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Computation of moderate-degree fully-symmetric cubature rules on the triangle
using symmetric polynomials and algebraic solving

Stefanos-Aldo Papanicolopulosa,∗

aInstitute for Infrastructure & Environment, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK

Abstract

A novel method is presented for expressing the moment equations involved in computing fully symmetric cubature
rules on the triangle, by using symmetric polynomials to represent the two kinds of invariance inherent in these
rules. This method results in a system of polynomial equations that is amenable to solution using algebraic solving
techniques; using Gröbner bases, rules of degree up to 15 are computed and presented, some of them new and with
all their points inside the triangle.

Since all solutions to the polynomial system are computed, it is for the first time possible to prove whether a
given rule type results in specific rules of a given quality; it is thus proved that for degrees up to 14 there are no
non-fortuitous rules that can improve on the presented results. For degree 10, an example is also provided showing
how the proposed method can be used to exclude the existence of better fortuitous rules as well.

Keywords: Cubature, triangle, fully symmetric rules, symmetric polynomials, Gröbner bases
2000 MSC: Primary 65D32, Secondary 65D30

1. Introduction

The term “cubature” indicates the numerical computation of a multiple integral. This is an important topic in many
different disciplines, with a correspondingly large body of literature. A description of the different kinds of cubature
rules that exist, as well as of the mathematics used to derive them, is given in the classic book of Stroud [1], with more
updated information to be found, among others, in [2] and in chapter 6 of [3]. Stroud [1] also presents a compilation
of known (at the time) cubature rules, while newer rules are catalogued in [4, 5] and online at the Encyclopedia of
Cubature Formulas [6].

A commonly used method to derive specific cubature rules is based on moment equations and invariant theory (see
[7, 2] and [3, pp. 170–182]). This method, which will be used in the present paper, exploits symmetries and invariant
theory to set up a non-linear system of equations, whose unknowns are the positions and weights of the integration
points. The construction of the system of equations is based on Sobolev’s theorem [see e.g. 7]. The use of invariants,
together with appropriate algebraic computations, can lead to a significant simplification of the system of equations,
which however in most cases still has to be solved numerically using an iterative method.

Although appropriate iterative numerical methods have been successfully used to obtain individual numerical
solutions to the aforementioned system of equations, obtaining a solution in this way provides no information on its
uniqueness. Conversely, inability to obtain a solution does not prove its inexistence (though it is a strong indication,
when sufficiently robust numerical methods are employed). It is thus interesting and useful to be able to perform an
exhaustive computation that provides all the solutions for a cubature rule.

In this paper we focus on fully symmetric cubature rules on the triangle, for which many specific rules have
already been presented in the literature [1, 8, 9, 10, 11, 12, 13, 14, 15]. Extending significantly the results given
in analytic form by Lyness and Jespersen [9], we provide results for cubature rules of degree up to 15. Symmetric
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polynomials [16] are used in generating the moment equations, to represent the two kinds of invariance inherent in
these rules. This leads to a system of equations which is amenable to algebraic solving, thus allowing all cubature
rules of a given type to be computed.

In Section 2 we present concisely the concepts of symmetric polynomials, areal coordinates and polynomial
system solving that will be used in the rest of the paper. Section 3 presents the derivation of the moment equations
for fully symmetric rules. While the overall derivation follows the one by Lyness and Jespersen [9], symmetric
polynomials are used here to express the invariance with respect to permutation of points within an orbit, resulting in
expressions that are better suited to algebraic manipulation than those previously reported in the literature.

Instead of using an iterative solver to find a numerical approximation of a single solution of the moment equations,
as usually done in the literature, in Section 4 we further transform the moment equations to take into account their
invariance with respect to permutations of orbits of the same type (once more, using symmetric polynomials to express
the invariance). This invariance (which to the author’s knowledge has not been exploited before in the relevant
literature) is key in providing a new form of the moment equations that, though not explicitly given as the previous
one, is actually amenable to algebraic solving.

Section 5 summarises the cubature rules thus obtained using algebraic solving techniques and comments on the
main features of the provided results, among which there are new rules which match (though they do not exceed)
existing ones in terms of quality and number of points. Algebraic solving allows (for the first time in the non-trivial
cases) the computation of all cubature rules of a given type, thus another important result obtained here is the non-
existence of non-fortuitous cubature rules that improve on the ones presented in terms of quality and number of points.
The case of fortuitous rules is also considered. Finally, Section 6 concludes by pointing out the main results obtained
in the paper.

2. Theoretical background

2.1. Symmetric polynomials
The formulation presented in this paper is based on invariant theory and in particular it uses the theory of symmet-

ric polynomials [16]. As we will see in the following, the use of symmetric polynomials provides an initial concise
formulation of the non-linear system of equations, while also leading to simpler computation and presentation of the
solution.

A symmetric polynomial is a multivariate polynomial in n variables, say x1, x2, . . . , xn, which is invariant under any
permutation of its variables. For example, the polynomial x1x2 + x2x3 + x3x1 is a symmetric polynomial of degree 2
in the three variables x1, x2 and x3, as can be easily seen by swapping any two variables.

We define the elementary symmetric polynomials x̃k as the sums of all products of k distinct variables xi, with
negative sign when k is odd, that is

x̃k = (−1)k
∑

i1<i2<...<ik

xi1 xi2 · · · xik (1)

with x̃0 = 1. The alternating sign (−1)k in equation (1), which does not appear in the usual definition of the ele-
mentary symmetric polynomials, is introduced here as it leads to simpler expressions. While elementary symmetric
polynomials are usually denoted using a letter (e.g. Πk, sk or ek) which is different from the variable name, we use
here the superimposed tilde over the variable name since we will be dealing with elementary symmetric polynomials
of different sets of variables.

The fundamental theorem of symmetric polynomials states that any symmetric polynomial in the variables xi can
be uniquely expressed as a polynomial in the elementary symmetric polynomials x̃k [17, p. 118]. This obviously holds
true independently of the presence of the alternating sign in equation (1). The proof of the fundamental theorem also
provides an algorithm for symmetric reduction, that is for expressing arbitrary symmetric polynomials in terms of the
elementary symmetric polynomials.

Equation (1) allows computing the elementary symmetric polynomials x̃k in terms of the n variables xi. Conversely,
the values xi can be calculated [17, p. 89] from x̃k as the solutions for x of the polynomial equation

n∑
j=0

x̃n− jx j = 0 (2)
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1 (x1,y1)

2 (x2,y2)

3 (x3,y3)

P(x,y)

Figure 1: Geometry of a triangle for the definition of areal coordinates

2.2. Areal coordinates
Consider the generic triangle shown in Figure 1, defined through its three vertices with Cartesian coordinates

(x1, y1), (x2, y2) and (x3, y3). For a point P with Cartesian coordinates x and y, we define the areal coordinates L1, L2
and L3 [see e.g. 18, pp. 153–156] through the equations

x = L1x1 + L2x2 + L3x3 (3a)
y = L1y1 + L2y2 + L3y3 (3b)
1 = L1 + L2 + L3 (3c)

Note that areal coordinates are also often called barycentric coordinates, even though in the general case barycentric
coordinates do not require the normalisation (3c).

Using equations (3) it can be seen that a polynomial of degree d on the triangle can be written using areal coordi-
nates as a linear combination of terms Li

1L j
2Ld−i− j

3 , all of which are of total degree d.

2.3. Solution of a system of polynomial equations
Consider a system of m polynomial equations with n variables xi with i = 1 . . . n. The system is overdetermined if

it has more equations than variables (m > n) and underdetermined if it has less equations than variables (m < n).
A solution of the system is any set of values of the variables xi that satisfies the polynomial equations. If the

polynomial coefficients are real, then the values of the xi in the solution will be in general complex (we ignore
solutions with points at infinity). A system is called inconsistent, zero-dimensional or positive-dimensional if it has
respectively zero solutions, a finite number of solutions or infinite solutions.

While we have defined above what is a solution of a polynomial system, we must also consider what is the solution
of the system, i.e. answer the question “what is polynomial system solving” (see Lazard [19] for an answer to this
question and an informal overview of the state of the art on algebraic methods for computing the solutions).

For positive-dimensional systems there is not a unique answer to what is the solution (and how it can be expressed).
For zero-dimensional systems the solution could be a numerical approximation of all the individual solutions (which,
in the general case, cannot be expressed in algebraic form). In algebraic geometry, the algebraic solution of the
zero-dimensional system consists in expressing the system in a form which is exact (not approximate) and can easily
provide the approximate numerical solution; such could be for example the lexicographical Gröbner basis or the
rational univariate representation (see again [19] for a more detailed discussion and more references). We prefer here
to use the term analytical solution for this kind of solution; indeed, considering the computation of the roots of a
univariate polynomial as a known function, the analytical solution gives the exact solutions of the polynomial system
in terms of known functions.

