of the usual commuting conversions. Note that continuation frames are
not hoisting frames, as näıvely hoisting over continuation frames would lead to
non-termination. However, the equivalence ∼ includes the possibility of moving
cases over continuation frames, and the hoist-case-rule does allow a case to be
hoisted over a hoisting frame from inside a discrimination context.

The discrimination context is necessary in the hoist-case-rule because it is
only sound to hoist a case over a lambda abstraction if the lambda-bound vari-
able does not occur free in the guard. If hoisting from within a discrimination
context is disallowed, then some cases become blocked from being hoisted out-
side the lambda by outer cases that depend on the bound variable. For instance,
suppose D is restricted to be the empty context [], then the terms

λx.δ(x, x1.δ(z,y1.y1,y2.y2), x2.x2)

and
δ(z,y1.λx.δ(x, x1.y1, x2.x2),y2.λx.δ(x, x1.y2, x2.x2))

become distinct normal forms, despite the fact that these terms are identified in
the equational theory.

Remark For confluence it is not necessary to have a discrimination context
in the hoist-case1- and hoist-case2-rules, but here we gave the single general
hoist-case-rule for the sake of uniformity.

Definition 5 (Reduction relations).
−→β = the compatible closure of the β-rules
−→η = the restricted compatible closure of the η-rules
−→γ = the compatible closure of the γ-rules
−→γE

= the compatible closure of hoist-case with HD restricted to F1
(i.e. the standard commuting conversion reduction relation)

−→γ′ = −→γ \ −→γE

−→c = −→β ∪ −→η ∪ −→γE

−→ = −→β ∪ −→η ∪ −→γ

4 Strong normalisation for βηγE-reduction

Strong normalisation is standard for βηγE-reduction [5,11]. In this section we
present an adaptation of the strong normalisation proof given in the author’s
thesis [8, Chapter 3]. Our use of frame stacks alleviates difficulties with γE-
reduction, and leads to a significantly simpler proof than Prawitz’s original
one [11].

Definition 6. A term m is strongly normalising with respect to a reduction
relation R, or R-SN, if all R-reduction sequences starting from m are finite. A
reduction relation R is strongly normalising, or SN, if all terms m are R-SN.
If m is R-SN, then we write maxR(m) for the maximum length of a reduction
sequence starting from m.

Definition 7 (frame stacks).

(elimination frames) E ::= F1

(frame stacks) S ::= Id | S ◦ E

(stack length) |Id | = 0
|S ◦ E| = |S| + 1

(plugging) Id [m] = m

(S ◦ E)[m] = S[(E[m])]

Following Girard et al [6] we assume variables are annotated with types (it is
straightforward, albeit somewhat tedious, to adapt the proof to use local typing
contexts instead). We write A (B for the type of frame stack S, if S[m] : B for
all terms m : A.

Definition 8 (frame stack reduction).

S −→c S ′
def⇐⇒ ∀m.S[m] −→c S ′[m]

A frame stack S is c-strongly normalising if all c-reduction sequences starting
from S are finite.

Lemma 9.

1. S −→c S ′ iff S 6= Id and S[x] −→c S ′[x].
2. If S −→c S ′, for frame stacks S,S ′, then |S ′| 6 |S|.
3. If there exists m such that S[m] is c-SN, then S[x] is c-SN.

Proof. Induction on the structure of S.

Definition 10 (reducibility).

– Id is reducible.

– S ◦ []n : (A→ B) (C is reducible if S and n are reducible.
– S ◦ πi([]) : (A× B) (C is reducible if S is reducible.
– S : (A+ B) (C is reducible if S[ι1(m)] is c-SN for all reducible m : A, and
S[ι2(n)] is c-SN for all reducible n : B.

– m:A is reducible if S[m] is c-SN for all reducible S : A (C.

Lemma 11. If m : A is reducible then m is c-SN.

Proof. Follows immediately from reducibility of Id and the definition of re-
ducibility on terms.

Lemma 12. x : A is reducible.

Proof. By induction on A using Lemma 9 and Lemma 11.

