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Preface

Data-Intensive Research is any research in any discipline where careful thought about how to use
data is essential for achieving success. Later chapters expand on this definition and demonstrate
the diversity of ways in which handling and interpreting data may be challenging. Chapter 1
gives a fuller introduction and shows why it is timely to discuss this topic.

The Data-Intensive Research workshop was run by the e-Science Institute (http://esi.ed.ac.uk)
at the University of Edinburgh for the week 15–19 March 2010. Over the course of the week
the workshop involved approximately 100 participants who are the authors of this report (see
Appendix A). The workshop was organised by those shown in Table 1 and followed the timetable
given in Appendix B. Various web resources were built before, during and after the workshop as
shown in Table 2.

This report is a first step in communicating the enthusiasm, understanding and sense of direction
that was developed during the workshop. All participants contributed to this report in breakout
groups, the final panel, and many informal discussions as well as via email lists, the wiki and
tweeting. The input of the 30 speakers—see Table 3—is directly incorporated in the report,
particularly in Chapters 1 to 4, which correspond approximately to the timetables of Monday’s
to Thursday’s programme. These days viewed data-intensive research from the viewpoints of:
(a) introduction to and the context of data-intensive research, (b) challenges emerging from
the increasing volumes and sources of data, (c) challenges arising from the complexity of data,
and (d) challenges in supporting researchers interacting with data. Friday’s programme brought
together all of the activities during the week to digest and summarise them, to consolidate and
review our understanding, and to initiate the production of this report. It was a primary input
into Chapter 5.

At the outset the organisers had planned to stimulate bridge-building between technical and
discipline silos, by clustering challenges and disciplines into days and by setting up cross-cutting
themes that ran throughout the week. The matrix thus formed, with an additional row to
consider social and ethical issues that emerged during the workshop, is shown in Table 4. Ruth
McNally kindly agreed to be co-opted into the editorial team to take care of that theme. There
were two other nascent themes: (a) text-mining applications, particularly the integration of data
from text with other data, and (b) training and ramps to better enable the adoption of data-
intensive methods and the appreciation of data-intensive results. If anyone would wish to develop
a theme section covering these, they will be added to Chapter 5.

Whilst the speakers and other participants produced most of the ideas, except where we explicitly
quote a person or group, the editors take full responsibility for the selection and presentation of
the text and figures in this report.

We would like to acknowledge the support of the e-Science Institute’s events team and techni-
cal support staff who provided a smoothly run environment conducive to research discussions
during the preparatory period and throughout the week. We also thank Jo Newman, School
of Informatics, University of Edinburgh, for her help in populating the organisers’ wiki and in
communicating with the speakers and other participants. The e-Science Institute provided fa-
cilities and met costs with the help of EPSRC grants EP/D056314/1 and EP/F064152/1. The
EPSRC senior research fellowship, EP/D079829/1, supported Malcolm Atkinson, and the Eu-
ropean Union Framework Programme 7 ADMIRE project (ICT 215024) supported Atkinson,
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Malcolm Atkinson School of Informatics, University
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David De Roure School of Electronics and Com-
puter Science, University of
Southampton
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Jano van Hemert School of Informatics, University
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Table 1: Data-Intensive Workshop organisers

Title Description URL

Organisers’ wiki Overview, detailed daily programmes, abstracts and
speaker biographies

http://bit.ly/bQpu5h

Participant’s wiki Additional detail, records of discussion and open
contributions

http://bit.ly/cygimA

Talks Speakers’ presentations, posters, etc. http://bit.ly/9G8Juo
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Table 2: Web resources connected with the Workshop
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Executive Summary

We met to develop our understanding of DIR. Approximately 100 participants (see Appendix A)
worked together to develop their own understanding, and we are offering this report as the
first step in communicating that to a wider community. We present this in turns of our develop-
ing/emerging understanding of “What is DIR?” and “Why it is important?”. We then review the
status of the field, report what the workshop achieved and what remain as open questions.

Why DIR?

The simplest definition of DIR is any research that only progresses well with serious attention to
how data is used. Almost every speaker, had a refinement, for example, some chose the phrase
“data-driven research” to denote the new paradigm of going from data to hypothesis, although
the Arts & Humanities participants then pointed out that was their normal procedure. Some
speakers emphasised the issue of scale, but more were concerned with the challenges of complexity
in both data & analysis. Others recognised the challenges of data-quality and variability, the
value of data citation and curation, and processes to select, describe, use and keep data.

The talks and demonstrations showed a wide range of examples where data-intensive methods
were yielding new results in many disciplines. The research and its applications are going through
a transition, as more data becomes available from cheaper and faster instruments, from new
government policies, from industry & commerce and from wide community action. Today’s
challenges, such as: security, food, water, environment, health & economic stabilty, require that
we become more adept at using data to inform policy and decision making.

The workshop took a data-centric view of the recurring concepts at the interface between data
and computation. We introduce some of them here, by considering the actions and objectives
of the researchers and the tools that facilitate them. In order to effectively exploit data, prac-
titioners need to carry out some of the following: collecting, filtering & sampling, cleaning &
normalising, fusing, linking & integrating, analysing & summarising, organising & structuring,
curating & publishing, discovering, exploring, annotating, deriving, preserving and presenting.
In data-driven research, researchers wish to discover patterns that are significant in their fields;
in hypothesis-driven research, they seek evidence from data; whilst in applied science [2], they
seek to present evidence which derive from data in a form that enables appropriate action.

New machine-learning methods enable the combination of domain knowledge and statistical
approaches on large bodies of data [3]. Advances in data description are enabling extensive
data-fusion, new tool-sets and services, which apply generic and domain-specific algorithms to
data & provide research environments that can be used by a growing number of practitioners.
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The growing power of data and the new methods raise ethical and social issues concerning the
delivery of benefits and the protection of individuals.

The providers of research environments, whether they are established reference resources or local
facilities, face new challenges. Current data-handling strategies will meet a power wall in a few
years. Current policies on data-collection will make excessive demands. The potential for research
and innovation will be frustrated, unless infrastructure providers can deliver: sufficient data
throughput, wide accessibility and interfaces, that are readily usable by a large community.

Status of the Field

Participants reported many beacons of success, from the long-established reference resources
(e.g. European Bioinformatics Institute and National Centre for Atmospheric Research), to re-
finining methods and delivering operational services (e.g. by Microsoft), to the individual prac-
titioners who are composing data from multiple sources and extracting new knowledge.

Beacons of success show the huge potential of data-intensive research and methods, and in
particular they show that in some cases they can be developed in one application domain and
applied fluently to other areas & domains. The challenge today is that this almost always depends
on establishing a talented team from and across different disciplines. But we recognised that
societal challenges demand data-intensive applications in a huge number of contexts addressing
a wide-variety of topics. It is infeasible to imagine that talented inter-disciplinary teams can be
assembled in every case, so we need to develop the capacity and facilities which will enable the
long-tail of practitioners to use the new methods correctly and effectively.

There was wide recognition that a large number of research practitioners would need training
in data-centric thinking and in applying data-intensive methods. Others would need training
in appreciating and evaluating the outcome of these methods. The workshop considered it
important to develop curricula and engage educational institutions in a substantial programme,
to develop and deliver the required training.

