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1 Executive Summary

This document is the third deliverable to report on the progress of the model, language
and ontology research conducted within Workpackage 1 of the ADMIRE project. Significant
progress has been made on each of the above areas. The new results that we achieved are
recorded against the targets defined for project month 18 and are reported in four sections of
this document as follows.

Extend CRISP-DMI Model (Section 2). The first section briefly outlines a small ex-
tension of the CRISP-DMI model, originally presented in D1.1 [6]. This update to the model
involves a new look at the provenance phase, plus we have added a new optimisation phase
to the lifecycle of a DMI project.

In D1.1 we presented ADMIRE’s high-level model for the data mining and integration
process, CRISP-DMI, which specifies the phases that have to be applied in a typical DMI
project. Based on our experience from recent data mining projects, we claim that the DMI
system must support mechanisms for the optimization of DMI processes in each phase of
the CRISP-DMI process to conduct high-productivity data exploration. Therefore, we have
explicitly included this activity into CRISP-DMI and elaborated our first, target platform
independent optimization ideas in Section 4.

Systematic Definition of DMIL from the DMI Model (Section 3). The kernel of
this section is devoted to a comprehensive presentation of our approach to the systematic
design of the ADMIRE data mining langauge DMIL . This is a significant increment to the
initial ideas presented in D1.2 [5], where the formalisms for defining DMILwhere based on
UML profiling. Now we move to a pure metamodelling approach, which allows us to define
the complete language specification including abstract and concrete syntax and semantics.
Here we also discuss how metamodelling is implemented within the Process Designer, a tool
for the graphical design of DMI processes, their (optional) improvement through optimizing
transformations and the generation of DMIL sentences.

DMI Process Optimisation (Section 4). Basically in ADMIRE we consider the im-
provement of the execution performance and storage efficiency of data flows specified by
DMIL through two kinds of optimizations: platform independent and platform dependent.
This section discusses a set of platform independent optimizing transformations, appropriate
dataflow analyses and additional requirements put on the processing element descriptions in
the ADMIRE registries to enable such optimizations.

Define Revised Ontologies (Section 5). Another key aspect of WP1 is ontology re-
search. D1.1 outlined how semantic technologies could be used in the DMI processes. The
first version of the ADMIRE DMI ontology was based on CRISP-DMI and the existing data
mining standard PMML. D1.2 extended the ontology concept from D1.1 and introduced a
new Data Mining Ontology. This section describes the Platform Ontology and how it inter-
acts with the other ADMIRE components, especially the ADMIRE Registry and the Process
Designer. Moreover, we describe how the processing elements are described and used in the
ontology.

1 Executive Summary 4
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2 Extended CRISP-DMI Model

The initial version of the CRISP-DMI Model describing a methodology for realizing DMI
processes was presented in D1.1 [6]. There are seven main phases of the model that cover tasks
typically appearing in DMI processes, namely Business understanding, Data understanding,
Data processing, Data integration, Modelling, Evaluation and Explotation. These phases are
illustrated in Figure 1. In addition to these essential phases, there are two other phases that
are related to the whole lifecycle of a DMI project. The first one is the Provenance phase,
which tracks each task performed during the project to ensures the reproducibility of the
processes. The second one is the Optimization phase, which is applied on each performing
task in order to ensure optimal utilisation of available resources. These two phases are not
isolated from the other phases but naturally support the tasks involved in these main phases.
Moreover, the provenance information can be used in the optimization phase and in this way
they contribute to each other. For example, at the platform level a monitoring service can
provide such information about the load of the underlaying system that this information can
be used in the decisions for optimal distribution and scheduling of computational tasks.

Business
Understanding

Data
Understanding

Data
Processing

ModellingEvaluation

Exploitation

Space of Data

main path

alternative 
paths

Data
Integration

O
ptim

ization

Pr
ov

en
an

ce

Figure 1: CRISP-DMI Model

2.1 Provenance

The provenance phase is concurrent with the other seven phases of the CRISP-DMI model,
meaning that the information acquisition tasks are performed continuously. The DMI system
must, therefore, support mechanisms for collecting provenance information so that when a
user specifies that some data is saved to a data resource, sent to a third party, or delivered

2 Extended CRISP-DMI Model 5



Report defining an iteration of the model and language: PM3 and DL3 D1.5 Project Internal

to a visualisation mechanism, it is possible to obtain the provenance information and send it
to a user-chosen destination. The hierarchical structure of the provenance phase and related
generic and specialised tasks follows.

• Provenance Collection

– Execution system information acquisition

– Resource monitoring

– Data transformation monitoring

• Provenance Presentation

– Provenance data analysis

– Report generation

– Visualisation

Our first attempt at provenance collection, processing and visualisation is described in
the paper “Provenance Support for Grid-Enabled Scientific Workflows” [18].

2.2 Optimisation

The DMI processes can be optimized at any stage of their life cycle. We recognize two types
of optimization as follows:

a) Platform independent optimization

b) Platform specific optimization

Our approach to the platform-independent optimization of DMI processes is discussed later
in this deliverable in Section 4. Within the ADMIRE project platform-dependent optimization
is done at the level of the execution environment represented by USMT and OGSA-DAI.

3 Systematic Design of DMIL based on Metamodelling

The process of specifying a distributed data mining and integration system involves capturing
complex interrelationships between the data mining, data warehousing and workflow manage-
ment systems domains and a domain used to describe the environment in which the system
will be implemented. Developers increasingly turn to domain-specific modelling techniques to
manage the complexity of systems under development through such approaches as a Model
Driven Architecture (MDA) [7]. The goal of domain-specific modelling is to increase the
productivity of software engineers by abstracting away from low-level code details.

In our approach, we have adopted the MDA and its essential metamodelling foundation as
a base for the development of a new Domain Specific Language (DSL), named Data Mining
and Integration Language (DMIL ). This language is used for specification of DMI processes
in the form of workflows.
DMIL is a key component of the ADMIRE architecture. Its notation is used to commu-

nicate information about DMI processes and it is crucial for ADMIRE tools and enactment
engines, which in this context can be considered as optimized interpreters of DMIL codes.

The metamodelling approach we use here aligns with the following definition given by
Nytun et. al [24]:

3 Systematic Design of DMIL based on Metamodelling 6
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A metamodel is a model that defines a language completely including the concrete
syntax, abstract syntax and semantics.

In other words metamodelling is the process of completely and precisely specifying a
domain-specific modelling language which in turn can be used to define models of that domain.
Put simply, a metamodel is a model that is used to define a language. Typically, a complete
language specification has an abstract syntax model, a concrete syntax model and a semantic
domain model, each of which is a model used to define a language and therefore a metamodel.
The modelling languages can be executable and typically share a common structure. In order
to define the language and its semantics we use the Meta Object Facility (MOF) [25] combined
with the Object Constraint Language (OCL) [26]. The MOF is intended to support a range of
usage patterns and applications providing a set of standard interfaces to define and manipulate
a set of interoperable meta-models and their corresponding models. The OCL is a language
that enables us to describe expressions and constraints on object-oriented models and object
modeling artifacts.

So far, to the best of our knowledge, no research on a systematic approach to the design
of a language for the specification of DMI processes has been reported.

3.1 A Model-based DMIL

In this section we introduce an approach for the design of a DSL using a well-defined formalism
based on metamodelling that we have adopted for the design of DMIL . Based on Chen et al.
[8] and Schmidt [29], we define a language L as a six-tuple:

L = 〈A, C, S, P,MC , MS〉

consisting of abstract syntax A, concrete syntax C, semantic domain S, pragmatics P , syn-
tactic mapping MC , and semantic mapping MS .

• The abstract syntax A defines the language concepts, their relationships, and the well-
formedness rules available in the language. The abstract syntax can be defined using
context-free grammars or metamodels.

• The concrete syntax C defines a specific notation used to express models, which may
be graphical, textual, or mixed.

• The semantic domain S defines the language semantics using a semantic mapping
MS : A → S, which relates syntactic concepts to those of the semantic domain [13].
The semantic domain S and the mapping MS can be described in varying degrees of
formality, from natural language to rigorous mathematics.

• The pragmatics P deals with the usability of the language. This includes the possible
areas of application of the language, its easy of implementation and use, and the lan-
guage’s success in fulfilling its stated goals. The pragmatics is typically described in
natural language.

• The syntactic mapping Mc assigns syntactic constructs to elements in the abstract
syntax Mc : C → A.

3 Systematic Design of DMIL based on Metamodelling 7
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In a model-based approach, the abstract syntax A of L is described by a metalanguage
ML, which itself has an abstract syntax AML. A is called the metamodel of L, while AML is
the metametamodel.

In our approach, we focus on a language whose abstract syntax is defined in terms of a
metamodel. The metamodel of a language describes the vocabulary of concepts provided by
the language, the relationships existing among those concepts, and how they may be combined
to create models of DMI processes.

A metamodel-based abstract syntax definition has the great advantage of being suitable to
derive (through mappings or projections) different alternative concrete notations Ci and their
syntactic mappings MCi , textual or graphical or both, for various scopes such as graphical
rendering, model interchange, standard encoding in programming languages, and so on, while
maintaining the same semantics MS . Therefore, a metamodel could be intended as a standard
representation of the language notation.

3.1.1 Why Metamodelling ?

There are several formalisms (e.g. graph grammar, context free grammar, UML Profiling,
etc.) for defining languages but not all of them define the complete language specification
(e.g. abstract, concrete syntax and semantics). The reason for choosing metamodelling
as the formalism to specify our software language is that it offers enough abstraction and
understandability for the design of a domain-specific language. While we focus on a concrete
domain (i.e. DMI) it is still necessary to produce a precise definition for the domain-specific
semantics of the DSL, which is not possible using a generic modelling language such as UML.