Corollary 13. If S : A (C is reducible then S is c-SN.

Each type constructor has an associated β-rule. Each β-rule gives rise to an
SN-closure property.

Lemma 14 (SN-closure).

→ If S[m[x := n]] and n are c-SN then S[(λx.m)n] is c-SN.
×.1 If S[m] and n are c-SN then S[π1(〈m,n〉)] is c-SN.
×.2 If S[n] and m are c-SN then S[π2(〈m,n〉)] is c-SN.
+.1 If S[n1[x1 :=m]], S[n2] and m are c-SN then

S[δ(ι1(m), x1.n1, x2.n2)] is c-SN.
+.2 If S[n2[x2 :=m]], S[n1] and m are c-SN then

S[δ(ι2(m), x1.n1, x2.n2)] is c-SN.

Proof.

→,×.1,×.2: By induction on maxc(S) + maxc(m) + maxc(n).
+.1: By induction on |S| + maxc(S[n1[x1 :=m]]) + max (S[n2]) + maxc(m).
+.2: By induction on |S| + maxc(S[n2[x2 :=m]]) + maxc(S[n1]) + maxc(m).

Now we obtain reducibility-closure properties for each type constructor.

Lemma 15 (reducibility-closure).

→ If m[x := n] is reducible for all reducible n, then λx.m is reducible.
× If m,n are reducible, then 〈m,n〉 is reducible.
+ If m is reducible, n1[x1 := l] is reducible for all reducible l, and n2[x2 := p] is

reducible for all reducible p, then δ(m, x1.n1, x2.n2) is reducible.

Proof. Each property follows from the corresponding part of Lemma 14 using
Lemma 11 and Corollary 13.

Theorem 16. Let m be any term. Suppose x1 : A1, . . . , xk : Ak includes all the
free variables of m. If p1 : A1, . . . ,pk : An are reducible then m[x1:=p1, . . . , xk:=
pk] is reducible.

Proof. By induction on the structure of terms using Lemma 15.

Theorem 17 (strong normalisation). All terms are c-SN.

Proof. Let m be a term with free variables x1, . . . , xk. By Lemma 12, x1, . . . , xk
are reducible. Hence, by Thm. 16, m is c-SN.

5 Weak normalisation and confluence

It is straightforward to prove that γ-reduction is strongly normalising.

Lemma 18. If D[x],m are γ-SN, then D[m] is γ-SN.

Proof. By induction on maxγ(D[x]) + maxγ(m).

Lemma 19. If p,n1,n2 are γ-SN, then δ(p, x1.n1, x2.n2) is γ-SN.

Proof. By induction on 〈maxγ(p), size(p), maxγ(n1)+ maxγ(n2)〉. The only in-
teresting case is

δ(D[δ(p, x1.p1, x2.p2)],y1.n1,y2.n2)

−→γ δ(p, x1.D[δ(p1,y1.n1,y2.n2)], x2.D[δ(p2,y1.n1,y2.n2)])

By the induction hypothesis, δ(p1,y1.n1,y2.n2) and δ(p2,y1.n1,y2.n2) are both
γ-SN. Then by Lemma 18 and the induction hypothesis

δ(p, x1.D[δ(p1,y1.n1,y2.n2)], x2.D[δ(p2,y1.n1,y2.n2)])

is γ-SN.

Lemma 20.

1. If m,n are γ-SN then mn is γ-SN.
2. If m,n are γ-SN then 〈m,n〉 is γ-SN.
3. If m is γ-SN then λx.m is γ-SN.
4. If m is γ-SN then πi(m) is γ-SN.
5. If m is γ-SN then ιi(m) is γ-SN.

Proof.

1-2 By induction on 〈maxγ(m) + maxγ(n), size(m) + size(n))〉.
3-5 By induction on 〈maxγ(m), size(m)〉.

Theorem 21. γ is strongly normalising.

We now obtain weak normalisation for βηγ-reduction. The key observation
is that γ-reduction following βηγE-normalisation cannot introduce new βη-
redexes.