Examples of technical beacons of success, are Grays’ Laws to steer communication between do-
main and technology experts, GrayWulf to deliver a high-data throughput, and sophisticated
text-mining to extract detailed knowledge. Current challenges include the impending ‘Power-
Wall’ barrier, the lack of conceptual frameworks for toolkits and data-composability, and the
anticipated volumes of data from the latest instruments (e.g. new gene sequencing machines).
Additional requirements are new data-analysis algorithms that enable effective and efficient op-
erations and address new questions on large volumes of data. Finally, the impact of the social
applications of DIR will not be determined solely by the design of technological systems, but will
also crucially depend upon the configuration of the socio-economic and legal systems in which
these new approaches to are intended to be an integral part.

What was Achieved?

A goal of the workshop was to bridge boundaries across and between domain and technological
silos. This worked well, as evidenced by the number of alliances formed and participants rushing
off to try new methods and tools.

Draft 1: 17 May 2010
DIR workshop
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Another goal, was to improve our understanding of data-intensive research. This took two forms:
a) almost everyone discovered the availability of powerful new methods & technologies and came
to appreciate their extensive applicability, and b) new pervasive issues became apparent, such as
the challenge of understanding how to balance ethical and societal considerations as we adopt
methods of unprecedented power. This latter topic became so pervasive, that we identified it as
an additional cross-cutting theme, see §5.8.

A third goal, was to stimulate work in the field. Our impact here is harder to assess, but two
eSI theme proposal have been submitted as a consequence of this workshop.

The workshop developed a shared understanding of the current landscape and challenges and
has begun to articulate that understanding in this report (see §5.4 onwards).

What Remains to be Done?

A fundamental question is whether there are underlying principles of DIR, and if so, how should
the exploration of DIR be structured so as to expose and exploit them.

We recognise that to approach this understanding, we have to classify the existing methods and
applications of DIR. We did not anticipate a simple model because the field is so diverse and
rich. Hints of this classification were beginning to emerge and we hope that by collating a broad
range of DIR examples, we have provided a foundation for such a classification. We hope others
will further this agenda by reporting useful clusters which admit consistent treatment.

Most participants felt the need for better composibility of data, and readily available and easy to
use tool-sets; at present we see islands associated with the more mature data-sharing campaigns,
and traditional computation-oriented tools & frameworks. Progress in this area depends on an
understanding of how to trade between agility of independent researchers and standards.

Engaging the long tail of practitioners in DIR will require them to change their practices. This
will require upstream integration of user preferences and their existing practices into the design
of tools. Moreover, one size is unlikely to fit all, and tools may have to be tailored for different
disciplines and contexts. Change is unlikely to be achieved solely by technical progress; it also
requires social innovation in the systems of reward and recognition for good DIR practices.

When it comes to the applications of DIR as the basis for intervening in the lives of individuals,
the challenges are not only technical because of the potential risks such interventions pose to
individual privacy, autonomy, consent and confidentiality. There are also issues of equality and
social justice, and the question of who will provide and pay for such services.

Because we focussed on the interface between applications and methods, we were unable to
explore the requirements imposed by DIR on Cyber-infrastructure, tools & service provision. A
need emerged for developments in analytic and visualisation algorithms, and for improved models
of interaction with data — we look to future work to chart and address the requirements.

Data is growing in two dimensions: each collection grows as well as the number of collections grow,
so there is always a long-tail of data resources, which are relatively small, but which may contain
important information. It is an open question how best to accommodate this long-tail.
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Chapter 1

Introduction

1.1 Overview

Maybe order logically and not necessarily chronologically?
sj

Missing analysis currently. TR should have some. For example a table with the rows as the data

challenges and the columns as the applications – so it is easy to see which challenges appear in which

applications. Similarly, for tools/solutions, we have challenges as rows and tools/solutions as the columns

telling us which challenges are met
sj

For the brief summary/overview, I would like to recommend a tighter adherence to format. For example,

in the DPA paper/book, I asked all contributors to adhere to: (i) 1 para for application description, (ii)

why is it a distributed application (iii) how do you develop/execute as a distributed application and (iv)

challenges/problems/success in doing so. Similarly here we could for data-intensive applications have (i)

application description, (ii) tools uses (iii) which data-challenges are present and (iv) what is required.

This will also help it to sync up with the tables suggested above
sj

consistency needs to be imposed in write-up at many levels – tense, first versus third person..
sj

The first day’s activities contained several stimulating talks and served as an introduction to
and motivation for many aspects of data-intensive research. Professor Dave Robertson, Head
of School of Informatics, University of Edinburgh, warmly welcomed the participants and then
demonstrated the growing importance of data-intensive research in Edinburgh by citing examples
of data-intensive activity in each of the School’s seven institutes.

1.2 Introduction to DIR Workshop

Malcolm Atkinson, Professor of e-Science, Director of e-Science Institute and UK e-Science Envoy,
School of Informatics, University of Edinburgh.
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Figure 1.1: Route of fact-finding mission September 2009

The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4432.

The workshop was triggered by Atkinson and De Roure’s recent (September 2009) tour of the
USA (see Figure 1.1) to study how researchers were using data [1]. The workshop’s goal is to
stimulate thought about how to make the best use of data because: a) effective use of data is
very powerful, and b) most data is not used or used ineffectively.

This workshop is intended to provoke thought about better use of data may be accomplished. It
should start work on answering questions, such as:

1. What is data-intensive research?
2. What data-intensive applications and methods work today?
3. How can a researcher make a well-informed choice of data-intensive methods?
4. What impedes the successful use of today’s growing wealth and diversity of data?
5. How can we organise research, e-Infrastructure and working practices to overcome these

impediments?

And it should stimulate follow on collaborative activities that refine the questions and pursue
theoretical and practical answers that facilitate data-intensive research.

A working definition of data-intensive research is:

research where careful thought is needed about how to use data.

Where use of data may involve any of the following actions on data: collecting, filtering & sam-
pling, cleaning & normalising, fusing, linking & integrating, analysing & summarising, organising
& structuring, curating & publishing, discovering, exploring, annotating, deriving, preserving and
presenting. The careful thought may be required to cope with issues such as: a) finding the right
or sufficient data, b) coping with missing and poor quality data, c) integrating data from di-
verse sources with significant differences in form and semantics, d) understand and dealing with
the complexity of the data, e) accommodating the ways in which the data and practices are
changing, f) re-purposing or inventing and implementing analysis strategies that can extract the
relevant signal, g) planning and composing multiple steps from raw data to presentable answers,
h) engineering technology that can handle the data scale, the computational complexity and the
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demand created by many practitioners pursuing myriads of answers, and i) making tools and
research e-Infrastructure that can be understood and easily used by researchers.

The talks and discussions during the week will mainly focus on how best to use data, and leading
experts will be talking about their successful methods and their ways of thinking that work well in
their domain. A key challenge is to assimilate the ideas and methods, and to understand how they
may be translated to be used in new domains. This will require recognition of clusters of similar
data-intensive problems and the clusters of methods that match their characteristics.

The workshop pays less attention to activities such as data creation, collection, storage, repli-
cation, archiving and curation so as to have maximum time devoted to data use. That is not
to imply that these activities are not important – they are necessary for (future) data use. If
the data to which those activities are applied is rarely or poorly used, those activities have little
value.

The workshop takes place at a time when there is rapidly increasing interest in data-intensive
research, but as Table 1.1 shows that this has been building up over the decades – space only
permits us to show a few milestones.