3. Formulating the system of equations

In the following Section 3.1 the so-called moment equations are derived, following in some main points the classic
derivation presented by Lyness and Jespersen [9], while Section 3.2 presents the concept of consistency conditions
(see [9, 20, 2]). The specific form of the equations that is obtained is compared in Section 3.3 to existing ones.
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Figure 2: Examples of the three different types of orbits in the case of an equilateral triangle: a) type-0, b) type-1 and c) type-2

3.1. Moment equations
Our objective is to derive a cubature formula (or rule) for the approximate evaluation of the integral of a function

f over a triangle Ω with area A,

Ī [ f ] =

nK∑
i=1

w̄i f (i) ≈
1
A

∫
Ω

f dΩ (4)

where f (i) is the value of f at point i, w̄i is the corresponding weight and nK is the number of points used in the cubature.
We only consider rules of (polynomial) degree d, that is rules where equation (4) is exact for all polynomials of degree
less or equal to d, while it is not exact for at least one polynomial of degree d + 1. Note that the issue of the accuracy
of the approximation in (4) for a given cubature formula is beyond the focus of this paper (for more details on the
underlying theory see e.g. [1, 3]).

Using areal coordinates, the polynomial of degree d can be written as a linear combination of terms Li
1L j

2Ld−i− j
3 ,

therefore the cubature rule can be determined by requiring that equation (4) is exact for each of these terms. The
resulting equations are known as the moment equations. The number n̄e of different terms Li

1L j
2Ld−i− j

3 , which is the
number of equations to be solved, is

n̄e = (d + 1)(d + 2)/2 (5)

We only consider fully symmetric rules where, if a point with areal coordinates (Λ1,Λ2,Λ3) is used in the cubature,
then all points resulting from the permutation of the areal coordinates are also used, with the same weight. Integration
points in a fully symmetric rule can thus belong to one of three different types of point sets, or orbits, depending
on the number of areal coordinates which are equal (see figure 2). If all areal coordinates are equal, we get a single
“type-0” orbit, with one point (the centroid). If only two areal coordinates are equal, then we get “type-1” orbits with
three points which lie on the medians of the triangle. Finally, if all three coordinates are different we get “type-2”
orbits with six points. A rule that uses n0 type-0 orbits, n1 type-1 orbits and n2 type-2 orbits is called a rule of type
[n0, n1, n2]. The number of points for such a rule is

nK = n0 + 3n1 + 6n2 (6)

Due to the full symmetry employed, when integrating any of the quantities Li
1L j

2Ld−i− j
3 the sum in equation (4) for

the point (Λ1,Λ2,Λ3) and its symmetric points will only contain terms of the form

Λi
1Λ

j
2Λ

d−i− j
3 + Λi

1Λ
j
3Λ

d−i− j
2 + Λi

2Λ
j
1Λ

d−i− j
3 + Λi

2Λ
j
3Λ

d−i− j
1 + Λi

3Λ
j
1Λ

d−i− j
2 + Λi

3Λ
j
2Λ

d−i− j
1 (7)

These terms are symmetric polynomials, and can therefore be written in terms of the elementary polynomials Λ̃1 =

−(Λ1 + Λ2 + Λ3), Λ̃2 = Λ1Λ2 + Λ2Λ3 + Λ3Λ1 and Λ̃3 = −Λ1Λ2Λ3. It is easily seen that only terms of the form
Λ̃k

1Λ̃l
2Λ̃m

3 with k + 2l + 3m = d will be used. Indeed, since Λ̃1 = −1, only terms of the form Λ̃l
2Λ̃m

3 with 2l + 3m ≤ d
are actually needed.
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The cubature rule of order d can therefore be obtained by requiring that equation (4) is exact when the function f
is any of the terms Λ̃l

2Λ̃m
3 with 2l + 3m ≤ d. The number of non-negative solutions of 2l + 3m ≤ d for l and m, and

therefore the number of equations that must be solved, is given by [21]

ne = 1 +

⌊
d2 + 6d

12

⌋
(8)

with bxc denoting the largest integer that is less or equal to x. This is a significant reduction in the number of equations,
approximately by a factor of 6 for large values of d, compared to the value n̄e given in equation (5) for the general
case.

In Appendix A.1, the computation of a rule of degree 3 with 6 is presented, showing in a simple example the
above-described introduction of symmetric polynomials when symmetric rules are considered.

While areal coordinates allow for simple formulations of expressions on a generic triangle, they have the disad-
vantage of introducing three coordinates, instead of the two independent coordinates needed. For this reason, moment
equations have generally been obtained using Cartesian or polar coordinates and referring to a specific triangle (ex-
ploiting the fact that all triangles are affine). In the fully symmetric case, however, we see that using areal coordinates
we easily end up with only two “coordinates”, the symmetric polynomials Λ̃2 and Λ̃3.

As will be seen shortly, the moment equations can be further simplified by using, instead of Λ̃2 and Λ̃3, the
quantities

p = 1 − 3Λ̃2 and q = 1 −
27
2

Λ̃3 −
9
2

Λ̃2 (9)

The cubature rule of order d can therefore be obtained by requiring that equation (4) is exact when the function f is
any of the terms piq j with 2i + 3 j ≤ d and i, j ≥ 0. The moment equations for a fully symmetric rule of degree d and
type [n0, n1, n2] can thus be written as

n0∑
k=1

w̄0,k pi
0,kq j

0,k +

n1∑
k=1

3w̄1,k pi
1,kq j

1,k +

n2∑
k=1

6w̄2,k pi
2,kq j

2,k = Ii, j with 2i + 3 j ≤ d (10)

The right hand sides are the integrals

Ii, j =
1
A

∫
Ω

piq j dΩ (11)

whose value can be computed by noting that the integrand piq j can be expressed as a polynomial in the areal coordi-
nates L1, L2 and L3. Using the well-known formula [18, p. 156] for integration on the triangle

1
A

∫
Ω

Li
1L j

2Lk
3 dΩ =

2 i! j!k!
(i + j + k + 2)!

(12)

we can then integrate separately each term of the polynomial and add the results, thus obtaining

I0,0 = 1, I1,0 = 1/4, I0,1 = 1/10, I2,0 = 1/10, I1,1 = 2/35, I3,0 = 29/560, I0,2 = 7/160, I2,1 = 1/28, . . . (13)

The main advantage of using the quantities p and q is that for type-1 orbits we can introduce a new variable u so
that p = u2 and q = u3 and therefore piq j = u2i+3 j, while for the type-0 orbit p = q = 0. Setting w0 = w̄0,1, vk = 3w̄1,k
and wk = 6w̄2,k, after some computations, the moment equations are finally written as

w0 +

n1∑
k=1

vk +

n2∑
k=1

wk = I0,0 (14a)

n1∑
k=1

vku2i+3 j
k +

n2∑
k=1

wk pi
kq j

k = Ii, j with 0 < 2i + 3 j ≤ d, j ≤ 1 (14b)

n2∑
k=1

wk(p3
k − q2

k)pi
kq j

k = Ii+3, j − Ii, j+2 with 2i + 3 j ≤ d − 6 (14c)

5



where in equation (14a) we set w0 = 0 if n0 = 0.
For both d = 0 and d = 1 the only moment equation is (14a). This means that any (fully symmetric) rule exact

for d = 0 will also be exact for d = 1, thus there are no rules of degree 0. For this reason in the following we always
assume that d ≥ 1.

3.2. Consistency conditions
To set up the moment equations for a rule of degree d, it is first necessary to determine the type of the rule, i.e. the

number of orbits of each type.
The moment equations (14) form a system of ne equations in nv variables, where ne is given in equation (8) while

nv = n0 + 2n1 + 3n2. Similarly, the subsystem (14c) has ne − d equations and 3n2 variables.
We assume that both the system (14) and its subsystem (14c) are inconsistent if and only if they are overde-

termined. This assumption, together with the fact that there may be at most one type 0 orbit, yields the following
consistency conditions [9]

3n2 ≥ ne − d (15a)
3n2 + 2n1 + n0 ≥ ne (15b)

n0 ≤ 1 (15c)

which must be satisfied to obtain a solution of the moment equations, and thus they restrict the choice of the rule type.
For a given degree d, a minimal-point rule is sought, that is a rule that satisfies the consistency conditions with the
lowest total number of points, as given by equation (6). This yields

n2 =
⌊
(ne − d + 2)/3

⌋
, n1 =

⌊
(ne − 3n2)/2

⌋
, n0 = ne − 3n2 − 2n1 (16)

It is conceivable that a rule that violates the consistency conditions may lead to a system of moment equations
that, although overdetermined, has solutions. These so-called fortuitous rules have great theoretical interest, as well as
practical interest in the case where they have fewer integration points compared to the minimal-point rules described
above. No fortuitous rules are encountered in the present paper, however, nor in the available literature on cubature
rules on the triangle. As will be mentioned in Section 5, the use of analytical solutions means that starting from rules
that respect the consistency conditions does not preclude the identification of fortuitous rules with fewer points.