Lemma 22. If m is in βηγE-normal form and m −→∗γ m ′, then m ′ is in βη-
normal form.

Lemma 22 is easily proved by a straightforward syntactic analysis of the structure
of the term m ′. The details are omitted due to lack of space.

Theorem 23. −→ is weakly normalising.

Proof. To normalise a term of m, first reduce to a βηγE-normal form m ′, then
reduce m ′ to γ-normal form m ′′. By Lemma 22, m ′′ must be a βηγ-normal
form.

We could obtain confluence by appealing to correctness of normalisation by
evaluation for sums [1]. Instead, we give a direct proof of confluence modulo ∼
using the strong normalisation results for −→c and −→γ.

We write R∗ for the transitive reflexive closure of the relation R.

Definition 24. A reduction relation R is:

– confluent modulo ∼ iff for all m,n,m ′,n ′ with m ∼ n, m −→∗R m ′ and
n −→∗R n ′, there exist m ′′,n ′′ with m ′ −→∗R m ′′, n ′ −→∗R n ′′ and m ′′ ∼ n ′′.

– weakly confluent modulo ∼ iff for all m,n,p with m −→R n and m −→R p,
there exist n ′,p ′ with n −→∗R n ′, p −→∗R p ′ and n ′ ∼ p ′.

– weakly coherent modulo ∼ iff for all m,n,n ′ with m ∼ n and n −→R n ′,
there exist m ′,n ′′ with m −→∗R m ′, n ′ −→∗R n ′′ and m ′ ∼ n ′′.

Confluence, weak confluence, and weak coherence, all modulo ∼
m ∼ n

m′

R∗

�
n′

R∗-

m′′
R∗

....-

∼n′′ R
∗�..

..

m

n

R

�
p

R-

n′
R∗

....-

∼ p′
R∗
�...

.

m ∼ n

n′

R-

m′

R∗

?

..........
∼n′′ R

∗�..
..

Theorem 25 (Huet’s Theorem [7]). If the reduction relation R is strongly
normalising, weakly confluent modulo ∼ and weakly coherent modulo ∼, then R
is also confluent modulo ∼.

Proposition 26.
−→β,−→η,−→c,−→γ,−→ are all weakly confluent modulo ∼.

Proposition 27.
−→β,−→η,−→c,−→γ,−→ are all weakly coherent modulo ∼.

Proposition 28.
−→β,−→η,−→c,−→γ are all confluent modulo ∼.

Proof. By Huet’s Theorem using Prop. 26, Prop. 27, Thm. 17 and Thm. 21.

We now show confluence of −→ modulo ∼ using some intermediate Lem-
mas. The only non-trivial interaction is between β- and γ ′-reduction. Following
Barendregt [3, Chapter 11] we allow β-redexes to be marked. A redex is marked
by overlining it. Notice that γ ′-reduction can hide β-redexes inside a γE-redex.
In such cases, we allow the γE-redex to be marked. For instance

(λx.δ(p, x1.n1, x2.n2))m −→γ′ δ(p, x1.λx.n1, x2.λx.n2)m

Definition 29.

ϕ((λx.m)n) = ϕ(m)[x :=ϕ(n)]

ϕ(πi(〈m,n〉)) = ϕ(m)

ϕ(δ(ιi(m), x1.n1, x2.n2)) = ϕ(ni)[xi :=ϕ(m)]

ϕ(E[δ(p, x1.n1, x2.n2)]) = δ(ϕ(p), x1.ϕ(E[n1]), x2.ϕ(E[n2]))

ϕ commutes with all the other syntax constructors.

The ϕ function contracts all of the marked β-redexes in a term.

Lemma 30. ϕ(m[x := n]) = ϕ(m)[x := n]

Proof. By induction on the structure of m.

Lemma 31. If m ∼ m ′ then ϕ(m) ∼ ϕ(m ′).

Proof. By induction on the derivation of m ∼ m ′.

Lemma 32. (a)

m

n

γ

�
p

ϕ
-

n′
ϕ

....-

∼ p′
γ∗
�...

