

Edinburgh Research Explorer

Measure Transformer Semantics for Bayesian Machine Learning

Citation for published version:
Borgström, J, Gordon, AD, Greenberg, M, Margetson, J & Gael, JV 2013, 'Measure Transformer Semantics
for Bayesian Machine Learning' Logical Methods in Computer Science, vol. 9, no. 3. DOI: 10.2168/LMCS-
9(3:11)2013

Digital Object Identifier (DOI):
10.2168/LMCS-9(3:11)2013

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Logical Methods in Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43713355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.2168/LMCS-9(3:11)2013
https://www.research.ed.ac.uk/portal/en/publications/measure-transformer-semantics-for-bayesian-machine-learning(f455bcf6-6047-4ef6-9302-5ad4befa69b5).html

Logical Methods in Computer Science
Vol. 9(3:11)2013, pp. 1–39
www.lmcs-online.org

Submitted Jan. 29, 2012
Published Sep. 9, 2013

MEASURE TRANSFORMER SEMANTICS FOR
BAYESIAN MACHINE LEARNING ∗

JOHANNES BORGSTR̈OMa, ANDREW D. GORDONb, MICHAEL GREENBERGc, JAMES MARGETSONd,
AND JURGEN VAN GAELe

a Dept. of Information Technology, Uppsala University, Uppsala, Sweden
e-mail address: borgstrom@acm.org

b,d Microsoft Research, Cambridge, UK
e-mail address: adg@microsoft.com, jfdm1@roundwood.org

c University of Pennsylvania, Philadelphia, PA, USA
e-mail address: mgree@seas.upenn.edu

e Microsoft FUSE Labs, Cambridge, UK
e-mail address: jurgen.vangael@gmail.com

ABSTRACT. The Bayesian approach to machine learning amounts to computing posterior distribu-
tions of random variables from a probabilistic model of how the variables are related (that is, a prior
distribution) and a set of observations of variables. Thereis a trend in machine learning towards ex-
pressing Bayesian models as probabilistic programs. As a foundation for this kind of programming,
we propose a core functional calculus with primitives for sampling prior distributions and observing
variables. We define measure-transformer combinators inspired by theorems in measure theory, and
use these to give a rigorous semantics to our core calculus. The original features of our semantics
include its support for discrete, continuous, and hybrid measures, and, in particular, for observations
of zero-probability events. We compile our core language toa small imperative language that is pro-
cessed by an existing inference engine for factor graphs, which are data structures that enable many
efficient inference algorithms. This allows efficient approximate inference of posterior marginal dis-
tributions, treating thousands of observations per secondfor large instances of realistic models.

1. INTRODUCTION

In the past 15 years, statistical machine learning has unified many seemingly unrelated methods
through the Bayesian paradigm. With a solid understanding of the theoretical foundations, advances
in algorithms for inference, and numerous applications, the Bayesian paradigm is now the state of
the art for learning from data. The theme of this paper is the idea of expressing Bayesian models as
probabilistic programs, which was pioneered by BUGS [14] and is recently gaining in popularity,

2012 ACM CCS:[Theory of computation]: Semantics and reasoning—Program constructs; [Computing method-
ologies]: Machine learning—Machine learning approaches.

Key words and phrases:Probabilistic Programming, Model-based Machine Learning, Programming Languages, De-
notational Semantics.
∗ An abridged version of this paper appears in the proceedingsof the 20th European Symposium on Programming

(ESOP’11), part of ETAPS 2011, held in Saarbrücken, Germany, March 26–April 3, 2011.

LOGICAL METHODS
lIN COMPUTER SCIENCE DOI:10.2168/LMCS-9(3:11)2013

c© J. Borgström, A. D. Gordon, M. Greenberg, J. Margetson, and J. Van Gael
CC© Creative Commons

http://creativecommons.org/about/licenses

2 J. BORGSTR̈OM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

witness the following list of probabilistic programming languages: AutoBayes [50], Alchemy [11],
Blaise [7], BLOG [36], Church [15], Csoft [52], FACTORIE [32], Figaro [44], HANSEI [24],
HBC [10], IBAL [42], λ◦ [41], Probabilistic cc [18], PFP [12], and Probabilistic Scheme [45].

In particular, we draw inspiration from Csoft [52], an imperative language where programs
denote factor graphs [28], data structures that support efficient inference algorithms [25]. Csoft is
the native language of Infer.NET [37], a software library for Bayesian reasoning. This paper gives
an alternative probabilistic semantics to languages with features similar to those of Csoft.

Bayesian Models as Probabilistic Expressions.Consider a simplified form of TrueSkill [19], a
large-scale online system for ranking computer gamers. There is a population of players, each
assumed to have a skill, which is a real number that cannot be directly observed. We observe
skills only indirectly via a series of matches. The problem is to infer the skills of players given
the outcomes of the matches. Here is a concrete example:Alice, Bob, and Cyd are new players.
In a tournament of three games, Alice beats Bob, Bob beats Cyd, and Alice beats Cyd. What are
their skills? In a Bayesian setting, we represent our uncertain knowledgeof the skills as continuous
probability distributions. The following probabilistic expression models the situation by generating
probability distributions for the players’ skills, given three played games (observations).

// prior distributions, the hypothesis
let skill() = random (Gaussian(10.0,20.0))
let Alice,Bob,Cyd = skill(),skill(),skill()
// observe the evidence
let performance player = random (Gaussian(player,1.0))
observe(performance Alice > performance Bob) //Alice beats Bob
observe(performance Bob > performance Cyd) //Bob beats Cyd
observe(performance Alice > performance Cyd) //Alice beats Cyd
// return the skills
Alice,Bob,Cyd

A run of this expression goes as follows. We sample the skillsof the three players from theprior
distribution Gaussian(10.0,20.0). Such a distribution can be pictured as a bell curve centred on
themean10.0, and gradually tailing off at a rate given by thevariance, here 20.0. Sampling from
such a distribution is a randomized operation that returns areal number, most likely close to the
mean. For each match, the run continues by sampling an individual performance for each of the
two players. Each performance is centred on the skill of a player, with low variance, making the
performance closely correlated with but not identical to the skill. We then observe that the winner’s
performance is greater than the loser’s. AnobservationobserveM always returns (), but represents
a constraint thatM must be true. A whole run is valid if all encountered observations are true. The
run terminates by returning the three skills.

A classic computational method to compute an approximate posterior distribution of each of
the skills is Monte Carlo sampling [31]. We run the expression many times, but keep just the valid
runs—the ones where the sampled skills and performances areconsistent with the observed out-
comes. We then compute the means of the resulting skills by applying standard statistical formulas.
In the example above, theposterior distributionof the returned skills moves so that the mean of Al-
ice’s skill is greater than Bob’s, which is greater than Cyd’s. To the best of our knowledge, all prior
inference techniques for probabilistic languages with continuous distributions, apart from Csoft and

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNING 3

recent versions of IBAL [43], are based on nondeterministic inference using some form of Monte
Carlo sampling.

Inference algorithms based on factor graphs [28, 25] are an efficient alternative to Monte Carlo
sampling. Factor graphs, used in Csoft, allow deterministic but approximate inference algorithms,
which are known to be significantly more efficient than sampling methods, where applicable.

Observations with zero probability arise naturally in Bayesian models. For example, in the
model above, a drawn game would be modelled as the performance of two players being observed
to be equal. Since the performances are randomly drawn from acontinuous distribution, the proba-
bility of them actually being equal is zero, so we would not expect to seeanyvalid runs in a Monte
Carlo simulation. (To use Monte Carlo methods, one must instead write that the absolute difference
between two drawn performances is less than some smallε .) However, our semantics based on
measure theory makes sense of such observations. Our semantics is the first for languages with con-
tinuous or hybrid distributions, such as Fun or Imp, that areimplemented by deterministic inference
via factor graphs.

Plan of the Paper.We propose Fun:

• Fun is a functional language for Bayesian models with primitives for probabilistic sampling and
observations (Section2).
• Fun programs have a rigorous probabilistic semantics as measure transformers (Section3).
• Fun has an efficient implementation: our system compiles Funto Imp (Section4), a subset of

Csoft, and then relies on Infer.NET (Section6).
• Fun supports array types and array comprehensions in order to express Bayesian models over

large datasets (Section5).

Our main contribution is a framework for finite measure transformer semantics, which supports
discrete measures, continuous measures, and mixtures of the two, and also supports observations of
zero probability events.

As a substantial application, we supply measure transformer semantics for Fun and Imp, and
use the semantics to verify the translations in our compiler. Theorem3.3establishes agreement with
the discrete semantics of Section2 for Bernoulli Fun. Theorem4.4 establishes the correctness of
the compilation from Fun to Imp.

We designed Fun to be a subset of the F# dialect of ML [51], for implementation convenience:
F# reflection allows easy access to the abstract syntax of a program. All the examples in the paper
have been executed with our system, described in Section6. We end the paper with a description of
related work (Section7) and some concluding remarks (Section8).

AppendixA contains proofs omitted from the main body of the paper. The technical report
version of our paper [8] includes additional details, including the code of an F# implementation of
measure transformers in the discrete case.

2. BAYESIAN MODELS ASPROBABILISTIC EXPRESSIONS

We introduce the idea of expressing a probabilistic model ascode in a functional language, Fun,
with primitives for generating and observing random variables. As an illustration, we first consider
a subset, Bernoulli Fun, limited to weighted Boolean choices. We describe in elementary terms an
operational semantics for Bernoulli Fun that allows us to compute the conditional probability that
the expression yields a given value given that the run was valid.

4 J. BORGSTR̈OM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

2.1. Syntax, Informal Semantics, and Bayesian Reading.Expressions are strongly typed, with
typest,u built up from base scalar typesb and pair types. We letc range over constant data of scalar
type,n over integers, andr over real numbers. We write ty(c) = t to mean that constantc has type
t. For each base typeb, we define azero element0b with 0bool = true, and let 0t∗u = (0t ,0u). We
have arithmetic and Boolean operations⊕ on base types.

Types, Constant Data, and Zero Elements:

b ::= bool | int | real base type
t,u ::= unit | b | (t ∗u) compound type
ty(()) = unit ty(true) = ty(false) = bool ty(n) = int ty(r) = real
0bool = true 0int = 0 0real = 0.0

Signatures of Arithmetic and Logical Operators: ⊗ : b1,b2→ b3

&& , ||,= : bool,bool→ bool >,= : int , int → bool
+,−,∗,% : int , int → int > : real, real→ bool +,−,∗ : real, real→ real

We have several standard probability distributions as primitive: D : t→ u takes parameters int and
yields a random value inu. The namesxi below only document the meaning of the parameters.

Signatures of Distributions: D : (x1 : b1∗ · · · ∗xn : bn)→ b

Bernoulli : (success : real)→ bool
Binomial : (trials : int ∗ success : real)→ int
Poisson : (rate : real)→ int
DiscreteUniform : (max : int)→ int
Gaussian : (mean : real∗ variance : real)→ real
Beta : (a : real ∗b : real)→ real
Gamma : (shape : real∗ scale : real)→ real

The expressions and values of Fun are below. Expressions arein a limited syntax akin to A-normal
form, with let-expressions for sequential composition.
Fun: Values and Expressions

V ::= x | c | (V,V) value
M,N ::= expression

V value
V1⊗V2 arithmetic or logical operator
V.1 left projection from pair
V.2 right projection from pair
if V then M1 elseM2 conditional
let x= M in N let (scope ofx is N)
random (D(V)) primitive distribution
observeV observation

In the discrete case, Fun has a standardsampling semantics(cf. [41]); the formal semantics for the
general case comes later. A run of a closed expressionM is the process of evaluatingM to a value.
The evaluation of most expressions is standard, apart from sampling and observation.

To run random (D(V)), whereV = (c1, . . . ,cn), choose a valuec at random from the distribu-
tion D(c1, . . . ,cn) (independently from earlier random choices) and returnc.

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNING 5

To runobserveV, always return (). We say the observation isvalid if and only if the valueV is
some zero element 0b.

Due to the presence of sampling, different runs of the same expression may yield more than
one value, with differing probabilities. Let a run bevalid so long as every encountered observation
is valid. The sampling semantics of an expression is the conditional probability of returning a
particular value, given a valid run. Intuitively, Boolean observations are akin to assume statements in
assertion-based program specifications, where runs of a program are ignored if an assumed formula
is false.

Example: Two Coins, Not Both Tails

let heads1 = random (Bernoulli(0.5)) in
let heads2 = random (Bernoulli(0.5)) in
let u = observe(heads1 || heads2) in
(heads1,heads2)

The subexpressionrandom (Bernoulli(0.5)) generatestrue or false with equal likelihood. The
whole expression has four distinct runs, each with probability 1/4, corresponding to the possible
combinations of Booleansheads1 andheads2. All these runs are valid, apart from the one where
heads1 = false and heads2 = false (representing two tails), sinceobserve(false||false) is not a
valid observation. The sampling semantics of this expression is a probability distribution assigning
probability 1/3 to the values(true, false), (false, true), and(true, true), but probability 0 to the
value(false, false).

The sampling semantics allows us to interpret an expressionas a Bayesian model. We interpret
the distribution of possible return values as theprior probability of the model. The constraints
on valid runs induced by observations represent new evidence or training data. The conditional
probability of a value given a valid run is theposterior probability: an adjustment of the prior
probability given the evidence or training data.

Thus, the expression above can be read as a Bayesian model of the problem:I toss two coins. I
observe that not both are tails. What is the probability of each outcome?The uniform distribution
of two Booleans represents our prior knowledge about two coins, theobserveexpression represents
the evidence that not both are tails, and the overall sampling semantics is the posterior probability
of two coins given this evidence.

Next, we define syntactic conventions and a type system for Fun, define a formal semantics
for the discrete subset of Fun, and describe further examples. Our discrete semantics is a warm up
before Section3. There we deploy measure theory to give a semantics to our full language, which
allows both discrete and continuous prior distributions.

2.2. Syntactic Conventions and Monomorphic Typing Rules.We recite our standard syntactic
conventions and typing rules.

We identify phrases of syntaxφ (such as values and expressions) up to consistent renaming
of bound variables (such asx in a let-expression). Let fv(φ) be the set of variables occurring
free in phraseφ . Let φ {ψ/x} be the outcome of substituting phraseψ for each free occurrence of
variablex in phraseφ . To keep our core calculus small, we treat function definitions as macros
with call-by-value semantics. In particular, in examples,we write first-order non-recursive function
definitions in the formlet f x1 . . . xn = M, and we allow function applicationsf M1 . . . Mn as
expressions. We consider such a function application as being a shorthand for the expressionlet x1 =
M1 in . . . let xn = Mn in M, where the bound variablesx1, . . . , xn do not occur free inM1, . . . ,

6 J. BORGSTR̈OM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

Mn. We allow expressions to be used in place of values, via insertion of suitable let-expressions.
For example,(M1,M2) stands forlet x1 = M1 in let x2 = M2 in (x1,x2), andM1⊗M2 stands for
let x1 = M1 in let x2 = M2 in x1⊗ x2, when eitherM1 or M2 or both is not a value. LetM1;M2

stand forlet x = M1 in M2 wherex /∈ fv(M2). The notationt = t1 ∗ · · · ∗ tn for tuple types means
the following: whenn= 0, t = unit ; whenn= 1, t = t1; and whenn> 1, t = t1 ∗ (t2 ∗ · · · ∗ tn). In
listings, we rely on syntactic abbreviations available in F#, such as layout conventions (to suppress
in keywords) and writing tuples asM1, . . . ,Mn without enclosing parentheses.

Let a typing environment, Γ, be a list of the formε ,x1 : t1, . . . ,xn : tn; we sayΓ is well-formed
and writeΓ ⊢ ⋄ to mean that the variablesxi are pairwise distinct. Let dom(Γ) = {x1, . . . ,xn} if
Γ = ε ,x1 : t1, . . . ,xn : tn. We sometimes use the notationx : t for Γ = ε ,x1 : t1, . . . ,xn : tn where
x= x1, . . . ,xn andt = t1, . . . , tn.