The following conceptual metaphors may be helpful when thinking about data-intensive re-
search:

1. Digital revolution A worlwide revolution is underway as individuals, society, business, gov-
ernment, services and education adopt and adapt the advances in digital technology for
communications, image capture, sensors, computation and storage. This is more stress-
ful and dramatic than previous revolutions, as it its own mechanisms make it a globally
pervasive and extremely rapid process, in contrast with previous revolutions, e.g. the in-
dustrial or the advent of printing, which percolated incrementally across communities and
countries. Research data use is a minute proportion of this activity, which IDC estimate
will involve 1.8 zettabytes (1.8 ∗ 1021 bytes) of data in 2011 [27]. Data-intensive research
activity may be influential out of all proportion to its size and spend, but it will be more
likely to thrive in its niche if it adapts adroitly to the changes in the larger digital ecosystem
(see [1] Chapter 5).

2. Beacons of excellence There are many centres and groups that are demonstrating repeated
success in data-intensive research; e.g. the National Centre for Atmospheric Research
(http://www.ncar.ucar.edu), the British Atmospheric Data Centre (http://www.badc.rl.ac.uk),
the Institute for Data-Intensive Engineering and Science (see §1.3), the Reading e-Science
Institute (see §2.4), the European Bioinformatics Institute (http://www.ebi.ac.uk), and
many more. Their characteristic is that they have repeated successes as they apply data-
intensive methods repeatedly to meet a succession of research challenges. The fact that
some centres and individuals (see §4.3, §3.8 & §4.7 among others) can repeatedly and rapidly
achieve DIR successes indicates that there are underlying principles that they have grasped.
In most cases those principles are not articulated and formalised. Such exposition is nec-
essary to enable wider communities to achieve DIR successes without having comparable
requirements for exceptionally talented multi-disciplinary skills. This situation is compara-
ble to the circumstances that triggered the study and practice of software engineering. We
hypothesise that a similar study of data-intensive practices, with the corresponding follow
through in: theory, empirical evaluation, education, tools and adopted methods, will be
necessary for researchers and society at large to gain the full benefits of the growing wealth
of data.
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Date Event Reference
1971 Transatlantic agreement to share the Protein Data Bank (PDB) [4]
1993 First Data-Intensive Research Centre [5]
Feb. 1996 Human genome project (HUGO) Bermuda agreement on sharing data [6]
Feb. 1997 HUGO Bermuda agreement on sharing data [7]
1998 HUGO Bermuda agreement on sharing data [8]
1999 Sloan Digital Sky Survey pioneers large-scale astronomic data publishing [9]
2000 Stanford Linear Accelerator starts data taking for BaBaR [10]
2001 Human genome sequence published with studies of 30 genes already pub-

lished using releases of pre-publication data
[11]

2003 HUGO Fort Lauderdale agreement on sharing data [12]
2006 First five years of SDSS analysed [13]
2007 NSF solicitation for DataNet projects bit.ly/aiEIzq
2007 Extremely Large Database (XLDB) workshop [14]
Mar. 2008 Yahoo-hosted workshop on data-intensive research bit.ly/dAbx1k
Mar. 2008 SciDB project requirements gathered scidb.org
2008 Extremely Large Database (XLDB) workshop [15]
Jan. 2009 Report on GrayWulf architecture and its use [16, 17]
Jan. 2009 Report of Interagency Working Group on Digital Data to the Committee

on Science of the National Science and Technology Council
[18]

Jan. 2009 US President commitment to open data [19]
Mar. 2009 Beyond the Data Deluge paper published [20]
Jun. 2009 Government commitment to linked data [21]
2009 Extremely Large Database (XLDB) workshop [22]
Sept. 2009 Toronto statement clarifying responsibilities on publishing and using bio-

logical data
[23]

Sept. 2009 DataNet projects: “DataOne” and dataone.org &
“The Data Conservancy” start www.dataconservancy.org

Sept. 2009 PARADE Strategy for a European Data Infrastructure published [24]
Oct. 2009 The Fourth Paradigm book published [25]
Oct. 2009 JISC call for Research Data Management projects bit.ly/aEhVJ4
Nov. 2009 NSF CISE solicitation for data-intensive research bit.ly/dcDsaM
Dec. 2009 European e-Infrastructure Reflection Group data report endorsed [26]
Dec. 2009 First multi-national Digging into Data awards bit.ly/chTqeC
Mar. 2010 Data-Intensive Research workshop in Edinburgh bit.ly/bQpu5h
Apr. 2010 Data-Intensive e-Science Workshop, in Japan bit.ly/aRe7lJ
Jun. 2010 Expected first alpha release of SciDB scidb.org
Jun. 2010 Third Data-Intensive Distributed-Computing Workshop at HPDC’10 bit.ly/cJhtwX
Oct. 2010 Extremely Large Database (XLDB) workshop

Table 1.1: Events shaping Data-Intensive Research (from [1] Chapter 1)
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3. Going the last mile This term was used when we visited the Earth Data Analysis Centre
(edac.unm.edu) to describe their expertise in deriving data from NASA data and present-
ing it in forms that could be used directly by decision makers in the private and public
sectors. It is a key step in achieving useful effects from research – a necessary goal; in the
words of USA’s Energy Secretary Steven Chu, director of the Lawrence Berkeley National
Laboratory: “We seek solutions. . . We don’t seek—dare I say this—just scientific papers
any more” [28].

4. Datascopes We are now at the 400th anniversary of the telescope; look at the way they
have changed and how they have changed our view of the universe and our place in it. We
need analogous devices to help us see the information in data—possibly to start a similarly
adventurous journey (see [1] Chapter 6).

5. Intellectual ramps Researchers are usually engrossed in the challenges of their own domain;
they focus all of their time and intellectual energy in the race to advance their own disci-
pline. This leaves no time for exploring new technologies and methods on the off-chance
that they may yield research benefits. But most of the methods, tools, technology and
services for data-intensive research take substantial time and intellectual investment before
they pay off. This activation energy and the risk of investing heavily in an endeavour that
may have to be abandoned is a common impediment to the adoption of new practices. In-
tellectual ramps are proposed as carefully engineered environments where researchers can
incrementally gain benefits as they learn about new methods and the tools that support
them. Increasing the R&D investment in developing such ramps and the concomitant ed-
ucation would yield major benefits in uptake and advanced use across a wide range of
disciplines—examples of such ramps are relatively rare (see [1] Chapter 7).

6. Walking a path together Data-intensive research is invariably interdisciplinary, e.g. mathe-
maticians, statisticians and computer scientists may be working with a range of specialists
in a given domain: e.g. they may be seeking to understand: the expansion, path and impact
of an oil slick; the atmospheric transport of ash from a volcano and its impact on aviation,
the evolutionary development of resistance in a pathogen and strategies for managing an
epidemic, etc. A key requirement for such collaboration to succeed is for sustained commu-
nication across traditional boundaries, so that the ideas, methods and technologies of the
partners on either side of each boundary co-evolve as they influence each other. Failure
to do this often leads to frustrating experiences, where for example, a computing scientist
interacts and believes he has “captured requirements” and then goes away to develop a
“solution”. By the time they return the others have developed new understanding that
has changed their working practices and the “solution” is disregarded—the computing sci-
entist may even be blamed for failing to deliver [29]. But excessive attempt to march in
lock step also fails, as it is impossible for each discipline to progress at the same rate, so
judiciously loose but still effective collaboration is needed as illustrated in Figure 1.2 (see
[1] Chapter 8).

