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Bounding messages for free in security protocols

Myrto Arapinis and Marie Duflot

LACL - University Paris 12, France
myrto.arapinis@wanadoo.fr, duflot@univ-paris12.fr

Abstract. The verification of security protocols has been proven to be unde-
cidable in general. Different approaches use simplifying hypotheses in order to
obtain decidability for interesting subclasses. Amongst the most common is type
abstraction,i.e. considering only well-typed runs, therefore bounding message
length. In this paper we show how to get message boundedness “for free” under a
reasonable (syntactic) assumption on protocols, which we call well-formedness.
This enables us to improve existing decidability results.

1 Introduction

Security protocols are short programs that describe communication between two or
more parties in order to achieve security goals such as data confidentiality, identification
of a correspondent,... The protocols are executed in a hostile environment, such as the
Internet, and aim at preventing a malicious agent from tampering with the messages,
for instance, using encryption. However, encrypting messages is not sufficient to ensure
security properties. History has shown that these protocols are extremely error-prone
and careful, formal verification is needed.
Despite the apparent simplicity of such protocols, their verification is a difficult prob-
lem and has been proven undecidable in general [DLMS99,CC01]. Different attempts
[DLMS99,Low99,RT01,CC03,RS03a,RS03b,BP05] have successfully exhibited decid-
able subclasses, and tools for proving security have been designed even though termina-
tion is not always guaranteed [Mea96,CJM00,Bla01,CMR01,SBP01]. In the literature,
only very few results consider an unbounded number of sessions and even less allow un-
bounded creation of new nonces (constants generated to ensure freshness of messages).
Most papers bound the number of nonces or even the number of sessions in order to
obtain decidability (see the recapitulative table in [CDL06]).
In order to obtain decidability, many existing results [Low99,RS03a,DLMS99,CKR+03]
bound the message length in adopting a typing abstraction. An assumption according to
which one can always tell the type of a given message. While this appears as an unre-
alistic assumption in the general case, this paper presentsa simple way of justifying it.
This question has been addressed in [LYH04,HLS03] amongst others, and solved with
tagging schemes.
In this paper, we show that when a protocol satisfies a reasonable, syntactic condition of
“well-formedness”, then the typing abstraction is a correct one. Furthermore, the con-
sidered typing system here is much more fine-grained than theone in [LYH04,HLS03],
thus refining existing results. Indeed, we prove that a well-formed protocol admits an



attack if and only if it admits a “well-typed” attack with respect to a stronger notion of
typing (see section 3.1).
Our notion of well-formed protocols characterizes protocols in which a term cannot be
mistaken for another, unless they are of the same type. This notion is often satisfied in
protocols found in the literature [CJ97] and, even when the protocol is not well-formed,
a light tagging like the one proposed in [BP05] permits to comply with the property
and thus use our result. Note that, the syntactic restriction considered here significantly
simplifies the ones in [LYH04,HLS03].
Fianlly, to the best of our knowledge, only very few papers [Low99,RS03a,RS03b] give
decidability results with an unbounded number of sessions and nonces. In the last part,
we show that hypotheses made in [RS03a,Low99] can be slightly modified in order to
meet the typing assumption, thus allowing us to refine the result of [RS03b] since the
tagging scheme we propose is strictly weaker that the one used in their paper.

2 Modelling security protocols

In this section we define the trace based model used throughout the paper to define and
reason about cryptographic protocols.

2.1 The syntax

Terms Data transmitted in the protocol are modelled as terms builtby using the fol-
lowing components:

A setP = {P1, . . . , Pk} of principal namesstanding for the different participants of
the protocol. During one protocol execution, each principal Pi can generate a setKi =
{Ki

1, . . . ,K
i
li
} of short term keys orsession keys, as well as a setNi = {N i

1, . . . , N
i
mi
}

of fresh values callednonces. The set of session-keys (resp. nonces) generated by all
principals is denotedK (resp.N ). Finally the participants can use a finite setC =
{c1, . . . , cn} of constants.
Every principalPi has its own setXi = {X i

1, . . . , X
i
pi
} of variables. Variables are used

to model the fact that a principal may receive data which it does not know. The set of
variables is thenX =

⋃k

i=1 Xi.
The set of terms is defined inductively using the above definedcomponents as follows:
T ::= P | pbk(P) | pvk(P) | shk(P ,P) | K | N | C

| X | 〈T , T 〉 | {T }T | sigT (T )
wherepbk(P ), pvk(P ) andshk(P, P ′) are respectively the public key, private key of a
principalP and shared key between principalsP andP ′, and〈t1, t2〉, {t1}t2 , sigt1(t2)
represent pairing, encryption and signature.
In what follows, we denote the set of variables of a termt byV(t), the set of subterms of
t bySt(t), and the set of encrypted sub-terms oft byESt(t) = {f(t1, t2) ∈ St(t) | f ∈
{{ } , sig ( )}}.
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Actions In our formalism, we split the rules commonly used to describe protocols [CJ97]
into send and receive actions, in order to capture preciselywhat one principal sends
and what the receiver expects. We thus have a set of actionsD = S ∪ R where
S = {Pi!Pj : t | Pi, Pj ∈ P , Pi 6= Pj , t ∈ T } is the set ofsend actionsand
R = {Pi?Pj : t | Pi, Pj ∈ P , Pi 6= Pj , t ∈ T } is the set ofreceive actions.
The term of an action is defined byterm(Pi!Pj : t) = term(Pi?Pj : t) = t, and
for every sequence of actionsD = d1 . . . dn, terms(D) =

⋃n

i=1(term(di)). Simi-
larly the set of variables ofD is V(D) = V(terms(D)), the set of sub-terms ofD is
St(D) = ∪t∈terms(D)St(t), and the set of encrypted sub-terms ofD is ESt(D) =
∪t∈terms(D)ESt(t).

Protocols

Definition 1. A protocolΠ = s1r1 . . . slrl is a sequence of send-receive actions such
that,∀i, 1 ≤ i ≤ l

1. si ∈ S andri ∈ R
2. if si = P !P ′ : t, thenri = P ′?P : t′

3. ifX ∈ V(term(si)), then∃j, 1 ≤ j < i such thatX ∈ V(term(rj))

4. for every1 ≤ i ≤ l there exists a substitutionδi 6= ⊥, with

{

δ1 = mgu(term(s1), term(r1)), and
δk = mgu(δk−1(. . . δ1(sk)), δk−1(. . . δ1(rk))), ∀1 ≤ k ≤ l.