The polynomial system of moment equations (14) can be inconsistent, zero-dimensional or positive-dimensional.
We use here the same terms to identify the corresponding rule types and individual rules, thus we have inconsistent
rule types, which yield no rules, zero-dimensional rule types, which yield a finite number of zero-dimensional rules,
and positive-dimensional rule types which yield an infinite number of positive dimensional rules. In the case of
positive-dimensional rule types, the analytical solution can be expressed using a number of the unknowns as free
parameters.

3.3. Advantages of the suggested form of the moment equations
As already mentioned, the development of the method given in Sections 3.1 and 3.2 to formulate the moment

equations using symmetric polynomials follows in some main points the classic one presented by Lyness and Jespersen
[9]. It provides, however, polynomial moment equations, while [9] also uses cosines. In this, the present method is
similar to the one presented by Wandzura and Xiao [13], but with equations that can be written in the simple form (14)
and which are of lower degree.

All three methods are equivalent, in that they yield the same rules. Indeed, it is relatively easy to pass from one
method to the other: setting pi = r2

i , qi = r3
i cos 3αi and ui = ri in equations (14) yields after some calculations the

moment equations in [9], while it is easily seen that, for the triangle used in [13], p and q are equal to the invariants
x2 + y2 and x3 − 3xy2.

In the author’s opinion, the present method is simpler and more intuitive in its formulation, is elegantly formulated
without reference to a specific triangle and it provides simpler formulas. From a practical point of view, however, the
main advantage is that the resulting polynomial equations are of significantly lower degree than those provided by the
other methods, for example the maximum degree of equations (14c) is bd/2c + 1 instead of d + 1. This is especially
important when solving the equations analytically.

6



4. Analytical solution of the moment equations

4.1. The usefulness of analytical solutions
Except for some trivial low-degree rules, the moment equations are generally solved numerically, e.g. using a

multivariate Newton-Raphson solver. The cubature rule is then given as a table of integration point coordinates
and weights, expressed as floating point approximations of a given precision. This numerical approximation of the
cubature rule is the one actually required when using the rule in applications.

Iterative numerical methods have the advantage of being able to provide cubature rules of high degree [see e.g.
15]. Convergence of the method to a solution is not guaranteed, however, as it most often depends on the selection of
an appropriate “initial guess” required by the solver. This means that inability to obtain a solution does not prove that
the solution does not exist. Additionally, when a numerical solution is obtained iteratively, no information is obtained
regarding the existence of other solutions. For this reason, in this paper we investigate the analytical solution of the
moment equations, in order to obtain a definitive answer regarding the different cubature rules for a given degree and
type.

There exist algorithms for solving analytically arbitrary systems of polynomial equations, for example using Gröb-
ner bases (see [19] for an informal overview of the state of the art). Unfortunately, when applied directly to the moment
equations as presented in equation (14) or in similar forms in the literature, the requirements of these algorithms in
both computer memory and computation time are such that in practice they fail to provide a solution even for rules of
relatively low degree. Analytical solutions for higher degrees cannot therefore be obtained just by applying algebraic
solving techniques to the moment equations as presented in the literature or even as obtained here in equation (14); it
is necessary to exploit as much as possible the structure of the moment equations, as will be presented in Section 4.3.

An interesting alternative to the analytical solution of the moment equations is to use homotopy continuation
methods to compute numerically all the solutions of the system [22]. The use of homotopy continuation is however
clearly beyond the scope of the present paper.

4.2. Solution strategy
The subsystems (14a), (14b) and (14c) have respectively 1, d − 1 and ne − d equations. The weight w0 (if it is

non-zero) appears only in equation (14a) while the variables vk and uk appear only in equations (14a) and (14b).
Consider first the case of a rule with a type-0 orbit (n0 = 1). Equation (14a) is then just used to determine w0 when

all other weights have been calculated. The weights vk of type-1 orbits can be eliminated from equations (14b), as
described in [23, pp. 771–773] for cubature rules on other regions, to obtain the (linear in the symmetric polynomials
ũk) system of equations

n1∑
k=0

Ji−kũk = 0, i = n1 + 2, . . . , d (17)

where

Ji =


I j,0 −

n2∑
k=1

wk p j
k if i = 2 j

I j,1 −

n2∑
k=1

wk p j
kqk if i = 2 j + 3

(18)

The system (17) has n1 unknowns ũk (since ũ0 = 1) and d−n1−1 equations. If n1 = (d−1)/2 then equations (14c)
are sufficient to evaluate the variables wk, pk and qk of type-2 orbits, and then equations (17), (14b) and (14a) yield in
turn the values of ũk, vk and w0. The same happens if n1 > (d−1)/2, but in this case the system is positive-dimensional
and some of the ũk remain as free parameters in the solution. Finally, if n1 < (d − 1)/2 then obtaining a solution is
more difficult, since to evaluate wk, pk and qk we need not only equations (14c) but also the equations that remain
after eliminating ũk from (17).

When the type-0 orbit is not used (n0 = 0), it is generally easier to introduce an additional equation

n1∑
k=1

vkuk = J1 (19)

7



where J1 is an unknown quantity, which is not defined by (18). Eliminating the weights vk from equations (14a), (14b)
and (19) leads to a system of equations like (17), only that the index i is now in the range i = n1, . . . , d and J1 is an
additional unknown that must be eliminated.

In all cases, equations (14c) must be solved, possibly together with the equations that remain after eliminating ũk

from (17). Unfortunately, no easy way has been found to simplify these equations as we did to derive the system (17).
The use of symmetric polynomials can, however, again lead to somehow simpler expressions.

4.3. Permutation invariance of the orbits

In Section 3 we exploited the fact that the cubature rule is invariant with respect to a permutation of the integration
points within a given orbit, and expressed this invariance using symmetric polynomials.

Another obvious property of the cubature rules, which however has received much less attention in the literature
and has not up to now been exploited, is their invariance with respect to permutation of orbits of the same type. This is
reflected in the fact that the moment equations (14) are polynomials which are “symmetric” (i.e. invariant with respect
to permutation) in the pairs (uk,vk) and in the triplets (pk, qk, wk). This can be seen from the system (17) where,
having eliminated the vk, the resulting polynomials are symmetric in the uk and have thus been expressed in terms of
the elementary symmetric polynomials ũk. In a similar way, eliminating qk and wk allows us to express the moment
equations in terms of the symmetric polynomials p̃k.

The system that results by eliminating the vk, qk and wk from the moment equations (14) and expressing the results
in terms of the ũk and p̃k is generally much longer to write out than the moment equations (14). It has however fewer
variables, and it leads to a much simpler expression for the solution, when such a solution is actually found.

Indeed, one important advantage of expressing the moment equations in terms of symmetric polynomials is that
the number of solutions of the system is equal to the number of different cubature rules that can be obtained. Consider
for example the degree-4 [0, 2, 0] rule, for which Lyness and Jespersen [9] mention that, in the present notation, u1 and
u2 are the roots of 15x4 + 20x3 − 30x2 + 4. This does not mean, however, than any combination of the roots is a valid
solution for u1 and u2, indeed only two pairs of solutions give a cubature rule. In terms of symmetric polynomials, on
the other hand, the solution is obtained by solving the equations 3ũ2

1 − 4ũ1 − 2 = 0 and 5ũ2 + 2ũ1 + 2 = 0, where it is
seen that two different rules are obtained, one for each solution of the system.

It is worth considering that even when solving the moment equations numerically, considering the invariance with
respect to permutation of orbits of the same type can have a significant effect on the solution method. As an example,
there is only one degree-15 [1,7,4] rule. The system (14c) however has 4! = 24 solutions, while if we were to solve
all equations (14) together we would have 7!4! = 120960 solutions. It is thus conceivable that an iterative numerical
solution algorithm may fail to converge by being “attracted” in turn by different solutions.

4.4. Solution quality

Once a cubature rule is determined by solving the moment equations, the sign of the weights and the position of
the integration points is examined, to determine the quality of the solution. The quality is described using a two-letter
label: the first letter is P if all weights are positive and N if at least one weight is negative, while the second letter is I
if all points are inside the triangle, O if there is at least one point outside the triangle, and B if no points are outside
the triangle but at least one is on the boundary of the triangle. The following qualities are therefore encountered: PI,
NI, PB, NB, PO, NO.

In all the above cases, the coordinates and weights of the integration points are considered to be real. Though it is
well-known that complex solutions may exist, these are not taken into account, since a cubature rule with complex-
valued coordinates of the integration points would be of little, if any, use. Moreover, the moment equations are
usually solved using numerical methods that only return real solutions, as these methods perform significantly better
than methods that could return complex solutions.