In addition the UML customization mechanism for defining DSLs, called UML Profiling, is
too restrictive for our needs because new concepts need to adapt themselves to other existing
concepts. This means that one has to understand all the pre-existing metaclasses to identify
the right base metaclasses of a newly defined stereotype. Since our language introduces
new concepts which are not based on any typical process model (although there are some
similarities) UML Profiling is not an adequate formalism for our language specification. On
the other hand, we must note that an advantage of UML is that it offers a well-defined
general purpose modelling notation and has a strong tooling support and therefore we use its
graphical capabilities to represent our model.

3.1.2 Metamodelling Example

The following example is taken from [19] to illustrate how an abstract syntax model defined
using a metamodel can be used to represent a language. The model in Figure 2 is a specifica-
tion of the abstract syntax for a simple mathematical expression. The model contains no hints
on what a mathematical expression should look like; that is it does not contain information
about a concrete syntax. The concrete syntax in various forms is shown in Figure 3. Figure
4 shows the abstract form as a tree of instances of the classes in the abstract syntax model.

3.1.3 MDA approach

MDA defines an architecture based on four abstraction layers. At the top layer (M3) of
the architecture is the metametamodel (i.e MOF), which provides a generic language for
the definition of a DSL. Layer M2 is populated by metamodels that represent MOF-defined

3 Systematic Design of DMIL based on Metamodelling 8
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Expr

UnaryExpr Number BinaryExpr

Op
op

op

1

1

part1

part2

1

1
1

expr

Figure 2: The abstract syntax for a simple mathematical expression.

−32/4 + 5 ∗ 3 (infix)
(32)4/53 ∗+ (postfix/Polish)
+/(−32)4 ∗ 53 (prefix/reverse Polish)

Figure 3: Various forms of the concrete syntax for the expression in Figure 2.

:BinaryExpr

:BinaryExpr +:Op :BinaryExpr

:UnaryExpr /:Op 4:Number 5:UnaryExpr *:Op 3:Number

32:Number-:Op

part1 part2

part2 part1op

op expr

oppart1 part2

op

Figure 4: The abstract form as a tree of instances of the classes in the abstract syntax model.

DSL. Layer M1 hosts domain models written in M2-defined DSLs. Finally M0 hosts run-
time domain objects that instantiate M1 domain entities. To define the abstract syntax of
the DMIL language we target primarily the M2 level of the MDA layered architecture. The
advantages of MDA are that it provides both MOF for metamodel specification and OCL for
the specification of metamodel constraints. Furthermore, MDA can facilitate the definition
of mappings between DSLs using QVT [4] and the exchange of metamodel data using XMI
[27].

The process of developing DMIL consists of the following steps. Firstly, we define a new
abstract syntax metamodel which represents essential concepts and their relations in the DMI
domain. This model is based on a metamodel using MOF and expressed using a set of class

3 Systematic Design of DMIL based on Metamodelling 9
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diagrams organised in packages. Secondly, we define a concrete syntax of the language, which
is a mapping of the elements of the abstract syntax model to their textual representation.
In addition, we also define a graphical notation for the all these elements. Then we describe
the semantics of the defined concepts and validate the metamodel. Finally, we develop a tool
based on the models to allow the construction of DMI processes based on DMIL .

3.2 DMIL— A Software Domain Specific Language

DMILprovides a notation for communicating about DMI processes, but it is not a language
to be used for coding data mining algorithms. Its textual form is used to submit requests for
DMI process enactment through DMI gateways. It may also be used as a stored representation
of DMI processes by tools, and as the input and output of DMI process optimizers.
DMIL is used primarily to define graphs and functions that generate these graphs dynami-

cally. The nodes of graphs are Processing Elements (PE) that perform tasks such as extracting
data from databases and files, transforming data and performing data mining algorithms. The
directed arcs, called Connections, denote a data flow from a specified output of one PE to
the specified inputs of one or more PEs. A literal data stream notation in DMILdenotes a
sequence of values to be delivered to a connection or specified input. DMIL can be also used
to define DMI patterns and to define or redefine DMI processes by composing PEs.
DMIL is delivered as:

• an abstract syntax language defined by a metamodel (DMIL-m ) — its purpose is to
define concepts and their relations in the DMI domain which are as far as possible
platform independent. DMIL-m is presented in Section 3.3;

• a concrete textual (DMIL-t ) and graphical (DMIL-g ) representation of the language,
to support the design and interchange of the modelled DMI processes. The concrete
textual syntax is a result of mapping the abstract syntax to the concrete syntax. An
overview of concrete language representations is given in Section 3.4;

• a language semantics (DMIL-s ) to describe the meanings of the language concepts.
These semantics can be implicitly or explicitly defined. The DMIL-s is presented in
Section 3.5.

The primary features of DMIL are:

1. the type system of this language — the structural types — is kept separate from the
type system identifying the semantics of data-mining or application domain values —
the DMI and domain types respectively — so that it can organise DMI for application
domains that use different types of data without itself having a complex type system;

2. the interconnection of elements are described in terms of connections that, conceptually
at least, transmit data as a stream;

3. the language supports the incremental design and installation of (libraries of) com-
ponents that support DMI, so that the computational context can be incrementally
manipulated to better serve a community’s needs during its operation.

DMIL encodes the following:

3 Systematic Design of DMIL based on Metamodelling 10
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• requests for information about the services, data resources, data collections, defined
components (PEs, functions and named types) and supported DMI libraries;

• the definition, redefinition and withdrawal of any of the above, i.e. the capabilities of a
gateway can be dynamically tailored;

• the submission of requests to enact a specified DMI process.

3.3 DMILAbstract Syntax Model

In our model-based language definition, the abstract syntax of the DMIL language is defined
in terms of an object-oriented model called DMILMetamodel (DMIL-m ). This metamodel
characterizes the syntax elements together with their relationships and separates the abstract
syntax and semantics of the DMIL constructs from their concrete textual notations.

Our metamodel is based on the MOF model, UML notation and OCL, used as the mod-
elling language, graphical notation, and constraint language, respectively, for defining and
representing the complete DMIL-m .

3.3.1 Metamodel Packages

The DMIL-m uses packages to control complexity, promote understanding, and support reuse
of defined classes and their relations. The DMIL-m consists of three conceptual areas rep-
resented by the metamodel packages as illustrated in Figure 5. Collectively, the collection
of DMIL-m packages provides the necessary abstractions to model generic representations of
DMI processes.

<<metamodel>>
DMIL-m

Core Types Patterns

Figure 5: DMIL-mPackage structure

1. Core (eu.admire.dmil.core) — this package contains the basic metamodel classes and
associations used by all other DMI metamodel packages. This includes DMI process,
processing element and patterns definitions.

2. Types (eu.admire.dmil.types) — this package contains three type systems:

a) structural types defining the representation of DMI-process definitions;

b) DMI types that describe values that are used in DMI domain;

c) application domain types that are used in a specific application domain.

3 Systematic Design of DMIL based on Metamodelling 11
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3. Patterns (eu.admire.dmil.patterns) — this package contains predefined DMI patterns,
which encode recurring structure within DMI processes. In DMIL the patterns are de-
fined using functions.

The definition of the DMIL abstract syntax by a metamodel is well supported by meta-
modelling environments such as the Eclipse Modelling Framework [11]. The framework fully
supports model-driven development and offers software engineers powerful tools to improve
productivity and enhance the quality of system design.

3.3.2 Core Package

The Core metamodel package contains the major classes and associations used to define DMI
processes as presented in Figure 6.

Process
Composite 
Processing

Element

Processing 
Element

Connection Port

1

*

1

*

Input

Output

*

1

1

1

1

*

1

*

Primitive
Processing

Element

Figure 6: Core metamodel

Processing Element

name: String
inputs: Input[]
outputs:Output[]
typeRules: RulesExpression
iteration: IterationExpression
stop: TerminationExpression
cardinality: CardinalityExpression
error: ErrorExpression

Process

name: String
connections: Connection[]
elements:Element[]

Port

name: String
dmiType: DMIType
appType: DomainType

Connection

name: String
output: Output
inputs: Input[]

Figure 7: The main classes of the Core Package

3 Systematic Design of DMIL based on Metamodelling 12
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Processing Element Definition

The Processing Element (PE) is a primitive or composite software component encapsulating
a DMI task and providing for its use in DMI Processes. Multiple instances may be used in
one process. It has a specified structure of inputs and outputs. An instance of the element
can be executed during a DMI Process enactment. Each PE has a list of properties which
characterize the PE, as shown in Figure 7. A note on each of these properties is given below.

• Name (name) — this is a name that persists over development versions as it indicates
a consistent intended behaviour.

• Tuple of Inputs/Outputs (inputs/outputs) — each PE can have zero or more tuples of
inputs and outputs. Each input and output is characterized by a structural type and
optionally by a domain type.

• Type constraints and transfers (typeRules) — this shows constraints and relationships
between type variables introduced in the structural types above. If optional application-
domain interpretation identifiers have been placed on these types, then these follow the
transfer of the type variables.

• Iteration behaviour (iteration) — this describes the order in which the inputs are con-
sumed and the outputs produced.

• Termination behaviour (stop) — this describes the circumstances under which this
PE stops iterating and cleans up (other than termination applied by the execution
container’s termination).

• Cardinality effects (cardinality) — this describes volume relationships between inputs
and outputs. It may use selection expressions to assert relationships about substructures
in the inputs and outputs.

• Error behaviour (error) — this describes known reasons for the PE signaling an error.