Typing Rules for Fun Expressions:Γ ⊢M : t

(FUN VAR)
Γ ⊢ ⋄ (x : t) ∈ Γ

Γ ⊢ x : t

(FUN CONST)
Γ ⊢ ⋄

Γ ⊢ c : ty(c)

(FUN PAIR)
Γ ⊢V1 : t1
Γ ⊢V2 : t2

Γ ⊢ (V1,V2) : t1∗ t2

(FUN OPERATOR)
⊗ : b1,b2→ b3

Γ ⊢V1 : b1 Γ ⊢V2 : b2

Γ ⊢V1⊗V2 : b3

(FUN PROJ1)
Γ ⊢V : t1∗ t2
Γ ⊢V.1 : t1

(FUN PROJ2)
Γ ⊢V : t1∗ t2
Γ ⊢V.2 : t2

(FUN IF)
Γ ⊢V : bool Γ ⊢M1 : t Γ ⊢M2 : t

Γ ⊢ if V then M1 elseM2 : t

(FUN LET)
Γ ⊢M1 : t1
Γ,x : t1 ⊢M2 : t2

Γ ⊢ let x= M1 in M2 : t2

(FUN RANDOM)
D : (x1 : b1∗ · · · ∗xn : bn)→ b

Γ ⊢V : (b1∗ · · · ∗bn)

Γ ⊢ random (D(V)) : b

(FUN OBSERVE)
Γ ⊢V : b

Γ ⊢ observeV : unit

Lemma 2.1. If Γ,x : t,Γ′ ⊢M : t ′ andΓ ⊢V : t thenΓ,Γ′ ⊢M{V/x} : t ′.

Proof. By induction on the derivation ofΓ,x : t,Γ′ ⊢M : t ′.

Lemma 2.2. If Γ ⊢M : t thenΓ ⊢ ⋄.
Proof. By induction on the derivation ofΓ ⊢M : T.

Lemma 2.3(Unique Types). If Γ ⊢M : t andΓ ⊢M : t ′ then t= t ′.

Proof. By induction on the structure ofM. The proof needs that the result types of the signatures of
overloaded binary operators and of distributions are determined by the argument types.

2.3. Formal Semantics for Bernoulli Fun. Let Bernoulli Fun be the fragment of our calculus
where everyrandom expression takes the formrandom (Bernoulli(c)) for some realc∈ (0,1), that
is, a weighted Boolean choice returningtrue with probabilityc, andfalsewith probability 1−c. We
show that a closed well-typed expressionM induces conditional probabilities PM [value =V | valid],
the probability that the value of a valid run ofM isV.

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNING 7

For this calculus, we inductively define an operational semantics, M →p M′, meaning that
expressionM takes a step toM′ with probability p.

Reduction Relation: M→p M′ where p∈ (0,1]

V1⊗V2→1⊗(c1,c2)
(V1,V2).1→1 V1

(V1,V2).2→1 V2

if true then M1 elseM2→1 M1

if false thenM1 elseM2→1 M2

let x=V in M→1 M{V/x}
R[M]→p R[M′] if M→p M′ for reduction contextR given by
R ::= [] | let x=R in M

random (Bernoulli(c))→c true
random (Bernoulli(c))→1−c false
observeV→1 ()

Since there is no recursion or unbounded iteration in Bernoulli Fun, there are no non-terminating
reduction sequencesM1→p1 . . .Mn→pn

Moreover, we can prove standard preservation and progress lemmas.

Lemma 2.4(Preservation). If Γ ⊢M : t and M→p M′ thenΓ ⊢M′ : t.

Proof. By induction on the derivation ofM→p M′.

Lemma 2.5(Progress). If ε ⊢M : t and M is not a value then there are p and M′ such that M→p M′.

Proof. By induction on the structure ofM.

Lemma 2.6(Determinism). If M →p M′ and M→p′ M′ then p= p′.

Proof. By induction on the structure ofM.

Lemma 2.7(Probability). If ε ⊢M : t thenΣ{(p,N)|M→pN}p= 1.

Proof. By induction on the structure ofM.

We consider a fixed expressionM such thatε ⊢M : t.
Let the spaceΩ be the set of all runs ofM, where arun is a sequenceω = (M1, . . . ,Mn+1) for

n≥ 0 andp1, . . . , pn such thatM = M1→p1 · · · →pn Mn+1 =V; we define the functionsvalue(ω) =
V andprob(ω) = 1p1 . . . pn, and we define the predicatevalid(ω) to hold if and only if whenever
M j = R[observeV] thenV = 0b for some zero element 0b. SinceM is well-typed, is normalizing,
and samples only from Bernoulli distributions,Ω is finite.

Let α ,β ⊆ Ω range overevents, and let probability PM [α] = ∑ω∈α prob(ω). Below, we write
P[·] for PM [·] whenM is clear from the context.

Proposition 2.8. The functionP[α] forms aprobability distribution, that is, (1) we haveP[α] ≥ 0
for all α , (2) P[Ω] = 1, and (3)P[α ∪β] = P[α]+P[β] if α ∩β =∅.

Proof. Item (1) follows from the fact thatp≥ 0 wheneverM→p N. Item (2) follows from Lemma2.7,
Lemma2.4, and termination. Item (3) is immediate from the definition.

8 J. BORGSTR̈OM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

To give the semantics of our expressionM we first define the following probabilities and events.
Given a valueV, value =V is the eventvalue−1(V) = {ω | value(ω) =V}. Hence, P[value =V] is
theprior probability that a run ofM terminates withV. We let the eventvalid = {ω ∈Ω | valid(ω)};
hence, P[valid] is the probability that a run is valid.

If P [β] 6= 0, theconditional probability ofα givenβ is

P[α | β], P[α ∩β]
P[β]

The semantics of a programM is given by the conditional probability distribution

PM [value =V | valid] =
PM

[

(value−1(V))∩ valid
]

PM [valid]
,

the conditional probability that a run ofM returnsV given a valid run, also known as theposterior
probability.

The conditional probability PM [value =V | valid] is only defined when PM [valid] is not zero.
For pathological choices ofM such asobserve falseor let x = 3 in observex there are no valid
runs, so P[valid] = 0, and P[value =V | valid] is undefined. (This is an occasional problem in
practice; Bayesian inference engines such as Infer.NET fail in this situation with a zero-probability
exception.)

2.4. An Example in Bernoulli Fun. The expression below encodes the question:1% of a popu-
lation have a disease. 80% of subjects with the disease test positive, and 9.6% without the disease
also test positive. If a subject is positive, what are the odds they have the disease?[54]

Epidemiology: Odds of Disease Given Positive Test

let has disease = random (Bernoulli(0.01))
let positive result = if has disease

then random (Bernoulli(0.8))
else random(Bernoulli(0.096))

observepositive result
has disease

For this expression, we haveΩ= {ωtt ,ωt f ,ω f t ,ω f f }where each runωc1c2 corresponds to the choice
has disease = c1 andpositive result = c2. The probability of each run is:
• prob(ωtt) = 0.01×0.8= 0.008 (true positive)
• prob(ωt f) = 0.01×0.2= 0.002 (false negative)
• prob(ω f t) = 0.99×0.096= 0.09504 (false positive)
• prob(ω f f) = 0.99×0.904= 0.89496 (true negative)

The semantics P[value = true | valid] here is the conditional probability of having the disease, given
that the test is positive.

Here P[valid] = prob(ω f t) + prob(ωtt) and P[value = true ∩ valid] = prob(ωtt), so we have
P[value = true | valid] = 0.008/(0.008+0.09504) = 0.07764. So the likelihood of disease given a
positive test is just 7.8%, less than one might think.

This example illustrates inference on an explicit enumeration of the runs inΩ. The size ofΩ
is exponential in the number ofrandom expressions, so although illustrative, this style of inference
does not scale up. As we explain in Section4, our implementation strategy is to translate Fun

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNING 9

expressions to the input language of an existing inference engine based on factor graphs, permitting
efficient approximate inference.

3. SEMANTICS AS MEASURE TRANSFORMERS

We cannot generalize the operational semantics of the previous section to continuous distributions,
such asrandom (Gaussian(1,1)), since the probability of any particular sample is zero. A further
difficulty is the need to observe events with probability zero, a common situation in machine learn-
ing. For example, consider the naive Bayesian classifier, a common, simple probabilistic model.
In the training phase, it is given objects together with their classes and the values of their pertinent
features. Below, we show the training for a single feature: the weight of the object. The zero prob-
ability events are weight measurements, assumed to be normally distributed around the class mean.
The outcome of the training is the posterior weight distributions for the different classes.

Naive Bayesian Classifier, Single Feature Training:

let wPrior() = random (Gaussian(0.5,1.0))
let Glass,Watch,Plate = wPrior(),wPrior(),wPrior()
let weight objClass objWeight = observe(objWeight−(random (Gaussian(objClass,1.0))))
weight Glass .18;weight Glass .21
weight Watch .11;weight Watch .073
weight Plate .23;weight Plate .45
Watch,Glass,Plate

Above, the call toweight Glass .18 modifies the distribution of the variableGlass. The example
usesobserve(x−y) to denote that the difference between the weightsx andy is 0. The reason for not
instead writingx=y is that conditioning on events of zero probability without specifying the random
variable they are drawn from is not in general well-defined, cf. Borel’s paradox [21]. To avoid this
issue, we instead observe the random variablex−y of type real, at the value 0. (Our compiler does
permit the expressionobserve(x=y), as sugar forobserve(x−y)).

To give a formal semantics to such observations, as well as tomixtures of continuous and
discrete distributions, we turn to measure theory, following standard sources [6, 48]. Two basic
concepts are measurable spaces and measures. A measurable space is a set of values equipped with a
collection ofmeasurablesubsets; these measurable sets generalize the events of discrete probability.
A measureis a function that assigns a positive size to each measurableset;finite measures, which
assign a finite size to each measurable set, generalize probability distributions.

We work in the usual mathematical metalanguage of sets and total functions. To machine-check
our theory, one might build on a recent formalization of measure theory and Lebesgue integration
in higher-order logic [35].

3.1. Types as Measurable Spaces.In the remainder of the paper, we letΩ range over sets of
possible outcomes; in our semanticsΩ will range overB= {true, false}, Z, R, and finite Cartesian
products of these sets. Aσ -algebraover Ω is a setM ⊆ P(Ω) which (1) contains∅ andΩ, and
(2) is closed under complement and countable union and intersection. Ameasurable spaceis a pair
(Ω,M) whereM is aσ -algebra overΩ; the elements ofM are calledmeasurable sets. We use the
notationσΩ(S), whenS⊆ P(Ω), for the smallestσ -algebra overΩ that is a superset ofS; we may
omit Ω when it is clear from context. Given two measurable spaces(Ω1,M1) and(Ω2,M2), we

10 J. BORGSTR̈OM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

can compute their product as(Ω1,M1)× (Ω2,M2), (Ω1×Ω2,σΩ1×Ω2{A×B | A∈M1,B∈M2})
If (Ω,M) and(Ω′,M′) are measurable spaces, then the functionf : Ω→ Ω′ is measurableif and
only if for all A ∈M′, f−1(A) ∈M, where theinverse image f−1 : P(Ω′)→ P(Ω) is given by
f−1(A), {ω ∈Ω | f (ω) ∈ A}. We write f−1(x) for f−1({x}) whenx∈Ω′.

We give each first-order typet an interpretation as a measurable spaceT[[t]] , (Vt ,Mt) below.
We identify closed values of typet with elements ofVt , and write() for ∅, the unit value.
Semantics of Types as Measurable Spaces:

T[[unit]] = ({()},{{()},∅}) T[[bool]] = (B,P(B))
T[[int]] = (Z,P(Z)) T[[real]] = (R,σR({[a,b] | a,b∈ R}))
T[[t ∗u]] = T[[t]]×T[[u]]

The setσR({[a,b] | a,b ∈ R}) in the definition ofT[[real]] is the Borelσ -algebra on the real line,
which is the smallestσ -algebra containing all closed (and open) intervals. Below, we write f : t→ u
to denote thatf : Vt → Vu is measurable, that is, thatf−1(B) ∈Mt for all B∈Mu.

3.2. Finite Measures. A measureµ on a measurable space(Ω,M) is a functionM→ R
+∪{∞}

that is countably additive, that is,µ(∅) = 0 and if the setsA0,A1, . . . ∈M are pairwise disjoint, then
µ(∪iAi) = ∑i µ(Ai). We write|µ |, µ(Ω). A finite measureµ is a measureµ satisfying|µ | 6= ∞; a
σ -finite measureµ is a measure such thatΩ = A0∪A1∪ . . . with µ(Ai) 6= ∞. All the measures we
consider in this paper areσ -finite.

LetM t be the set of finite measures on the measurable spaceT[[t]]. Additionally, a finite measure
µ on (Ω,M) is aprobability measurewhen|µ | = 1. We do not restrictM t to just probability mea-
sures, although one can obtain a probability measure from a non-zero finite measure by normalizing
with 1/|µ |. We make use of the following constructions on measures.

• Given a function f : t → u and a measureµ ∈ M t, there is a measureµ f−1 ∈ M u given by
(µ f−1)(B), µ(f−1(B)).
• Given a finite measureµ and a measurable setB, we letµ |B(A) , µ(A∩B) be the restriction of

µ to B.
• We can add two measures on the same set as(µ1+µ2)(A), µ1(A)+µ2(A).
• We can multiply a measure by a positive constant as(r ·µ)(A), r ·µ(A).
• The (independent) product (µ1×µ2) of two (σ -finite) measures is also definable [6, Sec. 18], and

satisfies(µ1×µ2)(A×B) = µ1(A) ·µ2(B).
• If µi is a measure onti for i ∈ {1,2}, we let the disjoint sumµ1⊕ µ2 be the measure ont1+ t2

defined asA1⊎A2 7→ µ1(A1)+µ2(A2).
• Given a measureµ on the measurable spaceT[[t]], a measurable setA∈Mt and a functionf : t→

real, we write
∫

A f dµ or equivalently
∫

A f (x)dµ(x) for standard (Lebesgue) integration. This
integration is always well-defined ifµ is finite andf is non-negative and bounded from above.
• Givent, we letλt be the “standard” measure onT[[t]] built from independent products and disjoint

sums of the Lebesgue measure onreal and the counting measure on discreteb. We often omit
t when it is clear from the context. (We also useλ -notation for functions, but we trust any
ambiguity is easily resolved.)
• Given a measureµ on a measurable spaceT[[t]] we call a functionµ̇ : t→ real adensityfor µ iff

µ(A) =
∫

A µ̇ dλ for all A∈M.

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNING 11

Standard Distributions.Given a closed well-typed Fun expressionrandom (D(V)) of base typeb,
we define a corresponding finite measureµD(V) on measurable spaceT[[b]], via its densityD(V) =
µ̇D(V). In the discrete case, we first define the probability mass function, writtenD(V) c, and then
define the measureµD(V) as a summation.

MassesD(V) c and MeasuresµD(V) for Discrete Probability Distributions:

Bernoulli(p) true , p if 0 ≤ p≤ 1, 0 otherwise
Bernoulli(p) false, 1− p if 0 ≤ p≤ 1, 0 otherwise
Binomial(n, p) i ,

(i
n

)

pi/n! if 0 ≤ p≤ 1, 0 otherwise
DiscreteUniform(m) i , 1/m if 0 ≤ i < m, 0 otherwise
Poisson(l) n, e−l ln/n! if l ,n≥ 0, 0 otherwise

µD(V)(A), ∑i D(V) ci if A=
⋃

i{ci} for pairwise disjointci

In the continuous case, we first define the probability density function D(V) r and then define the
measureµD(V) as an integral. Below, we writeG for the standard Gamma function, which on
naturalsn satisfiesG(n) = (n−1)!.
DensitiesD(V) r and MeasuresµD(V) for Continuous Probability Distributions:

Gaussian(m,v) r , e−(r−m)2/2v/
√

2πv if v> 0, 0 otherwise
Gamma(s, p) r , rs−1e−pr ps/G(s) if r,s, p> 0, 0 otherwise
Beta(a,b) r , ra−1(1− r)b−1G(a+b)/(G(a)G(b)) if a,b> 0 and 0≤ r ≤ 1, 0 otherwise

µD(V)(A),
∫

AD(V)dλ whereλ is the Lebesgue measure onR

The Diracδ measure is defined on the measurable spaceT[[b]] for each base typeb, and is given by
δc(A), 1 if c∈ A, 0 otherwise.