The compositionδ = δl ◦ · · · ◦ δ1 is the honest substitution for all the variables
occurring in the protocol specification.

The first two points ensure that each send action is followed immediately by a receive
between the same two principals. Point 3 says that variablesare only introduced when
receiving a term. Point 4 claims that matching send and receive events must be unifiable,
and compatible with the unification made on the previous actions.
A role of the protocol is the restriction ofΠ to the actions (send and receive) of one
principal, as illustrated in the following example.

Example 1.The Needham-Schroeder protocol
ΠNS = P1 ! P2 : {P1, N

1
1 }pbk(P2)

P2 ?P1 : {P1, X
2
1}pbk(P2)

P2 ! P1 : {X2
1 , N

2
1 }pbk(P1)

P1 ?P2 : {N1
1 , X

1
1}pbk(P1)

P1 ! P2 : {X1
1}pbk(P2)

P2 ?P1 : {N2
1}pbk(P2)

The protocol has two principals, hence two roles described here.
ΠNS

1 = P1 ! P2 : {P1, N
1
1 }pbk(P2)

P1 ?P2 : {N1
1 , X

1
1}pbk(P1)

P1 ! P2 : {X1
1}pbk(P2)

ΠNS
2 = P2 ?P1 : {P1, X

2
1}pbk(P2)

P2 ! P1 : {X2
1 , N

2
1 }pbk(P1)

P2 ?P1 : {N2
1}pbk(P2)
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2.2 The semantics

After having described the roles of a protocol,i.e. the way things should happen in a
honest execution of the protocol, we will now describe how things really happen. In
particular, we have to take into account the fact that a protocol can be executed several
times, or by different agents, and that in each case the nonces and keys should be dif-
ferent, in order to ensure freshness.

We use the notion ofsessionas a partial instantiation of one of the roles of the protocol.
Since we do not assume the number of sessions to be bounded, weconsider an infinite
setΣ = {σn | n ∈ N} of session ids. In the same vein, we consider an infinite set
A = {an | n ∈ N} ∪ {ǫ} of agentsthat will play the roles of the protocol, with the
special agentǫ standing for theintruder.

The real values of nonces, session-keys and variables are instanciated with the session
Id σ as well as the name of each participant taking part in this session. This yields three
infinite sets:
K = {Ki

j(σ, b1, . . . , bk) | K
i
j ∈ K, σ ∈ Σ, (b1, . . . , bk) ∈ A

k} of session-keys,
N = {N i

j(σ, b1, . . . , bk) | N
i
j ∈ N , σ ∈ Σ, (b1, . . . , bk) ∈ Ak} of noncesand

X = {X i
j(σ, b1, . . . , bk) |X

i
j ∈ X , σ ∈ Σ, (b1, . . . , bk) ∈ Ak} of variables.

We do not need to consider the intruder as a normal agent that generates keys and
nonces during a session. It is provided at the beginning witha set of nonces and session
keys, one for each key/nonce that can be generated during thenormal execution of the
protocol. These sets are denoted

Nǫ = {nij | i, j s.t.N i
j ∈ N} andKǫ = {kij | i, j s.t.Ki

j ∈ K}.

Using the above defined sets and the notions of long term keys,we can inductively
define the set of (instanciated) terms.

T ::= A | pbk(A) | pvk(A) | shk(A,A) | K | Kǫ | N |Nǫ

| C | X | 〈T,T〉 | {T}T | sigT
(T)

The setM of actual messages exchanged on the network is the set of ground terms (i.e.
without variables) and can be recursively defined with a grammar similar to the previ-
ous one. Based on this definition of instanciated terms, we define the setD = S ∪ R

of possible instantiations of send and reveive actions.

In order to specify the correspondence between terms ofT from the description of the
protocol and instanciated terms ofT, we define for every(σ, b1, . . . , bk) ∈ Σ × Ak

the function||.||(σ,b1,...,bk)) : T → T. This function associates to a principalPj the
agentbj , to each nonceN i

j (resp.session-key, variable) the corresponding instanciated
objectN i

j(σ, b1, . . . , bk) and is defined inductively on encrypted subterms, pairs and
more generally on terms. It can also be extended to actions by:
||Pj !Pl : t||(σ,b1,...,bk) = ||Pj ||(σ,b1,...,bk)!||Pl||(σ,b1,...,bk) : ||t||(σ,b1,...,bk) and a similar
definition for receive actions.

A substitutionis a mapθ : X ⇒ T. θ(t) or tθ will denote indifferently the applica-
tion of substitutionθ to termt. A unifier of two termst andt′ is a substitutionθ such
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thatθ(t) = θ(t′). Themost general unifierof two termst, t′, denoted mgu(t, t′), is a
unifier θ of t andt′ such that for all uniferψ of t andt′ there exists a substitutionφ
such thatψ = φ ◦ θ. We will denote the fact that two termst andt′ are not unifiable by
mgu(t, t′) = ⊥.

The formal execution model is a state transition system. A global state of the system is
given by(SId, q, I) whereSId is a set of sessions,q is a function that describes the
local state of each session inSId andI ⊆M represents the intruder’s knowledge.
More precisely,∀σ ∈ SId, q(σ) = (i, b1, . . . , bk, θ, p) is the local state of sessionσ:

– i is the index of the role that is executed in this session,
– (b1, . . . , bk) ∈ Ak are the identities of the parties that are involved in the session,
– θ is a partial instantiation of variables occuring in||Πi||(σ,b1,...,bk),
– p is the control point of the program.

Given a protocolΠ , the initial state ofΠ is (SId0, q0, I0), with SId0 = ∅ (and
thus the definition ofq0 is useless) andI0 = A ∪ C ∪ Kǫ ∪ Nǫ ∪ {pbk(a) | a ∈
A} ∪ {shk(a, ǫ), shk(ǫ, a) | a ∈ A} ∪ {pvk(ǫ)} (the intruder knows the agent names,
constants, his own session-keys and nonces, every agent’s public key as well as his own
private key and the keys he shares with other agents).
LetQ = (SId, q, I) be a global state forΠ . Three types of transitionsQ

e
−→ update(Q, e)

may be allowed:
1. Initiate a new sessionfor theith role (e = new(σ, i, b1, . . . , bk)):

– Evente is enabled at stateQ whenever the sessionσ does not belong toSId,
the agentbi is not the intruder and any two agents taking part in this new session
are distinct.