The example definition shown in Listing 1 states there are two inputs and one out-
put and gives their application-domain interpretation identifiers as SQLquery, RDBidentity
and ResultSet respectively. It consumes the data first from dataResource and then from
expression and it always produces a value, with a structural type of list-of-tuples, the tuples
having at least one element, with any identifier and any type. The PE stops when either
input is exhausted, but it is an error if they are not both exhausted (note the interaction with
the semantics of repeat enough).

Connections

Each PE has named input and output connections. The names of the inputs and outputs of a
PE must form a set, i.e. the same name may not occur as both an input and an output for a
particular PE. Variable numbers of inputs or outputs all with the same purpose are provided
by using an array notation.

3 Systematic Design of DMIL based on Metamodelling 13
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Listing 1: PE definition example

name ”SQLQuery”

inputs <
exp r e s s i on : S t r ing : SQLquery
dataResource : EPR : RDBidentity
>

outputs <
data : [<anyId : any (T1) , . . . >] : Resu l tSet
>

iteration l o ck s t ep ( dataResource ; exp r e s s i on ) −> data

stop empty ( dataResource ) OR empty ( exp r e s s i on ) OR notWanted ( data )

cardinality card ( dataResource ) = card ( exp r e s s i on ) = card ( data )

error ( empty ( dataResource ) AND NOT empty ( exp r e s s i on ) ) OR
( empty ( exp r e s s i on ) AND NOT empty ( dataResource ) )

Process Definition and Functions

Descriptions of DMI processes are compositions of existing PEs that already perform tasks
such as querying a data resource, transforming each tuple in a sequence, merging two input
streams, removing anomalies, normalising, classifying, etc. New composite PEs can be defined
by composing other PEs and can be registered for future use. Registered components can be
collected together to form a Composite Processing Elements (CPEs) that support a particular
data integration, data mining or domain-specific class of processing steps.

Functions may be used to name, parameterise and encapsulate any sequence of DMIL sentences
optionally ending with a return expression. They can yield an encapsulation, be used to pro-
gram patterns of composition and to represent DMI patterns. Using functions one can encode
repetitive and data-adaptive process patterns.

Parameters to functions can specify other functions, PEs, PE instances, data resources,
data collections, controls for generating literal data streams, sampling rates, repetition and
parallelisation targets and so on. Functions simplify the abstract machine by serving purposes
perceived as different by users and interaction tools, e.g. they represent:

• a composite PE, built by connecting other PEs, where they hide internal information
and prevent ambiguity over naming multiple PE instances;

• a packaged DMI-process definition that can be parameterised and activated through a
portal;

• the encoding of a pattern, such as repetition, parallelisation, all-meets-all, etc.;

• the encoding of an optimization strategy.
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3.3.3 Types Package

There are three type systems that are accommodated in the Types metamodel package, cor-
responding to the three conceptual domains of interest:

1. Core Types (or graph-construction types) are used to constrain all of the operations used
in describing, constructing and manipulating the graphs of PE nodes interconnected by
streaming connections. This type system is the same whatever DMI-application domain
— it uses structural type equivalence;

2. DMI Types are used to specify the inputs and outputs of the data-mining specific
PEs; these are mathematically based. These types describe the data streaming along
connections to and from PEs that perform data mining algorithms;

3. Domain Types describe the data input into, and output from, PEs and transmitted
through connections that correspond to values in an application domain. There may be
many versions of this type system for different application domains.

DiscreteContinuous Ordinal

DMIType

Unique

Discretized

Normalised

Categorical

Unique 
Sequence

Periodical

Sequence Text

AnyType

DomainTypeCoreType

Figure 8: DMI Types

3.3.4 Patterns Package

The Patterns metamodel package depends on the Core and Type metamodels. This package
contains a set of typical DMI pattern definitions that can be directly instantiated as DMI
processes. In DMIL , a DMI pattern is defined using a function which encapsulates PEs.
DMIL functions abstract data-flow graphs, contrary to traditional functions which abstract
a control-flow graph. Every DMIL function is expected to return a data-flow graph, which
could be embedded inside an exiting data-flow graph, or may be connected to other data-
flow components to form a bigger data-flow graph. In other words, DMIL functions allow
the composition of complex data-flow graphs from well-defined functional abstractions of
recurring data-flow patterns.
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3.4 DMILConcrete Syntax

DMILprovides special textual and graphical notation for communicating about DMI processes.
This concrete syntax plays a crucial role in the DMILdesign since it is used to encode a DMI
process as a request to the enactment engine.

3.4.1 Textual Syntax

MDA supports the transformation of higher-level models into platform-specific models that
can be used to generate implementation-level models. The transformation of the source model
into a target model is based on transformation rules. There are different methods that can be
used for defining the transformation rules. The concrete textual syntax (DMIL-t ) is directly
generated from the abstract syntax model. The syntax for model elements is described using
the Extended Backus-Naur Form (EBNF) notation. Listing 2 shows an example of a DMI
process in the DMIL concrete textual syntax. Listing 3 shows an example of a DMI pattern
definition in DMIL .

Listing 2: Example DMI process in DMIL

use eu . admire . pe . SQLQuery ;
use eu . admire . pe . MergeTuple ;
use eu . admire . pe . De s c r i p t i v eS t a t s ;
use eu . admire . pe . B u i l dC l a s s i f i e r ;

Connection sqlQuery1 ;
Connection sqlQuery2 ;
Connection resourceEPR ;

/∗ I n i t i a l i s e ∗/

SQLQuery query1 = new SQLQuery ( ) ;
SQLQuery query2 = new SQLQuery ( ) ;
TupleMerge merge = new TupleMerge ( ) ;
B u i l dC l a s s i f i e r b u i l dC l a s s i f i e r = new Bu i l dC l a s s i f i e r ( ) ;
De s c r i p t i v eS t a t s d e s c r i p t i v e S t a t s = new Des c r i p t i v eS t a t s ( ) ;

/∗ Query resources ∗/

sqlQuery1 => query1 . exp r e s s i on ;
sqlQuery2 => query2 . exp r e s s i on ;
resourceEPR => query1 . dataResource ;
resourceEPR => query2 . dataResource ;
sqlQuery1 => query1 . exp r e s s i on ;
sqlQuery2 => query2 . exp r e s s i on ;

/∗ Merge data ∗/

query . data => merge . data1 ;
query . data => merge . data2 ;

/∗ Compute s t a t i s t i c s ∗/

merge . data => s t a t . data ;

/∗ Bu i l dC l a s s i f i e r ∗/

merge . data => b u i l dC l a s s i f i e r . data ;
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Listing 3: DMI function implementing a DMI pattern

use eu . admire . pe . SQLQuery ;
use eu . admire . pe . MergeTuple ;
use eu . admire . pe . De s c r i p t i v eS t a t s ;

f unc t i on ComputeDescr ipt iveStats ( )
PE (<Connection query1 , query2 , re source> => <connect ion s t a t i s t i c s >) {

Connection sqlQuery1 ;
Connection sqlQuery2 ;
Connection resourceEPR ;

/∗ I n i t i a l i s e ∗/

SQLQuery query1 = new SQLQuery ( ) ;
SQLQuery query2 = new SQLQuery ( ) ;
TupleMerge merge = new TupleMerge ( ) ;
B u i l dC l a s s i f i e r b u i l dC l a s s i f i e r = new Bu i l dC l a s s i f i e r ( ) ;
De s c r i p t i v eS t a t s d e s c r i p t i v e S t a t s = new Des c r i p t i v eS t a t s ( ) ;

/∗ Query resources ∗/

sqlQuery1 => query1 . exp r e s s i on ;
sqlQuery2 => query2 . exp r e s s i on ;

resourceEPR => query1 . dataResource ;
resourceEPR => query2 . dataResource ;

sqlQuery1 => query1 . exp r e s s i on ;
sqlQuery2 => query2 . exp r e s s i on ;

/∗ Merge data ∗/

query . data => merge . data1 ;
query . data => merge . data2 ;

merge . data => d e s c r i p t i v e S t a t s . data ;

r e turn PE(<Connection query1 = sqlQuery1 ;
Connection query2 = sqlQuery2>;
Connection r e s ou r c e = resourceEPR> =>
<Connection s t a t i s t i c s = d e s c r i p t i v e S t a t s . s t a t s >) ;

}

3.4.2 DMILGraphical Notation

DMILhas its own graphical representation that supports comprehension of the DMI processes
and facilitates the design phase of the preparation of DMIL requests. In order to define a
graphical modelling language it is necessary to define the graphical notation of the language.
Since DMILhas only a few elements for describing a DMI process (as defined by the meta-
model) we provide the graphical notation only for the PE and Connection as shown in Figure
9. The PEs are connected using the connections as shown in Figure 10. As we have noted,
DMIL is not designed for encoding data mining algorithms but rather for composing graphs
consisting of various PEs which provide those algorithms. The graphical notation is spe-
cially important for tools such as the ADMIRE Process Designer, which can represent a DMI
Process in visually readable form.
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Figure 9: Notation DMILProcessing Element and Connection
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Figure 10: Example of the graphical notation

3.5 DMIL semantics

The language semantics describes the meaning of language concepts. The main concepts of
DMIL are described in the ADMIRE Whitepaper [3].