Conditional density.The notion of density can be generalized as follows, yielding an unnormalized
counterpart to conditional probability. Given a measurable function p : t → u, we consider two
families of events ont. Firstly, eventsEc , {x∈ Vt | p(x) = c} wherec ranges overVu. Secondly,
rectanglesRd , {x∈ Vt | x≤ d} whered ranges overVt and≤ is the coordinate-wise partial order
(that on pair types satisfies(a,b) ≤ (c,d) iff a≤ c andb≤ d, that onint andreal is the standard
ordering, and that only relates equal booleans).

Given a finite measureµ on T[[t]] andc∈ Vu, we letFc : t → R be defined by the limit below
(following [13])

Fc(d), lim
i→∞

µ(Rd∩ p−1(Bi))/λu(Bi) (3.1)

if the limit exists and is the same for all sequences{Bi} of closed sets converging regularly toc. On
pointsd where no unique limit exists, we let

Fc(d), inf {Fc(d
′) | d≤ d′∧d 6= d′∧Fc(d

′) defined}
where we let inf∅ , ∞. If Fc is bounded, we defineDµ [·||p= c] ∈ R (the µ-density atEc) as the
finite measure onT[[t]] with (unnormalized) cumulative distribution functionFc, that is,Dµ [Rd||p=
c] = Fc(d). (If Fc is not bounded, it is not the distribution function of a finitemeasure.)

As examples of this definition, whenu is discrete we have thatDµ [A||p = c] = µ(A∩ {x |
p(x) = c}), so discrete density amounts to filtering. In the continuouscase, ifVt = R×R

k, p =

12 J. BORGSTR̈OM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

λ (x,y).(x−c) andµ has a continuous densitẏµ then

Fc(a,b) = lim
i→∞

µ(R(a,b)∩ p−1(Bi))

λR(Bi)

= lim
i→∞

∫

(R(a,b)∩p−1(Bi))
µ̇(x,y)dλt(x,y)

λR(Bi)

=
∫

{y|(c,y)∈R(a,b)}
µ̇(c,y)dλ

Rk(y) whena 6= c by continuity.

Whena= c the limit may not be unique, in which case we have

Fc(c,b) = inf {Fc(d
′) | (c,b) ≤ d′}

=
∫

{y|(a,y)∈R(a,b)}
µ̇(a,y)dλRk(y) by monotonicity ofFc and continuity.

We then get

Dµ [A||p= c] =

∫

{y|(c,y)∈A}
µ̇(c,y)dλRk(y). (3.2)

One case when conditional density may not be defined is when the conditioning event is at a dis-
continuity of the density function: lett = real ∗ real, p(x,y) = x, and µ̇(x,y) = 1 if 0 ≤ x,y≤ 1,
otherwise 0. ThenF1(x,y) = 0 if x< 1 or y≤ 0, and otherwise the limit (3.1) is not unique. Thus
F1(1,0) = ∞, so F1 is not bounded andDµ [·||p = 1] is undefined. For more examples, see Sec-
tion 3.5.

There exists a more declarative approach toDµ . ForA∈Mt , we letνA(B) = µ(A∩ p−1(B));
this measure is said to beabsolutely continuous(wrt. λu) if νA(B) = 0 wheneverλu(B) = 0. If µ is
outer regular, i.e. µ(A) = inf{µ(G) | A⊂G,G open} for all A, andνA is absolutely continuous, the
defining limit (3.1) existsalmost everywhere[13], that is, there is a setC with µ(C) = 0 such that
c∈C if Fc(d) is undefined. Then,Dµ [A||p= c] is a version of the Radon-Nikodym derivative of
νA(B) (wrt. λu). For allB∈Mu, conditional density thus satisfies the equation

µ(A∩ p−1(B)) =
∫

B
Dµ [A||p= x] dλu(x). (3.3)

The existence of a family of finite measuresDµ [· ||p= c] on T[[t]] satisfying equation (3.3) above
is guaranteed in certain situations, e.g., whenµ p−1 has densityd atc we may takeDµ as a version
of the regular conditional probabilityµ [· | p = c] (see for instance [6, Theorem 33.3]) scaled by
d. However, ifµ(p−1(c)) = 0 the value ofDµ [A||p = c] may not be uniquely defined, since two
versions ofDµ [· ||p= ·] may differ on a null set. In order to avoid this ambiguity we have given
an explicit construction that works for many useful cases.

3.3. Measure Transformers. We will now recast some standard theorems of measure theory as a
library of combinators, that we will later use to give semantics to probabilistic languages. Ameasure
transformeris a partial function from finite measures to finite measures.We lett ❀ u be the set of
partial functionsM t → M u. We use the combinators on measure transformers listed below in the
formal semantics of our languages. The definitions of these combinators occupy the remainder of
this section. We recall thatµ denotes a measure andA a measurable set, of appropriate types.

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNING 13

Measure Transformer Combinators:

pure ∈ (t→ u)→ (t ❀ u)
>>> ∈ (t1 ❀ t2)→ (t2 ❀ t3)→ (t1 ❀ t3)
choose ∈ (t→ bool)→ (t ❀ u)→ (t ❀ u)→ (t ❀ u)
extend ∈ (t→ M u)→ (t ❀ (t ∗u))
observe ∈ (t→ b)→ (t ❀ t)

Lifting a Function to a Measure Transformer.To lift a pure measurable function to a measure trans-
former, we use the combinatorpure ∈ (t → u)→ (t ❀ u). Given f : t → u, we letpure f µ A,

µ f−1(A), whereµ is a measure onT[[t]] andA is a measurable set fromT[[u]] (cf. [6, Eqn 13.7]).

Sequential Composition of Measure Transformers.To sequentially compose two measure trans-
formers we use standard function composition, defining>>>∈ (t1 ❀ t2)→ (t2 ❀ t3)→ (t1 ❀ t3) as
T >>>U ,U ◦T.

Conditional Choice between two Measure Transformers.The combinatorchoose ∈ (t→ bool)→
(t ❀ u)→ (t ❀ u)→ (t ❀ u) makes a choice between two measure transformers, parametric on
a predicatep. Intuitively, choose p TT TF µ first splitsVt into two sets depending on whether or
not p is true. For each equivalence class, we then run the corresponding measure transformer on
µ restricted to the class. Finally, the resulting finite measures are added together, yielding a finite
measure. Ifp−1(true) = B we letchoose p TT TF µ A= TT(µ |B)(A)+TF(µ |Vt\B)(A).

Extending Domain of a Measure.The combinatorextend ∈ (t→ M u)→ (t ❀ (t ∗u)) extends the
domain of a measure using a function yielding measures. It isreminiscent of creating a dependent
pair, since the distribution of the second component depends on the value of the first. Forextend m
to be defined, we require that for everyA∈Mu, the functionfA , λx.m(x)(A) is measurable, non-
negative and bounded from above. In particular, this holds for all A if m is measurable andm(x)
always is a (sub-)probability distribution, which is always the case in our semantics for Fun. We
let extend m µ AB,

∫

Vt
m(x)({y | (x,y) ∈ AB})dµ(x), where we integrate over the first component

(call it x) with respect to the measureµ , and the integrand is the measure underm(x) of the set
{y | (x,y) ∈ AB} for eachx (cf. [6, Ex. 18.20]).

Observation as a Measure Transformer.The combinatorobserve ∈ (t→ b)→ (t ❀ t) conditions
a measure overT[[t]] on the event that an indicator function of typet → b is zero. Here observa-
tion is unnormalizedconditioning of a measure on an event. If defined, we letobserve p µ A,

Dµ [A||p= 0b]. As an example, ifp : t→ bool is a (measurable) predicate on values of typet, we
haveobserve p µ A= µ(A∩{x | p(x) = true}). Notice thatobserve p µ A can be greater than
µ(A) when p : t → real (cf. the naive Bayesian classifier on page9), for which reason we cannot
restrict ourselves to (sub-)probability measures. For examples, see Equation (3.2) and Section3.5.

14 J. BORGSTR̈OM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

3.4. Measure Transformer Semantics of Fun.In order to give a compositional denotational se-
mantics of Fun programs, we give a semantics to open programs, later to be placed in some closing
context. Since observations change the distributions of program variables, we may draw a parallel
to while programs. There, a program can be given a denotationas a function from variable valua-
tions to a return value and a variable valuation. Similarly,we give semantics to an open Fun term
by mapping a measure over assignments to the term’s free variables to a joint measure of the term’s
return value and assignments to its free variables. This choice is a generalization of the (discrete)
semantics of pWHILE [4]. This contrasts with Ramsey and Pfeffer [46], where the semantics of an
open program takes a variable valuation and returns a (monadic computation yielding a) distribution
of return values.

First, we define a data structure for an evaluation environment assigning values to variable
names, and corresponding operations. Given an environmentΓ = x1:t1, . . . ,xn:tn, we letS〈Γ〉 be the
set of states, or finite mapss= {x1 7→ c1, . . . ,xn 7→ cn} such that for alli = 1, . . . ,n, ty(ci) = ti. We
let T[[S〈Γ〉]] , T[[unit ∗ t1 ∗ · · · ∗ tn]] be the measurable space of states inS〈Γ〉. We define dom(s) ,
{x1, . . . ,xn}. We define the following operators.
Auxiliary Operations on States and Pairs:

add x (s,c), s∪{x 7→ c} if ty (c) = t andx /∈ dom(s), sotherwise.
lookup x s, s(x) if x∈ dom(s), () otherwise.
drop X s, {(x 7→ c) ∈ s | x /∈ X} fst((x,y)) , x snd((x,y)) , y

We write s|X for drop (dom(s) \X) s. We apply these combinators to give a semantics to Fun
programs as measure transformers. We assume that all bound variables in a program are different
from the free variables and each other. Below,V[[V]] sgives the valuation ofV in states, andA[[M]]
gives the measure transformer denoted byM.

Measure Transformer Semantics of Fun:

V[[x]] s, lookup x s
V[[c]] s, c
V[[(V1,V2)]] s, (V[[V1]] s,V[[V2]] s)

A[[V]], pure λs.(s,V[[V]] s)
A[[V1⊗V2]], pure λs.(s,⊗(V[[V1]] s,V[[V2]] s))
A[[V.1]] , pure λs.(s,fst(V[[V]] s))
A[[V.2]] , pure λs.(s,snd(V[[V]] s))

A[[if V then M elseN]], choose (λs.V[[V]] s) A[[M]] A[[N]]

A[[random (D(V))]], extend λs.µD(V[[V]] s)

A[[observeV]], (observe λs.V[[V]] s)>>> pure λs.(s,())
A[[let x= M in N]],A[[M]]>>> pure (add x) >>>A[[N]]>>> pure λ (s,y).((drop {x} s),y)

A value expressionV returns the valuation ofV in the current state, which is left unchanged. Simi-
larly, binary operations and projections have a deterministic meaning given the current state. Anif
V expression runs the measure transformer given by thethen branch on the states whereV evaluates
true, and the transformer given by theelsebranch on all other states, using the combinatorchoose.
A primitive distributionrandom (D(V)) extends the state measure with a value drawn from the dis-
tribution D, with parametersV depending on the current state. An observationobserveV modifies
the current measure by restricting it to states whereV is zero. It is implemented with theobserve

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNING 15

combinator, and it always returns the unit value. The expression let x= M in N intuitively first runs
M and binds its return value tox usingadd. After runningN, the binding is discarded usingdrop.

Lemma 3.1. If s : S〈Γ〉 andΓ ⊢V : t thenV[[V]] s∈ Vt .

Lemma 3.2. If Γ ⊢M : t thenA[[M]] ∈ S〈Γ〉❀ (S〈Γ〉 ∗ t).

The measure transformer semantics of Fun is hard to use directly, except in the case of Bernoulli
Fun where they can be directly implemented: a naive implementation ofM〈S〈Γ〉〉 is as a map assign-
ing a probability to each possible variable valuation. If there areN variables, each sampled from a
Bernoulli distribution, in the worst case there are 2N paths to be explored in the computation, each
of which corresponds to a variable valuation. Our direct implementation of the measure transformer
semantics, described in the technical report version of ourpaper [8], explicitly constructs the valu-
ation. It works fine for small examples but would blow up on large datasets. In this simple case, the
measure transformer semantics of closed programs also coincides with the sampling semantics.

Theorem 3.3. Supposeε ⊢M : t for some M in Bernoulli Fun. Ifµ =A[[M]] δ() andε ⊢V : t then
PM [value =V | valid] = µ({((),V)})/|µ |.
Proof. We add a construct to give a semantics to open Bernoulli Fun expressions. Letinit (M,µ)
stand forM starting in an initial probability measureµ onS〈Γ〉. Let init (M,µ)→ps M{V1/x1 · · ·Vn/xn}
whens= {xi 7→Vi | i = 1..n} ∈ S〈Γ〉 andps= µ({s′ | s′|fv(M) = s|fv(M)}). In particular, ifM is closed,
theninit (M,δ())→1 M, soinit (M,δ()) has the same traces asM but for an additional (valid) initial
step.

By induction on the derivation ofΓ ⊢ M : t, we prove that ifΓ ⊢M : t andε ⊢V : t andµ ∈
M〈S〈Γ〉〉, thenν(S〈Γ〉× {V}) = PN [valid∩ value =V] and ν(S〈Γ〉 ×Vt) = PN [valid], whereν =
A[[M]] µ andN = init (M,µ).

Then, for closedM we get PM [value =V | valid] = PM [valid∩ value =V]/PM [valid] =
ν({((),V)})/ν({()}×Vt).

3.5. Discussion of the Semantics.In this section we discuss some small examples that are illustra-
tive of the semantics of theobserveprimitive. The first example highlights the difference between
discrete observations and observations on continuous types.

The subsequent examples contrast our definition ofobservewith some alternative definitions.
The second example deals with the definition of discrete observations, that is shown to coincide with
the filtering semantics of Bernoulli Fun, unlike two alternative semantics. In the third example, we
treat continuous observations, showing that distributingan observation into both branches of an if
statement yields the same result, in contrast to an alternative semantics of observations as computing
(normalized) conditional probability distributions.

In the fourth example, we show an example of model comparisonthat depends on the unnor-
malized nature of observations. In the fifth example, we showa well-typed Fun program with an
observation (of a derived random variable) that failed to bewell-defined in the original semantics of
observation.

Discrete versus continuous observations.As an example to highlight the difference between contin-
uous and discrete observations, we first consider the following program, which observes that a nor-
mally distributed random variable is zero. The resulting distribution of the return valuex is a point
mass at 0.0, as expected. The measure of{0.0} in this distribution isGaussian(0.0,1.0) 0.0≈ 0.4.

16 J. BORGSTR̈OM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

Continuous Observation:

let x = random (Gaussian(0.0, 1.0))in let = observex in x

The second program instead observes that a Boolean variableis true. This has zero probability of
occurring, and since the Boolean type is discrete, the resulting measure is the zero measure.
Discrete Observation:

let x = random (Gaussian(0.0, 1.0))in let b = (x==0.0) in let = observeb in x

These examples show the need for observations atreal type, as well as at typebool. (This also
clearly distinguishesobservefrom assume in assertional programming.)