– The effect of firing this transition isupdate(Q, e) = (SId ∪ {σ}, q′, I) with
{

q′(σ′) = q(σ′), ∀σ′ ∈ SId
q′(σ) = (i, b1, . . . , bk, ∅, 1).

2. Execute next send-action of an existing sessionσ ∈ SId (e = send(σ, p)):
– Evente is enabled at stateQ whenever the control point of sessionσ is p and

the next action to perform inσ is a send action.
– The effect of firing this transition isupdate(Q, e) = (SId, q′, I ∪ {m}) with
m = θ(||t||(σ,b1,...,bk)) and
{

q′(σ′) = q(σ′), ∀σ′ ∈ SId, σ′ 6= σ

(q′(σ) = (i, b1, . . . , bk, θ, p+ 1)).

3. Execute next receive-action of an existing sessionσ ∈ SId (e = receive(σ, p,m)):
– Evente is enabled at stateQ whenever the control point of sessionσ is p and

the next action to perform inσ is a receive action.
• m ∈M is a message that can be computed by the intruder fromI,
• q(σ) = (i, b1, . . . , bk, θ, p) (the control point ofσ is p),
• Πi(p) = Pi?j : t (the next action is a receive),
• ψ 6= ⊥, whereψ = mgu(m, θ(||t||(σ,b1,...,bk))) (m and the expected mes-

sage are unifiable).
– The effect of firing this transition isupdate(Q, e) = (SId, q′, I) with

{

q′(σ′) = q(σ′), ∀σ′ ∈ SId, σ′ 6= σ

q′(σ) = (i, b1, . . . , bk, θ ∪ ψ, p+ 1).

5



The adversary intercepts messages between honest participants and computes new mes-
sages using the deduction rule⊢ defined in Fig.1. IntuitivelyM ⊢ m means that the
adversary is able to compute the messagem from the set of messagesM . The notation
m−1 stands forpbk(a) if m is of the typepvk(a), pvk(a) if m is of the typepbk(a),
andm−1 = m otherwise.

M ⊢ m
m ∈M

M ⊢ m1 M ⊢ m2

M ⊢ 〈m1,m2〉

M ⊢ 〈m1,m2〉

M ⊢ mi

1 ≤ i ≤ 2

M ⊢ m1 M ⊢ m2

M ⊢ {m1}m2

M ⊢ {m1}m2
M ⊢ m−1

2

M ⊢ m1

M ⊢ m1 M ⊢ m2

M ⊢ sigm1
(m2)

M ⊢ sigm1
(m2) M ⊢ m−1

1

M ⊢ m2

Fig. 1. Deduction rules

Example 2.In order to better understand the effect of firing transition, in Fig.4 we have
detailed a valid trace of length 7 forΠNS . Due to space restrictions, the trace is given
in appendix.

2.3 The secrecy problem

LetΠ be an arbitraryk-party protocol. We say thatΠ guarantees the secrecy of nonce
N i
j ∈ N (resp.session-keyKi

j ∈ K) if, in all possible executions, each honest instan-
tiation ofN i

j (resp.Ki
j) remains unknown to the adversary.

More formally, we say thatΠ preserves secrecy of nonceN i
j ∈ N (of session key

respKi
j ∈ K) if for every valid trace(SId0, s0, I0) →∗ (SIdn, sn, In) of the

protocol and for every(b1, . . . , bk) ∈ (A \ {ǫ})k (i.e. k honest agents), we have
In 6⊢ N i

j(σ, b1, . . . , bk) (resp.In 6⊢ Ki
j(σ, b1, . . . , bk)) for someσ ∈ SIdn.

We say thatΠ admits an attack on nonceN i
j ∈ N (resp.session-keyKi

j ∈ K) if there
exists(SIdn, sn, In) s.t. (SId0, s0, I0) →∗ (SIdn, sn, In) andb1, . . . , bk ∈ A \ ǫ,
and we haveIn ⊢ N i

j(σ, b1, . . . , bk) (resp.In ⊢ N i
j(σ, b1, . . . , bk)) for someσ ∈ SIdn

Example 3.An attack onΠNS

The trace ofΠNS detailed in Fig.4 is an attack on the nonceN2
1 . Indeed, fromI7 the

intruder can deduceN2
1 (σ2, a, b) which is encrypted with its own public key.

3 Well-formed protocols and well-typed attacks

In this section, we state the main result of the paper. We prove that for awell-formed
protocol (i.e. with non unifiable subterms), for verification of secrecy properties we
only need to consider well-typed runs of the protocol,i.e. for well-formed protocols the
typing abstraction, with respect to the following type system, is correct.

6



3.1 Types

We introduce in this section a very strong typing on messages, that will allow us to re-
strict significantly the set of traces to consider in order todetect an attack. For example,
nonces may have different types, depending on the role that generated them and the
moment of the protocol when they were generated.

We first use a single type agentα for every principal nameP ∈ P . In particular, the
intruder has the same type as any other agent.
To each session-keyKi

j in K (resp.nonceN i
j in N , constantci in C), we associate a

different typeκij (resp.νij , γi). The notationsκ, ν andγ denote respectively the set of
session-key types, nonce types and constant types.

We thus obtain inductively the following type set for terms:
τ ::= α | κ | ν | γ | pbk(α) | pvk(α) | shk(α, α) | 〈τ, τ〉 | {τ}τ | sigτ (τ)

The typing rules are given in Fig.2

P ∈ P

P : α

ci ∈ C

ci : γi

Ki
j ∈ K

Ki
j : κij

N i
j ∈ N

N i
j : νij

P ∈ P

pbk(P ) : pbk(α)

P ∈ P

pvk(P ) : pvk(α)

P, P ′ ∈ P

shk(P, P ′) : shk(α,α)

t1 : τ1 t2 : τ2

f(t1, t2) : f(τ1, τ2)

X ∈ X δ(X) : τ

X : τ

t : τ

||t||(σ,b1,...,bk) : τ

k
i
j ∈ Kǫ

k
i
j : κij

n
i
j ∈ Nǫ

n
i
j : νij

Fig. 2.Typing rules

Definition 2. A well-typedrun is a valid trace(SId0, q0, I0) →∗ (SIdn, qn, In)
such that for every session idσ ∈ SIdn with qn(σ) = (i, b1, . . . , bk, θ, p), for every
variableX ∈ dom(θ), X : τ ⇒ θ(X) : τ .

This definition states that each variable used in the specification is always instanciated
(using substitutionθ) by a message with the expected type.