3.6 The Process Designer

In order to design DMILprocesses we have developed a specialized tool named the Process
Designer (PD). The PD is a graphical environment that allows DMI experts to compose PEs
and create complex DMI processes. It enables one to define new PEs by providing their
characteristics or to build new PEs by composing existing PEs and their parameterisation.
As a result, the tool produces DMIL requests. Since we follow strictly the MDA approach,
the implementation is based on two major phases. The first is the modelling phase during
which an internal Ecore model is developed; the second is the code generation and code
customization phase. The Ecore is a platform-independent metamodel used by Eclipse and
its modelling framework (EMF)1 to design other models. The Ecore model is based on the
elements defined in the Core Metamodel Package (eu.admire.dmil.core) and contains a set of

1http://www.eclipse.org/emf
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classes for representing designed DMI processes. This model is combined with a graphical
definition model and tool definition model in order to produce the final Java code. The
graphical model is created using the Eclipse graphical modelling framework (GMF)2, which
specifies the visual environment of the Process Designer. The current version of the PD is
fully integrated into the Eclipse platform. More details about implementation of the tool can
be found in ADMIRE D5.3 [22].

To support the design and implementation of text editing facilities many concrete syntax
and model mapping tools have been considered. We have chosen EMFText [15], Eclipse’s
integrated tool for agile textual syntax development. EMFText allows us to define a plain
textual syntax for Ecore-based metamodels and to generate components to load, edit and store
model instances. This feature enables us to use a special form of concrete syntax specification
and generate the DMIL textual representation directly from a model instance, and conversely
to load model instances from textual representations.

3.7 Summary

In this section we have discussed the architecture of DMIL and our systematic approach to
its design based on metamodelling. Moving from traditional ad-hoc design methodology
which was, to the best of our knowledge, applied to the design of all workflow languages
up until now, brings two important benefits. Firstly, the design process leads to a more
consistent, coherent, and complete language. Secondly, the language metamodels associated
with different levels of the language architecture and DMI process representations can be
mapped to existing integrated program development environments, like Eclipse. This allows
the automatic generation of target language sentences and enables us to build domain-specific
applications, based on DMIL concepts, effectively.

2http://www.eclipse.org/gmf
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4 DMI Process Optimisation

The full potential of large-scale DMI platforms, which are typically geographically distributed
and involve multi-level concurrency, can only be reached when the DMI processes to be en-
acted by them are programmed effectively. So far this has proved to be a difficult task.
The handcrafting of data processing graphs, having arbitrary data operators as nodes and
their producer-consumer interactions as edges, to make optimal use of available resources and
satisfy other constraints, is a daunting task [10]. The efficiency of the enactment depends
critically on the proper utilization of architectural features of the underlying hardware, mak-
ing automatic support for DMI process development highly desirable. Work in the field of
programming environments for DMI platforms spans several broad areas, including the de-
sign of very high-level specification tools, e.g. workflows [9], and the development of new data
processing languages, e.g. Athena Distributed Processing Query Language [10].

Figure 11: Characteristics of DMIL , workflows and Java.

Different languages have different characterisations with respect to their complexity, flexi-
bility and granularity, as pictured in Figure 11 for DMIL , Workflows and Java. This influences
the methods used for their optimization. The three dimensions are defined as follows:

1. granularity/abstraction: the level on which programs are defined;

2. complexity/functionality: the coverage of typical programming language features, e.g.
control structures, etc.;

3. flexibility/extensibility: the applicability to new architectures, data types and domains.

Java is a fully-fledged programming language with a rich type system and control struc-
ture, defining programs at quite low level. Recent workflow languages [30] for distributed
environments typically support some forms of control structure, operate on a predefined level
(mostly Web services) which in turn restrict their flexibility to new architectures and domains,
particularly with respect to optimization possibilities. DMIL is a language for data-intensive
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systems process engineering operating on the high abstraction level of Processing Elements
(PE) where a PE is a unit of data processing functionality implemented in whatever form,
e.g. Web services or OGSA-DAI activities. Each PE has inputs and outputs with connec-
tions defining the data flowing between them. DMILdoes support a limited set of typical
programming language features, e.g. control structures, but focuses primarily on the extensi-
bility and flexibility of the description of data processing functionality (patterns), data flows,
and associated domain types for optimization.

Our research goal is to extend our work on DMILby a novel research area called DMI
process optimization engines (DMI-POEs) that transforms specifications (codes) produced
by tools such as the ADMIRE Process Designer or written directly by a domain expert into
semantically equivalent codes that can be efficiently executed on a target machine. This
functionality can be also called as automatic DMI process restructuring; it concentrates on
the transformation of DMI process specifications for large-scale scientific and engineering
DMI applications. The original code produced by the Process Designer or written by the user
can often be made to run faster or take less space, or both. This improvement is achieved
by program transformations that are traditionally called optimizations, although the term
’optimization’ is a misnomer because there is rarely a guarantee that the resulting code is the
best possible [1].

The emphasis of this section is on DMI platform-independent optimizations, shown in the
upper part of Figure 12, which are program transformations that improve the target code
without taking into account any specific properties of the target platform such as dead code
elimination and similar [14].

Figure 12: Optimization possibilities of DMI processes.

Low-level platform-dependent optimizations take into account the physical environment of
any given DMI process execution and handle such things as Process Element placement and
binding (e.g., late binding for choosing among concrete service implementations at workflow
runtime [9]) as well as pipelining [12].

Optimizing transformations are based on the pre-execution analysis of DMI process spec-
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ifications or workflows usually referred to, in the compiler optimization domain, as flow anal-
ysis. Flow analysis [14] consists of both control flow analysis and data flow analysis and is a
fundamental prerequisite for many important types of code improvement. In general, control
flow analysis precedes data flow analysis. Control flow analysis is the encoding of pertinent,
possible program control flow structures or flows of control, usually in the form of one or more
graphs. Data flow analysis is the process of ascertaining and collecting information prior to
program execution about the possible modification, preservation, and use of certain entities
(such as values or various attributes of variables) in a computer program. Flow analysis is a
prerequisite for data dependence analysis, which is at the heart of our restructuring system. It
computes a relation between activities which essentially determines whether or not they can
be executed concurrently (thus exposing potential parallelism), and that means the removal of
any unnecessary order between the activities of the DMI process. Another important aspect
of DMI process optimization has close relations with traditional query optimization [16] and
execution in traditional databases, with the differences that component Process Elements
may represent arbitrary operations on data with unknown semantics, algebraic properties
and performance characteristics and are not restricted to come from a well-known fixed set
of operators, e.g. a relational algebra.

4.1 Components of a DMI Process Optimization Engine

The following characteristics of DMIL reduce the application space of typical optimizations
[14, 2, 1] regularly performed by compilers:

• DMIL is a high-level language for specifying data processing flows in an abstract and
reusable manner;

• PEs may represent arbitrary data processing with unknown semantics, algebraic prop-
erties and performance characteristics;

• control structures are used just for connection setting (see Listing 1).

Figure 13: Components of a DMI Process Optimization Engine.

These facts puts the focus on data flow/dependence analysis and subsequent possible
transformations, resulting in Figure 13 showing the components of a DMI Process Optimiza-
tion Engine where the size of the boxes represent their importance to our research direction.

The definition of data dependence [2]:

There is a data dependence from statement S1 to S2 (statement S1 depends on S2) if and
only if (1) both statements access the same memory location and at least one of them stores

into it, and (2) there is a feasible run-time execution path from S1 to S2.
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The best program transformations are those that yield the most benefit for the least effort,
as stated by [1]. The transformations provided by an optimizing engine should have several
properties:

1. a transformation must preserve the meaning of programs. That is, ’an optimization’
must not change the output produced by a program for a given input, or cause an error
that was not present in the original version of the source program. More formally, a
valid transformation is defined in [2] as:

A transformation is said to be valid for the program to which it applies if it preserves
all dependencies in the program.

2. a transformation must, on the average, speed up programs or reduce the memory space
used by the running program by a measurable amount. If it does not produce a suitable
efficient program, application developers will abandon attempts to use the language [2];

3. A transformation must be worth the effort. It does not make sense for a compiler writer
to expend the intellectual effort to implement a code-improving transformations, and to
have the compiler expend the additional time compiling source programs, if this effort
is not repaid when the target programs are executed.

4.2 DMI POE within the ADMIRE Architecture

Including the DMI POE into the overall creation of DMI process can happen at different
places in the architecture, depending on whether optimization is seen as a reoccurring phase
suggesting improvements in an iterative process to define ones DMI process, or as a one-
shot effort performing fully automated unsupervised improvements on the final version of a
DMI process. If we prefer the former, the DMI POE is invoked by the Process Designer
continuously, needing access to the same Registry for assessing possible improvements. If we
go for the latter, the DMI POE might be located close to or even inside the Gateway as a
phase after the initial syntax and correctness checking of submitted DMIL [3]. In both cases,
as DMI POE is focusing on high level optimizations, no additional information has either to
be included or submitted with the updated DMIL as all the (logical) improvements are again
expressed in DMIL .

If an optimization task takes too long (e.g. due to weak DMI POE performance) it should
not be included in the designed process; and if the confidence in the suggested improvements
is low it should not be allowed at the Gateway level. This relation is depicted in Figure 14.
Note that there could be more than one DMI POE with different characteristics, e.g. one with
fast but low confidence optimizations usable at Process Designer level and one with slower but
high confidence optimizations applicable at Gateway level, making a hybrid solution possible
as well.

4.3 Optimization Examples

In Figure 15, we give an example of a data mining and integration workflow [17]. The data
flow between activities has been annotated with the composite type of the data.

In the context of DMI the composite types mentioned have the following meaning:
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Figure 14: Depending of the characteristics of a DMI POE component with respect to confi-
dence and performance restricts its application at different architectural places.

• Set: is a set of tuples without any ordering on the tuples, whose members are distinct;

• Bag: can contain duplicate tuples without any ordering on the tuples. This provides
the most flexible options for making activities parallel as we need not to be concerned
with any duplicates or ordering of tuples;

• Sequence: is a bag of tuples that is ordered.