On the other hand, when obtaining the solutions analytically it is easy to also consider complex solutions. For this
reason, we expand the above definition of the quality of cubature rules by setting the first letter of the label to C if at
least one weight is complex-valued and by setting the second letter of the label to C if at least one integration point
has complex coordinates. Interestingly, while it is not possible to have complex weights without complex coordinates,
it is possible to have real weights with complex coordinates. The following three additional qualities are therefore
obtained: CC, PC, NC.
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Including complex solutions allows us to make the distinction between moment equations that have no solution
and those that have solutions, even though they may all be complex. Considering as an example a degree-15 rule,
there are no solutions for type [0, 7, 4] (which does not satisfy the consistency conditions), while there is a single
complex (NC) solution for type [1, 7, 4] (which satisfies the consistency conditions). It is generally expected that all
types satisfying the consistency conditions will yield at least one solution, but with complex solutions appearing with
increasing frequency as the degree of the rule increases.

Although we compute all solutions, independently of their quality, in most applications we need rules of PI (or
at most NI) quality. For this reason, if a minimal-point rule does not yield any PI rules, we investigate rules with
increasingly more points until a rule is found that has a PI solution. When considering rules with additional points, it
is possible to have rules with the same degree and number of points, but different type and different number of free
parameters appearing in the solution.

Consider for example the degree-7 rules. The minimal-point rule [1, 2, 1] has 13 points and the best quality
achievable with it is NI. Increasing the number of points, we get either a [0, 3, 1] or a [0, 1, 2] rule, both with 15 points,
where the first has one free parameter while the second has none. In this case, where both types can yield PI rules, we
would generally prefer the zero-dimensional one as it has more type-2 orbits, so less integration points are restricted
to be located on the medians.

In general, among rules with the same number of points and the same quality, we would prefer those with more
type-2 orbits and thus less free parameters. The presence of free parameters in the solution of the moment equations,
on the other hand, allows for much greater flexibility in obtaining a rule of PI quality. Moreover, the use of more
type-1 orbits leads to simpler moment equations, which are easier to solve analytically.

Note that the numerical, iterative solution of the moment equations for positive-dimensional rules [see e.g. 13]
yields only one of the infinite solutions. Though it is possible to consider numerically the variation of the solution
with the variation of a parameter [see e.g. 12], analytical solutions are much more powerful in studying parametrically
positive-dimensional cubature rules and their quality. The study and presentation of such rules, however, requires a
much more extensive discussion which goes well beyond the scope of the present paper. For this reason, in Section 5
we only present results for zero-dimensional cubature rules.

5. Results and discussion

Using the method described in Sections 3 and 4 we compute here analytically cubature rules for degree up to 15.
As described in Section 4.3, the permutation invariance of the orbits should be exploited to express the moment
equations (14) in a form more suitable for analytical solution, for example in terms of the symmetric polynomials ũk

and p̃k. This has been achieved for each degree and rule type in a heuristic way, which involved (for higher degrees)
extensive calculations until the initial system was transformed into a new one, solvable (on the available hardware and
software) using Gröbner bases.

The actual calculations performed in each case (using the MapleTM computer algebra system) are obviously too
lengthy to be written out here. Indeed, in the non-trivial cases, the analytical solution itself becomes too long, as
is already apparent in Appendix B for the degree-6 rule. An overview of the computations for the [0, 5, 2] rule of
degree 11 is given as an example in Appendix A.2.

Table 1 gives a summary of the properties of all cubature rules thus computed. As already mentioned, we only
consider zero-dimensional rules. We calculate for each degree the minimal-point rules and, if none of these are of
quality PI, we calculate additional rule types with more points until a rule with PI quality is found (except for d = 15
where additional rules were not computed). Appendix B provides analytical expressions for evaluating some of the
cubature rules, while Appendix C provides numerical values for new rules of PI or NI quality.

The only case where three rule types must be computed to obtain PI quality is d = 11. This is therefore the only
case (for d < 15) where a positive-dimensional rule of PI quality (type [1, 5, 2] with 28 points) has less points than the
best possible zero-dimensional rule of the same quality (type [0, 2, 4] with 30 points).1 Where NI rules are acceptable,

1A type [1, 5, 2] fully symmetric PI rule is given by Zhang et al. [24], while Lyness and Jespersen [9] had already presented a [1, 5, 2] PB rule.
As [1, 5, 2] rules are positive-dimensional, there are actually infinite rules obtainable, depending in this case on a single parameter. These can be
obtained using the method presented in this paper, however as already mentioned we focus here only on zero-dimensional rules.
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Table 1: Summary of the properties of all computed rules

degree type points solutions PI NI PB PO NO PC NC CC

1 [1, 0, 0] 1 1 1 – – – – – – –
2 [0, 1, 0] 3 2 1 – 1 – – – – –
3 [1, 1, 0] 4 1 – 1 – – – – – –

[0, 0, 1] 6 1 1 – – – – – – –
4 [0, 2, 0] 6 2 1 – – 1 – – – –
5 [1, 2, 0] 7 1 1 – – – – – – –
6 [0, 2, 1] 12 6 2 – – 2 – – – 2
7 [1, 2, 1] 13 4 – 1 – 1 – – – 2

[0, 1, 2] 15 4 2 – – – – – – 2
8 [1, 3, 1] 16 2 1 1 – – – – – –
9 [1, 4, 1] 19 1 1 – – – – – – –

10 [0, 4, 2] 24 14 – – – 4 1 – – 9
[1, 2, 3] 25 15 4 – – – 2 – 3 6

11 [0, 5, 2] 27 6 – – – 1 – – 2 3
[1, 3, 3] 28 23 – 2 – 5 3 2 4 7
[0, 2, 4] 30 34 4 – – 1 1 4 2 22

12 [0, 5, 3] 33 24 2 1 – – – – – 21
13 [0, 6, 3] 36 8 – – – – 1 – 1 6

[1, 4, 4] 37 54 2 3 – 4 5 2 8 30
14 [0, 6, 4] 42 38 1 – – 3 3 – 3 28
15 [1, 7, 4] 46 1 – – – – – – 1 –

the two (newly computed) [1, 3, 3] rules can be used. The first [1, 3, 3] NI rule given in Appendix C is then to be
preferred as it has a small negative weight for a single point, while the second one has a large negative weight for three
points. Additionally, as shown in Figure 3, the first rule has a much more uniform distribution of points. Figure 3 also
shows that the first [1, 3, 3] NI rule has a more uniform distribution of points than the [1, 5, 2] PI rule in [24] (which
has the same number of points).

The results summarised in Table 1 confirm the general expectation that as the rule degree increases the number
of solutions will increase, though with most solutions being complex ones. This is not always the case, however, as
evidenced by the existence of a single [1, 7, 4] rule for d = 15. It is thus clear that it is not possible to detect in these
results a specific pattern in the number of solutions, the number of real solutions or the number of PI (or NI) solutions.

The results obtained here, answer (for the first time when considering non-trivial cases) questions such as “how
many degree-10 PI rules of type [1, 2, 3] exist?” and, more importantly, questions such as “is there a degree-10 PI rule
with 24 points?” Indeed, a very important result obtained through the analytical computation of all the solutions for a
given rule type is that we can prove the non-existence of better fully symmetric rules for a given degree. Considering
for example rules of degree d = 10, Table 1 shows that there exist no non-fortuitous PI rules with 24 points and
therefore any such rule will have at least 25 points. Indeed, taking into account the results summarised in Table 1 and
the fact that there exist positive-dimensional PI rules of degree 11 with 28 points, the minimum number of points for
non-fortuitous rules of PI (or PI and NI) quality is given in Table 2.

Another important result is that, using the analytical computation of the cubature rules, we can also prove the
non-existence of specific fortuitous rules. Consider for example again the case of degree-10 rules where we compute
the 24-point [0, 4, 2] rule. If there were a fortuitous rule with two type-2 orbits and less than 24 points, then the [0, 4, 2]
rule should be positive-dimensional in order to depend on some parameters which, for specific values, would yield
the fortuitous rule. Computing analytically the [0, 4, 2] rule, however, shows that it is zero-dimensional, as expected.
Similarly, since the [1, 2, 3] rule is zero-dimensional, there exist no fortuitous rules with three type-2 orbits and less
than 25 points. Since it is easily shown that for degree 10 no rules exist with one or zero type-2 orbits and also that no
[0, 0, 4] rules exist (which would have 24 points) we see that there are no fortuitous degree-10 rules with 24 points or
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a) b) c)

Figure 3: Distribution of points for cubature rules of degree 11 with 28 points (white dots indicate points with negative weight): a) zero-dimensional
[1, 3, 3] NI rule with 1 negative weight, b) zero-dimensional [1, 3, 3] NI rule with 3 negative weights, c) positive-dimensional [1, 5, 2] PI rule as
computed by Zhang et al. [24]

Table 2: Minimum number of points for non fortuitous rules of degree up to 14 for a given rule quality

degree

quality 1 2 3 4 5 6 7 8 9 10 11 12 13 14

any 1 3 4 6 7 12 13 16 19 24 27 33 36 42
PI or NI 1 3 4 6 7 12 13 16 19 25 28 33 37 42

PI 1 3 6 6 7 12 15 16 19 25 28 33 37 42

less. Similar tests could be performed for all other rule degrees considered here.
A list of numerical values for all computed rules, independently of their quality, can be found at the address

http://arxiv.org/src/1111.3827v1/anc/allrules.pdf as ancillary material for the arXiv preprint of this paper [25]. This
list includes the zero-dimensional rules found in [1, 8, 9, 10, 11]. An interesting property of some rules of bad quality
(i.e. neither PI nor NI) is that the orbits that have points outside the triangle or with complex coordinates have a much
smaller weight (in absolute value). This is the case for example for d = 11 and the fourth [1, 3, 3] NC rule, or for
d = 15 and the [1, 7, 4] NC rule. These rules, together with a node elimination algorithm [15], could possibly be used
to derive cubature rules that are not fully symmetric with fewer points than the fully symmetric ones.

