

Edinburgh Research Explorer

V for Virtual

Citation for published version:
Gordon, AD 2006, 'V for Virtual' Electronic Notes in Theoretical Computer Science, vol. 162, pp. 177-181.
DOI: 10.1016/j.entcs.2006.01.030

Digital Object Identifier (DOI):
10.1016/j.entcs.2006.01.030

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Electronic Notes in Theoretical Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43713372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.entcs.2006.01.030
https://www.research.ed.ac.uk/portal/en/publications/v-for-virtual(b5760b82-2391-4e99-94ff-829d03d1137f).html

V for Virtual

Andrew D. Gordon

Microsoft Research

Abstract

Operating system virtualization has been available on commodity hardware for a few years, and today
attracts considerable commercial and research interest. Virtualization allows one or more virtual machines
(VMs) to run on a single physical machine, and to interact via virtual devices, such as virtual hard discs
or virtual network cards. To model basic virtualization operations, we propose a process calculus, V, with
primitives to start and stop VMs, and to read and write data in a hierarchical store. Formalisms such
as V may be useful for programming and reasoning about various applications of virtualization, such as
VM-based trusted computing or VM-based computational grids.

Keywords: Operating system virtualization; formalization.

Operating system virtualization allows a host operating system, running directly

on a physical machine and controlling its devices, to run multiple guest operating

systems within virtual machines. The virtualization software, known as a hypervisor

or a virtual machine monitor (VMM), may run under the host operating system as

an application (for example, Virtual PC [6] under Windows), or it may be the host

operating system itself (for example, Xen [1]).

Following research in the 1960s, IBM launched the first commercial VMM in

1972: VM/370 manages an IBM System 370 mainframe and gives each user at a

terminal the impression they have a complete System 370. VMware launched the

first commercial VMM for desktop PCs in 1999. Since then several VMMs for

the x86 PC architecture have appeared, aimed both at desktops and server farms.

Today, OS virtualization is increasingly mobile: a suspended VM together with its

virtual hard disc (VHD) file are typically several gigabytes, but comfortably fit in

say a disc-based personal music player, not to mention a laptop. VMMs on devices

such as phones and PDAs cannot be far off.

Virtualization has many applications. Parallelism between VMs enables bet-

ter utilization of physical assets: applications in different guest operating systems

share physical resources. A legacy application on a legacy guest operating system

can run on new hardware in a new host operating system. Isolation between VMs

enables security mechanisms [5] and enables debugging to proceed in parallel with

Electronic Notes in Theoretical Computer Science 162 (2006) 177–181

1571-0661 © 2006 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.01.030
Open access under CC BY-NC-ND license.

http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

production (a significant attraction of VM/370). Creation of fresh VMs and VHDs

enables disposable computing : creation of a virtual computer to run beta code or

code suspected of bearing spyware to be uninstalled reliably just by deleting the

VM and VHD. A VM-based honeypot makes a disposable VM for each incoming

network probe. Checkpointing and restarting of VM and VHD state enables several

applications: load balancing via live migration; analysis of saved state for foren-

sic purposes such as debugging or intrusion-detection; and pre-packaged training

demos—last but not least.

1 A Calculus of Virtual Machines and Virtual Discs

This paper introduces V, a formalism for describing typical usages of VMs attached

to VHDs. V is based on named, copyable processor partitions interacting via a

global, hierarchical store. The partitions model both physical and virtual machines,

while the global store models the file store of the host operating system, including

attached VHDs.

Syntax of Values, Stores, and Processes:

U, V ::= storable value

x, y, z variable

a, b, c name

U/V path construction

S store

proc(P) process

S ::= {a1=V1, . . . , an=Vn} store: ai pairwise distinct, Vi �= {}, Vi closed

P,Q ::= process

new a;P name restriction

P | Q composition

U [P] partition named U enclosing process P

write(U, V);P write value V at path U

let x = read(U) in P read value x from path U

run(U) run code U

let x = stop(U) in P stop partition named U , save state as x

C ::= P S configuration

In the phrase new a;P , the name a is bound with scope P . In the phrases

let x = read(U) in P and let x = stop(U) in P , the variable x is bound with

scope P . We say a phrase of syntax is closed if and only if it contains no variables.