When a transformation specified on a composite type is performed on data, the semantics
of the data may change. Furthermore, it is possible that data are lost in the transformation.
A transformation t is neutral if it transforms c into c′ without losing any data. Of course,
a neutral transformation can still change the semantic interpretation of data. The following
transformations are all neutral:

• Set2Bag

• Set2UniqueSequence

• UniqueSequence2Sequence

• Set2UniqueSequence

• Set2Sequence

• Bag2Sequence

For every composite type identified above a neutral transformation to Sequence exists, so we
can always safely transform any composite type to it.

One sub-workflow called for data cleaning can be identified as well as one for model
creation and validation. The aim of the overall workflow is to construct a classification model
of the data from sources 1 and 2 in the form of a decision tree. This model shall then be
deployed on different data using sources 3 and 4. In the workflow we know from our table
of activities that a classification algorithm requires a Set as the composite input type. This
workflow uses n-fold validation to prevent the over-fitting of the model to the data, which
requires a Set as input. A Seq2Set activity provides this functionality as the PE ’Fill missing
values C’ before n-fold validation outputs a Sequence.

If we optimize the workflow by hand to incorporate some parallelism, some changes are
obvious. The result is shown in Figure 17. Three important changes were made. As each of
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the activities can equally handle a Set, we can bring forward the Seq2Set and then use a Set
as the composite type all throughout the cleaning process as well. This will allow us to run
activities in the cleaning process in parallel by splitting up the data and creating multiple
instances of the cleaning activities. This is possible as we know the composite type required
at the n-fold validation step requires only a Set as its input. Another important but not so
obvious change is the re-ordering of the PE ’Quantize a’ after ’Filter a>5’ as this PE reduces
the cardinality in contrast to the other.

So let us take a close look what is required in order to automate this optimization.

Figure 15: An example of a data integration and mining process that depends on multiple
data sources and a cleaning process before the classification phase can start.

4.3.1 Composite Input Type Propagation

First, we need to know if any of the PEs really needs a sequence as input or not. Three
quickly identified by name are ’Sequence Merge’, ’Seq2Set’ and ’Sequence Transform’. This
leads us to the first description requirement of PEs.

Requirement 1: The required composite input types of a PE and their relation to the com-
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posite output types have to be defined.

But this doesn’t resolve the fact that ’Sequence Merge’ and ’Seq2Set’ both need a sequence
as input and are part of the cleaning process. We address this issue by the second description
requirement of PEs.

Requirement 2: Standard ADMIRE PEs fulfilling a defined function, e.g. merge or Com-
positeTypeX2CompositeTypeY, on specific composite types have to be labeled as such in order
to be replaceable by the appropriate equivalent, or omitted altogether.

Applying the descriptions above results in acceptable composite input types ’Seq’, ’Set’,
’Bag’ for all the PEs of the cleaning process until the PE ’n-fold validation’ which requires
a Set. Set is typically preferred over a Sequence as one has not to maintain order. Applying
now the Seq2Set transformation as early as possible leads to one Seq2Set PE after each data
source, requiring replacement of the ’Sequence Merge’ PE with a ’Set Merge’ PE as well.

Via forward type propagation [14] the outputs’ composite types are re-calculated until
n-fold cross validation, where Requirement 2 allows the optimizer to omit the ’Seq2Set’ PE
before it as the output type of the PE before the n-fold cross validation already provides a
Set.

4.3.2 Transformations

We now have to define what has to be known about a PE and composite input types in order
to parallelize parts of a workflow. In order to decide if a sequence of PEs can be executed
in parallel, we need to know on which part of their composite input/output types they really
operate on (read/write). This leads us to the third description requirement of PEs.

Requirement 3: PEs have to define which parts of the input type they read (typically columns
of tuples contained in the composite types) and which part of the output type they write in
order to be able to generate a data dependence graph. These parts of a composite input/output
type are called ’primary’, as the PE really operates on them.

An example annotation of the ’Normalise’ PE regarding this additional metadata has to
include the following:

• Composite Input Type: Set

• Parts actually read: PARAM

• Composite Output Type: Set

• Parts actually written: PARAM

where PARAM denotes an identifiable part of a composite type. Note that in our concrete
example PARAM needs to identify just one column in a tuple. Although this information is
enough for dependency analysis on a high level, for later low level optimizations (e.g. deciding
about PE distribution) it will be important to know the ’secondary’ parts of a composite type
flowing between PEs as well.

Having this additional description for PEs we can infer that this sequence is in fact par-
allelisable since all data dependences are still fulfilled if we operate on them in parallel and
composite data types persist. Operating just on known parts of the data we can introduce
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a Split/Merge PE combination before/after the sequence to parallelize. This leads us to the
first transformation heuristic for DMI optimization.

Transformation Heuristics 1: Provide just as much data as necessary to a PE to operate
in parallel. The original data input and output of the sequential process transformed via
Split/Merge PEs must remain the same in order to maintain the original data flow semantics
(this is also important on the lower level, e.g. columns in tuples).

Note that we distinguish transformation from re-ordering. The former is the application of
a certain pattern on a sub-graph, changing its structure, while the later is a simple re-ordering
of the PEs which does not change the structure of a sub-graph.

Figure 16: Applying Split/Merge transformation heuristics on part of cleaning process.

4.3.3 Re-Ordering

In order to allow the optimizer to perform PE re-ordering, another description requirement
of PEs has to be fulfilled.

Requirement 4: PEs have to define the relation of input cardinality and output cardinality.
Having this information at hand we can introduce another transformation heuristic for

DMI optimization.

Transformation Heuristics 2: Re-order PEs in such a manner that cardinality-reducing
ones are applied on the data flow as early as possible whilst preserving data dependencies and
intended data flow semantics.

Note that in Figure 16 we just re-ordered the PEs in the sequence which we parallelized,
while in fact it might be possible to apply the ’Filter’ PE much earlier, e.g. after the custom
PE ’Set Transform’, thereby reducing the number of tuples even earlier in the data flow
processing.
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Figure 17: An equivalent data integration and mining process to that shown in the Figure
above where the activities are rearranged to improve the performance by allowing activities
to execute in parallel.

4.3.4 Handling Loops

The second dashed box in Figure 15 and 17 are a re-usable pattern named k-fold cross
validation. K-fold cross validation [20] is used in data mining to determine how accurately a
mining algorithm will be able to predict data that it was not trained on. When using the k-fold
method, the training dataset is randomly partitioned into k groups. The learning algorithm is
then trained k times, using all of the training set data points except those in the k-th group.
Listing 4 shows a representation of the k-fold cross validation pattern in DMILusing loops for
setting up the connections between the PE arrays. A simplified graphical representation is
given in Figure 18 for k = 2.

From the graphical representation it can easily be observed that the DMIL explicitly spec-
ifies a parallel execution of the k-fold cross validation pattern where the sub-graph in each
dashed box represents one iteration of the for-loop. It uses problem (data) partitioning [14],
where the same data processing graph is applied independently on different parts of the data,
achieved by the ’ListRandomSplit’ PE.
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Figure 18: Simplified graphical representation of k-fold cross validation for k=2.

4.4 Cleaning Process: Graphical Design and Optimization

4.4.1 Graphical Representation

The visualisation of the unoptimized process using the graphical notation described in Section
3.4 and used by the Process Designer is shown in Figure 19 on page 31.

4.4.2 DMILRepresentation Before Optimization

The graphical representation depicted in Figure 19 is automatically converted by the Process
Designer into the form shown in Listing 5 on page 33.

4.4.3 DMILRepresentation After Optimization

Basically, a DMIL code after parallelising optimisations proposed in this document is just a
serial code with directives called pragmas placed at appropriate points.

A pragma is a special instruction to the compiler. Also called a pseudoinstruction, the
pragma does not change the meaning of a program. It simply passes information to the
DMIL compiler and interpreter processing the DMIL code in the Gateway. In DMIL a pragma
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(directive) takes the form:

//@DMIL:...

In the following code, the directives are expressed in the spirit of the OpenMP standard
[28]. The construct

//@DMIL:PARALLEL
code-block

where code-block denotes a DMIL statement or a list of DMIL statements enclosed in { and },
specifies that a team of processes or thread can execute code-block.

The SECTIONS directive is conceptually a work-sharing construct. It specifies that
the enclosed section(s) of code are to be divided among the processes (threads) in the team
specified by //@DMIL:PARALLEL.

Example of an appropriate code pattern:

//@DMIL:PARALLEL
{
//@DMIL:SECTIONS

{
//@DMIL:SECTION

code-block
//@DMIL:SECTION

code-block
...

//@DMIL:SECTION
code-block

}
}

For example, if there are 10 sections, they can be executed by one, two, . . . , ten process,
or more if there is a nested parallelism; the work is appropriately scheduled and balanced.
The optimized code with the inserted pragmas is shown in Listing 6 on page 34. In this form
it is passed to the Gateway.

Remark: Directives PARALLEL, SECTIONS and SECTION can include optional param-
eters specifying e.g., which variables (datasets) shall be considered as private for executing
processes (threads).