. (b)

m

n

γ∗

�
p

ϕ
-

n′
ϕ

....-

∼ p′
γ∗
�...

.

Proof.

(a) By induction on the derivation of γ using Lemma 30 and Lemma 31.

(b)

m
ϕ

- p

(a)

.

γ
? ϕ - . ∼ .

γ∗

?

......

IH

n

γ∗
?
ϕ
- n′ ∼ .

γ∗

?

......
∼ p′

γ∗?
....

Lemma 33.

m

p

β

�
n

γ∗

-

p ′
γ∗

.....-

∼ n ′ (βγE)∗
�...

..

Proof. Let m be m with the β-redex marked, and || be an operator that erases
marked redexes, but otherwise leaves a term unchanged.

m

m

||

�

n

γ∗

-

p

β

�

ϕ

�
γ∗

n

||

�

-

p′

γ∗......................-

n′

(βγE)∗

�..
....

....
....

....

ϕ�
∼.......

The front triangle is proved by induction on the structure of n. The bottom
rectangle is proved by Lemma 32.

Proposition 34.

m ∼ n

m ′
γ∗
�

n ′
c∗-

m ′′c∗

..-

∼n ′′ γ∗
�..

Proof. Using Lemma 33.

Theorem 35. −→ is confluent modulo ∼.

Proof. By a diagram chase using Prop. 28 and Prop. 34.

Theorem 36. λ→×+ is decidable.

Proof. By Thm. 35, and Thm. 23, every λ→×+-term has a unique normal form
obtained by reducing to βηγE-normal form and then to γ-normal form. To decide
whether terms m,n are equal simply reduce them to normal forms m ′,n ′ and
then compute whether m ′ ∼ n ′.

6 Variations

Unblocking cases It would be nice if it was possible to remove discrimination
contexts from the move-case3-rule, and so allow all the rewrite rules to be local.
One way of doing so is to mark a case as blocked when it is adjacent to a
lambda abstraction on whose bound variable the guard depends. Then unblocked
cases can be lifted over blocked cases. The resulting calculus is somewhat fiddly,
though, as blocked cases can subsequently become unblocked by β-reductions
inside the guard. We omit the details, and instead consider some more well-
behaved alternatives.

Parallel cases Altenkirch et al [1] use parallel cases in order to define normali-
sation by evaluation for sums. We write

∆([(x0,p0), . . . , (xl−1,pl−1)], [e0, . . . , e2l−1])

for the parallel case over the guards p0, . . . ,pl−1 with binders x0, . . . , xl−1 and
tails e0, . . . , e2l−1.

An easy way to comprehend the syntax is via the erasure ser from parallel
cases to a tree of nested serial cases.

ser(∆((x,p) :: gs, es1 ++ es2)) = δ(p, x.ser(∆(gs, es1)), x.ser(∆(gs, es2)))
ser(∆([], [e])) = e

The ser function commutes with all other syntax constructors. The operator ::
appends an element to the front of a list. The operator ++ concatenates two lists
of equal length. The translation par from a λ→×+-term to a term with parallel
cases, simply converts each serial case into a parallel case with one guard.

par(δ(p, x.n1, x.n2)) = ∆((x, par(p)), [par(n1), par(n2)])

The par function commutes with all other syntax constructors.

Definition 37. The relation ≈ is the least congruence such that for all permu-
tations perm of the integers 1, . . . ,n:

∆([], [e]) ≈ e ∆(gs, [e0, . . . , e2l−1]) ≈ ∆(gs ′, [e ′0, . . . , e ′2l−1])

where

gs = (x0,p0) . . . (xl−1,pl−1) e ′i = eperm∗(i)

gs ′ = (x ′0,p ′0) . . . (x ′l−1,p ′l−1) with x ′i = xperm(i) and p ′i = pperm(i)

perm∗(i) =↑ (perm2 (↓ i)) perm2 (bl−1 . . .b0) = bperm(l−1) . . .bperm(0)

↓, ↑ convert natural numbers to and from binary

Given two terms m1 and m2, then m1 ≈ m2 iff m2 can be obtained from m1 by
permuting guards (and adjusting binders and tails accordingly).