We assume each Vi in a store {a1=V1, . . . , an=Vn} is closed and distinct from

{}. We use the empty store {} as a distinguished null value. Let a path be either

null {}, or p/a where p is a path and a is a name. Hence, a path is a possibly-empty

list of names. We often omit the initial {}. We write p@p′ for the path obtained by

concatenating paths p and p′. Processes perform non-blocking reads and writes of

values at a path in the store. Null cannot occur as an explicit value in a store, but

A.D. Gordon / Electronic Notes in Theoretical Computer Science 162 (2006) 177–181178

reading from a non-existent path returns null, and writing null to a path amounts

to deletion of the previous contents of the path.

To isolate named partitions, each process interacts with the global store relative

to a path. A configuration P S is a snapshot of a whole computation, consisting of a

top-level process P running at path {} relative to global store S. In a configuration

P | a[Q] {a = Sa, b = Sb}, P runs at {} and sees the whole store {a = Sa, b = Sb},

while Q runs at /a and so sees just Sa.

Next, we describe the semantics of a process P running at a path r relative

to an implicit global store. The restriction new a;P at r creates a fresh name a

and behaves as P at r. The composition P | Q at r is the parallel composition of

processes P and Q running at r. The partition a[P] at path r encloses the process

P running at r/a. The process write(p, V);Q running at r deposits V into the

store at r@p, then behaves as Q at r. The process let x = read(p) in Q running

at r retrieves the value V at r@p from the store, then behaves as Q{x←V } at r.

The process run(proc(P)) running at r behaves the same as P at r. The process

let x = stop(a) in Q at r blocks until there is a partition a[P] directly in parallel,

stops it, then behaves as Q{x←proc(a[P])} at r.

Below, we use the shorthand done
�

= run({}) for a stuck, terminal process.

2 Using V to Model Operations on Virtual PCs

For the purpose of a simple example, let a VPC be the virtualization of a processor

coupled with a single bootable disc. This is a common case in desktop uses of

virtualization.

Our model mimics one particular VMM [6] and stores the state of a VPC in

three files managed by the host operating system. A file MyVPC.vhd holds the

VHD, the image of the whole file system available to the guest operating system.

A file MyVPC.vsv contains the state of the suspended VM. A file MyVPC.vmc

is an XML database containing the configuration of the VPC, including paths to

MyVPC.vhd and MyVPC.vsv.

Hence, we model an inactive VPC with a guest file system S and current state

P as a store containing three such files. The name vm007 is a unique identifier for

the VPC.

{ MyVPC.vhd = S, MyVPC.vsv = proc(vm007[P]),

MyVPC.vmc = {id=vm007, disc=/MyVPC.vhd, mem=/MyVPC.vsv} }

To activate a VPC, we copy the VHD S to a temporary file vm007, and run the

partition vm007[P], so that P sees S as its store. After the partition and store have

run for a while, and evolved to say vm007[P’] and S’, the configuration takes the

general form:

vm007[P’]

{ vm007 = S’, MyVPC.vhd = S, MyVPC.vsv = proc(vm007[P]),

MyVPC.vmc = {id=vm007, disc=/MyVPC.vhd, mem=/MyVPC.vsv} }

A.D. Gordon / Electronic Notes in Theoretical Computer Science 162 (2006) 177–181 179

We show some V processes to create, activate, and stop VPCs; for simplicity, we

omit synchronization code. Let a bootable VHD be a store with a file at /boot.exe

containing a process that initializes the guest operating system. Given a bootable

VHD at path vhd, the following creates an inactive VPC, by storing its state and

configuration at paths vsv and vmc:

newVM vhd vsv vmc
�

=

new vm; write(vsv, proc(vm[let x = read(/boot.exe) in run(x)]));

write(vmc, {id=vm, disc=vhd, mem=vsv}); done

The following activates an inactive VPC at path vmc:

startVM vmc
�

=

let i = read(vmc/id) in

let vhd = read(vmc/disc) in let d = read(vhd) in write(/i,d);

let vsv = read(vmc/mem) in let m = read(vsv) in run(m)