Discrete Observations amount to filtering.A consequence of Theorem3.3is that our measure trans-
former semantics is a generalization of the sampling semantics for discrete probabilities. For this
theorem to hold, it is critical thatobservedenotes unnormalized conditioning (filtering). Other-
wise programs that perform observations inside the branches of conditional expressions would have
undesired semantics. As the following example shows, the two program fragmentsobserve(x=y
) and if x then observe(y=true) else observe(y=false) would have different measure transformer
semantics although they have the same sampling semantics.

Simple Conditional Expression:Mif

let x = random (Bernoulli(0.5))
let y = random (Bernoulli(0.1))
if x then observe(y=true) else observe(y=false)
y

In the sampling semantics, the two valid runs are whenx andy are bothtrue (with probability 0.05),
and bothfalse (with probability 0.45), so we have P[true | valid] = 0.1 and P[false| valid] = 0.9.

If, instead of the unnormalized definitionobserve p µ A= µ(A∩{x | p(x)}), we had either of
the normalizing definitions

observe p µ A=
µ(A∩{x | p(x)})

µ({x | p(x)}) or |µ |µ(A∩{x | p(x)})
µ({x | p(x)})

thenA[[Mif]] δ() {true}=A[[Mif]] δ() {false}, which would invalidate the theorem.
Let M′=Mif with observe(x= y) substituted for the conditional expression. With the actual or

either of the flawed definitions ofobserve we haveA[[M′]] δ() {true}= (A[[M′]] δ() {false})/9.

Continuous Observations are not normalizing.As in the discrete case, continuous observations do
not renormalize the resulting measure. In the program below, the variablesx andy are independent:
observingx at a given value amounts to scaling the measure ofy by some fixed amount.
Simple Continuous Observation:Mobs

let x = random (Gaussian(0.0, 1.0))
let y = random (Gaussian(0.0, 1.0))
observe(x−1.0)
y

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNING 17

The resulting distributionµy of y is the normal distribution, scaled by a factorGaussian(0.0,1.0) 1.0≈
0.24. In particular,µy({y ∈R : y >−1})/|µy| ≈ 0.16. Below, we letν be the joint distribution ofx
andy before the observation.

If we replace the observation by an if statement that performs the same observation in each
branch, the resulting distribution is unchanged. LetM′ = Mobs with the conditional expression
N :=if x+y>0 then observe(x−1.0) else observe(x−1.0) substituted forobserve(x−1.0). Let
A= {(x,y) ∈R2 : x+y> 0} andB=R

2\A. We haveA[[N]]ν = choose p T T ν =T(ν |A)+T(ν |B)
wherep= λx,y.(x+y> 0) andT = observe λx, .(x−1). Since the definition ofobserve λx, .(x−
1)µ =Dµ [·||x= 1] is linear inµ (where defined) andν = ν |A+ν |B, we haveA[[Mobs]] =A[[M′]].

However, if observations always yielded probability distributions, andif statements reweighted
the result of each branch by the probability that that branchwas taken, the above equality would
not hold. InM′, the branch conditionx+y>0 is true with probability 0.5 a priori. This reweighting
semantics would after the observation ofx=1 give the same probability to 1+y>0 (the left branch
being taken) and 1+y<0 (the right branch being taken). In contrast, the original programMobsyields
P[1+y<0]≈ 0.16.

Medical trial. As another example, let us consider a simple Bayesian evaluation of a medical
trial [37]. We assume a trial group ofnTrial persons, of whichcTrial were healthy at the end of
the trial, and a control group ofnControl persons, of whichcControl were healthy at the end of
the trial. Below,Beta(1.0,1.0) is the uniform distribution on the interval[0.0,1.0]. We return the
posterior distributions of the likelihood that a member of the trial group (pTrial) and a member of
the control group (pControl) is healthy at the end of the trial.

Medical Trial:

let medicalTrial nTrial nControl cTrial cControl =
let pTrial = random(Beta(1.0,1.0))
observe(cTrial == random (Binomial(nTrial,pTrial)));
let pControl = random(Beta(1.0,1.0))
observe(cControl == random (Binomial(nControl,pControl)));
pTrial, pControl

We can then compare this model to one where the treatment is ineffective, that is, where the
members of the trial group and the control group have the sameprobability of becoming healthy.
Also here we give a uniform prior to the probability that the treatment is effective; the posterior
distribution of this variable will depend on the Bayesian evidence for the different models, that is,
the ratio between the probabilities of the observed outcomein the two models. This way of per-
forming model comparison critically depends on the unnormalized nature of discrete observations
as filtering.

Model Selection:

let modelSelection nTrial nControl cTrial cControl =
let pEffective = random(Beta(1.0,1.0))
if random (Bernoulli(pEffective)) then

medicalTrial nTrial nControl cTrial cControl
()

18 J. BORGSTR̈OM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

else
let pAll = random(Beta(1.0,1.0))
observe(cTrial == random (Binomial(nTrial,pAll)))
observe(cControl == random (Binomial(nControl,pAll)))

pEffective

Observation of Derived Variable.The following example, due to Chung-Chieh Shan, highlighted
regularity problems with our original definition of observation [8].
Observation of Derived Variable:

let x = random (Beta(1.0, 1.0))in let y = x − 0.5 in observey; x.

Intuitively, this program should yield a point mass atx=0.5, y=0. In our semantics, ifµ is the
measure before the observation (when starting fromδ()) we have

F0(x,y) = 1 if x> 0.5 andy> 0

F0(x,y) = 0 if x< 0.5 ory< 0

Otherwise, we haveF0(x,y) = inf{F0(x′,y′) | x′ ≥ x∧y′≥ y}= 1 soDµ [A||y= 0] = 1 iff (0.5,0) ∈A
and otherwise 0; in particular we haveDµ [x= 0.5||y= 0] = 1.

The original definition of observation simply applied the limit of Equation (3.1) to anyA (not
only to rectanglesRd). Then the density of any null set would be 0, and in particular we would have
Dµ [x = 0.5||y = 0] = 0. This would contradict countable additivity, since|Dµ [·||y = 0]| = 1 but
Dµ [x1 < |x−0.5| ≤ x2||y= 0] = 0 when 0< x1 < x2.

4. SEMANTICS BY COMPILATION TO CSOFT

A naive implementation of the measure transformer semantics of the previous section would work
directly with measures of states, whose size even in the discrete case could be exponential in the
number of variables in scope. For large models, this becomesintractable. In this section, we
instead give a semantics to Fun programs by translation to the simple imperative language Imp. We
consider Imp to be a sublanguage of Csoft; the Csoft program is then evaluated by Infer.NET by
constructing a suitable factor graph [28], whose size will be linear in the size of the program. The
implementation advantage of translating F# to Csoft, over simply generating factor graphs directly
[32], is that the translation preserves the structure of the input model (including array processing
in our full language), which can be exploited by the various inference algorithms supported by
Infer.NET.

4.1. Imp: An Imperative Core Calculus. Imp is an imperative language, based on the static
single assignment (SSA) intermediate form. It is a sublanguage of Csoft, the input language of
Infer.NET [37]. A composite statementC is a sequence of statements, each of which either stores
the result of a primitive operation in a location, observes the contents of a location to be zero, or
branches on the value of a location. Imp shares the base typesb with Fun, but has no tuples.

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNING 19

Syntax of Imp:

l , l ′, . . . location (variable) in global store
E,F ::= c | l | (l ⊗ l) expression
I ::= statement

l ← E assignment
l s←− D(l1, . . . , ln) random assignment
observeb l observation
if l thenC1 elseC2 conditional
local l : b in C local declaration (scope ofl isC)

C ::= nil | I | (C;C) composite statement

When making an observationobserveb, we make explicit the typeb of the observed location. In a
local declaration,local l : b in C, the locationl is bound, with scopeC. Next, we derive an extended
form of local, which introduces a sequence of local variables.

Extended Form of local:

local Σ in C , local l1 : b1 in . . . local ln : bn in C whereΣ = ε , l1 : b1, . . . , ln : bn

The typing rules for Imp are standard. We consider Imp typingenvironmentsΣ to be a special
case of Fun environmentsΓ, where variables (locations) always map to base types. IfΣ = ε , l1 :
b1, . . . , ln : bn, we sayΣ is well-formedand writeΣ ⊢ ⋄ to mean that the locationsl i are pairwise
distinct. The judgmentΣ ⊢ E : b means that the expressionE has typeb in the environmentΣ. The
judgmentΣ ⊢C : Σ′ means that the composite statementC is well-typed in the initial environment
Σ, yielding additional bindingsΣ′.
Judgments of the Imp Type System:

Σ ⊢ ⋄ environmentΣ is well-formed
Σ ⊢ E : b in Σ, expressionE has typeb
Σ ⊢C : Σ′ givenΣ, statementC assigns toΣ′

Typing Rules for Imp Expressions and Commands:

(IMP CONST)
Σ ⊢ ⋄

Σ ⊢ c : ty(c)

(IMP LOC)
Σ ⊢ ⋄ (l :b) ∈ Σ

Σ ⊢ l : b

(IMP OP)
Σ ⊢ l1 : b1 Σ ⊢ l2 : b2 ⊗ : b1,b2→ b3

Σ ⊢ l1⊗ l2 : b3

(IMP ASSIGN)
Σ ⊢ E : b l /∈ dom(Σ)

Σ ⊢ l ← E : (ε , l :b)

(IMP RANDOM)
D : (x1 : b1, . . . ,xn : bn)→ b l /∈ dom(Σ)

Σ ⊢ l1 : b1 · · · Σ ⊢ ln : bn

Σ ⊢ l s←− D(l1, . . . , ln) : (ε , l :b)
(IMP OBSERVE)

Σ ⊢ l : b

Σ ⊢ observeb l : ε

(IMP SEQ)
Σ ⊢C1 : Σ′ Σ,Σ′ ⊢C2 : Σ′′

Σ ⊢C1;C2 : Σ′,Σ′′

(IMP NIL)
Σ ⊢ ⋄

Σ ⊢ nil : ε
(IMP IF)
Σ ⊢ l : bool Σ ⊢C1 : Σ′ Σ ⊢C2 : Σ′

Σ ⊢ if l then C1 elseC2 : Σ′

(IMP LOCAL)
Σ ⊢C : Σ′ (l : b) ∈ Σ′

Σ ⊢ local l : b in C : (Σ′ \{l : b})

20 J. BORGSTR̈OM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

To treat sequences of local variables, we use theshuffle productΣ1+Σ2 of two environments,
defined below.

Typing Rule for Extended Form of local:

(SH EMP)

ε ∈ ε + ε

(SH LEFT)
Σ ∈ Σ1+Σ2 Σ,x : b⊢ ⋄
(Σ,x : b) ∈ (Σ1,x : b)+Σ2

(SH RIGHT)
Σ ∈ Σ1+Σ2 Σ,x : b⊢ ⋄
(Σ,x : b) ∈ Σ1+(Σ2,x : b)

(IMP LOCALS)
Σ ⊢C : Σ′1
Σ′1 ∈ Σ1+Σ′

Σ ⊢ local Σ1 in C : Σ′

Lemma 4.1.
(1) If Σ,Σ′ ⊢ ⋄ thendom(Σ)∩dom(Σ′) =∅.
(2) If Σ ⊢ E : b thenΣ ⊢ ⋄ and fv(E)⊆ dom(Σ).
(3) If Σ ⊢C : Σ′ thenΣ,Σ′ ⊢ ⋄.

4.2. Measure Transformer Semantics of Imp. A compound statementC in Imp has a semantics
as a measure transformerI[[C]] generated from the set of combinators defined in Section3. An
Imp program does not return a value, but is solely a measure transformer on statesS〈Σ〉❀ S〈Σ,Σ′〉
(whereΣ is a special case ofΓ).
Interpretation of Statements: I[[C]],I[[I]] : S〈Σ〉❀ S〈Σ,Σ′〉
I[[nil]], pure id

I[[C1;C2]], I[[C1]]>>> I[[C2]]

I[[l ← c]], pure λs.add l (s,c)
I[[l ← l ′]], pure λs.add l (s,lookup l ′ s)
I[[l ← l1⊗ l2]], pure λs.add l (s,⊗(lookup l1 s,lookup l2 s)))
I[[l s←− D(l1, . . . , ln)]], extend (λs.µD(lookup l1 s,...,lookup ln s))>>> pure (add l)
I[[observeb l]], observe λs.lookup l s
I[[if l thenC1 elseC2]], choose (λs.lookup l s) I[[C1]] I[[C2]]

I[[local l : b in C]], I[[C]]>>> pure (drop {l})

Lemma 4.2. If Σ ⊢C : Σ′ thenA[[M]] ∈ S〈Σ〉❀ S〈Σ,Σ′〉.
Semantics of Extended Form oflocal:

I[[local Σ in C]], I[[C]]>>> pure (drop (dom(Σ)))

4.3. Translating from Fun to Imp. The translation from Fun to Imp is a mostly routine compi-
lation of functional code to imperative code. The main pointof interest is that Imp locations only
hold values of base type, while Fun variables may hold tuples. We rely onpatterns pandlayoutsρ
to track the Imp locations corresponding to Fun environments.

Notations for the Translation from Fun to Imp:

p ::= l | () | (p, p) pattern: group of Imp locations to represent Fun value
ρ ::= (xi 7→ pi)

i∈1..n layout: finite map from Fun variables to patterns
Σ ⊢ p : t in environmentΣ, patternp represents Fun value of typet
Σ ⊢ ρ : Γ in environmentΣ, layoutρ represents environmentΓ

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNING 21

ρ ⊢M⇒C, p givenρ , expressionM translates toC and patternp

Typing Rules for Patterns Σ ⊢ p : t and Layouts Σ ⊢ ρ : Γ:

(PAT LOC)
Σ ⊢ ⋄
(l : t) ∈ Σ
Σ ⊢ l : t

(PAT UNIT)
Σ ⊢ ⋄

Σ ⊢ () : unit

(PAT PAIR)
Σ ⊢ p1 : t1
Σ ⊢ p2 : t2

Σ ⊢ (p1, p2) : t1∗ t2

(LAYOUT)
locs(ρ) = dom(Σ)
Σ ⊢ ⋄ dom(ρ) = dom(Γ)
Σ ⊢ ρ(x) : t ∀(x : t) ∈ Γ

Σ ⊢ ρ : Γ

The rule(PAT LOC) represents values of base type by a single location. The rules (PAT UNIT) and
(PAT PAIR) represent products by a pattern for their corresponding components. The rule(LAYOUT)
asks that each entry inΓ is assigned a pattern of suitable type by layoutρ .

The translation rules below depend on some additional notations. We sayp∈Σ if every location
in p is in Σ. Let locs(ρ) =

⋃{fv(ρ(x)) | x ∈ dom(ρ)}, and let locs(C) be the environment listing
the set of locations assigned by a commandC.