4.5 Summary

This section on DMI process optimization identified characteristics of DMIL and their implica-
tions for an automatic DMI Process Optimization Engine. By elaborating on the example of
a typical data integration and mining process, requirements on Process Element descriptions
have been defined as well as initial transformation heuristics on top of them. The importance
of the well-defined handling of composite types has been illustrated via composite type prop-
agation as a basis for later transformations and PE re-ordering. The implications of loops for
setting up connections between arrays of PEs were studied.
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Figure 19: Representation of the cleaning process using DMIL graphical notation

Future work will include detailed elaboration of all three sub problems: type propagation,
transformations patterns and PE re-ordering; as well as developing DMI POEs implementing
them and their evaluation with respect to confidence and performance.
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Listing 4: k-fold cross validiation pattern in DMIL .

use eu . admire . TuplePro ject ion ;
use eu . admire . TupleMaker ;
use eu . admire . C l a s s i f y ;
use eu . admire . Unl imitedBuf fe r ;
use eu . admire . ListMerge ;
use uk . org . ogsada i . ListRandomSplit ;
use eu . admire . ListMaker ;
use eu . admire . B u i l dC l a s s i f i e r ;
use eu . admire . Evaluator ;

Connection i nputVar i ab l e s ;
Connection outputVar iab le s ;
I n t eg e r k = 2 ;
ListRandomSplit l r s = new ListRandomSplit ( k ) ;
Unl imitedBuf fe r [ ] b u f f e r = new Unl imitedBuf fe r [ k ] ;
ListMerge [ ] l i s tMerge = new ListMerge [ k ] ;
TuplePro ject ion [ ] p r o j e c t Inpu tVar i ab l e s = new TuplePro ject ion [ k ] ;
TuplePro ject ion [ ] pro j ec tOutputVar iab le s = new TuplePro ject ion [ k ] ;
B u i l dC l a s s i f i e r [ ] b u i l d C l a s s i f i e r = new Bu i l dC l a s s i f i e r [ k ] ;
Evaluator [ ] eva lua to r = new Evaluator [ k ] ;
C l a s s i f y [ ] c l a s s i f y = new C l a s s i f y [ k ] ;
TupleMaker [ ] tupleMaker = new TupleMaker [ k ] ;
ListMaker l i s tMaker = new ListMaker ( ) ;
f o r ( In t eg e r i = 0 ; i < k ; i = i +1) {
f o r ( In t eg e r j = 0 ; j < k ; j = j+1) {
i f ( i == j ) {
l r s . dataOut [ j ] => bu f f e r [ i ] . dataIn ;

}
e l s e {
l r s . dataOut [ j ] => l i s tMerge [ i ] . dataIn [ j ] ;

}
}
l i s tMerge [ i ] . dataOut => b u i l dC l a s s i f i e r [ i ] . dataIn ;
inputVar i ab l e s => pro j e c t Inpu tVar i ab l e s [ i ] . columnIds ;
bu f f e r [ i ] . dataOut => pro j e c t Inpu tVar i ab l e s [ i ] . dataIn ;
b u i l dC l a s s i f i e r [ i ] . c l a s s i f i e r => c l a s s i f y [ i ] . c l a s s i f i e r ;
p r o j e c t Inpu tVar i ab l e s [ i ] . r e s u l t => c l a s s i f y [ i ] . dataIn ;
c l a s s i f y [ i ] . proposedClass => eva lua to r [ i ] . proposedClass ;
bu f f e r [ i ] . dataOut => pro jec tOutputVar iab le s [ i ] . dataIn ;
outputVar iab le s => pro jec tOutputVar iab le s [ i ] . columnIds ;
pro j ec tOutputVar iab le s [ i ] . r e s u l t => eva lua to r [ i ] . d e s i r edC l a s s ;
b u i l dC l a s s i f i e r [ i ] . c l a s s i f i e r => tupleMaker [ i ] . e lement [ 0 ] ;
eva lua to r [ i ] . s c o r e => tupleMaker [ i ] . e lement [ 1 ] ;
tupleMaker [ i ] . output => l i s tMaker . input [ i ] ;

}
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Listing 5: Cleaning process in DMIL.

use eu . admire . Seq2Set ;
use eu . admire . SeqTransform ;
use eu . admire . SeqMerge ;
use eu . admire . Quantize ;
use eu . admire . MergeColumn ;

func t i on MergeAndCleanPattern−Seq (

PE (<Connection inData> => <Connection outData>) F i l t e r ,
PE (<Connection inData> => <Connection outData>) Normaliser ,
PE (<Connection inData ,Connection r ep l a c e r> => <Connection outData>)

M i s s i ngVa lu e sF i l l e r
) PE (<Connection inData1 , inData2> => <connect ion outData>) {

Connection inputData1 ;
Connection inputData2 ;

/∗ I n i t i a l i z e phase ∗/

SeqTransform trans form = new SeqTransform ( ) ;

SeqMerge merge = new SeqMerge ( ) ;

Quantize quant i ze = new Quantize ( ) ;

F i l t e r f i l t e r = new F i l t e r ( ) ;

Normal i ser norma l i s e r = new Normal i ser ( ) ;

M i s s i ngVa lu e sF i l l e r f i l l e r = new Mis s i ngVa lu e sF i l l e r ( ) ;

Seq2Set seq = new Seq2Set ( ) ;

/∗ Transform phase ∗/

inputData2 => trans form . inData ;

/∗ Merge phase ∗/

inputData1 => merge . inData1 ;
trans form . outData => merge . inData2 ;

/∗ Cleaning phase ∗/

merge . outData => quant i ze . inData ;

quant i ze . outData => norma l i s e r . inData ;

norma l i s e r . outData => f i l t e r . inData ;

f i l t e r . outData => f i l l e r . inData ;

f i l l e r . outData => seq . inData ;

r e turn PE(<Connection inData1 = inputData1 ; Connection inData2 = inputData2> =>
<Connection outData = seq . outData>) ;

}
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Listing 6: Cleaning process in DMIL after optimization.
use eu . admire . Seq2Set ;
use eu . admire . SetTransform ;
use eu . admire . SetMerge ;
use eu . admire . SplitColumn ;
use eu . admire . Quantize ;
use eu . admire . MergeColumn ;

func t i on MergeAndCleanPattern−Par (

PE (<Connection inData> => <Connection outData>) F i l t e r ,
PE (<Connection inData> => <Connection outData>) Normaliser ,
PE (<Connection inData ,Connection r ep l a c e r> => <Connection outData>)

M i s s i ngVa lu e sF i l l e r
) PE (<Connection inData1 , inData2> => <connect ion outData>) {

Connection inputData1 ;
Connection inputData2 ;

/∗ I n i t i a l i z e phase ∗/
Seq2Set seq1 = new Seq2Set ( ) ;
Seq2Set seq2 = new Seq2Set ( ) ;
SetTransform transform = new SetTransform ( ) ;
SetMerge mergeSet = new SetMerge ( ) ;
SplitColumn s p l i t = new SplitColumn ( ) ;
F i l t e r f i l t e r = new F i l t e r ( ) ;
Normal i ser norma l i s e r = new Normal i ser ( ) ;
M i s s i ngVa lu e sF i l l e r f i l l e r = new Mis s i ngVa lu e sF i l l e r ( ) ;
Quantize quant i ze = new Quantize ( ) ;
MergeColumn mergeColumn = new MergeColumn ( ) ;

/∗ Transform phase ∗/
inputData1 => seq1 . inData ;
inputData2 => seq2 . inData ;
seq2 . outData = transform . inData ;

/∗ Merge phase ∗/
trans form . outData => merge . inData1 ;
seq2 . outData => merge . inData2 ;

/∗ S p l i t phase ∗/
merge . outData => s p l i t . inData ;

/∗ Clean phase ∗/
//@DMIL:PARALLEL
{
//@DMIL:SECTIONS

{
//@DMIL:SECTION

{
s p l i t . outData1 => f i l t e r . inData ;
f i l t e r . outData => quant i ze . inData ;

}
//@DMIL:SECTION

s p l i t . outData2 => norma l i s e r . inData ;
//@DMIL:SECTION

s p l i t . outData3 => f i l l e r . inData ;
}

}

/∗ Merge phase ∗/
quant i ze . outData => mergeColumnt . inData1 ;
f i l l e r . outData => mergeColumnt . inData2 ;
norma l i s e r . outData => mergeColumnt . inData3 ;

r e turn PE(<Connection inData1 = inputData1 ; Connection inData2 = inputData2> =>
<Connection outData = mergeColumn . outData>) ;

}
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5 DMI Ontology

In this section we describe the Platform Ontology and how it interacts with the other AD-
MIRE components, especially the ADMIRE Registry [23] and the Process Designer. Later we
describe how the processing elements — key components in the ADMIRE architecture —n
are described and used in the ontology.

5.1 Platform Ontology

The Process Designer offers to users a set of operators from which to build DMI workflows.
These operators are basically Processing Elements. The users choose the Processing Elements
that they need and try to build a new DMI workflow [6]. The development of a DMI workflow
is a complex task — it is necessary to know what these PEs do and how to connect them. Users
need information about what the PEs do and what their inputs and outputs are. The Platform
Ontology represents the lowest elements of the CRISP-DMI model that the users access when
designing a new DMI process. In this ontology we represent the most common PEs, the
“Structural Types” (ST), which are the representations of the elements that implement the
PEs and their inputs and outputs. These descriptions are complemented with descriptions of
logic axioms to allow the Process Designer to provide the users with guidance in the process
of designing DMI workflows. Figure 20 shows the main classes of the Platform Ontology; we
describe them below.