We present two ways of stopping an active VM. The first simply deletes the

running instance, leaving the original VHD and image files intact, while the second

updates the files with the current VHD and machine state. Both write {} to delete

the temporary VHD copy.

stopAndDeleteChanges vmc
�

=

let i = read(vmc/id) in

let m = stop(i) in write(/i,{}); done

stopAndSaveChanges vmc
�

=

let i = read(vmc/id) in

let m = stop(i) in let d = read(/i) in write(/i,{});

let vsv = read(vmc/mem) in write(vsv,m);

let vhd = read(vmc/disc) in write(vhd,d); done

3 Conclusion and Future Research

We propose V as a simple formalism for modelling OS virtualization. V is more

expressive than the examples of this paper may indicate; we can encode itera-

tion, Booleans and conditionals, VM checkpointing, and various synchronization

and communication operations. Perhaps V can itself be encoded within some ex-

isting process calculus; it certainly has features in common with many, including

the higher-order π-calculus [7], the ambient calculus [2], the seal calculus [3], and

Xdπ [4]. A formal theory of V, together with an implementation over a VMM,

would be a useful first assessment of the calculus.

OS virtualization is an old technology, but its emergence on commodity hardware

enables new and complex applications. One example is trusted computing based on

attestation of software isolated within a VM, as in Terra [5] or Microsoft NGSCB,

for instance. Formalisms like V, extended perhaps with symbolic cryptography,

would enable formal security analyses of such applications.

A.D. Gordon / Electronic Notes in Theoretical Computer Science 162 (2006) 177–181180

Another example is the idea of a virtual cluster, an application built from compo-

nent VMs running applications like web servers and databases, and interconnected

by virtual networks. Virtual clusters consisting of tens, hundreds, or more VMs are

envisaged as an efficient way to utilize large data centres. The lifecycle of a vir-

tual cluster is complex and long-lasting; to minimise costly operator intervention,

programs controlling virtual clusters should automatically handle events such as

VM failure, checkpointing and restarting, automatic contraction and expansion of

the size of the virtual cluster, load balancing VMs between physical hardware, and

so on. Conventional testing of scripts controlling virtual clusters will likely prove

inadequate in finding bugs—many critical error conditions seldom occur. So, we

should investigate programming techniques, perhaps prototyped in calculi such as

V, for building virtual cluster control software that is amenable to static analysis.

Acknowledgement

Conversations with Paul Barham, Nick Benton, Beppe Castagna, Philippa Gard-

ner, and Ant Rowstron were useful.

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebar, I. Pratt, and A. Warfield.
Xen and the art of virtualization. In Symposium on Operating Systems Principles (SOSP’03), pages
164–177, 2003.

[2] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science, 240:177–213, 2000.

[3] G. Castagna, J. Vitek, and F. Zappa Nardelli. The seal calculus. Information and Computation,
201(1):1–54, 2005.

[4] P. Gardner and S. Maffeis. Modelling dynamic web data. Theoretical Computer Science, 342(1):104–131,
2005.

[5] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A virtual machine-based platform
for trusted computing. In Symposium on Operating Systems Principles (SOSP’03), pages 193–206, 2003.

[6] Microsoft Corporation. Microsoft Virtual PC 2004. Product web page, at
http://www.microsoft.com/windows/virtualpc/default.mspx .

[7] D. Sangiorgi. Expressing mobility in process algebras: first-order and higher-order paradigms. PhD
thesis, University of Edinburgh, 1993.

A.D. Gordon / Electronic Notes in Theoretical Computer Science 162 (2006) 177–181 181

http://www.microsoft.com/windows/virtualpc/default.mspx

	A Calculus of Virtual Machines and Virtual Discs
	Using V to Model Operations on Virtual PCs
	Conclusion and Future Research
	References