1.3 Strategies for exploiting large data

Alex Szalay, Johns Hopkins University
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4429.

The volume of scientific data is doubling every year as a result of cheaper and faster digital
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Interdisciplinary
Applications

Computer Science 
Research

Data-intensive 
computing

Effective 
algorithms

Efficient distributed 
systems

Collaborative 
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Reusable computational 
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Intuitive 
interfaces

New conceptual 
models for systems

Figure 1.2: Computer science and application research co-evolve to form data-intensive research
whilst keeping their distinct identities—this is important for career development in the current
framework for research credit.

detectors and sensors. This growth is two-dimensional – individual collections are growing and
the number of collections is growing – reaching the long-tail of scientists using the many smaller
data collections is a particular challenge. This wealth of data is transforming the way science
is undertaken; a new paradigm of data-intensive science is emerging, cutting across all scientific
disciplines [25].

Managing the data for Sloan Digital Sky Survey (SDSS) so that it was accessible to astronomers
worldwide presented significant challenges—work undertaken with Jim Gray [30, 13]. The statis-
tics are: 40 TB raw data, 5TB catalogues, 2.5 Terapixels, 930,000 distinct users (globally there
are ≈ 104 professional astronomers) and 108 rows of data delivered; but everything is a power
law and demand doubles in every dimension. The SDSS supports GalaxyZoo where 2.5 ∗ 105

volunteers have classified 6 ∗ 107 galaxies (http://www.galaxyzoo.org).

The SDSS experience has led to two lines of research development at the Institute for Data-
Intensive Engineering and Science (IDIES): a) further applications using and developing data-
intensive methods, and b) new computing architectures that better support data-intensive appli-
cations.

The further applications include:

• the National Virtual Observatory (http://www.us-vo.org/),
• PanSTARRS (http://pan-starrs.ifa.hawaii.edu) [31],
• Immersive Turbulence simulation data (http://turbulence.pha.jhu.edu) [32, 33] and
• Sensor Networks (http://lifeunderyourfeet.org [34, 35].

The new computational architectures include:

• GrayWulf to balance IO performance with CPU capacity [16, 17], and
• Amdahl Blades to balance IO and IO operation rates with CPU capacity, and reduce energy

use [36].
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1.4 Motivation and Strategies for data-intensive Biology

Douglas Kell, Chief Executive, Biotechnology and Biological Sciences Research Council and
Manchester University
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4430.

Important relationships exist between the world of ideas and the world of data. Much of biology,
especially molecular biology, has been hypothesis-driven (or hypothesis-dependent) in that this
relation is seen as starting with an idea and seeing if data obtained are consistent with it – the
Popperian hypothetico-deductive falsificationist agenda. By contrast, data-driven methods are
inductive in character, start with the data and then find the idea (hypothesis) that best fits those
data. Of course it is really an iterative cycle [37], and data-driven methods are becoming much
more important in the post-genomic era. Omics data and Systems biology approaches provide
particular examples of this [38, 39], including in collaborative knowledge generation [40].

Biology, especially genomics, is now the big data science, with many PBytes being produced
annually. This brings biology into the era of data-intensive science [25]. Most problems in
biology are combinatorial anyway.

BBSRC has long recognised these kinds of developments, and addressing them proactively is
part of our recently launched Strategic Plan http://www.bbsrc.ac.uk/strategy/, including a £13
million plus investment in The Genome Analysis Centre (http://tgac.bbsrc.ac.uk/) in Norwich.
We recognise, for instance, that we now need to bring the computing to the data, and not the
other way round as was traditional. There are also considerable training and skills needs, for
both curators and users.

BBSRC is also the lead for the UK node of the ELIXIR (European Life Sciences Infrastructure
For Biological Information) project http://www.elixir-europe.org/page.php.

BBSRC pioneered principled data-sharing policies (making data publicly available is a standard
Condition of Grant), and we have ring-fenced funding streams for data resources and their
curation.

The peer-reviewed biomedical literature, a very particular and important kind of (textual) data
resource, is increasing at the rate of some 2 papers per minute, and this presents special challenges
and opportunities [41]. Integrating this kind of material remains challenging; synthesising the
literature showing that unliganded iron is the main ‘cause’ of (or intermediary in) just about
every degenerative disease [42] took me most of my ‘spare’ time for a year, and other literature-
synthesising reviews such as those on pharmaceutical drug transporters [43, 44, 45, 46] are equally
demanding.

1.5 Analysing and Modelling Large-Scale Enterprise Data

Thore Graepel, Microsoft Research Cambridge
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4431.

This talk is concerned with the challenges that arise from analysing large-scale complex streams
of data generated through online services at Microsoft. Our work aims at improving Microsoft’s
online services by developing and deploying machine-learning algorithms at scale. We work in
the framework of graphical models for probabilistic modelling and perform approximate inference
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by message passing on very large factor graph models whose structure is determined by the
data.

The interaction with data typically happens in two stages: In the first, static stage, we do data
mining and try to find patterns in the data that can serve as predictive features for the machine
learning algorithms. In the second stage, the algorithm is deployed into the production system
and becomes part of a complex loop in which the predictions of the algorithm determine the
future composition of the data it is trained on.

I will describe two algorithms that now operate at large scale within Microsoft’s online services:
TrueSkillTM is the system responsible for skill estimation and matchmaking in the XboxTM Live
online gaming system with over 20M users. AdPredictorTM is the click-through rate (CTR)
prediction system for Sponsored Search advertising in Microsoft’s search engine BingTM, and
plays a key role in targeting ads to users.

1.6 Research Village

The research village allowed nine research groups to show their work in progress. The idea was
that each research stall in the village set out its wares to attract the gathered throng; and every
15 minutes a gong indicated it was time to move to a new stall. This started conversations that
continued throughout the week with many participants trying out things they had seen here for
the first time.

The stalls were:

1. Meandre: The work at NCSA on Cloud, Meandre and Zigzag (http://seasr.org/ and
http://seasr.org/meandre/) was demonstrated by Xavier Llorà and Bernard A’cs (see §1.10).

2. Taverna, myExperiment and Biocatalogue (http://www.taverna.org.uk/,
http://www.myexperiment.org/ and http://www.biocatalogue.org) from projects led by Carole
Goble and Dave De Roure, were presented by Katy Wolstencroft and Peter Li (see also §2.9).

The Taverna Workbench is an open-source software tool for designing and executing work-
flows. Developed under the e-Science programme through myGrid and OMII-UK, Taverna
enjoys very wide adoption and is currently used by over 350 academic and commercial
organisations throughout the world. Workflows capture explicit methodologies for the sys-
tematic analysis of scientific data and facilitate communication of methods across research
disciplines. Taverna has a substantial user base in bioinformatics, and is used by data-
intensive researchers from chemistry to computational musicology.

myExperiment is a social web site, which lets users discover, publish and share workflows.
It has the largest public collection of scientific workflows (nearly 1000) and a member-
ship of over 3000 researchers. The myExperiment web 2.0 service enables researchers to
re-use and re-purpose workflows, reducing workflow re-invention whilst facilitating scien-
tific collaborations and pronulgation of research expertise. Taverna tightly integrates with
myExperiment to bring the full experience of workflow browsing into the Workbench.