Example 4.The run detailed in Fig.4 is well-typed. Indeed,
X1

1 (σ1, a, ǫ) : ν2
1 andθ(X1

1 (σ1, a, ǫ)) = N2
1 (σ2, a, b) : ν2

1

X2
1 (σ2, a, b) : ν1

1 andθ(X2
1 (σ2, a, b)) = N1

1 (σ1, a, ǫ) : ν1
1

The following definition constrains unifiability between subterms of different type.

Definition 3. A protocolΠ (as defined in the previous section) is said to bewell-
formedwhen the following condition holds:
∀t, t′ ∈ ESt(Π), if there exist(σ, b1, . . . , bk), (σ′, b′1, . . . , b

′
k) ∈ Σ ×A

k and a substi-
tutionθ such thatθ(||t||(σ,b1,...,bk)) = θ(||t′||(σ′,b′

1
,...,b′

k
)), thenδ(t) = δ(t′).

7



As claimed in the introduction, this condition is often met in practice in the literature
(see [CJ97]) and even when the protocol isn’t well-formed, alight tagging scheme as
used in [BP05] in which a different label is introduced at every encryption step of the
specification, ensures well-formedness. We present such a tagging scheme in defini-
tion 7 in the context of the decidability results of [RS03a].

3.2 Considering only well-typed runs for well-formed protocols

We now state the main result of this paper. Due to a lack of space its proof is given in
appendix B. We will give here the main ideas of the proof.

Theorem 1. LetΠ be a well-formed protocol. IfΠ admits an attack, thenΠ admits a
well-typed attack.

The proof is based on the fact that if a protocol admits an attack then it admits an at-
tack of bounded lengthn, which can thus be found. The proof of theorem 1 is done by
induction on a procedure searching for this attack. Indeed,we show that the considered
procedure from [CZ06] instantiates variables only with terms of the expected type. We
will first detail this procedure and then come back to explanations about well-typedness
of computed substitutions.

The secrecy problem for security protocols can be translated into a constraint satisfac-
tion problem [MS01,CZ06,RT01]. In [CZ06] it is shown that using some simplification
rules, solving general constraints can be reduced to solving simpler constaint systems
that are calledsolved.

Definition 4. [CZ06] A constraint system C is a finite set of expressionsTi  tt or
Ti  ui whereTi ⊆ T, Ti 6= ∅, tt is a special symbol that represents an always
deducible term, andui ∈ T, 1 ≤ i ≤ n, such that:

– Ti ⊆ Ti+1, ∀i, 1 ≤ i ≤ n− 1;
– if X ∈ V(Ti), then∃j<i such thatTj = min{T | T  u ∈ C,X ∈ V(u)} (for the

inclusion relation) andTj  Ti

⊥ denotes the unsatisfiable system. A constraint system is said to be solved if it is
different from⊥ and each of its constraints are of the formT  tt or T  X , where
X ∈ X.

The left-hand side of the constraintT  u isT andu is its right-hand side. The left-hand
sidelhs(C) of the constraint systemC is the maximal left-hand side of its constraints,
and the right-hand siderhs(C) of C is the set of messages in the right-hand side of
its constraints. We consider the following sets overC defined as expected:V(C) =
V(lhs(C)) ∪ V(rhs(C)), terms(C) = lhs(C) ∪ rhs(C), St(C) = St(terms(C))
andESt(C) = ESt(terms(C)).

The simplification rules we consider are defined in Fig.3. They have been proven cor-
rect, complete and terminating in polynomial time [CZ06]1.

8



R1 C ∧ T  u  ∅ C ∧ T  tt if T ∪ {X | T ′
 X ∈ C, T ′  T} ⊢ u

R2 C ∧ T  u  ψ Cψ ∧ Tψ  uψ if ψ = mgu(t, u), t ∈ ESt(T )
t 6= u, u not variable

R3 C ∧ T  u  ψ Cψ ∧ Tψ  uψ if ψ = mgu(t1, t2), t1, t2 ∈ ESt(T )
t1 6= t2

R4 C ∧ T  u  ∅ ⊥ if V(T, u) = ∅ andT 6⊢ u
Rf C ∧ T  f(u, v)  ∅ C ∧ T  u ∧ T  v for f ∈ {〈 , 〉, { } , sig ( )}

Fig. 3. Simplification rules

We now give a proof sketch of theorem 1.

The proof is done by induction, as said before, on the lengthn of a sequence of simpli-
fications leading to an attack:

C0  
Ri1

θ1
C1  

Ri2

θ2
· · · 

Rin

θn
Cn

whereC0 is the initial constraint system corresponding to the interleaving of the con-
sidered attack, andCn is a solved constraint system. Such aCn exists since the protocol
admits an attack with this interleaving, and the simplification rules are correct, complete
and terminating.
It is easy to see that rulesR1, R4 andRf preserve well-typedness since they do not
instantiate any variable.
For rulesR2 andR3 we show, by means of some lemmas given in appendix A (again
due to a lack of space), that the selected substermst andt′, such thatψj = mgu(t, t′) 1 ≤
j ≤ n whenRij ∈ {R2, R3}, are of the same type and that computing the mgu of two
terms of the same type results in a well-typed substitution.This allows us to conclude
that, when applying these rules, variables are instantiated only with terms of the ex-
pected type, and thus they preserve well-typedness.

The following corollary is an immediate consequence of the previous theorem and of
the fact that function application (pairing, encrypting and signing) is embedded in the
type of a term.

Corollary 1. LetΠ be a well-formed protocol. IfΠ admits an attack, thenΠ admits
an attack with messages of bounded length.

We have thus proved in this section that the encryption abstraction is correct for well-
formed protocols. And that this holds for a much more fine-grained type notion than the
one considered in [LYH04,HLS03], where all nonces and session keys are of the same
type. This severely restricts the search space to consider for verification purposes. We
now define a tagging scheme that ensures well-formedness.

1 Actually, the rules presented in [CZ06] allow unification between pairs in rulesR2 andR3.
But since then, the authors have let us know that we could justconsider unification between
encrypted terms. Thus, the rules presented in Fig.3 slightly differ from, but are equivalent to,
the original rules in [CZ06].
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Definition 5. A tagged protocol is a protocol (as defined in the previous section) s. t.:
∀t ∈ ESt(Π), ∃c ∈ C andt1, t2 ∈ T s.t.t = {c, t1}t2 or t = sigt1(c, t2),
∀t, u ∈ ESt(Π) s.t.t = f(l, t1, t2) andu = g(l, u1, u2), thenf = g andδ(t) = δ(u).