Rules for Translation: p∼ p′ and p← p′ and p⊢M⇒C, p

()∼ () l ∼ l ′ p1∼ p′1∧ p2∼ p′2⇒ (p1, p2)∼ (p′1, p
′
2)

()← () , nil (p1, p2)← (p′1, p
′
2), p1← p′1; p2← p′2

(TRANS VAR)

ρ ⊢ x⇒ nil ,ρ(x)

(TRANS CONST)
c 6= () l /∈ locs(ρ)
ρ ⊢ c⇒ (l ← c), l

(TRANS UNIT)

ρ ⊢ ()⇒ nil , ()

(TRANS OPERATOR)
ρ ⊢V1⇒C1, l1 ρ ⊢V2⇒C2, l2

l /∈ locs(ρ)∪ locs(C1)∪ locs(C2) locs(C1)∩ locs(C2) =∅

ρ ⊢V1⊗V2⇒ (C1;C2; l ← l1⊗ l2), l

(TRANS PAIR)
ρ ⊢V1⇒C1, p1 ρ ⊢V2⇒C2, p2 locs(C1)∩ locs(C2) =∅

ρ ⊢ (V1,V2)⇒ (C1;C2),(p1, p2)

(TRANS PROJ1)
ρ ⊢V ⇒C,(p1, p2)

ρ ⊢V.1⇒C, p1

(TRANS PROJ2)
ρ ⊢V⇒C,(p1, p2)

ρ ⊢V.2⇒C, p2

(TRANS IF)
ρ ⊢V1⇒C1, l (locs(ρ)∪ locs(C1)∪ locs(C2)∪ locs(C3))∩ fv(p) =∅

ρ ⊢M2⇒C2, p2 C′2 = local locs(C2) in (C2; p← p2) p2∼ p
ρ ⊢M3⇒C3, p3 C′3 = local locs(C3) in (C3; p← p3) p3∼ p

ρ ⊢ (if V1 then M2 elseM3)⇒ (C1; if l thenC′2 elseC′3), p

(TRANS OBSERVE)
ρ ⊢V⇒C, l b is the type ofV

ρ ⊢ observeV ⇒ (C;observeb l), ()

(TRANS RANDOM)
ρ ⊢V⇒C, p l /∈ locs(ρ)∪ locs(C)

ρ ⊢ random (D(V))⇒ (C; l s←− D(p)), l

22 J. BORGSTR̈OM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

(TRANS LET)
ρ ⊢M1⇒C1, p1 x /∈ dom(ρ) ρ{x 7→ p1} ⊢M2⇒C2, p2

ρ ⊢ let x= M1 in M2⇒ (local (locs(C1)\ fv(p1)) in C1);C2, p2

In general, a Fun termM translates under a layoutρ to a series of commandsC and a patternp. The
commandsC mutate the global store so that the locations inp correspond to the value thatM returns.
The simplest example of this is in(TRANS CONST): the constant expressionc translates to an Imp
program that writesc into a fresh locationl . The pattern that represents this return value isl itself.
The(TRANS VAR) and(TRANS UNIT) rules are similar. In both rules, no commands are run. For
variables, we look up the pattern in the layoutρ ; for unit, we return the unit location. Translation of
pairs(TRANS PAIR) builds each of the constituent values and constructs a pair pattern.

More interesting are the projection operators. Consider(TRANS PROJ1); the second projection
is translated similarly by(TRANS PROJ2). To findV.1, we run the commands to generateV, which
we know must return a pair pattern(p1, p2). To extract the first element of this pair, we simply need
to returnp1. Not only would it not be easy to isolate and run only the commands to generate the
values that go inp1, it would be incorrect to do so. For example, the Fun expressions constructing
the second element ofV may observe values, and hence have non-local effects.

The translation for conditionals(TRANS IF) is somewhat subtle. First, we run the translated
branch condition. The return value of the translated branches is reassigned to a patternp of fresh
locations: using a shared output pattern allows us to avoid theφ nodes common in SSA compilers.
We use the Imp derived form where the local variables of thethen andelsebranches of the con-
ditional are restricted. Instead, both branches write to a fresh shared targetp, in order to preserve
well-typedness (Proposition4.3).

The rule(TRANS OBSERVE) translatesobserveby running the commands to generate the value
for V and then observing the pattern. (This patternl can only be a location, and not of the form ()
or (p1, p2), as observations are only possible on values of base type.)

The rule(TRANS RANDOM) translates random sampling in much the same way. ByD(p), we
mean the flattening ofp into a list of locations and passing it to the distribution constructorD.

Finally, the rule(TRANS LET) translateslet statements by running both expressions in se-
quence. We translateM2, the body of the let, with an extended layout, so thatC2 knows where to
find the values written byC1, in the patternp1. Here the local variables of the let-bound expression
are restricted usinglocal.

Proposition 4.3. SupposeΓ ⊢M : t andΣ ⊢ ρ : Γ.

(1) There are C and p such thatρ ⊢M⇒C, p.
(2) Wheneverρ ⊢M⇒C, p, there isΣ′ such thatΣ ⊢C : Σ′ andΣ,Σ′ ⊢ p : t.

Proof. By induction on the typing ofM (AppendixA.1).

We define operationslift andrestrict to translate between Fun variables (S〈Γ〉) and Imp
locations (S〈Σ〉).

lift ρ , λs.flatten{ρ(x) 7→ V[[x]] s | x∈ dom(ρ)}
restrict ρ , λs.{x 7→ V[[ρ(x)]] s | x∈ dom(ρ)}

We let flatten take a mapping from patterns to values to a mapping from locations to base values.
Given these notations, we state that the compilation of Fun to Imp preserves the measure transformer
semantics, modulo a patternp that indicates the locations of the various parts of the return value in
the typing environment; an environment mappingρ , which does the same translation for the initial
typing environment; and superfluous variables, removed byrestrict.

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNING 23

Theorem 4.4. If Γ ⊢M : t andΣ ⊢ ρ : Γ andρ ⊢M⇒C, p then:
A[[M]] = pure (lift ρ)>>> I[[C]]>>> pure (λs. (restrict ρ s,V[[p]] s)).

Proof. By induction on the typing ofM (AppendixA.2).

5. ADDING ARRAYS AND COMPREHENSIONS

To be useful for machine learning, our language must supportlarge datasets. To this end, we extend
Fun and Imp with arrays and comprehensions. We offer three examples, after which we present the
formal semantics, which is based on unrolling.

5.1. Comprehension Examples in Fun.Earlier, we tried to estimate the skill levels of three com-
petitors in head-to-head games. Using comprehensions, we can model skill levels for an arbitrary
number of players and games:

TrueSkill:

let trueskill (players:int []) (results:(bool∗int∗int)[]) =
let skills = [for p in players→ random (Gaussian(10.0,20.0))]
for (w,p1,p2) in results do

let perf1 = random (Gaussian(skills.[p1], 1.0))
let perf2 = random (Gaussian(skills.[p2], 1.0))
if w // win?
then observe(perf1 > perf2) // first player won
else observe(perf1 = perf2) // draw

skills

First, we create a prior distribution for each player: we assume that skills are normally distributed
around 10.0, with variance 20.0. Then we look at each of the results—this is the comprehension.
The result of the head-to-head matches is an array of triples: a Boolean and two indexes. If the
Boolean is true, then the first index represents the winner and the second represents the loser. If the
Boolean is false, then the match was a draw between the two players. The probabilistic program
walks over the results, and observes that either the first player’s performance—normally distributed
around their skill level—was greater than the second’s performance, or that the two players’ per-
formances were equal. Returningskills after these observations allows us to inspect the posterior
distributions. Our original example can be modelled withplayers = [0;1;2] (IDs for Alice, Bob,
and Cyd, respectively) andresults = [(true,0,1);(true,1,2);(true,0,2)].

As another example, we can generalize the simple Bayesian classifier of Section3 to arrays of
categories and measurements, as follows:

Bayesian Inference Over Arrays:

let trainF (catIds:int []) (trainData:(int∗real)[]) fMean fVariance =
let priors = [for cid in catIds→ random (Gaussian(fMean,fVariance))]
for (cid,m) in trainData do observe(m − random (Gaussian(priors.[cid],1.0)))
priors

let catIds:int [] = (∗ ... ∗)
let trainingData:(int∗real)[] = (∗ ... ∗)

24 J. BORGSTR̈OM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

The functiontrainF is a probabilistic program for training a naive Bayesian classifier on a single
feature. Each category of objects—modelled by the arraycatIds—is given a normally distributed
prior on the weight of objects in that category; we store these in thepriors array. Then, for each
measurementm of some object of categorycid in the trainingData array, we observe thatm is
normally distributed according to the prior for that category of object. We then return the posterior
distributions, which have been appropriately modified by the observed weights. We can train using
this model by issuing a command such astrainF catIds trainingData 20.0 5.0, which runs inference
to compute for each category its posterior distribution forthis feature.

As a third example, consider the adPredictor component of the Bing search engine, which esti-
mates the click-through rates for particular users on advertisements [17]. We describe a probabilistic
program that models (a small part of) adPredictor. Without loss of generality, we use only two fea-
tures to make our prediction: the advertiser’s listing and the phrase used for searching. In the real
system, many more (undisclosed) features are used for prediction.

adPredictor in F#:

let read lines filename count line = (∗ ... ∗)
[<RegisterArray>]
let imps = (∗ ... ∗)
[<ReflectedDefinition>]
let probit b x =

let y = random (Gaussian(x,1.0))
observe(b == (y > 0.0))

[<ReflectedDefinition>]
let ad predictor (listings:int []) (phrases:int []) impressions =

let lws = [for l in listings→ random (Gaussian(0.0,0.33))]
let pws = [for p in phrases→ random (Gaussian(0.0,0.33))]
for (clicked,lid,pid) in Array.toList impressions do

probit clicked (lws.[lid] + pws.[pid])
lws,pws

The read lines function loads data from a file on disk. The data are formattedas newline-separated
records of comma-separated values. There are three important values in each record: a field that
is 1 if the given impression lead to a click, and a 0 otherwise;a field that is the database ID of
the listing shown; a field that is the part of the search phrasethat led to the selection of the listing.
We preprocess the data in three ways, which are elided in the code above. First, we convert the
1/0-valued Boolean to atrue/false-valued Boolean. Second, we normalize the listing IDs so that
they begin at 0, that is, so that we can use them as array indexes. Third, we collect unique phrases
and assign them fresh, 0-based IDs. We defineimps—a list of advertising impressions (a listing
ID and a phrase ID) and whether or not the ad was clicked—in terms of this processed data. The
[<RegisterArray>] attribute on the definition ofimps instructs the compiler to simply evaluate this
F# expression, yielding a deterministic constant. Finally, ad predictor defines the model. We use
the [<ReflectedDefinition>] attribute onad predictor to mark it as a probabilistic program, which
should be compiled and sent to Infer.NET. Suppose we have stored the collated listing and phrase
IDs in ls andps, respectively; we can train on the impressions by callingad predictor ls ps imps.

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNING 25

5.2. Formalizing Arrays and Comprehensions in Fun. We introduce syntax for arrays in Fun,
and give interpretations of this extended syntax in terms ofthe core languages, essentially by treat-
ing arrays as tuples and by unfolding iterations. We work with non-empty zero-indexed arrays of
statically known size (representing, for example, statically known experimental data).

There are three array operations: array literals, indexing, and array comprehension. First, letR

be a set ofranges r. Ranges allow us to differentiate arrays of different sizes. Moreover, limitations
in the implementation of Infer.NET disallow nested iterations on the same range. Here we disallow
nested iterations altogether—they are not needed for our examples and they would significantly
complicate the formalization. We assign sizes to ranges using the function|·| : R→ Z

+. In the
metalanguage, arrays over ranger correspond to tuples of length|r|.
Extended Syntax of Fun:

t ::= · · · | t[r] type
M,N ::= · · · | expression

[V1; . . . ;Vn] array literal
V1.[V2]r indexing
[for x inr V →M] comprehension

First, we add arrays as a type:t[r] is an array of elements of typet over the ranger. In the array type
t[r], we require that the typet contains no array typet ′[r ′], that is, we do not consider nested arrays.
Indexing,V1.[V2]r , extracts elements out of an array, where the indexV2 is computed modulo the size
|r| of the arrayV1. A comprehension[for x inr V→M] maps over an arrayV, producing a new array
where each element is determined by evaluatingM with the corresponding element of arrayV bound
to x. To simplify the formalization, we here require that the body M of the comprehension contains
neither array literals nor comprehensions. We attach the range to indexing and comprehensions so
that the measure transformer semantics can be given simply;the range can be inferred easily, and
need not be written by the programmer. We elide the range in our code examples.

We here do not distinguish comprehensions that produce values—like the one that produces
skills—and those that do not—like the one that observes player performances according toresults.
For the sake of efficiency, our implementation does distinguish these two uses. In some of the code
examples, we writefor x in V do M to mean[for x inr V →M]. We do so only whenM has type
unit and we intend to ignore the result of the expression.

We encode arrays as tuples. For alln > 0, we defineπn(M,N) with M : tn andN : int and if
N%n= i we expectπn((V0, . . . ,Vn−1),N) =Vi .

Derived Types and Expressions for Arrays in Fun:

π1(M,N) := M
πn(M,N) := if N%n== 0 then M.1 elseπn−1(M.2,N−1) for n> 1

t[r] := t |r | wheret1 := t andtn+1 := t ∗ tn

[V0; ...;Vn−1] := (V0, . . . ,Vn−1)
V1[V2]r := π|r |(V1,V2)
for x inr V →M :=

let y0 = (let x= π|r |(V,0) in M) in
· · ·
let y|r |−1 = (let x= π|r |(V, |r|−1) in M) in
(y0; . . . ;y|r |−1) wherey1, . . . ,y|r | are fresh forM andV.

26 J. BORGSTR̈OM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

Our derived forms for arrays yield programs whose size growslinearly with the data over which they
compute—we implementV[i]r with O(|r|) projections. To avoid this problem, our implementation
takes advantage of support for arrays in the Infer.NET factor graph library (see Section5.3).

The static semantics of these new constructs is straightforward; we give the derived rules for
(FUN ARRAY), (FUN INDEX), and(FUN FOR). By adding these as derived forms in Fun, we do not
need to extend Imp at all. On the other hand, our formalization does not reflect that our implemen-
tation preserves the structure of array comprehensions when going to Infer.NET.

Extended Typing Rules for Fun Expressions:Γ ⊢M : t

(FUN ARRAY)
Γ ⊢Vi : t ∀i ∈ 0..n−1

Γ ⊢ [V0; . . . ;Vn−1] : t[rn]

(FUN INDEX)
Γ ⊢V1 : t[r] Γ ⊢V2 : int

Γ ⊢V1[V2]r : t

(FUN FOR)
Γ ⊢V : t[r] Γ,x : t ⊢M : t ′

Γ ⊢ [for x inr V →M] : t ′[r]

The rule(FUN ARRAY) uses the notationrn for theconcrete rangeof sizen; we assume there
is a unique such range for eachn > 0. This rule can be derived using repeated applications of
(FUN PAIR). The rule(FUN INDEX) checks that the arrayV1 is non-empty array and the indexV2 is
an integer; the actual index is the value ofV2 modulo the size of the array, as in the meta-language.
We can derive this rule for a givenn by induction onn, using repeated applications of(FUN IF); we
use(FUN PROJ1) in the then case and(FUN PROJ2) in theelsecase. The rule(FUN FOR) requires
that the source expressionV is an array, and that the bodyM is well-typed assuming a suitable type
for x. We can derive(FUN FOR) using repeated applications of(FUN LET), with (FUN PAIR) to
type the final result.

5.3. Arrays in Imp. We now sketch our structure-preserving implementation strategy. We work in
a version of Imp with arrays and iteration over ranges, and weextend both the assignment form and
expressions to permit array indexing. Inside the body of an iteration over a range, the name of the
range can be used as an index.

Extended Syntax of Imp:

E ::= . . . | l [l ′] | l [r] expression
I ::= · · · | statement

l [r]← E assignment to array item
for r doC iteration over ranges

We require that every occurrence of an indexr is inside an iterationfor r do C. Inside such an
iteration, every assignment to an array variable must be at index r. We also extend patterns to
include range indexed locations, and write(p1, p2)[r] for (p1[r], p2[r]).

Our compiler translates comprehensions over variables of array type as an iteration over the
translation of the body of the comprehension. We add toρ the fact that the comprehension variable
corresponds to the array variable indexed by the range. We invent a fresh array result patternp′, and
assign the result of the translated body top′[r]. Finally, we hide the local variables of the translation
of the body of the comprehension, in order to avoid clashes inthe unrolling semantics of the loop.
This compilation corresponds to the rule(TRANS FOR) below. In particular, the sizes of ranges are
never needed in our compiler, so compilation is not data dependent.