BioCatalogue is a registry of biological Web Services for use in workflows. It provides
an open platform for biological Web Services registration, annotation and monitoring;
providing a resource for community curation.
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3. The OMII-UK and Software Sustainability Institute (http://www.omii.ac.uk/ and
http://www.software.ac.uk) led by their director, Neil Chue Hong, was demonstrated by Ally
Hume (OGSA-DAI), George Beckett / James Perry (DiGS), Terry Sloan (SPRINT).

OMII-UK has cultivated many of the leading e-Science software tools, supporting their
development through initiatives such as the Commissioned Software and ENGAGE pro-
grammes. Three pieces of software, of particular relevance to data-intensive research,
were demonstrated: OGSA-DAI (http://www.ogsa-dai.org.uk) is an extensible framework
for integrating data from heterogeneous sources; DiGS1 is a distributed data manage-
ment system featuring replication, validation and consistency checking; and DataMINX
(http://www.dataminx.org) manages data transfers between all major grid data storage sys-
tems.

The Software Sustainability Institute SSI has been created to work in partnership with
research communities to identify key software that needs to be sustained, and makes soft-
ware not just available but useful for researchers by improving usability, quality and main-
tenance. The SPRINT Parallel R framework (http://www.r-sprint.org), created by the
Department of Pathway Medicine and EPCC was demonstrated. It enables statistical
analyses written in R to be run on high-performance computing systems without specialist
parallel-computing knowledge.

4. Discovery Net and InforSense(IDBS) (http://www.idbs.com/ and
http://www.doc.ic.ac.uk/˜yg) led by Yike Guo and presented by Katie McMurray and An-
thony Rowe.

The Discovery Net project and InforSense were one of the early pioneers in using workflow
technologies as a high-level programming framework for data-intensive scientific applica-
tions, as was highlighted by winning the Most Innovative Data Intensive Application at the
2002 Supercomputing conference. Now part of IDBS, on-going research and commercial
success has shown that workflow is only one vital component of the Data-Intensive Ap-
plication Stack. One of the significant trends in Translational and Biomarker research is
the forming of large consortia of Academic, Biotechnology and Pharmaceutical companies
with a common research aim. Structurally, these projects are data-intensive virtual organ-
isations and this requires the ability for research software systems to not just process data
for a single organisation, but also to store, analyse and visualise data in an architecture
that enables these distributed consortia to work effectively on the same project data. The
Discovery Cloud system, shown for the first time at this conference is an ongoing study in
how a highly virtualised and elastic cloud-based architecture enables the rapid construction
of virtual data-intensive application stacks to support these styles of project.

5. Data-Intensive Research, Edinburgh (http://research.nesc.ac.uk) led by Jano van Hemert
with presenters Lianxiu Chan, Gagarine Yaikhom, Jos Koetsier and Rob Kitchen.

They presented the group’s research and technology; the group does interdisciplinary re-
search to progress methods in computer science and tackle data-intensive challenges in
diverse areas of science and business including the following:

• Effective algorithms for data analysis, data mining and combinatorial optimisation.
• Distributed and data-intensive systems for efficient orchestration of data and compu-

tation.

1http://ukqcd.epcc.ed.ac.uk/training/2008/talks/DiGS.pdf

Draft 1: 17 May 2010
DIR workshop

http://www.omii.ac.uk/
http://www.software.ac.uk
http://www.ogsa-dai.org.uk
http://www.dataminx.org
http://www.r-sprint.org
http://www.idbs.com/
http://www.doc.ic.ac.uk/~yg
http://research.nesc.ac.uk
http://ukqcd.epcc.ed.ac.uk/training/2008/talks/DiGS.pdf


Research Village 10

• Reusable components and new conceptual models for systems that can be deployed
across disciplines.

• Intuitive interfaces and collaboration environments to enable domain-specific researchers
to make use of the above systems.

The work was illustrated with applications from seismology, brain imaging, computational
chemistry, breast cancer and developmental biology.

6. MonetDB (http://monetdb.cwi.nl) led by Martin Kersten and presented by Milena Ivanova
(see also §2.5).

The data-intensity of modern sciences raises challenging data-management issues for the
research community in terms of scalability, functionality and performance. The usage
pattern of scientific data warehouses is characterised by long periods of analysis of large
data volumes, intermixed with regular bulk-load of new data. Analytical applications are
often disk-bound since extensive computations and aggregations may span the entire data
set or large portions of it.

Research on column-store databases has already indicated their advantages in comparison
with traditional row-store systems. Vertical organisation provides for more efficient data
access pattern for disk-bound queries, flexibility in the presence of changing workloads, and
may also reduce data redundancy and storage needs.

MonetDB is an open-source column-store database management system, developed at CWI.
MonetDB is distinguished by several characteristics that together provide high performance
for analytical workloads. The demonstrations showed the advantages MonetDB offers for
analytical scientific applications.

Besides the benefits stemming from the vertical organisation, the execution paradigm of
MonetDB is based on full materialisation of intermediate results. This opens an opportu-
nity to speed up query sequences with overlapping computations by careful preservation
and re-use of common intermediates. Commonalities are often observed in logs of scien-
tific activities, where collaborating or competing teams may perform similar, but slightly
different analyses [47, 48, 49, 50].

7. Centre for Advanced Spatial Analysis, UCL (http://www.casa.ucl.ac.uk) led by Michael
Batty and presented by Steven Gray.

With the recent popularity of web-based mapping systems, the visualisation and analysis of
spatial data is becoming increasingly important. In our MapTube (http://www.maptube.org)
website we allow users to upload and compare thematic data on top of the regular Google
Maps or OpenStreetMap layers. Extending this idea to data collection as well as visualisa-
tion, we demonstrate the concept of a “Mood Map” where members of the public answer
a question which we ask via an online form. An example might be, “What single factor
is affecting you most about the credit crunch?” with a single answer chosen from one of:
“Mortgage or Rent”, “Petrol”, “Food Prices”, “Job Security”, “Utility Bills” or “Not Af-
fected”. The first part of their postcode is also entered and it is this that is used to build
a map of the responses by postcode district.

The first mood maps were limited in that only we could set them up and that they only
updated every half hour. With the ASK project, which is funded by the National e-
Infrastructure for Social Simulation (NeISS), we aim to build a more flexible architecture
for large-scale crowd sourcing of spatial data. This project will allow ordinary users to set
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up their own mood map surveys and see the results in real-time.

In addition to the online survey idea behind the mood maps, we have also looked at using
other popular social networking sites to extract spatially tagged data. We demonstrate the
“Tweetometer”, which counts tweets on the Twitter site containing the keyword “LondonS
and show how this can be graphed in real-time to show activity. Our system was used to
crowd-source a map of snowfall in the UK during December and January, and it was also
used by Carling for use in the Carling Cup Final, illustrating the wider use of e-Science
research.

8. Blackford Analysis P Instant 3D Registration (http://www.blackfordanalysis.com) was
led and presented by Alan Heveans and Ben Panter (see also §2.2).

Blackford Analysis is a spinout group from the Institute for Astronomy at the University
of Edinburgh, applying their MOPED technology to problems involving large datasets.
MOPED was originally developed to interpret galaxy spectra, although is a general tech-
nique appropriate in many situations involving parametric modelling. The Blackford Anal-
ysis team demonstrated an application that provides real-time registration capability for
medical imaging.