Figure 20: Platform Ontology Main Classes

• class “ProcessingElement”

In ADMIRE a Processing Element is “a primitive or composite software component
encapsulating a DMI algorithm and providing for its use in DMI processes. Multiple
instances may be used in one process. It has specified structure of inputs and outputs”.
Thus in the Platform Ontology PEs are described as specified. There are two subclasses
of “ProcessingElement” which are “PrimitiveProcessingElement” and “CompositePro-
cessingElement” [3]. Figure 21 shows some of the PEs represented in the Platform
Ontology.
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Figure 21: Platform Ontology Processing Elements representation

– subclass “PrimitiveProcessingElement”
This class represents the PEs which are not composed by other PEs. These PEs
represent primitive functions that may be enacted and perform some data min-
ing operation. The subclasses of the “PrimitiveProcessingElement” class are de-
scriptions of the data processing steps that users may need in the development
of their DMI workflows. Some of these subclasses are “BuildClassifier”, “Clas-
sify”, “Merge”, “DataAccess”, “SQLQuery” or “SQLUpdate”. Each “Primitive-
ProcessingElement” has its corresponding implementation class which is imple-
mented by a “StructuralType”.

– subclass “CompositeProcessingElement”
This class represents the PEs which are composed by two or more PEs. The
definition of this type of PE is based on Description Logics axioms and it has no
subclasses. In the class definition we specify that a “CompositeProcessingElement”
contains some PEs and the implementing ST will define the PEs that composes it.

• class “StructuralType”

This class represents the PE implementation functions which can be executed. In this
class the inputs and outputs of these functions and methods are represented. Typically
these STs are named using the name of the PE and adding “Service” at the end. This
“Service” word emphasizes the implementation status of the ST. It does not mean that
it is necessarily implemented by a Web service — it is simply the notation selected for
naming them. The subclasses of “StructuralType” are “BuildClassifierService”, “Clas-
sifyService”, “MergeService”, “DataAccessService”, “SQLQueryService”, “SQLUpdate-
Service”, etc. Figure 22 shows some of the Structural Types represented in the Platform
Ontology which implement the PEs.

– The “StructuralType” class contains three relations, “composedOf”, “hasInput”
and “hasOutput” (which are inherited by its subclasses). The relation “com-
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Figure 22: Platform Ontology Structural Types Representation

posedOf” is used to indicate that an ST is composed of several STs. This represents
a “CompositeProcessingElement” described before. The relations “hasInput” and
“hasOutput” represent respectively the inputs and outputs that an ST has. These
relations have as their domain the “DataType” class which represents the param-
eters of a function/method implementing a PE.

– DL Axioms
The DL axioms used in this class are two. First an axiom that specifies the disjoint
subclasses that the ST has. This is used in the PE for providing feedback about
which ST can be used at a certain point at design time. The second axiom is
a “covering axiom”, which is used to make explicit the need of a ST to be one
of its subclasses. This also allows the PE to launch a warning should a user do
something wrong when designing a DMI workflow.

• class “DataType”

The “DataType” class represents the data types used by the inputs and outputs rep-
resented in the “StructuralType” class. The subclasses of “DataType” are “EPR”
(including “DataEPR” or service EPRs), “Histogram”, “Integer”, “SQLSentence” and
“TupleList”. These are the initial data types so represented but more will be added
through extended representation of the PEs in the ontology. Figure 23 shows the current
data types represented in the ontology.

Other classes in the ontology are “DataMiningProperty”, “DomainGrounding”, “Domain-
Value” and “ProcessInstance” which complete the description of the data mining domain and
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Figure 23: Platform Ontology Data Types representation

provide the link between this ontology and the others.

5.2 Relation of the Platform Ontology with the ADMIRE Components

The Platform Ontology is integrated with other components of ADMIRE and interacts with
them to provide guidance to the user in the creation of DMI workflows. It also helps the
Process Designer in locating the PEs stored in the ADMIRE system. The components with
which the Platform Ontology interacts are the Process Designer, the ADMIRE Registry and
the Semantic Data Descriptor Assistant (SDDA) [21].

The Process Designer. Interaction with the Process Designer occurs through ‘recom-
mendations’ at design time. The user interacts with the ontology at design time, creating
instances of it. When the user is designing their DMI workflow, they create instances in the
Platform Ontology at the same time. When these instances are created consistency checking
is done at the ontology level. This checking allows the Process Designer to validate what
users are doing and provide suggestions to them.

The ADMIRE Registry. With the Registry, interactions happen when a user creates a
DMI workflow. At some point in time the user will need to access existing PEs developed by
other users; the Process Designer will communicate with the Registry, asking for these PEs.
The Registry accesses the ontology in which the PEs are described and wherein are stored the
existing instances of these PEs. Additionally, the ADMIRE Gateway uses the Registry to look
up supported processing elements to assist in the interpretation of submitted DMIL requests.
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The Service and Data Description Assistant (SDDA). The interaction of the Plat-
form Ontology with the SDDA is rooted in the interaction of the users with the Process
Designer. When users create their DMI workflows they also create instances of the classes
in the Platform Ontology through the agency of the SDDA (as implemented as an Eclipse
plugin). These instances represent the PEs that are being created/accessed by the users.

5.3 Processing Elements

As it is described in [3] Processing Elements are “A primitive or composite software component
encapsulating a DMI algorithm and providing for its use in DMI processes. Multiple instances
may be used in one process. It has a specified structure of inputs and outputs”. The initial
list of ADMIRE PEs is defined by the ADMIRE use cases; here we present some examples of
existing PEs, together with their OWL representation in the ontology:

• SQLQuery — SQLQuery states there are two inputs and one output and gives their
application-domain interpretation identifiers as SQLquery, RDBidentity and ResultSet
respectively. It consumes data first from ‘dataResource’ and then from ‘expression’ and
it always produces a value, with a structural type of ‘list of tuples’. The tuples will have
at least one element, with any identifier and any type. The PE stops when either input
is exhausted, but it is an error if they are not both exhausted (note the interaction with
the semantics of ‘repeat enough’).

name ”SQLQuery”

inputs <
exp r e s s i on : S t r ing : SQLquery
dataResource : EPR : RDBidentity
>

outputs <
data : [<anyId : any (T1) , . . . >] : Resu l tSet
>

iteration l o ck s t ep ( dataResource ; exp r e s s i on ) −> data

stop empty ( dataResource ) OR empty ( exp r e s s i on ) OR notWanted ( data )

cardinality card ( dataResource ) = card ( exp r e s s i on ) = card ( data )

error ( empty ( dataResource ) AND NOT empty ( exp r e s s i on ) ) OR
( empty ( exp r e s s i on ) AND NOT empty ( dataResource ) )

The OWL representation of the SQLQuery PE:

<owl : Class rd f : about=”#SQLQuery”>
<r d f s : subClassOf rd f : r e s ou r c e=”#P r im i t i v eP r o c e s s i n gE l emen t ”/>

<r d f s : subClassOf>
<owl : Res t r i c t i on>

<owl : onProperty
rd f : r e s ou r c e=”&CRISP−DMIOntology ; h a sS t r u c t u r a lTyp e ”/>

<owl : al lValuesFrom rd f : r e s ou r c e=”#SQLQueryServ ice ”/>
</owl : Res t r i c t i on>

</r d f s : subClassOf>
</owl : Class>
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<!−−
ht tp : //www. admire−p r o j e c t . eu/ o n t o l o g i e s / P la t fo rmOnto logy . owl#SQLQueryServ ice
−−>

<owl : Class rd f : about=”#SQLQueryServ ice ”>
<r d f s : subClassOf rd f : r e s ou r c e=”&CRISP−DMIOntology ; S t r u c t u r a lTyp e ”/>

</owl : Class>

• Merge — The Merge PE is a simple merge that takes data from both of its inputs in
arbitrary order and puts the same values out onto the stream data. The two input
types must be the same, but can be any type; they determine the type of the output.
It consumes all of the available data from each of its inputs and then stops.

name ”Merge”

inputs <
input1 : any (T)
input1 : any (R)
>
outputs <
data : any (S)
>
type rules T = R = S

iteration random( input1 | input2 ) −> data

stop ( empty ( input1 ) AND empty ( input2 ) ) OR notWanted ( data )

cardinality card ( input1 ) + card ( input2 ) = card ( data )

error T != R

And in OWL:

<owl : Class rd f : about=”#Merge”>
<r d f s : subClassOf rd f : r e s ou r c e=”#P r im i t i v eP r o c e s s i n gE l emen t ”/>
<r d f s : subClassOf>

<owl : Res t r i c t i on>
<owl : onProperty

rd f : r e s ou r c e=”&CRISP−DMIOntology ; h a sS t r u c t u r a lTyp e ”/>
<owl : al lValuesFrom rd f : r e s ou r c e=”#MergeSe rv i c e ”/>

</owl : Res t r i c t i on>
</r d f s : subClassOf>

</owl : Class>

<!−− ht tp : //www. admire−p r o j e c t . eu/ o n t o l o g i e s / P la t fo rmOnto logy . owl#MergeSe rv i c e
−−>

<owl : Class rd f : about=”#MergeSe rv i c e ”>
<r d f s : subClassOf rd f : r e s ou r c e=”&CRISP−DMIOntology ; S t r u c t u r a lTyp e ”/>

</owl : Class>

• SortedListMerge — The PE SortedListMerge takes two input streams and incrementally
consumes a value from both inputs. These are each sorted lists. It merges the values
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from these two lists and incrementally produces an output list on data. When both lists
have been consumed (from input1 and input2 ) it terminates the current output list and
starts on the next pair of input lists.