Compilation of comprehensions:

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNING 27

(TRANS FOR)
ρ{x 7→ ρ(z)[r]} ⊢M⇒C, p p[r] ∼ p′ (locs(ρ)∪ locs(C))∩ fv(p′) =∅

ρ ⊢ [for x inr z→M]⇒ for r do local locs(C) in (C; p′[r]← p), p′

6. IMPLEMENTATION EXPERIENCE

We implemented a compiler from Fun to Imp in F#. We wrote two backends for Imp: an exact infer-
ence algorithm based on a direct implementation of measure transformers for discrete measures, and
an approximating inference algorithm for continuous measures, using Infer.NET [37]. The transla-
tion of Section4 formalizes our translation of Fun to Imp. Translating Imp toInfer.NET is relatively
straightforward, and amounts to a syntax-directed series of calls to Infer.NET’s object-oriented API.

The frontend of our compiler takes (a subset of) actual F# code as its input. To do so, we make
use of F#’sreflected definitions, which allow programmatic access to ASTs. This implementation
strategy is advantageous in several ways. First, there is noneed to design new syntax, or even write
a parser. Second, all inputs to our compiler are typed ASTs ofwell typed F# programs. Third, a
single file can contain both ordinary F# code as well as reflected definitions. This allows a single
module to both read and process data, and to specify a probabilistic model for inference from the
data.

Functions computing array values containing deterministic data are tagged with an attribute
RegisterArray, to signal to the compiler that they do not need to be interpreted as Fun programs.
Reflected definitions later in the same file are typed with respect to these registered definitions and
then run in Infer.NET with the pre-processed data; we further discuss this idea below.

Below follows some statistics on a few of the examples we haveimplemented. The number
of lines of code includes F# code that loads and processes data from disk before loading it into
Infer.NET. The times are based on an average of three runs. All of the runs are on a four-core
machine with 4GB of RAM. The Naive Bayes program is the naive Bayesian classifier of the earlier
examples. The Mixture model is another clustering/classification model. TrueSkill and adPredictor
were described earlier. TrueSkill spends the majority of its time (64%) in Infer.NET, performing
inference. AdPredictor spends most of the time in pre-processing (58%), and only 40% in inference.
The time spent in our compiler is negligible, never more thana few hundred milliseconds.

Summary of our Basic Test Suite:

LOC Observations Variables Time
Naive Bayes 28 9 3 <1s

Mixture 33 3 3 <1s
TrueSkill 68 15,664 84 6s

adPredictor 78 300,752 299,594 3m30s

In summary, our implementation strategy allowed us to buildan effective prototype quickly and
easily: the entire compiler is only 2079 lines of F#; the Infer.NET backend is 600 lines; the discrete
backend is 252 lines. Our implementation, however, is only aprototype, and has limitations. Our
discrete backend is limited to small models using only finitemeasures. Infer.NET supports only a
limited set of operations on specific combinations of probabilistic and deterministic arguments. It
would be useful in the future to have an enhanced type system able to detect errors arising from
illegal combinations of operators in Infer.NET. The reflected definition facility is somewhat limited
in F#. In the adPredictor example on page24, a call toArray.toList is required because F# does not

28 J. BORGSTR̈OM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

reflect definitions that contain comprehensions over arrays—only lists. (The F# to Fun compiler
discards this extra call as a no-op, so there is no runtime overhead.)

7. RELATED WORK

Formal Semantics of Probabilistic Languages.There is a long history of formal semantics for prob-
abilistic languages with sampling primitives, often combined with recursive computation. One of
the first semantics is for Probabilistic LCF [49], which augments the core functional language LCF
with weighted binary choice, for discrete distributions. (Apart from its inclusion of observations,
Bernoulli Fun is a first-order terminating form of Probabilistic LCF.) Kozen [27] develops a proba-
bilistic semantics for while-programs augmented with random assignment. He develops two prov-
ably equivalent semantics; one more operational, and the other a denotational semantics using par-
tially ordered Banach spaces. Imp is simpler than Kozen’s language, as Imp has no unbounded
while-statements, so the semantics of Imp need not deal withnon-termination. On the other hand,
observations are not present in Kozen’s language, althoughdiscrete observations can be encoded
using possibly non-terminating while loops.

Jones and Plotkin [22] investigate the probability monad, and apply it to languages with discrete
probabilistic choice. Ramsey and Pfeffer [46] give a stochasticλ -calculus with a measure-theoretic
semantics in the probability monad, and provide an embedding within Haskell; they do not consider
observations. We can generalize the semantics ofobserveto the stochasticλ -calculus as filtering in
the probability monad (yielding what we may call a sub-probability monad), as long as the events
that are being observed are discrete. In their notation, we can augment their language with a failure
construct defined byP[[fail]]ρ = µ0 where we defineµ0(A) = 0 for all measurable setsA. Then, we
can defineobservev= (if v= true then () else fail). However, as discussed in Section3.5, zero-
probability observations of real variables do not translate easily to the probability monad, as the
following example shows. LetN be an expression denoting a continuous distribution, for example,
random (Gaussian(0.0,1.0)), and letf x = observex. Suppose there is a semantics for[[f x]]{x 7→ r}
for real r in the probability monad. The probability monad semantics of the programlet x = N
in f x of the stochasticλ -calculus is[[N]]≫= λy.[[f x]]{x 7→ y}, which yields the measureµ(A) =
∫

R
(M [[[[f x]]{x 7→ y}]])(A) dM [N](y). Here the probability(M [[[[f x]]{x 7→ y}]])(A) is zero except

wheny= 0, where it is some real number. Since theN-measure ofy= 0 is zero, the whole integral
is zero for allA (in particularµ(R) = 0), whereas the intended semantics is thatx is constrained to
be zero with probability 1 (so in particularµ(R) = 1).

The probabilistic concurrent constraint programming language Probabilistic cc of Gupta, Ja-
gadeesan, and Panangaden [18] is also intended for describing probability distributions using in-
dependent sampling and constraints. Our use of observations loosely corresponds to constraints
on random variables in Probabilistic cc. In the finite case, Probabilistic cc also relies on a sam-
pling semantics with observation (constraints) denoting filtering. To admit continuous distributions,
Probabilistic cc adds general fixpoints and defines the semantics of a program as the limit of finite
unrollings of its fixpoints, if defined. This can lead to surprising results, such as that the distribution
resulting from observing that two apparently uniform distributions are equal may not itself be uni-
form. In contrast, we work directly with standard distributions and have a less syntactic semantics
of observation that appears to be easier to anticipate.

McIver and Morgan [33] develop a theory of abstraction and refinement for probabilistic while
programs, based on weakest preconditions. They reject a subdistribution transformer semantics in
order to admit demonic nondeterminism in the language.

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNING 29

We conjecture that Fun and Imp could in principle be conferred semantics within a probabilis-
tic language supporting general recursion, by encoding discrete observations by placing the whole
program within a conditional sampling loop, and by encodingGaussian and other continuous dis-
tributions as repeated sampling using recursive functions. Still, dealing with recursion would be a
non-trivial development, and would raise issues of computability. Ackerman, Freer, and Roy [2]
show the uncomputability of conditional distributions in general, establishing limitations on con-
structive foundations of probabilistic programming. We chose when formulating the semantics of
Fun and Imp to include some distributions as primitive, and to exclude recursion; compared to
encodings within probabilistic languages with recursion,this choice has the advantage of compo-
sitionality (rather than relying on a global sampling loop)and of admitting a direct (if sometimes
approximate) implementation (via message-passing algorithms on factor graphs, with efficient im-
plementations of primitive distributions).

Recent work on semantics of probabilistic programs within interactive theorem provers in-
cludes the mechanization of measure theory [20] and Lebesgue integration [35] in HOL, and a
framework for proofs of randomized algorithms in Coq [3] which also allows for discrete observa-
tions.

Probabilistic Languages for Machine Learning.Koller et al. [26] proposed representing a proba-
bility distribution using first-order functional programswith discrete random choice, and proposed
an inference algorithm for Bayesian networks and stochastic context-free grammars. Observations
happen outside their language, by returning the distributions P[A∧B] ,P[A∧¬B],P[¬A] which can
be used to compute P[B | A]. Their work was subsequently developed by Pfeffer into the language
IBAL [43], which has observations and uses a factor graph semantics,but only works with discrete
datatypes.

Park et al. [41] proposeλ◦, the first probabilistic language with formal semantics applied to
actual machine learning problems involving continuous distributions. The formal basis is sampling
functions, which uniformly supports both discrete and continuous probability distributions, and
inference is by Monte Carlo importance sampling methods. The calculusλ◦ enables conditional
sampling via fixpoints and rejection, and its implementation allows discrete observations only.

HANSEI [24, 23] is an embedding of a probabilistic language as a programming library in
OCaml, based on explicit manipulation of discrete probability distributions as lists, and sampling
algorithms based on coroutines. HANSEI uses an explicitfail statement, which is equivalent to
observe falseand so cannot be used for conditioning on zero probability events. Infer.NET [37] is a
software library that implements the approximate deterministic algorithms expectation propagation
[38] and variational message passing [53], as well as Gibbs sampling, a nondeterministic algorithm.
Infer.NET models are written in a probabilistic subset of C#, known as Csoft [52]. Csoft allows
observeon zero probability events, but does not have a continuous semantics other than as factor
graphs and is currently only implemented as an internal language of Infer.NET. This paper gives a
higher-level semantics of Csoft (or Imp) programs as distribution transformers.

Although there are many Bayesian modelling languages, Csoft and IBAL are the only pre-
vious languages implemented by a compilation to factor graphs. Probabilistic Scheme [45] is a
probabilistic form of the untyped functional language Scheme, limited to discrete distributions, and
with a construct for reifying the distribution induced by a thunk as a value. Church [15] is another
probabilistic form of Scheme, equipped with conditional sampling and a mechanism of stochastic
memoization. In MIT-Church, queries are implemented usingMarkov chain Monte Carlo methods.
WinBUGS [39] is a popular implementation of the BUGS language [14] for explicitly describing
distributions suitable for MCMC analysis.

30 J. BORGSTR̈OM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

FACTORIE [32] is a Scala library for explicitly constructing factor graphs. Blaise [7] is a
software library for building MCMC samplers in Java, that supports compositional construction
of sophisticated probabilistic models, and decouples the choice of inference algorithm from the
specification of the distribution.

A recent paper [16] based on Fun describes a model-learner pattern which captures common
probabilistic programming patterns in machine learning, including various sorts of mixture models.

Other Uses of Probabilistic Languages.Probabilistic languages with formal semantics find appli-
cation in many areas apart from machine learning, includingdatabases [9], model checking [29],
differential privacy [34, 47], information flow [30], and cryptography [1]. A recent monograph on
semantics for labelled Markov processes [40] focuses on bisimulation-based equational reasoning.
The syntax and semantics of Imp is modelled on the probabilistic language pWhile [4] without
observations.

Erwig and Kollmansberger [12] describe a library for probabilistic functional programming in
Haskell. The library is based on the probability monad, and uses a finite representation suitable for
small discrete distributions; the library would not sufficeto provide a semantics for Fun or Imp with
their continuous and hybrid distributions. Their library has similar functionality to that provided by
our combinators for discrete distributions listed in the technical report.

8. CONCLUSION

We advocate probabilistic functional programming with observations and comprehensions as a mod-
elling language for Bayesian reasoning. We developed a system based on the idea, invented new
formal semantics to establish correctness, and evaluated the system on a series of typical inference
problems.

Our direct contribution is a rigorous semantics for a probabilistic programming language with
zero-probability observations on continuous variables. We have shown that probabilistic functional
programs with iteration over arrays, but without the complexities of general recursion, are a concise
representation for complex probability distributions arising in machine learning. An implication of
our work for the machine learning community is that probabilistic programs can be written directly
within an existing declarative language (Fun—a subset of F#), linked by comprehensions to large
datasets, and compiled down to lower level Bayesian inference engines.

For the programming language community, our new semantics suggests some novel directions
for research. What other primitives are possible—non-generative models, inspection of distribu-
tions, on-line inference on data streams? Can we verify the transformations performed by machine
learning compilers such as Infer.NET compiler for Csoft? What is the role of type systems for such
probabilistic languages? Avoiding (discrete) zero probability exceptions, and ensuring that we only
generate Csoft programs suitable for our back-end, are two possibilities, but we expect there are
more.

Acknowledgements.We gratefully acknowledge discussions with and comments from Ralf Her-
brich, Oleg Kiselyov, Tom Minka, Aditya Nori, Robert Simmons, Nikhil Swamy, Dimitrios Vy-
tiniotis and John Winn. Chung-Chieh Shan highlighted an issue with our original definition of
observation. The comments by the anonymous reviewers were most helpful, in particular regarding
the definition of conditional density.

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNING 31

APPENDIX A. DETAILED PROOFS

Our proofs are structured as follows.

• AppendixA.1 gives a proof of Proposition4.3.
• AppendixA.2 gives a proof of Theorem4.4.

A.1. Proof of Proposition 4.3. We begin with a series of lemmas.

Lemma A.1 (Pattern agreement weakening). If Σ ⊢ p : t andΣ,Σ′ ⊢ ⋄, thenΣ,Σ′ ⊢ p : t.

Proof. By induction ont.

Lemma A.2 (Expression and statement heap weakening).
(1) If Σ ⊢ E : b andΣ,Σ′ ⊢ ⋄, thenΣ,Σ′ ⊢ E : b
(2) If Σ ⊢ I : Σ′ andΣ,Σ′,Σ′′ ⊢ ⋄, thenΣ,Σ′′ ⊢ I : Σ′
(3) If Σ ⊢C : Σ′ andΣ,Σ′,Σ′′ ⊢ ⋄, thenΣ,Σ′′ ⊢C : Σ′.

Proof. By induction onE, I , andC, respectively.

Lemma A.3 (Pattern agreement uniqueness). If Σ ⊢ p : t andΣ′ ⊢ p′ : t then p∼ p′.

Proof. By induction ont.

Lemma A.4 (Pattern creation). If Σ ⊢ p : t then there existsΣ′ such thatΣ,Σ′ ⊢ ⋄ andΣ′ ⊢ p′ : t and
dom(Σ′) = fv(p′).

Proof. By induction ont, and the assumption that there always exist new, globally fresh locations.

Lemma A.5 (Pattern assignment). If Σ ⊢ p : t and Σ′ ⊢ p′ : t and Σ,Σ′ ⊢ ⋄, thenΣ ⊢ p′ ← p : Σ′′,
whereΣ′′ ⊆ Σ′.

Proof. By induction ont.

• (t = unit) Trivial: p′← p= nil , soΣ′′ = ε ⊆ Σ′.
• (t = bool) Σ ⊢ l : bool andΣ′ ⊢ l ′ : bool, so l : bool∈ Σ and l ′ : bool∈ Σ′. So l : bool ⊢ l ′← l :
(l ′ : bool)⊆ Σ′.
• (t = int) Similar.
• (t = real) Similar.
• (t = t1∗ t2) Σ ⊢ p1, p2 : t1 ∗ t2 andΣ′ ⊢ p′1, p

′
2 : t1 ∗ t2. BothΣ andΣ′ factor into contexts that type

p1 andp2 (resp. p′1 andp′2) individually; call themΣ1 andΣ2 (resp.Σ′1 andΣ′2). By the IHs, we
haveΣ1 ⊢ p′1← p1 : Σ′′1 ⊆ Σ′1 andΣ2 ⊢ p′2← p2 : Σ′′2 ⊆ Σ′2. We can then seeΣ ⊢ p′1← p1; p′2←
p2 : Σ′′1,Σ′′2 ⊆ Σ′1,Σ′2.

The purpose of this subsection is to prove the following.

Restatement of Proposition4.3 SupposeΓ ⊢M : t andΣ ⊢ ρ : Γ.

(1) There are C and p such thatρ ⊢M⇒C, p.
(2) Wheneverρ ⊢M⇒C, p, there isΣ′ such thatΣ ⊢C : Σ′ andΣ,Σ′ ⊢ p : t.

Proof. By induction on the typing ofM, leavingΣ andρ general.