Modern methods for diagnostic imaging result in large datasets. Data is acquired in 3D
and typically comprises hundreds of slices, each at 512×512 resolution. The simple sound-
ing task of calculating the affine transform between two scans involves the fitting of 12
parameters in over 32 million voxels. Although high performance computers can tackle the
problem in a reasonable time (5-10 minutes) on today’s datasets, as resolution increases
the problem rapidly becomes intractable.

Blackford Analysis use the MOPED approach to compress the data into a form that can
be tackled quickly and efficiently – two medical scans can be aligned in less than a second,
using a standard laptop. This step change in performance allows real-time registration of
images, with many applications giving increases in patient throughput. Medical imaging
is only one of the potential areas where MOPED is useful, and the Blackford team is very
keen to discuss any problems of interest to the data-intensive research community.

9. e-Research South – Lab blog book systems (http://www.eresearchsouth.ac.uk) led by
Anne Trefethen and Jeremy Frey and presented by David De Roure.

The e-Research South Consortium is building a vibrant regional activity driven by specific
application areas and building on existing e-Infrastructure technologies to enhance ease of
use, uptake and ‘accessibility’, to develop know-how and tools for dealing with research
data, to provide development of and access to advanced visualisation, and to provide op-
portunities for public engagement with science.

“Southampton Smart Labs Systems” is one of these activities and provides a solution for
data management for experimental and computational researchers for PublicationSource
and Data on Demand. They demonstrated the concept of Blog-style systems as Laboratory
Notebooks, using our current (Blog2) systems and the new semantically rich system based
on the semantic & web 2.0 Blog3 together with the OREChem Ontology of experiments.

The blog book systems are linked to the flow of data from laboratories and experiments
and we deliver fully traceable experimental data flowing from our laser surface experiments.
These are self-describing data created by the Blog and Laboratory systems enables the use
of semantic tools (such as the MIT Simile Software) to display and use the data.
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1.7 Data Analysis Theme Opening

Chris Williams, School of Informatics, University of Edinburgh
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4436.

Generally the most important reason for collecting data is in order to analyse it, either to
understand its structure, or in order to make predictions. Although different disciplines will
have different specific analysis goals, there are problems and solutions that arise with regard to
the organisation and analysis of data across a wide range of application domains. Data-centric
thinking allows us to understand and gain strength from these similarities. Such statistical and
algorithmic analysis methods help us address the problem of “drowning in information, but
starving for knowledge” (Naisbett, 1982 [51]).

The analysis of data typically begins with data “cleaning”, dealing e.g. with missing or corrupted
data. It is recognised that this step can take up 50-80% of the time in real-world data mining
problems. Even if manual correction of the data is possible it is prohibitively expensive for large
datasets, giving rise e.g. to challenges around tools to improve the automation of data cleaning,
or the integration of data cleaning steps into the analysis itself.

Beyond data cleaning, data analysis can be divided into exploratory data analysis, descriptive
modelling and predictive modelling. These techniques derive from statistics, machine learning
and data mining. Exploratory data analysis refers mainly to visualisation of datasets, descriptive
modelling to methods such as clustering where the aim is to understand the inter-relationships
between measurements (unsupervised learning), and predictive modelling to the supervised task
of predicting one or more variables on the basis of others.

There are several different dimensions to consider for these analysis tasks, e.g. with respect to
complexity, data quality, the incorporation of prior knowledge, and scale. Here complexity can
refer to the complexity of the model being used for analysis (e.g. network/circuit models in
systems biology or social network analysis), or to complexity in the data, e.g. arising from the
integration of multiple data sources. With regard to data quality there can be a trade-off between
large amounts of “dirty” data, or smaller amounts of cleaner data, which might arise through
data curation. The incorporation of prior knowledge is very important in scientific applications;
one way that this can arise is through the use of structured probabilistic graphical models to
encode (at least some of) the domain knowledge. With regard to data scale, there is often an
abundance of raw data, and technological advances mean that this will grow rapidly. In some
cases it is possible to deal with the volume simply by sampling the data rather than processing
it all.

Over the course of the meeting we seek to gain an understanding of the data analysis challenges
faced in different domains, and to find out effective ways to train personnel in data-centric
analysis techniques in order to make scientific progress. Often this will require data experts
working with domain experts in order to develop new techniques to address specific structure or
features of the problem domain.

1.8 Data-structuring paradigms Theme Opening

Stratis Viglas, School of Informatics, University of Edinburgh
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4433.
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When dealing with structured data, the best known processing paradigm is that of a Relational
Database Management System (RDBMS). RDBMSs have been around for some thirty years
and are responsible for managing the vast majority of the world’s structured data — and some
of its unstructured data as well. Moreover, the architecture of RDBMSs has been adapted to
allow high degrees or parallelism so that the system scales gracefully and linearly as the data
volume increases, and as more computational resources in the form of processing nodes become
available. However, an RDBMSs is not omnipresent in a large number of data-intensive research
applications. Or, if it is there, it is merely acting as a backing store with its full querying
capabilities not exploited. Finally, different processing paradigms have emerged that supposedly
supercede the functionality offered by RDBMSs.

There has been a trend towards moving away from the use of RDBMs as the structured approach
to dealing with data intensity. The arguments behind this trend is that most of the guarantees
that a RDBMS gives may be too rigid for certain types of processing. For instance, eventual data
consistency is preferred to the strong consistency an RDBMS provided; or systems need to scale
mainly horizontally, i.e., in terms of processing or storage nodes, and not so much in terms of data
volume. However, most of these arguments have counter-arguments: the consistency guarantees
of an RDBMS can be lifted, while they have been shown to be massively parallelisable both in
terms of their data processing algorithms and in terms of their architecture.

Over the course of the workshop the aim is to answer questions like the following: Is there
something fundamentally wrong with the architecture of a massively parallel RDBMS that fails
to address the needs for data-intensive processing? Is it the case that RDBMSs have been
optimised for a type of processing that is not the type of processing needed by data-intensive
research? Are new processing paradigms like MapReduce fundamentally inapplicable on an
RDBMS-like system architecture? And does the functionality offered by distributed file systems
like HDFS or processing paradigms like MapReduce supercede the functionality of an RDBMS,
or are they merely a subset?

1.9 Programming Paradigms Theme Opening

Geoffrey Fox, Indiana University
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4437.

The different approaches to programming simulations are well understood although there is still
much progress to be made in developing powerful high-level languages. Today OpenMP [52] and
MPI [53] dominate the runtime used in large-scale simulations and the programming is typically
performed at the same level in spite of intense research on sophisticated compilers. One also
uses workflow to integrate multiple simulations and data sources together. This coarse grain
programming level usually involves distributed systems with much research over last ten years
on the appropriate protocols and runtime. In this regard Globus and SAGA represent important
advances.

We can ask what the analogous programming paradigms and runtime are for data-intensive
applications. We already know that many of the distributed system ideas will carry over as
workflow has typically used dataflow concepts and integrated data and simulations. However
as data processing becomes a larger part of the whole problem either in terms of data size or
data-mining/processing/analytics, we can anticipate new paradigms becoming important. For
example most data analytics involves (full matrix) linear algebra or graph algorithms (and pack-
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ages like R) and not the particle dynamics and partial differential equation solvers characteristics
of much supercomputer use. Further storage and access to the data naturally involves database
and distributed file systems as an integral part of the problem. It has also been found that
much data processing is less closely coupled than traditional simulations and is often suitable for
dataflow at runtime and specification by functional languages. However we lack an authoritative
analysis of data intensive applications in terms of issues like ease of programming, performance
(real-time latency, CPU use), fault tolerance, and ease of implementation on dynamic distributed
resources.