It immediately follows that such tagged protocols verify well-formedness. This tagging
scheme is extremely lighter than the ones in [LYH04,HLS03] where the whole type of
an encrypted subterm is used for tagging it. We have thus obtained a more refined type
abstraction with a very simple tagging scheme.

4 Application to decidability results

As claimed in the introduction, the type assumption is oftennecessary in order to obtain
decidability and in particular in the presence of an unbounded number of sessions and
nonces. Indeed, Lowe in [Low99] as well as Ramanujam and Suresh in [RS03a] prove
the decidability of a class of protocols but assume that messages are of bounded length.

In [RS03a], the authors prove decidability of the secrecy problem (for a stronger def-
inition of secrecy than the one given in section 2.3) in the framework of messages of
bounded length, for a class of protocols they call structured. Since structured protocols
do not admit blind copies, we can slightly strengthen their definition in order to ensure
well-formedness, and we claim that this does not restrict the class of protocols from
a semantic point of view. Indeed, any structured protocol inthe sence of [RS03a] can
easiliy be transformed in a well-structured protocol in thesense of definition 6 (because
of the absence of blind copies) without changing its purported “meaning”. Hence we
can combine the decidability result in [RS03a] and theorem 1.

Definition 6. A protocolΠ = s1r1 . . . slrl is said to be well-structured if the following
conditions hold:

– Π doesn’t have blind copies, each variable is of atomic type,
– keys are atomic,
– encrypted subterms are textually distinct, an encrypted subtermt of a protocol in

the described class can be unified only with its matching sendor receivet′.

The above definition constrains unifiability of different subterms (even of the same mes-
sage) whereas the one of [RS03a] only constrains unifiability of subterms of different
messages.
As already argued above, the additional restriction is not severe and acceptable as it
yields decidability for unbounded messages. Moreover, since two encrypted subterms
of the protocolt, t′ ∈ ESt(Π) are unifiableiff the one is the send or receive message
of the other, it is the case thatδ(t) = δ(t′). Thus well-structured protocols as defined in
definition 6 are well-formed, which permits us to conclude tothe decidability of well-
structured protocols in the frame of unbounded message length.

One way of ensuring well-structuredness may be by means of tags/labels.

Definition 7. A protocolΠ = s1r1 . . . slrl is a tagged protocol if it satisfies the folow-
ing conditions:

10



– no blind copies,
– keys are atomic,
– ∀t ∈ ESt(Π), ∃c ∈ C, ∃t1, t2 ∈ T such thatt = {c, t1}t2 or t = sigt2(c, t1)
– ∀c, c′ ∈ C, ∀i 6= j, 1 ≤ i, j ≤ l, if f(c, t1, t2) ∈ ESt(si) then∀f(c′, u1, u2) ∈
ESt(sj), c 6= c′

– ∀c ∈ C, ∀i 1 ≤ i, j ≤ l, ∀p ∈ N∗, if term(si)|p = f(c, t1, t2) then∀qN∗ s.t.
q 6= p ∧ si|q = f(c′, u1, u2), c 6= c′.

The third condition is similar to all definitions of tagged protocols [BP05,RS03b]. The
fourth condition stipulates that each tag is use at most in one send event; and the fifth,
that a tagged use in a send event is used in at moste one position. We have thus con-
straind to be used exactly once in the protocol. Thus any encrypted subterm is unifiable
with and only with its matching send or receive action. Therefore tagged protocols are
well-structured, and we can hence conclude to decidabilityof the secrecy problem for
tagged protocols. The secrecy problem, for the class of tagged protocols, is shown to
be decidable in [RS03b], but the considered tagging scheme is heavier. Indeed, in the
above definition a few bits are sufficient to tag messages, whereas in [RS03b] each en-
crypted subterm of the protocol is tagged with a pair(c,N) wherec is a constant and
N is a different nonce making the tagging scheme heavier.

5 Conclusion

The result presented in this paper is a first step towards decidability. We have proven
that for a well known and wide class of protocols (that we callwell-formed) the type
abstraction is correct. Therefore there is no need to check for badly typed attacks, and
this restricts the search space to consider in order to provesecrecy for a protocol. This
was achieved in a much more economic way than in [LYH04,HLS03]. Further, the type
abstraction is here significantly refined.
In addition, we have shown how this result can improve existing decidability results. We
also believe it could improve the efficiency of existing tools by restricting their search
space to well-typed executions.
Our next goal is to use our theorem to get decidability for (atleast a large subclass of)
our well-formed protocols. The idea is that protocols at stake in existing undecidabil-
ity proofs lie outside our framework. They are either not executable (i.e. in an honest
execution, some action of the specification can never occur)or not well-formed (i.e.
they allow, for example, to replay a message generated in a session at stepm in another
session at stepn < m without the agents noticing it). We expect that the restriction to
well-formed and executable protocols will lead to a larger decidable subclass.
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A Some lemmas

As said before, the proof of the main theorem necessitates some lemmas that we give
here.

The first lemma stipulates that the most general unifier of twoterms of the same type is
well-typed.

Lemma 1. Let t, u ∈ T andmgu(t, u) 6= ⊥ (i.e. t andu are unifiable), ift : τ and
u : τ (i.e. t andu are of the same type), thenmgu(t, u) is well typed.

The proof of lemma 1 is done by induction on the algorithm thatcomputes the most
general unifier, the one we have chosen here is the one in [MM82]. Before proceeding
with the proof, we need to recall some notions introduced in [MM82] as well as the
unification procedure.

The unification problem mgu(t, u) can be written as the equationt = u. We will need
to consider sets of equations{ti = ui|ti, ui ∈ T}1≤i≤k. A set of equations is said to be
in solved form iffthe two following conditions hold:

1. the equations areXi = ti, Xi ∈ X, 1 ≤ i ≤ k,
2. every variable which is the left member of some equation occurs only there.

The following algorithm computes a solved set of equations equivalent to the one given
in argument. In [MM82] it is shown that the resulting solved set of equations is the most
general unifier of the initial one. Thus in order to compute mgu(t, u) for some termst
andu, we apply this algorithm to the set of equations{t = u}.

Algorithm [MM82] Given a set of equations, repeatedly perform any of the following
transformations. If no transformation applies, stop with success.

(a) Select any equation of the formt = X , wheret 6∈ X, andX ∈ X and rewrite it as
X = t.