6. Conclusions

In this paper we have used symmetric polynomials to express the double invariance inherent in fully symmetric
cubature rules in the triangle (invariance with respect to permutation of points within an orbit and with respect to
permutation of orbits of the same type). This has allowed us to formulate the moment equations in such a way that
analytical solutions have been derived for zero-dimensional rules of degree up to 15.

A few new rules with all points inside the triangle have been thus derived and are given in Appendix C. Addition-
ally, the analytical solutions ensure that all possible rules of a given type and degree were computed, independently of
their quality. This allows us, for example, to prove that indeed no rules of PI or even NI quality exist for some cases
where no such rules were encountered in the literature.

Though only zero-dimensional rules have been computed here, the proposed analytical approach is also well-
suited for the thorough study of positive-dimensional rules. In this case, however, an additional difficulty lies in
finding intuitive and useful ways to present the (infinite) solutions and their properties.

In all cases, starting from the formulation presented in this paper and combining a better understanding of the
structure of the moment equations together with better-performing algorithms, software implementations and hard-
ware platforms, should allow determining rules of increasingly high degree.
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Appendix A. Two simple examples

A.1. Rule of degree 3 with 6 points

Consider a rule of degree d = 3 with nK = 6 points. From equation (5) there are 10 linearly independent
polynomials of degree up to 3. In Cartesian coordinates these could be for example the monomials

[1, x, y, x2, y2, xy, x3, y3, x2y, xy2] (A.1)

while in areal coordinates the linearly independent polynomials, expressed as Li
1L j

2Ld−i− j
3 , are the monomials

[L3
1, L

3
2, L

3
3, L

2
1L2, L2

2L3, L2
3L1, L2

1L3, L2
2L1, L2

3L2, L1L2L3] (A.2)

For the fully symmetric case, we consider the case of a single type-2 orbit, so that there is a single weight w̄ and
the areal coordinates of the six points are given by (Λ1,Λ2,Λ3), (Λ2,Λ3,Λ1), (Λ3,Λ1,Λ2), (Λ1,Λ3,Λ2), (Λ2,Λ1,Λ3)
and (Λ3,Λ2,Λ1) where Λ1, Λ2 and Λ3 are all different. To obtain the cubature rule, we want equation (4) to be exact
when f is any of the monomials in (A.2), with the right-hand integrals easily calculated using equation (12). For the
monomials L3

1, L2
1L2 and L1L2L3 we thus obtain the equations

Ī [L3
1] = 2w̄(Λ3

1 + Λ3
2 + Λ3

3) = 1/10 (A.3a)

Ī [L2
1L2] = w̄(Λ2

1Λ2 + Λ2
2Λ3 + Λ2

3Λ1 + Λ2
1Λ3 + Λ2

2Λ3 + Λ2
3Λ2) = 1/30 (A.3b)

Ī [L1L2L3] = 6w̄(Λ1Λ2Λ3) = 1/60 (A.3c)

while for the remaining seven monomials we don’t get any additional equations. Using a fully symmetric rule we
have thus reduced the 10 initial equations to just 3, as given by equation (8).

The quantities in parentheses in equations (A.3) are symmetric polynomials in the variables Λ1, Λ2 and Λ3, so
equations (A.3) can be rewritten, using symmetric reduction and taking into account that Λ̃1 = −1, as

2w̄(1 − 3Λ̃2 − 3Λ̃3) = 1/10 (A.4a)

w̄(Λ̃2 + 3Λ̃3) = 1/30 (A.4b)

6w̄(−Λ̃3) = 1/60 (A.4c)

which yield the solution
w̄ = 1/6, Λ̃2 = 1/4, Λ̃3 = −1/60 (A.5)

The actual values of Λ1, Λ2 and Λ3 are computed by solving the polynomial equation Λ3 +Λ̃1Λ2 +Λ̃2Λ+Λ̃3 = 0 with
Λ̃1 = −1, Λ̃2 = 1/4 and Λ̃3 = −1/60 to obtain the approximate solution Λ1 = 0.1090390091, Λ2 = 0.2319333686
and Λ3 = 0.6590276224 (or, obviously, any permutation of these values).

The same solution can easily be obtained directly, using the moment equations (14) which in this case can be
written as

w1 = 1, w1 p1 = 1/4, w1q1 = 1/10 (A.6)

Considering that w1 = 6w̄ and using the definitions (9) we thus obtain again the solution (A.5).

12



A.2. Rule of degree 11 and type [0, 5, 2]
We show here the computations needed to obtain an analytical solution for the rule of degree d = 11 and type

[0, 5, 2]. This rule has been selected as its computation is clearly not trivial, yet is still simple enough to allow the
main points of the computation to be presented in a relatively concise way.

We start with the moment equations in the form given in equation (14), and specifically with equations (14c) which
for this rule are written explicitly as

w1(p3
1 − q2

1) + w2(p3
2 − q2

2) = 9/1120 (A.7a)

p1w1(p3
1 − q2

1) + p2w2(p3
2 − q2

2) = 9/2800 (A.7b)

q1w1(p3
1 − q2

1) + q2w2(p3
2 − q2

2) = 9/6160 (A.7c)

p2
1w1(p3

1 − q2
1) + p2

2w2(p3
2 − q2

2) = 9/6160 (A.7d)

p1q1w1(p3
1 − q2

1) + p2q2w2(p3
2 − q2

2) = 9/11440 (A.7e)

Solving equations (A.7a) and (A.7b) for w1 and w2 yields

w1 =
9

5600
5p2 − 2

(p3
1 − q2

1)(p2 − p1)
, w2 =

9
5600

5p1 − 2
(p3

2 − q2
2)(p1 − p2)

(A.8)

while replacing (A.8) into equations (A.7c) and (A.7e) and solving for q1 and q2 yields

q1 =
10

143
13p2 − 7
5p2 − 2

, q2 =
10

143
13p1 − 7
5p1 − 2

(A.9)

Finally, replacing (A.8) into equation (A.7d) yields

55p1 p2 − 22(p1 + p2) + 10 = 0 (A.10)

which is a symmetric polynomial and can be easily expressed in terms of the elementary symmetric polynomials as

55 p̃2 + 22 p̃1 + 10 = 0 (A.11)

so that
p̃2 = −(2/5)p̃1 − 2/11 (A.12)

It is easy to verify that if any of the denominators in equations (A.8) and (A.9) were equal to zero, then the
system (A.7) would be inconsistent. Defining the quantity δ as

δ = −(52270200125/36)(p3
1 − q2

1)(p3
2 − q2

2) (A.13)

we therefore have δ , 0. Substituting equations (A.9) into (A.13), expressing the resulting symmetric polynomial in
p1 and p2 in terms of the elementary symmetric polynomials p̃1 and p̃2 and using equation (A.12), the value of δ can
be expressed, after a few simple calculations, as

δ = 44926453 p̃3
1 + 115639095 p̃2

1 + 104579475 p̃1 + 31726625 (A.14)

Instead of using the remaining moment equations (14a) and (14b), we use the form given in (17), that is

5∑
k=0

Ji−kũk = 0, i = 5, . . . , 11 (A.15)

where the range for i starts from n1 and not from n1 +2 since n0 = 0. The values of Ji are obtained by substituting (A.8)
and (A.9) into (18), expressing the resulting symmetric polynomial in p1 and p2 in terms of the elementary symmetric
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polynomials p̃1 and p̃2 and using equation (A.12) to obtain