A lot of progress has been made with the MapReduce framework originally developed for in-
formation retrieval – a really enormous data intensive application. Initial research shows this
is a really promising approach to much scientific data analysis. Here we see different choices
to be explored with different distributed file systems (such as HDFS for Hadoop) supporting
MapReduce variants and DryadLINQ offering an elegant database interface.

Note current supercomputing environments do not support HDFS but rather wide area file
systems like LUSTRE – what is a possible resolution of this? MapReduce programming models
offer better fault tolerance and dynamic flexibility than MPI and so should be used in loose
coupling problems in preference to MPI. Parallel BLAST is a good example.

1.9.1 Clouds: A Brief Overview

Cloud computing is at the peak of the Gartner technology hype curve 2 but there are good rea-
sons to believe that as it matures that it will not disappear into their trough of disillusionment
but rather move into the plateau of productivity as have for example service-oriented architec-
tures. Clouds are driven by large commercial markets where IDC estimates that clouds will
represent 14% of IT expenditure in 2012 and there is rapidly growing interest from government
and industry. There are several reasons why clouds should be important for large-scale scientific
computing

• Clouds are the largest scale computer centres and so they have the capacity to be important
to large-scale science computations as well as those at smaller scales.

• Clouds exploit the economies of this scale and so can be expected to be a cost effective
approach to computing. Their architecture explicitly addresses fault tolerance.

• Clouds are commercially supported and so one can expect reasonably robust software
without the sustainability difficulties seen from the academic software systems critical to
much current Cyberinfrastructure.

• There are 3 major vendors of clouds (Amazon, Google & Microsoft) and many other infras-
tructure and software cloud technology vendors including Eucalyptus Systems that spun
off from UC Santa Barbara HPC research. This competition should ensure that clouds
should develop in a healthy innovative fashion. Further attention is already being given to
cloud standards

• There are many Cloud research, conferences and other activities with research cloud in-
frastructure efforts including Nimbus [54] OpenNebula [55], Sector/Sphere [56] and Euca-
lyptus [57].

2[2] Press Release Gartner’s 2009 Hype Cycle Special Report Evaluates Maturity of 1,650 Technologies
http://www.gartner.com/it/page.jsp?id=1124212.
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• There are a growing number of academic and science cloud systems supporting users
through NSF Programs for Google/IBM and Microsoft Azure systems. In NSF OCI, Fu-
tureGrid [58] will offer a Cloud testbed and Magellan [59] is a major DoE experimental
cloud system. The EU framework 7 project VENUS-C [60] is just starting.

• Clouds offer “on-demand” and interactive computing that is more attractive than batch
systems to many users.

Generalising from this, clouds are more important for data-intensive applications than classic
simulations, as the latter are very sensitive to synchronisation costs, which are higher in clouds
than traditional clusters.

1.10 Soaring through clouds with Meandre

Xavier Llorà and Bernie A’cs, NCSA
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4435.

‘Cloud computing’ is a broad term with multiple interpretations. Hence, it is important to set
the tone and the basic terminology used throughout the presentation. To achieve this goal and
explain the current efforts on cloud computing at the National Center for Supercomputing Ap-
plications (NCSA) we divide the material into two sections. First we review how to build a
conceptual and functional foundation for what is represented by computational cloud construc-
tion; then, we present a quick overview of the highly scalable, data-intensive infrastructure being
developed at the centre and the current research efforts to tackle the challenges presented by
big-data.

The research efforts highlighted include the experimental virtual-machine infrastructure and
enterprise-cloud configuration that have lead to a conceptual exploration into developing cloud
and a software infrastructure for data-intensive computing that is component-based and data-
driven that is not bound to a particular development language but rather focused on the core
functional requirements to provide flexible modular building blocks. These building blocks scale
transparently, thanks to the abstractions that components provide, with no coding modifications
when executed on a laptop, large computational grids, or clouds though the architectural models
contrast significantly. These independent, but highly related, research efforts show that new
approaches are needed for developing flexible, scalable, and functional applications that use
diverse computational infrastructures for data-intensive research.

Meandre provides a data-intensive execution engine, component-based programming architec-
ture, and data-driven execution paradigm that enable distributed data-flow designs so that pro-
cessing can be transparently co-located with data sources. It also enables transparent scalability.
The design of programming paradigms that promote new approaches to parallel processing for
massive distributed data resources is a grand challenge for data-intensive research. The data-
deluge in every domain of science and humanities demands a modular and transparently scalable
application framework. Such a framework must be able to transcend physical system archi-
tectures to take advantage of a wide variety of functional features available in the cloud and
those that are exposed in traditional HPC grids and other special purpose computational cluster
configurations.
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Chapter 2

Data-Volume’s Challenge

2.1 Overview

Data and scale are overloaded terms and mean different things to different practitioners depend-
ing on their perspectives and goals.

In terms of data, the semantics is usually dependent on the application domain. It might refer
to a corpus of unstructured text to someone working on text mining; or, it might refer to a
time-series of sensor measurements to a geologist; or, a multitude of input/output parameters to
a physicist; or, it might refer to a fully structured relational schema to a database researcher; the
possibilities are as endless as the domains. At the end of the day, data is what all our systems
process and produce.

Scale also comes in flavours. Is it the disk capacity needed to store the data? Is it the rate at
which data is produced? Does it represent the number of complex interactions across different
types of data? Or is it the number of concurrent parallel processes we can throw at a data-
intensive problem? What we want is our systems to be scalable in a number of dimensions —
some of which we might not have even identified yet, let alone comprehend.

There is a saying that “a craftsman is only as good as his tools.” To some extent, we are all
craftsmen and we have to pick the right tool for the job. Tools differ across crafts and no two
jobs within the same craft are the same. The goal of the day is to be exposed to different “crafts”
and listen to the jobs they include and the tools that are better suited for them. It is most likely
the case that the saying will be verified once more. But what will hopefully come out of this
exposition is the knowledge of some tool another craftsman has been using to do a job similar
to what we have to deal with in our craft.

To that end, we had a series of talks in the morning:

• Astronomers produce vast quantities of data; Alan Heavens (University of Edinburgh)
talked about the challenges in analysing large sky datasets, and how the statistical tech-
niques developed for doing so are finding applications in other domains – see §2.2.

• However, we do not need to look to the endless sky for data challenges, when similar
quantities and complex interactions can be found here on Earth; Torild van Eck (Royal
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Netherlands Meteorology Institute) talked about the data challenges in earthquake seis-
mology – see §2.3.

• Keith Haines (University of Reading) talked about less catastrophic elements of our planet:
climate and oceanographic data and how these can be integrated into a single view –
see §2.4.

• Arguably, relational databases are one of the de facto mechanisms to support data storage
and manipulation. Martin Kersten (CWI) is the godfather of one of the most impressive
open-source database systems around: MonetDB. He presented the challenges in developing
database support for generic data processing – see §2.5.

• A collection of data usually adheres to a rudimentary data model. Is that always true?
Jonty Rougier (University of Bristol) talked about the challenges of uncertainty in data
modelling – see §2.6.