(b) Select any equation of the formX = X , whereX ∈ X, and erase it.
(c) Select any equation of the forms = v, wheres, v 6∈ X. If the two function sym-

bols are different, stop with failure; otherwise (i.e.s = f(s1, . . . , sn) and v =
f(v1, . . . , vn)), replace this equation by the following ones:s1 = v1, . . . , sn = vn.
In particular if f is a constant (i.e.n = 0) then just erase the selected equation.

(d) Select any equation of the formX = t (i.e. the equation setE is of the form
E′ ∪ {X = t} for some equation setE′), whereX ∈ X, t 6= X . If X occurs int,
then stop with failure; otherwise, replaceE with the set (E′[X ← t] ∪ {X = t})

We say that an equationt = t′ is well-typedwhenevert andt′ are of the same type. A
set of equations is well-typed when all the equations in the set are well-typed.

We can now proceed with the proof of lemma 1.
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Proof (lemma 1).Let t, u ∈ T such thatt : τ , u : τ , andθ = mgu(t, u). The substi-
tution θ can be computed following the above algorithm. The initial set of equations
is {t = u}, and sincet andu are by hypothesis of the same type, then the initial set
of equations is well-typed. It is thus sufficient to prove that an iteration of the algo-
rithm preserves well-typedness, that is when an iteration of this algorithm is applied to
a well-typed set of equationsE, then the resulting setE′ of equations is well-typed.

– If the applied rule is(a) then the resulting set is clearly well-typed since we only
replace a well-typed equations = X byX = s.

– If the applied rule is(b) then we replaceE well-typed byE′ ( E which is trivially
well-typed.

– If the applied rule is(c) and sinceθ 6= ⊥, thenE is either of the formE′′ ∪
{f(t1, t2) = f(u1, u2)}, with f ∈ {〈 , 〉, { } , sig ( )} andt1, t2, u1, u2 ∈ T or
of the formE′′ ∪ {s = v}, with s, v ∈ T0 for some set of equationsE′′. In the
first case the resulting set isE′ = E′′ ∪ {t1 = u1, t2 = u2}. From the typing
rules in Fig.2 and sincef(t1, t2) andf(u1, u2) are of the same typef(τ1, τ2), then
{t1 = u1, t2 = u2} is well-typed as well asE′′ ∪ {t1 = u1, t2 = u2}. Thus,E′ is
well-typed. In the second caseE′ = E′′ and it is thus immediate thatE′ is well-
typed.

– If the applied rule is(d), thenE is of the formE′′ ∪ {X = s} for some set of
equationsE′′ and somes ∈ T andX ∈ X, and sinceθ 6= ⊥,X does not occur ins.
The resulting equation set isE′′[X ← s]∪ {X = s}. Now, for every equationv =
w in E′′ sinceX ands are of the same type (X = s is well typed), thenv[X ← s]
andv (resp.w[X ← s] andw) are of the same type , thusv[X ← s] = w[X ← s]
is well-typed, and finallyE′ = E′′[X ← s] ∪ {X = s} is well-typed. ⊓⊔

Because lemma 4, needed for the proof of the main theorem, is rather technical and not
intuitive at all, we separate the steps of the proof by the means of the two following
lemmas, and that in order to make it more comfortable to the reader.

Lemma 2. For every pair of termst, u ∈ T and every substitutionθ, if u ∈ ESt(tθ),
then(u ∈ θ(ESt(t))) or (∃X ∈ V(t) s.t. u ∈ ESt(Xθ)).

Proof. We prove this by induction on the structure oft:

– If t ∈ T0, thentθ = t andESt(tθ) = ∅, thusu 6∈ ESt(tθ), and the implication
trivially holds.

– If t = X ∈ X, thentθ = Xθ and sinceu ∈ ESt(tθ), thenu ∈ ESt(Xθ), and thus
the second part of the disjunction holds.

– If t = 〈t1, t2〉 for somet1, t2 ∈ T, thentθ = 〈t1θ, t2θ〉, and thusu ∈ ESt(t1θ) ∨
u ∈ ESt(t2θ). By induction we know thatu ∈ θ(ESt(ti)) or (∃X ∈ V(ti) s.t. u ∈
ESt(θ(X))), 1 ≤ i ≤ 2. Finally, for i, 1 ≤ i ≤ 2, if u ∈ θ(ESt(ti)), since
ESt(ti) ⊆ ESt(t), thenθ(ESt(ti)) ⊆ θ(ESt(t)) and thusu ∈ θ(ESt(t)); else
∃X ∈ V(ti) s.t. u ∈ ESt(θ(X)) and sinceV(ti) ⊆ V(t) then we trivially have
that∃X ∈ V(t) s.t. u ∈ ESt(θ(X)).

– If t = f(t1, t2) with t1, t2 ∈ T andf ∈ {{ } , sig ( )}. We need to distinguish
two cases:

14



1. u = tθ

By definition ofESt, we have thatt ∈ ESt(t) and thus,tθ ∈ θ(ESt(t)), so
the first part of the disjunction holds.

2. u 6= tθ

As in the previous case with the pairing functionu ∈ ESt(t1) ∨ u ∈ ESt(t2)
and thus we can conclude with the same argument as we did above. ⊓⊔

For the following lemma we introduce a bit of notation. LetE = {t1 = u1, . . . , tn =
un} be a set of equation, we define the set of terms ofE and the set of encrypted
subterms ofE as expected:

terms(E) =
⋃i=n
i=1{ti, ui} and ESt(E) = ESt(terms(E)).

Furthermore, we will denoteE →R
ψ E

′ an iteration of the algorithm computing the mgu
and presented above, whereE′ is the resulting equation set when ruleR ∈ {a, b, c, d}
is applied to an equationti = ui ofE for somei, 1 ≤ i ≤ n andψ = ∅ if R ∈ {a, b, c}
elseψ = [ti ← ui].

Lemma 3. For every tuple of termss, t, u ∈ T andX ∈ V({t, u}) s.t. mgu(t, u) =
ψ 6= ⊥, if s ∈ ESt(ψ(X)), then there existss′ ∈ ESt({t, u}) s.t.s = ψ(s′).