(FUN VAR) Γ ⊢ x : t. For (1), we haveC = nil and p= ρ(x). For (2), let Σ′ = ε . By assumption,
Σ,Σ′ ⊢ ρ(x) : t andΣ ⊢ nil : Σ′ immediately.

32 J. BORGSTR̈OM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

(FUN CONST) Γ ⊢ c : ty(c). For (1), we have:

l 6∈ locs(ρ)
ty(c) = b for some base type b
ρ ⊢ c⇒ l ← c, l

For (2), let Σ′ = l : ty(c). We haveΣ,Σ′ ⊢ l : ty(c) andΣ ⊢ l ← c : Σ′.
(FUN OPERATOR) Γ ⊢V1⊗V2 : b3, where⊗ has typeb1∗b2→ b3. By inversion and the IH:

Γ ⊢V1 : b1

ρ ⊢V1⇒C1, l1 (IH1)
∃Σ1 (IH2)

Σ,Σ1 ⊢ l1 : b1

Σ ⊢C1 : Σ1

Γ ⊢V2 : b2

ρ ⊢V2⇒C2, l2 (IH2)
∃Σ2 (IH2)

Σ,Σ2 ⊢ l2 : b2

Σ ⊢C2 : Σ2

We have for (1), by (TRANS OPERATOR): ρ ⊢V1⊗V2⇒C1;C2; l ← l1⊗ l2, l . Let Σ′ = Σ1,Σ2, l :
b3 ⊢ ⋄. By weakening we find for (2): Σ,Σ′ ⊢ l : b3 andΣ ⊢C1;C2; l ← l1⊗ l2 : Σ′.

(FUN PAIR) Γ ⊢ (M1,M2) : t1∗ t2. By inversion and the IH:

Γ ⊢M1 : t1
ρ ⊢M1⇒CM1, p1 (IH1)
∃Σ1 (IH2)

Σ,Σ1 ⊢ p1 : t1
Σ ⊢CM1 : Σ1

Γ ⊢M2 : t2
ρ ⊢M2⇒CM2, p2 (IH1)
∃Σ2 (IH2)

Σ,Σ2 ⊢ p2 : t2
Σ ⊢CM2 : Σ2

We have for (1): ρ ⊢ (M1,M2)⇒CM1;CM2,(p1, p2). Let Σ′ = Σ1,Σ2 ⊢ ⋄. By weakening we find
for (2): Σ,Σ′ ⊢ (p1, p2) : t1∗ t2 andΣ ⊢CM1;CM2 : Σ′.

(FUN PROJ1) Γ ⊢M.1 : t1. By inversion and the IH:

Γ ⊢M : t1∗ t2
ρ ⊢M⇒CM, p (IH1)
∃Σ′ (IH2)

Σ,Σ′ ⊢ p : t1∗ t2
Σ ⊢M : S′

By inversion,p= (p1, p2), such thatΣ,Σ′ ⊢ p1 : t1 andΣ,Σ′ ⊢ p2 : t2. We now haveρ ⊢M.1⇒
CM, p1 for (1). We useΣ′ to showΣ,Σ′ ⊢ p1 : t1 andΣ ⊢CM : Σ′ for (2).

(FUN PROJ2) Γ ⊢M.2 : t2. Analogous to the previous case.

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNING 33

(FUN IF) Γ ⊢ if M1 then M2 elseM3 : t. We have:

Γ ⊢M1 : bool
ρ ⊢M1⇒CM1, p1 (IH1)
∃Σ1 (IH2)

Σ,Σ1 ⊢ p1 : bool
Σ ⊢CM1 : Σ1

Γ ⊢M2 : t
ρ{x 7→ pl} ⊢M2⇒CM2, p2 (IH1)
∃Σ2 (IH2)

Σ,Σ2 ⊢ p2 : t
Σ ⊢CM2 : Σ2

Γ ⊢M3 : t
ρ{x 7→ pr} ⊢M3⇒CM3, p3 (IH1)
∃Σ3 (IH2)

Σ,Σ3 ⊢ p3 : t
Σ ⊢CM3 : Σ3

By inversion,p1 = l andΣ,Σ1 ⊢ l : bool. By pattern agreement uniqueness (LemmaA.3), p2 ∼
p3. Let Σp′ ⊢ p′ : t, for dom(Σp′) = f v(p) (by LemmaA.4). We have(locs(ρ)∪ locs(C1)∪
locs(C2)∪ locs(C3))∩ f v(p) =∅. We also havep′ ∼ p2 andp′ ∼ p3. We now have for (1):

ρ ⊢ if M1 then M2 elseM3⇒
CM1; if l then local locs(C2) in CM2; [[p

′← p2]] else locallocs(C3) in CM3; [[p
′← p3]], p′

Finally, let Σ f = Σ2∩ Σ3∩ Σp′ ⊢ ⋄ and Σ′ = Σ1,Σ f ⊢ ⋄. By pattern assignment, we can see
Σ f ⊢ [[p′← p2]] andΣ f ⊢ [[p′← p3]]. By weakening (LemmasA.1, andA.2) we have what we
need for (2):

Σ,Σ′ ⊢ p′ : t
Σ ⊢CM1; if l then ... else... : Σ′

(FUN LET) Γ ⊢ let x= M1 in M2 : t2. We have:

Γ ⊢M1 : t1
ρ ⊢M1⇒CM1, p1 (IH1)
∃Σ1 (IH2)

Σ,Σ1 ⊢ p1 : t1
Σ ⊢CM1 : Σ1

Γ,x : T1 ⊢M2 : t2

Next, note thatΣ,Σ1 ⊢ ρ{x 7→ p1} : Γ,x : T1. We can now apply the IH toM2’s typing derivation
to see:

ρ{x 7→ p1} ⊢M2⇒CM2, p2 (IH1)
∃Σ2 (IH2)

Σ,Σ2 ⊢ p2 : t2
Σ ⊢CM2 : Σ2

First, we have:ρ ⊢ let x = M1 in M2⇒ (local (locs(CM1) \ fv(p1)) in CM1);CM2, p2 for (1).
For (2), let Σ′1 = Σ1|fv(p1) andΣ′ = Σ′1,Σ2 ⊢ ⋄. By weakening, we findΣ,Σ′ ⊢ p2 : t2 andΣ ⊢
(local (locs(CM1)\ fv(p1)) in CM1);CM2 : Σ′.

(FUN OBSERVE) Γ ⊢ observeb E : unit . By the IH, withΣ′ = ε from IH2.

34 J. BORGSTR̈OM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

(FUN RANDOM) Γ ⊢ random(D(V)) : bn+1. We have:

D : (x1 : b1∗ ...∗xn : bn)→ bn+1

Γ ⊢V : (b1 ∗ ...∗bn)

We have, by the IH:
ρ ⊢V ⇒C, p (IH1)
∃Σ′ (IH2)

Σ,Σ′ ⊢ p : t (∗)
Σ ⊢C : Σ′

So ρ ⊢ random(D(V))⇒ C; l s←− D(p), l , for (1). We find (2) by (*) and by (Imp Seq), (Imp
Random), and the IHΣ ⊢C; l : Σ′, l , whereΣ′, l ⊢ l : bn+1.

A.2. Proof of Theorem 4.4. We use the following lemma.

Lemma A.6 (Value equivalence). If Γ ⊢V : t andΣ ⊢ ρ : Γ andρ ⊢V⇒C, p thenI[[C]] = pure f ,
where f is either id or a series of (independent) calls toadd :

f = λs. add l1(add l2(...(add ln(s,cn))...,c2),c1)

where each of the li are distinct, and

A[[V]] = pure (lift ρ)>>> I[[C]] >>> pure (λs. restrict ρ s,V[[p]] s)

Proof. By induction on the derivation ofΓ ⊢V : t.

(FUN VAR) Γ ⊢ x : t, sox : t ∈ Γ andΣ ⊢ ρ(x) : t. We haveρ ⊢ x⇒ nil ,ρ(x), so f = id.

A[[x]]
= pure (λs. (s,V[[x]] s))
= pure (λs. (s,lookup x s))
= pure (λs. (restrict ρ(lift ρ),V[[p]] (lift ρ s)))
= lift ρ >>> (λs. (restrict ρ s,V[[p]] s))
= lift ρ >>> pure id >>> (λs. (restrict ρ s,V[[p]] s))
= lift ρ >>>A[[x]] >>> (λs. (restrict ρ s,V[[p]] s))

(FUN CONST) Γ ⊢ c : ty(c). We haveρ ⊢ c⇒ l ← c, l , so f = λs. add l (s,c).

A[[c]]
= pure (λs. s,c)
= pure (λs. restrict ρ(lift ρ s),V[[l]] (add l (lift ρ s,c)))
= pure (lift ρ)>>> pure (λs. restrict ρ s,V[[l]] (add l (s,c)))
= pure (lift ρ)>>> pure (λs. add l (s,c)) >>> pure (λs. restrict ρ s,V[[l]] s)
= pure (lift ρ)>>> I[[l ← c]]>>> pure (λs. restrict ρ s,V[[l]] s)

(FUN PAIR) Γ ⊢ (V1,V2) : t1∗ t2. We haveρ ⊢V1,V2⇒C1;C2,(p1, p2). By the IH,I[[C1]] = pure f1
andI[[C2]] = pure f2, where f1 and f2 are eitherid or add s. We also have:

A[[Vi]]
= pure (λs. s,V[[Vi]] s)
= pure (lift ρ)>>> I[[Ci]]>>> pure (λs. restrict ρ s,V[[pi]] s)
= pure (lift ρ)>>> pure fi >>> pure (λs. restrict ρ s,V[[pi]] s)
= pure (λs. restrict ρ(fi(lift ρ s)),V[[pi]] (fi (lift ρ s)))
= pure (λs. s,V[[pi]] (fi (lift ρ s)))

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNING 35

SoV[[Vi]] s= V[[pi]] (fi(lift ρ s)). Let f = f1; f2. We derive:

A[[V1,V2]]
= pure (λs. s,(V[[V1]] s,V[[V2]] s))
= pure (λs. s,(V[[p1]] (f1 (lift ρ s)),V[[p2]] (f2 (lift ρ s))) by weakening/independence
= pure (λs. s,(V[[p1]] ((f1; f2)(lift ρ s)),V[[p2]] ((f1; f2)(lift ρ s)))
= pure (λs. restrict ρ (f1; f2(lift ρ s)),

(V[[p1]] ((f1; f2)(lift ρ s)),V[[p2]] ((f1; f2)(lift ρ s)))
= pure (lift ρ)>>> pure (f1; f2)>>> pure (λs. restrict ρ s,(V[[p1]] s,V[[p2]] s))
= pure (lift ρ)>>> I[[C1]]>>> I[[C2]]>>> pure (λs. restrict ρ s,V[[(p1, p2)]] s)
= pure (lift ρ)>>> I[[C1;C2]]>>> pure (λs. restrict ρ s,V[[(p1, p2)]] s)

Restatement of Theorem4.4 Γ ⊢M : t andΣ ⊢ ρ : Γ andρ ⊢M⇒C, p then:

A[[M]] = pure (lift ρ)>>> I[[C]]>>> pure (λs. (restrict ρ s,V[[p]] s))

Proof. By induction onΓ ⊢M : t.
(FUN VAR) By the value lemma.
(FUN CONST) By the value lemma.
(FUN PAIR) By the value lemma.
(FUN OPERATOR) Γ ⊢V1⊗V2 : b3 andρ ⊢V1⊗V2⇒ (C1;C2; l ← l1⊗ l2), l . We haveA[[V1⊗V2]] =

pure (λs. s,⊗(V[[V1]] s,V[[V2]] s)). By the value lemma (LemmaA.6):

A[[Vi]]
= pure (λs. s,V[[Vi]] s)
= pure (lift ρ)>>> I[[Ci]]>>> pure (λs. restrict ρ s,V[[l i]] s)
= pure (lift ρ)>>> pure fi >>> pure (λs. restrict ρ s,V[[l i]] s)
= pure (λs. restrict ρ (fi (lift ρ s)),V[[l i]] (fi (lift ρ s)))
= pure (λs. s,V[[l i]] (fi(lift ρ s)))
= pure (λs. s,V[[l i]] ((f1; f2)(lift ρ s)) by weakening/independence

SoV[[Vi]] s= V[[l i]] ((f1; f2)(lift ρ s)). We derive:

A[[V1⊗V2]]
= pure (λs. s,V[[V1]] s⊗V[[V2]] s)
= pure (λs. s,⊗(V[[l1]] ((f1; f2)(lift ρ s)),V[[l2]] ((f1; f2)(lift ρ s))))
= pure (lift ρ)>>> pure (f1; f2)>>> pure (λs. restrict ρ s,⊗(V[[l1]] s,V[[l2]] s))))
= pure (lift ρ)>>> I[[C1]]>>> I[[C2]]>>> pure (λs. restrict ρ s,⊗(V[[l1]] s,V[[l2]] s))))
= pure (lift ρ)>>> I[[C1]]>>> I[[C2]]>>> I[[l ← l1⊗ l2]]>>> pure (λs. restrict ρ s,V[[l]] s)))
= pure (lift ρ)>>> I[[C1;C2; l ← l1⊗ l2]]>>> pure (λs. restrict ρ s,V[[l]] s)))

(FUN PROJ1) Γ ⊢V.1 : t1 andΓ ⊢V : t1∗ t2. We haveρ ⊢V⇒C,(p1, p2) andρ ⊢V.1⇒C, p1. By
the value lemma as before, we can concludeV[[V]] s= V[[(p1, p2)]] (f (lift ρ s)). Therefore:

A[[V.1]]
= pure (λs. s,fst V[[V]] s)
= pure (λs. s,fst (V[[(p1, p2)]] (f (lift ρ s)))
= pure (λs. s,V[[p1]] (f (lift ρ s))
= pure (lift ρ)>>> pure f >>> pure (λs. restrict ρ s,V[[p1]] s)
= pure (lift ρ)>>> I[[C]]>>> pure (λs. restrict ρ s,V[[p1]] s)

(FUN PROJ2) Symmetric to Proj1.