β- and η-rules The β- and η-rules are as in the serial rewriting theory, except
for sums, where they are translated in the obvious way.

(+.β1) ∆((x, ι1(m)) :: gs, es1 ++ es2) −→ ∆(gs, es1[x :=m])

(+.β2) ∆((x, ι2(m)) :: gs, es1 ++ es2) −→ ∆(gs, es2[x :=m])

(+.η) mA+B −→ ∆((x,m), [ι1(x), ι2(x)])

For sum types, β-rules are only needed for the first guard of a parallel elimina-
tion. Other guards can just be eliminated by first applying ≈.

γ-rules

(hoist-case)

HP[∆((x,p) :: gs, es1 ++ es2)]

−→ ∆([x,p], [HP[∆(gs, es1)],HP[∆(gs, es2)]]),
x /∈ fv(HP[]) and bv(HP[]) ∩ fv(p) = ∅

(redundant-guard)

∆((x,p) :: gs, es1 ++ es2) −→ ∆(gs, es1),
es1 ≈ es2 and x /∈ fv(es1 ++ es2)

(repeated-guard)

∆((x1,p1) :: (x2,p2) :: gs, (es1 ++ es2) ++ (es3 ++ es4))

−→ ∆((x1,p1) :: gs, es1 ++ es4), p1 ≈ p2

(join-cases)

∆(gs, [e1, . . . , ek, . . . e2l]) −→
∆((x,p) :: gs, [e ′1,j|1 6 j 6 2l] ++ [e ′2,j|1 6 j 6 2l])

where
ek = ∆((x,p) :: gs ′, es1 ++ es2)

{x} /∈ Binders(gs) and (Binders(gs) ∩ fv(p)) = ∅

e ′i,j =

{
ej, if j 6= k

∆(gs ′, esi), otherwise

Binders(∆([(x0,p0), . . . , (xl−1,pl−1)], [e0, . . . , e2l−1])) = {x0, . . . , xl−1}

HP[] ::= []n | π1([]) | π2([]) | ∆((x, []) :: gs, es)
| λx.[] | m [] | 〈[],n〉 | 〈m, []〉 | ι1([]) | ι2([])

The redundant-guard - and repeated-guard -rules are both obtained by reading
the corresponding axioms from left to right. The move-case4 axiom is captured
by the combination of: parallel cases, the relation ≈ and the join-cases-rule;
which allows a guard of a tail to be merged with the guards of its parent parallel
case, providing the guard is independent of the guards of the parent.

Definition 38. −→P = the union of the compatible closure of the above β- and
γ- rules, and the restricted compatible closure of the above η-rules.

The proofs of Sections 4 and 5 are easily adapted to handle parallel cases.

Proposition 39. −→P/≈ is weakly normalising and confluent.

Simulating parallel cases It is possible to simulate parallel cases using plain
λ→×+-syntax. The key to avoiding non-termination is to define a congruence
such that guards can only be duplicated if in normal form.

Definition 40. The relation ≈ ′ is the least congruence such that

δ(p1, x1.δ(p2,y1.n1,y2.n2), x2.δ(p2,y1.n3,y2.n4))

≈ ′ δ(p2,y1.δ(p1, x1.n1, x2.n3),y2.δ(p1, x1.n2, x2.n4)),
x1, x2,y1,y2 /∈ fv(p1) ∪ fv(p2)

δ(p1, x1.δ(p2,y1.n1,y2.n2), x2.n3)

≈ ′ δ(p1, x1.δ(p2,y1.n1,y2.n2), x2.δ(p2,y1.n3,y2.n3)),
x2 /∈ fv(p2) and y1,y2 /∈ fv(n3)

δ(p1, x1.n1, x2.δ(p2,y1.n2,y2.n3))

≈ ′ δ(p1, x1.δ(p2,y1.n1,y2.n1), x2.δ(p2,y1.n2,y2.n3))

x1 /∈ fv(p2) and y1,y2 /∈ fv(n1)

where in each case p1,p2 must be in normal form.