896δJ0 = 29800061863 p̃3
1 + 77149680465 p̃2

1 + 70346443596 p̃1 + 21618970430

448δJ2 = 2940954731p̃3
1 + 7544944836p̃2

1 + 6844096545 p̃1 + 2097413200

1120δJ4 = 2940954731p̃3
1 + 7430900763p̃2

1 + 6640424505 p̃1 + 2006089825

560δJ6 = 884705536 p̃3
1 + 2226589365 p̃2

1 + 1971919950p̃1 + 589170125

2800δJ8 = 3117204662p̃3
1 + 7898788755p̃2

1 + 7004540400 p̃1 + 2088628375

6160δJ10 = 5055953903p̃3
1 + 12947897820p̃2

1 + 11564885475p̃1 + 3462657250

2240δJ3 = 5311689097p̃3
1 + 13216597680p̃2

1 + 11669947575p̃1 + 3467843000

1120δJ5 = 1924925717p̃3
1 + 4811751945p̃2

1 + 4244987175 p̃1 + 1263326875

112δJ7 = 141691121 p̃3
1 + 356916846 p̃2

1 + 315385785 p̃1 + 93825400

6160δJ9 = 5812791842p̃3
1 + 14800883955p̃2

1 + 13161333900p̃1 + 3928363375

80080δJ11 = 56562404327 p̃3
1 + 145598683230 p̃2

1 + 130613972775 p̃1 + 39228386500

Substituting the above expressions into equations (A.15) and multiplying by δ we obtain a polynomial system of
seven equations with seven unknowns ( p̃1, ũ1, ũ2, ũ3, ũ4, ũ5, J1), where each equation is of degree 3 in p̃1, of degree 1
in ũ1 . . . ũ5 and of degree 0 or 1 in J1. We have therefore transformed the initial moment equations (14) into a new
polynomial system which is invariant with respect to permutation of orbits of the same type.

Since the new system has resulted from multiplication of (A.15) by δ, it must be solved under the constraint δ , 0
to compute the Gröbner basis for a lexicographical ordering. The analytical solution can then be written in terms of
univariate polynomials, for example in p̃1, so that the values of p̃1 are the roots of

9470888994525673 p̃6
1 + 226562700234548964 p̃5

1 + 1593701306680736682 p̃4
1 + 2874813231904110640 p̃3

1

+ 2110043534402532300 p̃2
1 + 656107531431066000 p̃1 + 65822515401595000 = 0 (A.16)

with ũ1 given by

ũ1 =
2247158968823382227008437555667297
901112086802069498690105557296000

p̃5
1 +

390885591544102806213623935828597
6758340651015521240175791679720

p̃4
1

+
51024046646868800588472413534238157

135166813020310424803515833594400
p̃3

1 +
9054475913093892568756717300904137
18773168475043114556043865777000

p̃2
1

+
28055470659132049424051721082649239
135166813020310424803515833594400

p̃1 +
1083108239119841307303070737374777
43929214231600888061142645918180

and the values of ũ2 . . . ũ5 similarly given by univariate polynomials in p̃1 of degree 5.
For a given value of p̃1, i.e. a single numerical solution of the equation (A.16), we can then compute the numerical

values of ũ1 . . . ũ5 and, from equation (A.12 of p̃2. From p̃1 and p̃2 we calculate the values of p1 and p2, from which
equations (A.8) and (A.9) give also the values of w1,w2, q1, q2. Similarly, from the values ũ1 . . . ũ5 we calculate
u1 . . . u5 and, using (14a) and (14b), the values of v1 . . . v5.

Appendix B. Analytical expressions for the cubature rules

This appendix lists analytical expressions for some of the rule types considered in this paper. For each rule type
we list the degree d, the rule type and a list of expressions. Using these expressions, it is easy to obtain the coordinates
and weights of the integration points for all rules of the given type.

• d = 1 [1, 0, 0]: w0 = 1

• d = 2 [0, 1, 0]: u2
1 = 1/4, v1 = 1
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• d = 3 [1, 1, 0]: u1 = 2/5, v1 = 25/16, w0 = −9/16

• d = 3 [0, 0, 1]: p1 = 1/4, q1 = 1/10,w1 = 1

• d = 4 [0, 2, 0]: 3ũ2
1 − 4ũ1 − 2 = 0, ũ2 = −2/5(ũ1 + 1), vi =

(
(81/248)ũ1 − 6/31

)
ui + (15/124)ũ1 + 151/248

• d = 5 [1, 2, 0]: ũ1 = −2/7, ũ2 = −2/7, vi = −(7/400)ui + 39/100, w0 = 9/40

• d = 6 [0, 2, 1]:
p6

1 −
2943
896 p5

1 + 12577377
3211264 p4

1 −
6335029
2809856 p3

1 + 211997025
314703872 p2

1 −
7914723
78675968 p1 + 14953009

2517630976 = 0,

q1 = 6773849
1180960 −

17597477
258335 p1 + 618894079

2066680 p2
1 −

2009158
3355 p3

1 + 20120576
36905 p4

1 −
6422528

36905 p5
1,

w1 = 88271353265388941906672
1552328339949698669325 −

2093018886005051378041487
3104656679899397338650 p1 + 4677969412268735483683874

1552328339949698669325 p2
1

− 874483029603676756153618
141120758177245333575 p3

1 + 8938712246012353125723136
1552328339949698669325 p4

1 −
2885760563751222732259328

1552328339949698669325 p5
1,

ũ1 = − 5647577278829
5843759130 + 219725386019839

17838843660 p1−
4934508553334726

84734507385 p2
1+ 965776421126167

7703137035 p3
1−

538505362157056
4459710915 p4

1+ 3379769853673472
84734507385 p1

5,

ũ2 = 15104616525664
20453156955 −

581971572152849
62435952810 p1+ 3683852401439816

84734507385 p2
1−

709365733908202
7703137035 p3

1+ 389416992756736
4459710915 p4

1−
2417750126231552

84734507385 p5
1,

vi =
(

409434268039529549940720811615256576
158205456880303475487279097255725 p5

1 −
410497105230467053184700451899528704

52735152293434491829093032418575 p4
1

+ 114666485932207310484775951381500251
14382314261845770498843554295975 p3

1 −
1141034063408380347314793772529581321

316410913760606950974558194511450 p2
1

+ 153804297816157841896911608744616331
210940609173737967316372129674300 p1 −

68148358857994347902974327222077377
1265643655042427803898232778045800

)
ui

− 660366862842903249663697383981056
606151175786603354357391177225 p5

1 + 17884598780372115712297691281128448
5455360582079430189216520595025 p4

1

− 1660804293851424897302836415981834
495941871098130017201501872275 p3

1 + 2716663212121457459566848039780239
1818453527359810063072173531675 p2

1

− 3169975113118311937146770957038031
10910721164158860378433041190050 p1 + 220460485921384140338311776720617

10910721164158860378433041190050

• d = 7 [1, 2, 1]:
p4

1 −
23
12 p3

1 + 655
448 p2

1 −
85

196 p1 + 1619
37632 = 0,

q1 = 73
160 −

63
20 p1 + 273

40 p2
1 −

21
5 p3

1, w1 = 5559373039
1374543450 −

4035503891
196363350 p1 + 3029805464

98181675 p2
1 −

577446688
32727225 p3

1,

ũ1 = 204779
4630 −

616196
2315 p1 + 978558

2315 p2
1 −

585648
2315 p3

1, ũ2 = − 86623
2315 + 511579

2315 p1 −
811132
2315 p2

1 + 484512
2315 p3

1,

vi =
(
− 637366793665532978264

9052562883613960471 p3
1 + 3156091037460298906045

27157688650841881413 p2
1 −

9803429487627684799252
135788443254209407065 p1 + 14666951220214040085227

1267358803705954465940

)
ui

+ 7823399076093706515424
135788443254209407065 p3

1 −
39124895515170463542614
407365329762628221195 p2

1 + 98256377831808794616331
1629461319050512884780 p1 −

109198370776069008639239
11406229233353590193460 ,

w0 = − 3660769728
100486445 p3

1 + 4347049032
703405115 + 6057843876

100486445 p2
1 −

752902776
20097289 p1

• d = 7 [0, 1, 2]:
u4

1 − (4/9)u3
1 − (1/3)u2

1 + (1/36), v1 = 156673
8817780 + 2159752

2204445 u1 + 5368006
2204445 u2

1 −
3133452
734815 u3

1,

p̃1 = − 1079
1281 −

310
1281 u1 −

128
427 u2

1 + 720
427 u3

1, p̃2 = 1493
11956 + 1130

8967 u1 + 2116
8967 u2

1 −
2046
2989 u3

1,

qi =
(

489
427 + 465

854 u1 + 288
427 u2

1 −
1620
427 u3

1

)
pi −

653
2989 −

1695
5978 u1 −

1587
2989 u2

1 + 9207
5978 u3

1,

wi =
(
− 21117033567

4098798070 u3
1 + 34215330023

8197596140 u2
1 + 676519529

409879807 u1 −
22884360891
16395192280

)
pi

+ 7377613908
2049399035 u3

1 −
123702006967
49185576840 u2

1 −
10640567105
9837115368 u1 + 103431908839

98371153680

• d = 8 [1, 3, 1]:
p1 = 2/5, q2

1 −
116
355 q1 + 443

17750 , w1 = 1286875
529326 q1 −

561275
4234608 , w0 = 197671347

256973920 −
32981985
6424348 q1,

ũ1 = 181760
50289 q1 −

70340
50289 , ũ2 = − 124960

50289 q1 + 10642
50289 , ũ3 = − 50410

50289 q1 + 14008
50289 ,

vi =
(
− 18610928498796911607672845

2275833709245992090597766 u2
i + 19252524428004364259122223

4551667418491984181195532 ui + 12430296145585635931273841
4551667418491984181195532