36 J. BORGSTR̈OM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

(FUN IF) Γ ⊢ if V1 then M2 elseM3 : t. We have:

ρ ⊢ ...⇒C1; if l1 then local locs(C2) in C2; p← 2 else locallocs(C3) in C3; p← p3, p

Our IHs are:A[[Mi]] = pure (lift ρ)>>> I[[Ci]]>>> pure (λs. restrict ρ s,V[[pi]] s). By the
value lemma we haveI[[V1]] = pure f1 for some f1 such thatV[[V1]] s= V[[l1]] (f1(lift ρ s)).
We now calculate (at length):

A[[if V1 then M2 elseM3]]
= choose (λs. V[[V1]] s) A[[M2]] A[[M3]]

= choose (λs. V[[l1]] (f1 (lift ρ s)))
(pure (lift ρ)>>> I[[C2]]>>> pure (λs. restrict ρ s,V[[p2]] s))
(pure (lift ρ)>>> I[[C3]]>>> pure (λs. restrict ρ s,V[[p3]] s))

= pure (lift ρ)>>> choose (λs.V[[l1]] (f1 s))
(I[[C2]]>>> pure (λs. restrict ρ s,V[[p2]] s))
(I[[C3]]>>> pure (λs. restrict ρ s,V[[p3]] s))

= pure (lift ρ)>>> choose (λs.V[[l1]] (f1 s))
(I[[C2]]>>> I[[p← p2]]>>> pure (λs. restrict ρ s,V[[p]] s))
(I[[C3]]>>> I[[p← p3]]>>> pure (λs. restrict ρ s,V[[p]] s))

= pure (lift ρ)>>> choose (λs.V[[l1]] (f1 s))
(I[[C2]]>>> I[[p← p2]]>>> pure (drop locs(C2))>>> pure (λs. restrict ρ s,V[[p]] s))
(A[[C3]]>>>A[[p← p3]]>>> pure (drop locs(C3))>>> pure (λs. restrict ρ s,V[[p]] s))

= pure (lift ρ)>>> (choose (λs.V[[l1]] (f1 s))
(A[[C2]]>>>A[[p← p2]]>>> pure (drop locs(C2)))
(A[[C3]]>>>A[[p← p3]]>>> pure (drop locs(C3))))>>>

pure (λs. restrict ρ s,V[[p]] s)

= pure (lift ρ)>>>A[[C1]]>>> (choose (λs.V[[l1]] s)
(A[[C2; p← p2]]>>> pure (drop locs(C2)))
(A[[C3; p← p3]]>>> pure (drop locs(C3))))>>>

pure (λs. restrict ρ s,V[[p]] s)
= pure (lift ρ)>>>A[[C1]]>>> (choose (λs.V[[l1]] s)

(A[[local locs(C2) in C2; p← p2]])
(A[[local locs(C3) in C3; p← p3]]))>>>

pure (λs. restrict ρ s,V[[p]] s)

(FUN LET) Γ ⊢ let x= M1 in M2 : t2; by inversion,Γ ⊢M1 : t1 andΓ,x : t1 ⊢M2 : t2.
Let ρ ′ = ρ{x 7→ p1} andΣ1 = (locs(C1)\ fv(p1)). We have:

ρ ⊢M1⇒C1, p1

ρ ′ ⊢M2⇒C2, p2

ρ ⊢ let x= M1 in M2⇒ (local Σ1 in C1);C2, p2

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNING 37

As our IHs:

A[[M1]] = pure (lift ρ)>>>A[[C1]]>>> pure (λs. restrict ρ s,V[[p1]] s)

A[[M2]] = pure (lift ρ ′)>>>A[[C2]]>>> pure (λs. restrict ρ ′s,V[[p2]] s)

We derive:
A[[let x= M1 in M2]]

= A[[M1]]>>> pure (add x) >>>A[[M2]]>>> pure (λs,y. drop x s,y)
= pure (lift ρ)>>>A[[C1]]>>> pure (λs. restrict ρ s,V[[p1]] s)>>> pure (add x)>>>

A[[M2]]>>> pure (λs,y. drop x s,y)
= pure (lift ρ)>>>A[[C1]]>>> pure (λs. restrict ρ s,V[[p1]] s)>>>

pure (add x)>>> pure (lift ρ ′)>>>
A[[C2]]>>> pure (λs. restrict ρ ′s,V[[p2]] s)>>> pure (λs,y. drop x s,y)

= pure (lift ρ)>>>A[[C1]]>>> pure (drop (dom(Σ1)))>>>
A[[C2]]>>> pure (λs. restrict ρ ′s,V[[p2]] s)>>> pure (λs,y. drop x s,y)

= pure (lift ρ)>>>A[[C1]]>>> pure (drop (dom(Σ1)))>>>
A[[C2]]>>> pure (λs. restrict ρ s,V[[p2]] s)

= pure (lift ρ)>>>A[[(local Σ1 in C1);C2]]>>> pure (λs. restrict ρ s,V[[p2]] s)

(FUN RANDOM) Γ ⊢ random(D(V)) : b, whereD : (b1, ...,bn)→ bn+1,Γ ⊢ V : (b1, ...,bn). We
haveρ ⊢V ⇒C, p andρ ⊢ D(V)⇒C; l ← D(p), l . By the value lemma,A[[C]] = pure f and
V[[V]] s= V[[p]] (f (lift ρ s)). We derive:

A[[random(D(V))]]
= extend (λs. µD(V[[V]] s))
= extend (λs. µD(p(f (lift ρ s))))
= pure (lift ρ)>>> extend (λs. µD(p(f s)))>>> pure (λs,v. restrict ρ s,v)
= pure (lift ρ)>>> pure f >>> extend (λs. µD(V[[p]] s))>>> pure (λs,v. restrict ρ s,v)
= pure (lift ρ)>>>A[[C]]>>> extend (λs. µD(V[[p]] s))>>> pure (λs,v. restrict ρ s,v)
= pure (lift ρ)>>>A[[C]]>>> extend (λs. µD(V[[p]] s))>>>

pure (add l)>>> pure (λs. restrict ρ s,V[[l]] s)
= pure (lift ρ)>>>A[[C; l ← D(p)]]>>> pure (λs. restrict ρ s,V[[l]] s)

(FUN OBSERVE) Γ ⊢ observeV : unit andΓ ⊢V : b for some base typeb. We haveρ ⊢V ⇒C, l .
By the value lemma:A[[C]] = pure f andV[[V]] s= V[[l]] (f (lift ρ s)).

A[[observeV]]
= observe (λs. V[[V]] s)>>> pure (λs. (s,())
= observe (λs. l(f (lift ρ s)))>>> pure (λs. s,())
= pure (lift ρ)>>> observe (λs. V[[l]] (f s))>>> pure (λs. restrict ρ s,() s)
= pure (lift ρ)>>> pure f >>> observe (λs. V[[l]] s)>>> pure (λs. restrict ρ s,() s)
= pure (lift ρ)>>>A[[C]]>>> observe (λs. V[[l]] s)>>> pure (λs. restrict ρ s,() s)
= pure (lift ρ)>>>A[[C;observe l]]>>> pure (λs. restrict ρ s,() s)

38 J. BORGSTR̈OM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

REFERENCES

[1] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational soundness of formal encryp-
tion). J. Cryptology, 15(2):103–127, 2002.

[2] N. L. Ackerman, C. E. Freer, and D. M. Roy. Noncomputable conditional distributions. InLICS, pages 107–116,
2011.

[3] P. Audebaud and C. Paulin-Mohring. Proofs of randomizedalgorithms in Coq.Science of Computer Programming,
74(8):568–589, 2009.

[4] G. Barthe, B. Grégoire, and S. Z. Béguelin. Formal certification of code-based cryptographic proofs. InPOPL,
pages 90–101. ACM, 2009.

[5] S. Bhat, A. Agarwal, R. W. Vuduc, and A. G. Gray. A type theory for probability density functions. In J. Field and
M. Hicks, editors,POPL, pages 545–556. ACM, 2012.

[6] P. Billingsley.Probability and Measure. Wiley, 3rd edition, 1995.
[7] K. A. Bonawitz. Composable Probabilistic Inference with Blaise. PhD thesis, MIT, 2008. Available as Technical

Report MIT-CSAIL-TR-2008-044.
[8] J. Borgström, A. D. Gordon, M. Greenberg, J. Margetson,and J. Van Gael. Measure transformer semantics for

Bayesian machine learning. InEuropean Symposium on Programming (ESOP’11), volume 6602 ofLNCS, pages
77–96. Springer, 2011. Extended version available as Microsoft Research Technical Report MSR–TR–2011–18.
Software download available athttp://research.microsoft.com/fun.

[9] N. N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: diamonds in the dirt.Commun. ACM, 52(7):86–94, 2009.
[10] H. Daumé III.HBC: Hierarchical Bayes Compiler, 2008. Available athttp://www.cs.utah.edu/~hal/HBC/.
[11] P. Domingos, S. Kok, D. Lowd, H. Poon, M. Richardson, andP. Singla. Markov logic. In L. De Raedt, P. Frasconi,

K. Kersting, and S. Muggleton, editors,Probabilistic inductive logic programming, pages 92–117. Springer-Verlag,
Berlin, Heidelberg, 2008.

[12] M. Erwig and S. Kollmansberger. Functional pearls: Probabilistic functional programming in Haskell.J. Funct.
Program., 16(1):21–34, 2006.

[13] D. A. S. Fraser, P. McDunnough, A. Naderi, and A. Plante.On the definition of probability densities and sufficiency
of the likelihood map.J. Probability and Mathematical Statistics, 15:301–310, 1995.

[14] W. R. Gilks, A. Thomas, and D. J. Spiegelhalter. A language and program for complex Bayesian modelling.The
Statistician, 43:169–178, 1994.

[15] N. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, andJ. B. Tenenbaum. Church: a language for generative
models. InUncertainty in Artificial Intelligence (UAI’08), pages 220–229. AUAI Press, 2008.

[16] A. D. Gordon, M. Aizatulin, J. Borgström, G. Claret, T.Graepel, A. Nori, S. Rajamani, and C. Russo. A model-
learner pattern for Bayesian reasoning. InPOPL, pages 403–416, 2013.

[17] T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich.Web-scale Bayesian click-through rate prediction for
sponsored search advertising in Microsoft’s Bing search engine. InInternational Conference on Machine Learning,
pages 13–20, 2010.

[18] V. Gupta, R. Jagadeesan, and P. Panangaden. Stochasticprocesses as concurrent constraint programs. InPOPL,
pages 189–202, 1999.

[19] R. Herbrich, T. Minka, and T. Graepel. TrueSkilltm: A Bayesian skill rating system. InAdvances in Neural Infor-
mation Processing Systems (NIPS’06), pages 569–576, 2006.

[20] J. Hurd.Formal verification of probabilistic algorithms. PhD thesis, University of Cambridge, 2001. Available as
University of Cambridge Computer Laboratory Technical Report UCAM–CL–TR–566, May 2003.

[21] E. T. Jaynes.Probability Theory: The Logic of Science, chapter 15.7 The Borel-Kolmogorov paradox, pages 467–
470. CUP, 2003.

[22] C. Jones and G. D. Plotkin. A probabilistic powerdomainof evaluations. InLogic in Computer Science (LICS’89),
pages 186–195. IEEE Computer Society, 1989.

[23] O. Kiselyov and C. Shan. Embedded probabilistic programming. InDomain-Specific Languages, pages 360–384,
2009.

[24] O. Kiselyov and C. Shan. Monolingual probabilistic programming using generalized coroutines. InUncertainty in
Artificial Intelligence (UAI’09), 2009.

[25] D. Koller and N. Friedman.Probabilistic Graphical Models. The MIT Press, 2009.
[26] D. Koller, D. A. McAllester, and A. Pfeffer. Effective Bayesian inference for stochastic programs. InAAAI/IAAI,

pages 740–747, 1997.
[27] D. Kozen. Semantics of probabilistic programs.Journal of Computer and System Sciences, 22(3):328–350, 1981.

http://research.microsoft.com/fun
http://www.cs.utah.edu/~hal/HBC/

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNING 39

[28] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm.IEEE Transactions
on Information Theory, 47(2):498–519, 2001.

[29] M. Z. Kwiatkowska, G. Norman, and D. Parker. Quantitative analysis with the probabilistic model checker PRISM.
In Quantitative Aspects of Programming Languages (QAPL 2005), volume 153(2) ofENTCS, pages 5–31, 2006.

[30] G. Lowe. Quantifying information flow. InCSFW, pages 18–31. IEEE Computer Society, 2002.
[31] D. J. C. MacKay.Information Theory, Inference, and Learning Algorithms. CUP, 2003.
[32] A. McCallum, K. Schultz, and S. Singh. Factorie: Probabilistic programming via imperatively defined factor graphs.

In Advances in Neural Information Processing Systems (NIPS’09), pages 1249–1257, 2009.
[33] A. McIver and C. Morgan.Abstraction, refinement and proof for probabilistic systems. Monographs in computer

science. Springer, 2005.
[34] F. McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data analysis. InSIGMOD

Conference, pages 19–30. ACM, 2009.
[35] T. Mhamdi, O. Hasan, and S. Tahar. On the formalization of the Lebesgue integration theory in HOL. InInteractive

Theorem Proving (ITP 2010), 2010.
[36] B. Milch, B. Marthi, S. J. Russell, D. Sontag, D. L. Ong, and A. Kolobov. Blog: Probabilistic models with unknown

objects. In L. P. Kaelbling and A. Saffiotti, editors,IJCAI, pages 1352–1359. Professional Book Center, 2005.
[37] T. Minka, J. Winn, J. Guiver, and A. Kannan. Infer.NET 2.3, Nov. 2009. Software available from

http://research.microsoft.com/infernet.
[38] T. P. Minka. Expectation Propagation for approximate Bayesian inference. InUncertainty in Artificial Intelligence

(UAI’01), pages 362–369. Morgan Kaufmann, 2001.
[39] I. Ntzoufras.Bayesian Modeling Using WinBUGS. Wiley, 2009.
[40] P. Panangaden.Labelled Markov processes. Imperial College Press, 2009.
[41] S. Park, F. Pfenning, and S. Thrun. A probabilistic language based upon sampling functions. InPOPL, pages 171–

182. ACM, 2005.
[42] A. Pfeffer. IBAL: A probabilistic rational programming language. In B. Nebel, editor,International Joint Confer-

ence on Artificial Intelligence (IJCAI’01), pages 733–740. Morgan Kaufmann, 2001.
[43] A. Pfeffer. The design and implementation of IBAL: A general-purpose probabilistic language. In L. Getoor and

B. Taskar, editors,Introduction to Statistical Relational Learning. MIT Press, 2007.
[44] A. Pfeffer. Practical probabilistic programming. In P. Frasconi and F. A. Lisi, editors,Inductive Logic Programming

(ILP 2010), volume 6489 ofLecture Notes in Computer Science, pages 2–3. Springer, 2010.
[45] A. Radul. Report on the probabilistic language scheme.In Proceedings of the 2007 symposium on Dynamic lan-

guages (DLS’07), pages 2–10. ACM, 2007.
[46] N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of probability distributions. InPOPL, pages

154–165, 2002.
[47] J. Reed and B. C. Pierce. Distance makes the types grow stronger: A calculus for differential privacy. InICFP,

pages 157–168, 2010.
[48] J. S. Rosenthal.A First Look at Rigorous Probability Theory. World Scientific, 2nd edition, 2006.
[49] N. Saheb-Djahromi. Probabilistic LCF. InMathematical Foundations of Computer Science (MFCS), volume 64 of

LNCS, pages 442–451. Springer, 1978.
[50] J. Schumann, T. Pressburger, E. Denney, W. Buntine, andB. Fischer. AutoBayes program synthesis system users

manual. Technical Report NASA/TM–2008–215366, NASA Ames Research Center, 2008.
[51] D. Syme, A. Granicz, and A. Cisternino.Expert F#. Apress, 2007.
[52] J. Winn and T. Minka. Probabilistic programming with Infer.NET. Machine Learning Summer School lecture notes,

available athttp://research.microsoft.com/~minka/papers/mlss2009/, 2009.
[53] J. M. Winn and C. M. Bishop. Variational message passing. Journal of Machine Learning Research, 6:661–694,

2005.
[54] E. S. Yudkowsky. An intuitive explanation of Bayesian reasoning, 2003. Available at

http://yudkowsky.net/rational/bayes.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

http://research.microsoft.com/infernet
http://research.microsoft.com/~minka/papers/mlss2009/
http://yudkowsky.net/rational/bayes

	1. Introduction
	2. Bayesian Models as Probabilistic Expressions
	2.1. Syntax, Informal Semantics, and Bayesian Reading
	2.2. Syntactic Conventions and Monomorphic Typing Rules
	2.3. Formal Semantics for Bernoulli Fun
	2.4. An Example in Bernoulli Fun

	3. Semantics as Measure Transformers
	3.1. Types as Measurable Spaces
	3.2. Finite Measures
	3.3. Measure Transformers
	3.4. Measure Transformer Semantics of Fun
	3.5. Discussion of the Semantics

	4. Semantics by compilation to Csoft
	4.1. Imp: An Imperative Core Calculus
	4.2. Measure Transformer Semantics of Imp
	4.3. Translating from Fun to Imp

	5. Adding Arrays and Comprehensions
	5.1. Comprehension Examples in Fun
	5.2. Formalizing Arrays and Comprehensions in Fun
	5.3. Arrays in Imp

	6. Implementation Experience
	7. Related Work
	8. Conclusion
	Appendix A. Detailed Proofs
	A.1. Proof of Proposition 4.3
	A.2. Proof of Theorem 4.4

	References