γ-rules

(hoist-case)

H[δ(p, x1.n1, x2.n2)] −→ δ(p, x1.H[n1], x2.H[n2]),
x1, x2 /∈ fv(H) and bv(H) ∩ fv(p) = ∅

(duplicate-guard)

δ(p, x1.δ(p,y1.m1,y2.m2), x2.δ(p,y1.n1,y2.n2))

−→ δ(p, x1.m1[y1 := x1], x2.n2[y2 := x2]), x1, x2 /∈ fv(p)

(redundant-guard)

C[δ(p, x1.n, x2.n)] −→ C[n], x1, x2 /∈ fv(n) and
C ≡ []; or
C is a hoisting frame; or
C is a continuation frame with (bv(C) ∩ fv(p)) 6= ∅

The constraints on the context in which redundant-guard can be applied are
necessary in order to prevent cycles with ≈ ′.

Definition 41. −→p= the union of −→β ∪ −→η and the compatible closure of
the above γ-rules.

Proposition 42. −→p/∼′ is weakly normalising and confluent.

Conjecture 43. −→,−→P/≈,−→p/∼′ are all strongly normalising.

Intuitively, it seems that −→ should be strongly normalising. Both c-reduction
and γ-reduction are strongly normalising, and γ ′-reduction only interacts with
c-reduction in such a way as to expose existing redexes, rather than actually
creating new ones. If we could prove strong normalisation for −→, then the
confluence proof could be simplified.

7 Conclusion

We have proposed a confluent extensional rewriting theory for simply-typed
lambda-calculus extended with sums. The key contribution is confluence and
decidability for a conventional rewriting theory. This contrasts with the two
previous approaches to decidability. Ghani [5] uses intricate rewriting techniques,
whereas Altenkirch et al [1] use normalisation by evaluation and category theory.

Acknowledgements Thanks to Philip Wadler and the anonymous reviewers for
helpful feedback.

References

1. T. Altenkirch, P. Dybjer, M. Hofmann, and P. Scott. Normalization by evaluation
for typed lambda calculus with coproducts. In 16th Annual IEEE Symposium on
Logic in Computer Science, pages 303–310, Boston, Massachusetts, June 2001.

2. V. Balat, R. D. Cosmo, and M. Fiore. Extensional normalisation and type-directed
partial evaluation for typed lambda calculus with sums. In 31st Symposium on
Principles of Programming Languages (POPL 2004), pages 64–76. ACM Press,
Jan. 2004.

3. H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Number 103
in Studies in Logics and the Foundations of Mathmatics. North Holland, 1984.

4. U. Berger, M. Eberl, and H. Schwichtenberg. Normalization by evaluation. In
Prospects for Hardware Foundations (NADA), number 1546 in Lecture Notes in
Computer Science, pages 117–137, 1998.

5. N. Ghani. Beta-eta equality for coproducts. In Proceedings of TLCA’95, number
902 in Lecture Notes in Computer Science, pages 171–185. Springer-Verlag, 1995.

6. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University
Press, 1989.

7. G. P. Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. J. ACM, 27(4):797–821, 1980.

8. S. Lindley. Normalisation by Evaluation in the Compilation of Typed Functional
Programming Languages. PhD thesis, University of Edinburgh, 2005.

9. S. Lindley and I. Stark. Reducibility and >>-lifting for computation types. In
P. Urzyczyn, editor, TLCA, volume 3461 of Lecture Notes in Computer Science,
pages 262–277. Springer, 2005.

10. Y. Ohta and M. Hasegawa. A terminating and confluent linear lambda calculus.
In RTA, pages 166–180, 2006.

11. D. Prawitz. Ideas and results in proof theory. In Proceedings of the 2nd Scandi-
navian Logic Symposium, number 63 in Studies in Logics and the Foundations of
Mathmatics, pages 235–307. North Holland, 1971.