Proof. Let E0 = {t = u} →R1

ψ1
E1 →

R2

ψ2
· · · →Rn

ψn
En be a sequence of sets of

equations computed by the unifying algorithm. We show by induction on the lengthn
of the computation, that∀s ∈ ESt(En), ∃s′ ∈ ESt({t, u}) s.t. s = ψn ◦ · · · ◦ψ1(s

′).
If n = 0, then it is immediate that the statement holds. Suppose now that for0 ≤ n ≤ p
it is true, and letn = p+ 1, then we have a sequence of computations of the form:
E0 = {t = u} →R1

ψ1
E1 →

R2

ψ2
· · · →

Rp

ψp
Ep →

Rp+1

ψp+1
Ep+1

– If Rp+1 ∈ {a, b, c}, thenψp+1 = ∅ andESt(Ep+1) ⊆ ESt(Ep), thus by induction
we have that∀s ∈ ESt(Ep+1), ∃s′ ∈ ESt({t, u}) s.t. s = ψp ◦ · · · ◦ ψ1(s

′),
and sinceψp+1 = ∅ we have thatψp+1 ◦ ψp ◦ · · · ◦ ψ1 = ψp ◦ · · · ◦ ψ1. Thus
s = ψp+1 ◦ ψp ◦ · · · ◦ ψ1(s

′) for somes′ ∈ ESt({t, u})
– If Rp+1 = d, then the selected equation is of the formX = v for someX ∈ X and

somev ∈ T,Ep is of the formE ∪ {X = v} andEp+1 = E[X ← v] ∪ {X = v}.
Let s ∈ ESt(Ep+1). If s ∈ ESt({X = v}), thens ∈ ESt(v) and sinceX = v ∈
Ep by induction we know that∃s′ ∈ ESt({t, u}) such thats = ψp ◦ · · · ◦ ψ1(s

′)
and finally we know that if rule(d) is applied thenX does not occur inv, thus
s = ψp+1 ◦ ψp ◦ · · · ◦ ψ1(s

′).
Now we need to consider the case wheres ∈ ESt(Eψp+1). That means that there
exists somew ∈ terms(Eψp+1) such thats ∈ ESt(w) and thus there exists some
w′ ∈ terms(E) ⊆ Ep such thatw = w′ψp+1, i.e. s ∈ ESt(w′ψp+1) for some
w′ ∈ terms(Ep). From lemma 2 we know thats ∈ (ψp+1(ESt(w

′))) ∨ (∃Y ∈
V(w′), s ∈ ESt(ψp+1(Y ))). In the first case we can conclude by induction that
∃s′ ∈ ESt({t, u}) such thats = ψp+1 ◦ ψp ◦ · · · ◦ ψ1(s

′); and in the second it
is obvious that it isX that is inV(w′) such thats ∈ ESt(ψp+1(X)) = ESt(v)
sinceX is the only variable indom(ψp+1). And as we showed before, there exists
s′ ∈ ESt({t, u}) such thats = ψp+1 ◦ · · · ◦ ψ1(s

′).
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We have finally proved that for any sequence of computationsE0 = {t = u} →R1

ψ1

E1 →
R2

ψ2
· · · →Rn

ψn
En, we have that∀s ∈ ESt(En), ∃s′ ∈ ESt({t, u}) s.t. s =

ψn ◦ · · · ◦ ψn(s′) and in particular forEn in solved form (i.e.En = mgu(t, u))). Now
it is easy to see thatψ = ψn ◦ . . . ψ1, thus we can conclude that ifs ∈ ESt(ψ(X)),
then there existss′ ∈ ESt({t, u}) s.t.s = ψ(s′). ⊓⊔

This fourth lemma necessitates introducing some more notations. In what follows, we
will denote the following simplifications

C0  ψ1
C1  ψ2

· · · ψn
Cn

byC0  
n
θ Cn, whereθ = ψn ◦ · · · ◦ ψ2 ◦ ψ1.

Lemma 4. LetΠ be a protocol,C0 a constraint system corresponding to some inter-
leaving ofΠ ’s sessions and,C0  

n
θ Cn a sequence of simplifications according to the

rules in Fig.3. The following statement holds:

∀t ∈ ESt(Cn), ∃t
′ ∈ ESt(Π) s.t. t = θ(||t′||(σ,b1,...,bk))

for some(σ, b1, . . . , bk) in Σ ×Ak.

Proof. We do this by induction on the lengthn of the simplification sequence.
If n = 0, then by construction ofC0 we have that for every termu that occurs inC0,
there exists a termu′ ofΠ such thatu = ||u′||(σ,b1,...,bk) for some(σ, b1, . . . , bk) ∈ Σ×
Ak. Sincet ∈ ESt(C0), then there exists someu ∈ terms(C0), and thus from what we
just said,∃u′ ∈ terms(Π) and some(σ, b1, . . . , bk) such thatt ∈ ESt(||u′||(σ,b1,...,bk))
and thus∃t′ ∈ ESt(u′) ⊆ ESt(Π) such thatt = ||t′||(σ,b1,...,bk).
We suppose that for0 ≤ n ≤ p the hypothesis holds.
Now, if n = p + 1, then the reduction sequence is of the formC0  

n
θ Cp  

Ri

ψ Cp+1

for some substitutionθ and some constraint systemCp.

– If i ∈ {1, 4, f},ESt(Cp+1) ⊆ ESt(Cp), and we can conclude immediately using
the induction hypothesis.

– i = 2 ⇒ Cp = C ∧ T  u for someC, T andu, andψ = mgu(t, u) for some
t ∈ ESt(T ).
Let s ∈ ESt(Cp+1). By ESt’s definition it is the case that there existsv ∈
terms(Cp+1) such thats ∈ ESt(v), and sinceCp+1 = Cpψ, there existsw ∈
terms(Cp) such thatv = wψ, and thuss ∈ ESt(wψ) for somew in Cp. From
lemma 2 we have that eithers ∈ ψ(ESt(w)), or∃X ∈ V(w) ands ∈ ESt(ψ(X)).
We consider these two cases separately:
1. If s ∈ ψ(ESt(w)) and sincew ∈ terms(Cp), we have thats ∈ ψ(ESt(Cp)),

i.e. s = w′ψ for somew′ ∈ ESt(Cp). Now, by induction we know that
there existsw′′ ∈ ESt(Π) such thatw′ = θ(||w′′||(σ,b1,...,bk)), and thus
s = ψ(θ(||w′′||(σ,b1,...,bk))).

2. If ∃X ∈ V(w) ands ∈ ESt(ψ(X)), from lemma 3 we know that there exists
s′ ∈ ESt({t, u}) ⊆ ESt(Cp) s.t. s = ψ(s′), and by induction there exists
s′′ ∈ ESt(Π) and some(σ, b1, . . . , bk) ∈ Σ×Ak s.t.s′ = θ(||s′′||(σ,b1,...,bk)),
and thuss = ψ ◦ θ(||s′′||(σ,b1,...,bk))
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– The casei = 3 is similar to the previous one, thus ommitted.