)
q1

+ 11189621308192975569101651
22758337092459920905977660 u2

i −
2452756844382101152643719
5689584273114980226494415 ui + 10275755611647081695669293

182066696739679367247821280

• d = 9 [1, 4, 1]:
p1 = 2/5, q1 = 2/11, w1 = 3025

11648 , w0 = 85293
878080 ũ1 = − 212

407 , ũ2 = − 1002
2035 , ũ3 = 212

2035 , ũ4 = 112
2035 ,

vi = 506023048885425107
1503746382262924800 + 11465050245708013

334165862725094400 ui −
10064998401780383
12531219852191040 u2

i + 52676213406614851
109363373255485440 u3

i
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Appendix C. Numerical values for new cubature rules of PI or NI quality

This appendix lists all the computed cubature rules of quality PI and NI that are not listed in the Encyclopedia
of Cubature Formulas [6]. Since only zero-dimensional rules are considered in this paper, there is a finite number of
solutions and it is thus possible to list approximate numerical values for all individual solutions; this of course would
not be possible for positive-dimensional rules where an infinite number of solutions exists.

For each rule we first list the degree d, the number of points nK , the rule type, the rule quality, the maximum
integration error e and (for NI rules) the condition number σ. We then provide a list of the orbits, where the first
column is the number of points in the orbit, the second is the weight for each integration point and the last three
columns are the areal coordinates defining a point in the orbit.

The condition number σ is defined as

σ =

nK∑
i

|w̄i|/

nK∑
i

w̄1 =

nK∑
i

|w̄i| (C.1)

therefore σ = 1 for PI rules and σ > 1 for NI rules.
The integration error is computed by comparing numerical (double-precision) and exact values for the integration

of all the monomials xiy j with i + j ≤ d on a reference triangle with vertices (0, 0), (0, 1) and (1, 0) in the Cartesian
plane. More specifically, the scaled error e is computed as

e = max
i, j≥0
i+ j≤d

∣∣∣∣∣∣∣ Ī[xiy j]
1
A

∫
Ω

xiy j dΩ
− 1

∣∣∣∣∣∣∣ /ε (C.2)

where ε is the so-called machine epsilon value (ε = 2−52 for double precision arithmetic).

d = 7, nK = 15, type [0, 1, 2], quality PI, e = 2

3 1.2539360744930307e-01 5.1348172032878493e-01 2.4325913983560754e-01 2.4325913983560754e-01
6 7.6306338340541706e-02 5.0714384307207043e-02 3.1864418984753705e-01 6.3064142584525590e-01
6 2.7663524601473427e-02 4.5720829846320324e-02 8.6636631341749002e-02 8.6764253881193067e-01

d = 10, nK = 25, type [1, 2, 3], quality PI, e = 1

1 8.3219736986450142e-02 3.3333333333333333e-01 3.3333333333333333e-01 3.3333333333333333e-01
3 5.2651949468244594e-02 6.7417376425181049e-01 1.6291311787409476e-01 1.6291311787409476e-01
3 1.0951288340268411e-02 9.4299299942322433e-01 2.8503500288387836e-02 2.8503500288387836e-02
6 5.6277279710811180e-02 1.4681150539393041e-01 3.3669587527823165e-01 5.1649261932783794e-01
6 3.5394947791538391e-02 2.9307604504579472e-02 3.6336261699457053e-01 6.0732977850085000e-01
6 2.9322864095652236e-02 3.3685698680610287e-02 1.5330305516956137e-01 8.1301124614982834e-01

d = 11, nK = 28, type [1, 3, 3], quality NI, e = 2, σ = 1.125

1 -6.2401629433482428e-02 3.3333333333333333e-01 3.3333333333333333e-01 3.3333333333333333e-01
3 8.1727170838649564e-02 4.3271289449998075e-01 2.8364355275000962e-01 2.8364355275000962e-01
3 4.8964652505867335e-02 7.1120974700789952e-01 1.4439512649605024e-01 1.4439512649605024e-01
3 1.3801353886270255e-02 9.3453870606708818e-01 3.2730646966455908e-02 3.2730646966455908e-02
6 5.3402351795938245e-02 1.1639641340049335e-01 3.3535007852506066e-01 5.4825350807444599e-01
6 2.6325058735312046e-02 2.2611513300388206e-02 3.7249492189107103e-01 6.0489356480854077e-01
6 2.5092939092269870e-02 2.7990225682080982e-02 1.6490131047191468e-01 8.0710846384600434e-01
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d = 11, nK = 28, type [1, 3, 3], quality NI, e = 16, σ = 24.81

1 1.9188748901448341e-01 3.3333333333333333e-01 3.3333333333333333e-01 3.3333333333333333e-01
3 4.4946736418864346e-02 3.6186335127135712e-02 4.8190683243643214e-01 4.8190683243643214e-01
3 4.1100128875197643e-02 8.1104704303693675e-01 9.4476478481531623e-02 9.4476478481531623e-02
3 -3.9689908345461279e+00 5.1674377997694020e-01 2.4162811001152990e-01 2.4162811001152990e-01
6 2.0349375070302612e+00 2.2731189719293939e-01 2.5397442939188326e-01 5.1871367341517734e-01
6 3.4015193574745321e-02 3.0655038923840410e-02 2.5125205566042453e-01 7.1809290541573506e-01
6 7.2047025186125795e-03 1.5009373287576387e-03 6.5611553303429522e-02 9.3288750936781284e-01

d = 11, nK = 30, type [0, 2, 4], quality PI, e = 2.5

3 5.6231659174681110e-02 4.4705870171202569e-01 2.7647064914398715e-01 2.7647064914398715e-01
3 4.7761405533085872e-02 7.1603550041918619e-01 1.4198224979040690e-01 1.4198224979040690e-01
6 5.4734256165112738e-02 1.2302303722598859e-01 3.3224127181415769e-01 5.4473569095985372e-01
6 2.8014058918038700e-02 2.4403997190791452e-02 3.7269746079157825e-01 6.0289854201763030e-01
6 2.4798737818199088e-02 2.7853864808466097e-02 1.6711516327952143e-01 8.0503097191201248e-01
6 7.1230814114326493e-03 2.7150941709503694e-02 3.9345094696029689e-02 9.3350396359446662e-01

d = 11, nK = 30, type [0, 2, 4], quality PI, e = 2

3 7.2178042397209270e-02 2.1289840740104060e-01 3.9355079629947970e-01 3.9355079629947970e-01
3 4.3215435615360841e-02 4.0418683822051027e-02 4.7979065808897449e-01 4.7979065808897449e-01
6 5.8173710322163019e-02 1.2539956353662088e-01 2.6597620190330159e-01 6.0862423456007753e-01
6 1.6975848322983403e-02 1.2409970153698532e-02 2.8536418538696462e-01 7.0222584445933685e-01
6 2.7591464156449593e-02 5.2792057988217709e-02 1.3723536747817085e-01 8.0997257453361144e-01
6 6.2289048587855958e-03 5.1003445645828061e-03 5.6817155788572447e-02 9.3808249964684475e-01

d = 11, nK = 30, type [0, 2, 4], quality PI, e = 2

3 5.8325662127449619e-02 4.5045436417576603e-01 2.7477281791211699e-01 2.7477281791211699e-01
3 1.3875995631494550e-02 9.3431625471178831e-01 3.2841872644105845e-02 3.2841872644105845e-02
6 5.3363542393340484e-02 1.2142499385875732e-01 3.3479535924927089e-01 5.4377964689197179e-01
6 2.7812320904551124e-02 2.4000467625830910e-02 3.7185999509036796e-01 6.0413953728380113e-01
6 2.5253412629931399e-02 1.2700068887578271e-01 1.5804000955235862e-01 7.1495930157185867e-01
6 2.4136561859371575e-02 2.7039712564819973e-02 1.6492234326164145e-01 8.0803794417353858e-01