name ” So r t edL i s tMe rge ”

inputs <
input1 : [ any (T) ]
input2 : [ any (R) ]
>

outputs <
data : [ any (S) ]
>

type rules T = R = S

iteration l o ck s t ep ( inc r ementa l l y ( input1 ) ; i n c r ementa l l y ( input2 ) ) −>
i n c r ementa l l y ( data )

stop empty ( input1 ) OR empty ( input2 ) OR notWanted ( data )

cardinality
card ( input1 ) = card ( input2 ) = card ( data )
card ( elem ( input1 ) ) + card ( elem ( input2 ) ) = card ( elem ( data ) )

error (T != R) OR (NOT ascending ( input1 ) ) OR (NOT ascending ( input2 ) ) OR
( empty ( input1 ) AND NOT empty ( input2 ) ) OR
( empty ( input2 ) AND NOT empty ( input1 ) )

In OWL:

<owl : Class rd f : about=”#Sor t edL i s tMe rge ”>
<r d f s : subClassOf rd f : r e s ou r c e=”#P r im i t i v eP r o c e s s i n gE l emen t ”/>
<r d f s : subClassOf>

<owl : Res t r i c t i on>
<owl : onProperty

rd f : r e s ou r c e=”&CRISP−DMIOntology ; h a sS t r u c t u r a lTyp e ”/>
<owl : al lValuesFrom rd f : r e s ou r c e=”#So r t e dL i s tMe r g eS e r v i c e ”/>

</owl : Res t r i c t i on>
</r d f s : subClassOf>

</owl : Class>

<!−−
ht tp : //www. admire−p r o j e c t . eu/ o n t o l o g i e s / P la t fo rmOnto logy . owl#So r t e dL i s tMe r g eS e r v i c e
−−>

<owl : Class rd f : about=”#So r t e dL i s tMe r g eS e r v i c e ”>
<r d f s : subClassOf rd f : r e s ou r c e=”&CRISP−DMIOntology ; S t r u c t u r a lTyp e ”/>
<r d f s : subClassOf>

<owl : Res t r i c t i on>
<owl : onProperty rd f : r e s ou r c e=”&CRISP−DMIOntology ; ha s I npu t ”/>
<owl : onClass rd f : r e s ou r c e=”&CRISP−DMIOntology ; DataType”/>
<owl : c a r d i n a l i t y

rd f : datatype=”&xsd ; n onNega t i v e I n t e g e r ”>2</owl : c a r d i n a l i t y>
</owl : Res t r i c t i on>

</r d f s : subClassOf>
</owl : Class>
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5.4 Summary

In this section we have described the Platform Ontology which is used in ADMIRE for de-
scribing the Processing Elements that the users will create and the those that already exist.
The creation of these Processing Elements will generate instances that will be stored in RDF
foramt and will be available for the users via the ADMIRE Registry. In the ontology we
described the relations and restrictions that each PE has, among others their inputs and
outputs. We showed the relation of the ontology with the other components of ADMIRE as
well.

The next steps in the development of the ontology are to link the elements of this ontology
with the other ontologies (integrating all the descriptions of the ADMIRE project, which are
in the different ontologies i.e. CRISP-DMI Ontology or DM Ontology) and test the Platform
Ontology by means of the SDDA creating instances of PEs and the ADMIRE registry, which
will access these instances using SPARQL.
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6 Future Work

In this final section we describe future work for the next six months. This work can be divided
into two steps. The first one is a finalization of the DMIL language and its components and
the second one is a tight integration of the DMI ontologies. In order to accomplish the first
step we will need to describe DMIL semantics as well as to complete definitions of the abstract
and concrete syntaxes. The semantics is currently being described as a part of the ADMIRE
WhitePaper [3], and in the next months we will focus on a more systematic description of
all the main concepts of DMIL . To cover the whole abstract syntax of DMILwe will present
a complete set of models for each metamodel package. This will include taxonomies and
modeling of concepts relations. The complete version of the concrete textual syntax will
be released during the next six months together with the graphical notation. The concrete
textual and graphical syntax will also be included in the next version of the Process Designer,
which will be released at the of PM24. Regarding the second step, we will integrate the
already developed ontologies (i.e. CRISP-DMI, Data Mining and Platform ontologies) and
form the ADMIRE ontology.

Thus, we can summarise our research goals for PM24 as:

DMIL Semantics — complete a detailed description of the language concepts;

Abstract syntax — specify DMIL-m + taxonomies + types;

Concrete syntax — complete versions of DMIL-t + DMIL-g;

ADMIRE ontology — integrate CRISP-DMI, Data Mining and Platform ontologies.
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Jano van Hemert, Oscar Corcho, Carlos Buil Aranda, Marian Babik, and Rob Baxter.
ADMIRE – Towards the High-Level DMI Model, Language and Ontology. Deliverable
report D1.1, the ADMIRE Project, August 2008.

[7] Alan W. Brown. Model driven architecture: Principles and practice. Software and
Systems Modeling (SoSyM), 3(4):314–327, December 2004.

[8] Kai Chen, Janos Sztipanovits, and Sandeep Neema. Toward a semantic anchoring infras-
tructure for domain-specific modeling languages. In EMSOFT ’05: Proceedings of the
5th ACM international conference on Embedded software, pages 35–43, New York, NY,
USA, 2005. ACM.

[9] Y. Huang D. W. Walker, O. F. Rana and L. Huang. Workflow optimisation for e-science
applications. In International Conference on Information Technology Interfaces, 2005.

[10] M. Tsangaris et al. Dataflow processing and optimization on grid and cloud infras-
tructures. In Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering, 2009.

[11] Richard C. Gronback. Eclipse modeling project : a domain-specific language toolkit.
Addison-Wesley, 1 edition, April 2009.

[12] L. Han, C. Liew, J. Hemert, M. Atkinson, and A. Hume. Facilitating data mining and
integration using pipeline. In International Conference on e-Science, 2009.

[13] D. Harel and B. Rumpe. Meaningful modeling: what’s the semantics of ”semantics”?
Computer, 37(10):64–72, Oct. 2004.

[14] M.S. Hecht. Flow Analysis of Computer Programs. North Holland, 1977.

References 44



Report defining an iteration of the model and language: PM3 and DL3 D1.5 Project Internal

[15] Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, and Christian Wende.
Derivation and refinement of textual syntax for models. In ECMDA-FA ’09: Proceed-
ings of the 5th European Conference on Model Driven Architecture - Foundations and
Applications, pages 114–129, Berlin, Heidelberg, 2009. Springer-Verlag.

[16] Y. Ioanidis. Query optimization. In ACM Computing Survey, 1996.

[17] M. Atkinson J.V. Hemert and P. Brezany. Composite types in the context of parallel
service-oriented architectures for data mining and integration. In ADMIRE DELIVER-
ABLE XY, 2009.

[18] Fakhri Alam Khan, Yuzhang Han, Sabri Pllana, and Peter Brezany. Provenance support
for grid-enabled scientific workflows. Semantics, Knowledge and Grid, International
Conference on, 0:173–180, 2008.

[19] Anneke Kleppe. Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Addison Wesley Pub Co Inc, 1 edition, January 2009.

[20] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In International Joint Conference on Artificial Intelligence, 2009.

[21] Amy Krause, Carlos Buil, Rafał Ga̧siorowski, Branislav Simo, Michal Laclavik, Ivan
Janciak, and Rob Baxter. ADMIRE – Tools Development Report and Requirements
Analysis. Deliverable report D5.2, the ADMIRE Project, Feb 2009.

[22] Amy Krause, Ivan Janciak, Michal Laclavik, Branislav Simo, Maciej Jarka, Andrzej Bier-
nacki, and Marek Lenart. ADMIRE – Tools Development Progress Report. Deliverable
report D5.3, the ADMIRE Project, Aug 2009.

[23] Vivian Lee and work package partners. ADMIRE – Development and Deployment Report
for USMT V2: capabilities of USMT V2. Deliverable report D4.2, the ADMIRE Project,
Feb 2009.

[24] Jan Pettersen Nytun, Andreas Prinz, and Merete Skjelten Tveit. Automatic generation
of modelling tools. In ECMDA-FA, pages 268–283, 2006.

[25] Object Management Group. Meta Object Facility (MOF) 2.0 Core Specification. Tech-
nical Report formal/06-01-01, OMG, 2006. OMG Available Specification.

[26] Object Management Group. Object Constraint Language (OCL) 2.0. Technical Report
formal/06-05-01, OMG, 2006. OMG Available Specification.

[27] Object Management Group. XML Metadata Interchange (XMI), v2.1.1. Technical report,
OMG, 2007.

[28] OpenMP. http://openmp.org/wp/openmp-specifications/.

[29] David A. Schmidt. Denotational semantics: a methodology for language development.
William C. Brown Publishers, Dubuque, IA, USA, 1986.

[30] J. Yu and R. Buyya. A taxonomy of scientific workflow systems for grid computing. In
SIGMOD, 2005.

References 45


	Executive Summary
	Extended CRISP-DMI Model
	Provenance
	Optimisation

	Systematic Design of DMIL based on Metamodelling
	A Model-based DMIL
	Why Metamodelling ?
	Metamodelling Example
	MDA approach

	DMIL— A Software Domain Specific Language
	DMILAbstract Syntax Model
	Metamodel Packages
	Core Package
	Types Package
	Patterns Package

	DMILConcrete Syntax
	Textual Syntax
	DMILGraphical Notation

	DMILsemantics
	The Process Designer
	Summary

	DMI Process Optimisation
	Components of a DMI Process Optimization Engine
	DMI POE within the ADMIRE Architecture
	Optimization Examples
	Composite Input Type Propagation
	Transformations
	Re-Ordering
	Handling Loops

	Cleaning Process: Graphical Design and Optimization
	Graphical Representation
	DMILRepresentation Before Optimization
	DMILRepresentation After Optimization

	Summary

	DMI Ontology
	Platform Ontology
	Relation of the Platform Ontology with the ADMIRE Components
	Processing Elements
	Summary

	Future Work
	References