In every subcase, we can conclude that there existst′ ∈ ESt(Π such thatt = θ(||t′||(σ,b1,...,bk)).
⊓⊔

B Proof of the main result

Theorem 1.LetΠ be a well-formed protocol. IfΠ admits an attack, thenΠ admits a
well-typed attack.

Proof. Let tr = (SId0, q0, I0) → . . . → (SIdn, qn, In) be an attack andC0 be
the constraint set corresponding totr’s interleaving. Since the reduction procedure is
terminating, sound and complete andΠ admits an attack with this interleaving, thenC0

admits a solution,i.e. there existC, θ,m such that,C0  
m
θ C andC is solved.

We will first show thatθ is well-typed. We do this by induction on the lengthm of
C0  

m
θ C:

If m = 0, thenθ = ∅, and thusθ is well-typed.
We suppose that0 ≤ m ≤ p, C0  

m
θ C, θ is well-typed.

If m = p+ 1, then∃C′, θ′ such that:

C0  
p
θ′ C

′
 
Ri

ψ C, i ∈ {1, 2, 3, 4, f} andθ = ψ ◦ θ′

and by induction we know thatθ′ is well-typed.

– If i ∈ {1, f} thenψ = ∅, thusθ = θ′ and by induction we can conclude thatθ is
well-typed.

– If i = 4 thenC = ⊥ and this contradicts the fact thatC is solved.
– If i = 2 then there existC′′, T, u such thatC′ = C′′∧T  u andC = C′′ψ∧Tψ 
uψ, with ψ = mgu(t, u), t ∈ ESt(T ), t 6= u andu not variable.
Since,θ′ is well-typed anddom(θ′) ∩ dom(ψ) = ∅, we only need to show thatψ
is well-typed.
Sinceu is not a variable and unifiable with an ancrypted subterm ofT , u is also
an encrypted subterm (thust, u ∈ ESt(C′)). And from lemma 4 we know that
∃t′, u′ ∈ ESt(Π) and∃(σ, b1, . . . , bk), (σ′, b′1, . . . , b

′
k) ∈ Σ × A

k such thatt =
θ′(||t′||(σ,b1,...,bk)) andu = θ′(||u′||(σ′,b′

1
,...,b′

k
)), and thusψ ◦θ′(||t′||(σ,b1,...,bk)) =

ψ ◦ θ′(||u′||(σ′,b′
1
,...,b′

k
)). Now by well-formed protocols’ definition we have that

δ(t′) = δ(u′) and thust′ : τ ⇒ u′ : τ . Now since we know by induction thatθ′ is
well-typed, we also have thatt : τ andu : τ , and with lemma 1 we can conclude
thatψ is well-typed.

– The casei = 3 is similar to the previous one, thus ommitted.

In every subcase we can conclude thatθ is well typed andC is solved.

To end the proof we now need to show that there exists a well-typed substitution of
variables remaining uninstantiated byθ, i.e. variables in right hand side of constraints
in C. We can note that if these variables remain uninstanciated inC, it means that there
exists an attack (well-typed) no matter the actual value taken by these variables. In order
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to keep the well-typedness of the attack we just need to instanciate them by an object of
the correct type. Since the intruder can create an object of each type, this instanciation
is possible.
For everyX ∈ rhs(C) of typeτ , we defineξ(X) = fake(τ) with fake defined recur-
sively as follows:
fake(α) = ǫ fake(γi) = ci
fake(κij) = kij fake(νij) = nij

fake(pbk(α)) = pbk(ǫ) fake(pvk(α)) = pvk(ǫ)
fake(shk(α, α)) = shk(ǫ, ǫ) fake(f(τ1, τ2)) = f(fake(τ1), fake(τ2))

⇒ ξ ∪ θ is well-typed.

Thus the interleaving ofC0 andξ∪θ describe an attack of the protocol, and sinceξ∪θ,
they describe a well-typed attack. We can therefore conclude that ifΠ admits an attack,
thenΠ admits a well-typed attack. ⊓⊔
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C A valid trace for the Needham-Schroeder protocol

(SId0, q0, I0)

(SId1, q1, I1)
SId1 = {σ1}
q1(σ1) = (1, a, ǫ, ∅, 1)
I1 = I0

(SId2, q2, I2)
SId2 = {σ1}
q2(σ1) = (1, a, ǫ, ∅, 2)
I2 = I1 ∪ {{a,N

1
1 (σ1, a, ǫ)}pbk(ǫ)}

new(σ1, 1, a, ǫ) send(σ1, 1)

(SId3, q3, I3)
SId3 = {σ1, σ2}
q3(σ1) = q2(σ1)
q3(σ2) = (2, a, b, ∅, 1)
I3 = I2

new(σ2, 2, a, b) receive(σ2, 1, {a,N
1
1 (σ1, a, ǫ)}pbk(b))

(SId4, q4, I4)
SId4 = {σ1, σ2}
q4(σ1) = q3(σ1)
q4(σ2) = (2, a, b, [X2

1 (σ2, a, b)← N1
1 (σ1, a, ǫ)], 2)

I4 = I3

(SId5, q5, I5)
SId5 = {σ1, σ2}
q5(σ1) = q4(σ1)
q5(σ2) = (2, a, b, [X2

1 (σ2, a, b)← N1
1 (σ1, a, ǫ))], 3)

I5 = I4 ∪ {{N
1
1 (σ1, a, ǫ), N

2
1 (σ2, a, b)}pbk(a)}

send(σ2, 2)

receive(σ1, 2, {N
1
1 (σ1, a, ǫ), N

2
1 (σ2, a, b)}pbk(a))

(SId6, q6, I6)
SId6 = {σ1, σ2}
q6(σ1) = (1, a, ǫ, [X1

1 (σ1, a, ǫ)← N2
1 (σ2, a, b)], 3)

q6(σ2) = q5(σ2)
I6 = I5

send(σ1, 3)

(SId7, q7, I7)
SId7 = {σ1, σ2}
q7(σ1) = (1, a, ǫ, [X1

1 (σ1, a, ǫ)← N2
1 (σ2, a, b)], 4)

q7(σ2) = q6(σ2)
I7 = I6 ∪ {{N

2
1 (σ2, a, b)}pbk(ǫ)}

Fig. 4. A valid trace ofΠNS
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