d = 11, nK = 30, type [0, 2, 4], quality PI, e = 2.5

3 4.8883135862392292e-02 7.1187870201519159e-01 1.4406064899240421e-01 1.4406064899240421e-01
3 1.3814368459654939e-02 9.3450946869957339e-01 3.2745265650213304e-02 3.2745265650213304e-02
6 3.5111950829892619e-02 2.4046986824731959e-01 3.0207587109553998e-01 4.5745426065714043e-01
6 5.0153096874909698e-02 1.1000518620988445e-01 3.3722210801729928e-01 5.5277270577281628e-01
6 2.5039771321642791e-02 2.1520759771076191e-02 3.7311327681727726e-01 6.0536596341164655e-01
6 2.5013095479197943e-02 2.7875756416958290e-02 1.6500707013095728e-01 8.0711717345208443e-01

d = 12, nK = 33, type [0, 5, 3], quality PI, e = 2

3 6.2541213195902760e-02 4.5707498597014783e-01 2.7146250701492608e-01 2.7146250701492608e-01
3 4.9918334928060942e-02 1.1977670268281378e-01 4.4011164865859311e-01 4.4011164865859311e-01
3 2.4266838081452033e-02 2.3592498108916896e-02 4.8820375094554155e-01 4.8820375094554155e-01
3 2.8486052068877545e-02 7.8148434468129142e-01 1.0925782765935429e-01 1.0925782765935429e-01
3 7.9316425099736385e-03 9.5070727312732881e-01 2.4646363436335595e-02 2.4646363436335595e-02
6 4.3227363659414211e-02 1.1629601967792659e-01 2.5545422863851735e-01 6.2824975168355607e-01
6 2.1783585038607558e-02 2.3034156355267139e-02 2.9165567973834096e-01 6.8531016390639190e-01
6 1.5083677576511439e-02 2.1382490256170590e-02 1.2727971723358937e-01 8.5133779251024004e-01
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d = 12, nK = 33, type [0, 5, 3], quality NI, e = 2.5, σ = 1.637

3 5.9921579300409806e-02 4.5297113890586446e-01 2.7351443054706777e-01 2.7351443054706777e-01
3 2.8078756439547521e-02 2.3689177706651337e-02 4.8815541114667433e-01 4.8815541114667433e-01
3 5.2528996017723132e-02 7.3216462065976138e-01 1.3391768967011931e-01 1.3391768967011931e-01
3 1.6173556276231663e-03 9.9275211060624856e-01 3.6239446968757181e-03 3.6239446968757181e-03
3 -1.0620241943508914e-01 8.7453358939251732e-01 6.2733205303741339e-02 6.2733205303741339e-02
6 5.4918108387822948e-02 1.2022413161656717e-01 3.3193466412059610e-01 5.4784120426283674e-01
6 2.5445551940579828e-02 2.4056915471787798e-02 2.6336908079040157e-01 7.1257400373781064e-01
6 6.8330872363156647e-02 4.3467017167378031e-02 7.8872164778463905e-02 8.7766081805415806e-01

d = 13, nK = 37, type [1, 4, 4], quality PI, e = 2

1 6.6665311839643211e-02 3.3333333333333333e-01 3.3333333333333333e-01 3.3333333333333333e-01
3 5.6371383179075312e-02 1.4168077491377855e-01 4.2915961254311073e-01 4.2915961254311073e-01
3 5.7036879531335907e-02 5.4831985426419597e-01 2.2584007286790202e-01 2.2584007286790202e-01
3 2.7047702881060109e-02 2.5142709405267532e-02 4.8742864529736623e-01 4.8742864529736623e-01
3 3.2545777101062094e-02 7.5108435587200148e-01 1.2445782206399926e-01 1.2445782206399926e-01
6 3.8462103807067631e-02 7.1274471511911043e-02 2.8452076401981823e-01 6.4420476446827072e-01
6 9.1384388143710323e-03 4.9353234895430553e-03 2.8621475354434202e-01 7.0884992296611493e-01
6 1.7513402050919330e-02 2.6732809794336294e-02 1.2452541585132824e-01 8.4874177435433547e-01
6 3.9409653414347608e-03 1.6350780507591448e-02 3.2854248680859809e-02 9.5079497081154874e-01

d = 13, nK = 37, type [1, 4, 4], quality PI, e = 3

1 6.7960036586831644e-02 3.3333333333333333e-01 3.3333333333333333e-01 3.3333333333333333e-01
3 5.5601967530453329e-02 1.4611717148039919e-01 4.2694141425980041e-01 4.2694141425980041e-01
3 5.8278485119199981e-02 5.5725542741633420e-01 2.2137228629183290e-01 2.2137228629183290e-01
3 2.3994401928894731e-02 2.1846107094921300e-02 4.8907694645253935e-01 4.8907694645253935e-01
3 6.0523371035391718e-03 9.5698063778231363e-01 2.1509681108843184e-02 2.1509681108843184e-02
6 3.4641276140848370e-02 6.8012243554206655e-02 3.0844176089211777e-01 6.2354599555367557e-01
6 2.4179039811593819e-02 8.7895483032197325e-02 1.6359740106785048e-01 7.4850711589995220e-01
6 9.5906810035432627e-03 5.1263891023823686e-03 2.7251581777342967e-01 7.2235779312418797e-01
6 1.4965401105165667e-02 2.4370186901093829e-02 1.1092204280346340e-01 8.6470777029544278e-01

d = 13, nK = 37, type [1, 4, 4], quality NI, e = 3, σ = 1.211

1 -1.0563607384564014e-01 3.3333333333333333e-01 3.3333333333333333e-01 3.3333333333333333e-01
3 9.6900347278040834e-02 4.2428134697232641e-01 2.8785932651383680e-01 2.8785932651383680e-01
3 5.0182166352273275e-02 1.1319798297558010e-01 4.4340100851220995e-01 4.4340100851220995e-01
3 2.1028559736945124e-02 2.1478392465704778e-02 4.8926080376714761e-01 4.8926080376714761e-01
3 2.6725990673493854e-02 8.0009197359910671e-01 9.9954013200446643e-02 9.9954013200446643e-02
6 4.6078912613738408e-02 1.1926442093904025e-01 2.4950546894433526e-01 6.3123011011662449e-01
6 2.1352903627876872e-02 2.3615159668548583e-02 3.0173469323728171e-01 6.7465014709416971e-01
6 1.4503942486379255e-02 2.0897744641778951e-02 1.4302576638197802e-01 8.3607648897624303e-01
6 4.9183882259022780e-03 1.4973910872168023e-02 3.9853306900769997e-02 9.4517278222706198e-01

d = 13, nK = 37, type [1, 4, 4], quality NI, e = 3, σ = 2.959

1 -9.7942828307792821e-01 3.3333333333333333e-01 3.3333333333333333e-01 3.3333333333333333e-01
3 3.8518432481968960e-01 3.7317149750850276e-01 3.1341425124574862e-01 3.1341425124574862e-01
3 4.7070743751393722e-02 1.0367313869478466e-01 4.4816343065260767e-01 4.4816343065260767e-01
3 1.9471598600232362e-02 1.8760943696148778e-02 4.9061952815192561e-01 4.9061952815192561e-01
3 8.5985592950980431e-03 9.4829242724479651e-01 2.5853786377601744e-02 2.5853786377601744e-02
6 4.6868717557158807e-02 1.2807485456210513e-01 2.5590605047140265e-01 6.1601909496649222e-01
6 2.3214582271983394e-02 2.4665758883426525e-02 2.9372756374222683e-01 6.8160667737434664e-01
6 1.8658865414938813e-02 7.6605047086541962e-02 1.3037529453625783e-01 7.9301965837720021e-01
6 1.0999935369033491e-02 1.5171557706357148e-02 1.2953726332608215e-01 8.5529117896756070e-01
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d = 13, nK = 37, type [1, 4, 4], quality NI, e = 2, σ = 2.392

1 -6.9619389181735170e-01 3.3333333333333333e-01 3.3333333333333333e-01 3.3333333333333333e-01
3 2.9164650484954670e-01 3.8024098441932774e-01 3.0987950779033613e-01 3.0987950779033613e-01
3 4.7022845989639519e-02 1.0477109144726357e-01 4.4761445427636821e-01 4.4761445427636821e-01
3 2.9437077210761288e-02 7.9793737919027607e-01 1.0103131040486197e-01 1.0103131040486197e-01
3 7.0604784520309286e-03 9.5268269733657265e-01 2.3658651331713676e-02 2.3658651331713676e-02
6 4.7482139272102975e-02 1.2554127450191929e-01 2.5526729456251767e-01 6.1919143093556304e-01
6 1.8374798819956253e-02 2.0350443541788744e-02 3.9908788030187748e-01 5.8056167615633377e-01
6 1.9072906936608289e-02 2.6796482664027441e-02 2.4078989614336499e-01 7.3241362119260757e-01
6 1.0185683689901881e-02 1.6435295935411060e-02 1.1398368019124052e-01 8.6958102387334842e-01
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