• In addition to long-term storage and long-running processing of data, we might be interested
in real-time analysis. Beth Plale (Indiana University) presented the challenges and methods
in this area – see §2.7.

• Finally, Michael Batty (University College London) talked about the use of complex geo-
spatial data to understand geographically correlated data and to aid long-term planning –
see §2.8.

2.2 Dealing with large data sets in astronomy and medical
imaging

Alan Heavens, Institute for Astronomy, University of Edinburgh
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4441.

Typical analysis problems involving large datasets are focussed on learning a relatively small
number of pieces of key information. This imbalance between the size of the data set and the
number of parameters to be extracted offers substantial opportunities for fast, accurate analysis
via massive data compression techniques. In this talk, I will cover some such techniques, showing
how by carefully-designed data compression, one can massively speed up many analysis problems
without compromising accuracy, focussing on the patented MOPED algorithm [61].

2.3 Data challenges in Earthquake Seismology

Torild van Eck, The Royal Netherlands Meteorological Institute, Observatories and Research
Facilities for European Seismology (ORFEUS) and the International Federation of Digital Seis-
mograph Networks (FDSN)
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4438.

Earthquake seismology research is largely based on data obtained from a distributed, widely
diverse network of stations, permanently in operation, and temporary deployments on the sea-
bottom and on land. Although the data ownership and the equipment are diverse, the data
exchange format is well defined (SEED). This facilitates the data access for research. We do
not have a comprehensive overview of all stations, however, a conservative estimate is about 5–6
thousand high quality permanent stations around the globe. Mobile stations, both on land and on
the sea-bottom (OBS), account for another 5–6 thousand stations. Accelerometers, providing also
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earthquake engineering relevant data, account for another 5–10 thousand instruments. Within
the FDSN, several data centres (IRIS in the US, ORFEUS data centres in Europe, JAMSTEC
in Japan, etc) provide jointly open (real-time) access to about 20–30% of this data. Currently
the number of openly available data is rising rapidly.

Earth tomography models, earthquake rupture process reconstructions, advanced seismic haz-
ard models and warning systems are largely based on this data. For areas with dense networks
impressive models of the upper mantle and crust can be obtained for example. However, as
more data is becoming available and more details of the earth’s internal structure are sought
for, effective data management becomes an important bottleneck. Efficient data archiving, ex-
change, quality control, management, information mining, etc. require advanced techniques, not
easily available to scientists not residing in one of the few excellently equipped labs. Data ac-
cess procedures, currently supported by data centres, are mainly relying on robust simple data
request routines. The fairly recent involvement of IT experts in seismology has resulted in ex-
perimenting with data provenance, integration of web services, new data mining techniques,
workflow orchestration, for example. The current challenge in earthquake seismology is to create
an efficient E-science environment in earthquake seismology that is robust, easy to handle and
maintain, and providing advanced analysis techniques to a broad community of scientists and
students.

Relevant organisations, projects and initiatives:

• ORFEUS P Observatories and Research Facilities for European Seismology (http://www.orfeus-

eu.org)

• FDSN P International Federation of Digital Seismograph Networks (http://www.fdsn.org)

• NERIES P Network of Research Infrastructures for European Seismology (http://www.neries-

eu.org) EC-infrastructure project

• EPOS P European Plate Observatory System (http://www.epos-eu.org) European Research
Infrastructures proposal

• VEBSN P Virtual European Broadband Seismic Network (http://www.orfeus-eu.org/Data-

info/vebsn.html)

• ESFRI P European Strategy Forum on Research Infrastructures (http://cordis.europa.eu/esfri/)

2.4 Making the most of Earth-systems’ data

Keith Haines, Reading e-Science Centre, University of Reading
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4439.

The challenge faced by the earth science community is to deal with both very large dataset,
e.g. from numerical models and from satellites, as well as small but complicated datasets as from
in situ monitoring instruments. Data need to be visualised efficiently, preferably directly from the
data centres where they are stored, and brought together for quality control and intercomparison
and validation of the modelling components of the earth system. In Reading we have developed
a program aimed first and visualisation of large remote geophysical data, and we are in the
process of extending this to exploration of multiple datasets simultaneously in order to achieve
these aims. The aim is to push this integration as far as is practical using Open-Source tools and
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internet browser visualisation capabilities and to keep an interactive experience for the scientists
exploring the data. Some of the successes and remaining challenges were discussed.

2.5 Scientific Databases: the story behind the scenes

Martin Kersten, CWI
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4442.

In this presentation several stepping stones to address the science data stream are examined
from the viewpoint of a database software architect. Starting from the experiences gained in
building sustainable software to aid astronomy, and exploring the requirements for various fields,
we reflect upon recent developments in the database community.

Topics reflected upon are: multimedia data, geospatial data, XML, RDF and the semantic crowd,
sensors, hyped grid and map-reduce.

Although significant technological steps have been taken to accommodate the needs in science,
there are still several major hurdles to be overcome when it comes to efficient and effective
data management. The approach taken in the MonetDB project (monetdb.cwi.nl) [49] includes
column-based storage, and recycling of intermediate results [62, 48, 50]. It has accommodated
the SDSS data (see §1.3) [63] and is being used for a wide range of applications including:
EMILI (http://emili-project.eu) on high-performance streaming database technology, TELEIOS
on support for remote sensing, and LOD2 and PlanetData, both geared at scaleable Linked
Open Data for the semantic web. Further work, in the area of on-the-fly, just-in-time, non-
guided database summarisation is needed.

2.6 Model limitations: sequential data assimilation with
uncertain static parameters

Jonathan Rougier, Department of Mathematics, University of Bristol
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4440.

Many large datasets arise as a result of experiments and must be interpreted in the light of
scientific theories. These theories are instantiated as models, which relate the observable quanti-
ties with additional unobserved or unobservable (because not operationally defined) quantities.
In statistics these additional quantities are termed ‘parameters’, and the purpose of inference
is to learn about them using the observables. The incompleteness of scientific theories, and in
particular their often restricted domains, imply that the models have limitations, and these are
often substantial, e.g. in environmental models.

If we account fully for model limitations then we must allow model parameters to be uncertain,
and incorporate this uncertainty into the data assimilation process. Such parameters are termed
‘static’, since they do not evolve in time. We must also incorporate structural uncertainty, which
enters as a stochastic component in the state equation. Learning about static parameters in a
stochastic dynamical model is particularly challenging, as the uncertain state vector trajectory
represents a large collection of uncertain quantities that sit between the observations and the
static parameters we would like to learn about – in statistics these would be referred to as
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Level Name What it means in e-Science

1 Intellectual & Technical
Metadata

Ownership, intellectual property, copyright and domain-
specific attributes

2 Structural Metadata Data products and aggregations, also semantic information for
interpreting metadata through CF vocabulary or ontology

3 Provenance Lineage of data products as well as that of processes

4 Rendering Software
Domain-specific applications & dependency libraries

5 Processing Software

Table 2.1: Levels of preservation information

nuisance parameters. ‘Large’ in this case is 102 or 103; only a few KB of data, but this is the
curse of dimensionality that affects all forms of inference.

Recently developments in statistical computing have shown how to tackle these types of problem
using “exact approximations”; which is to say approximations that can be embedded within a se-
quential inference to make them exact, if one is prepared to wait long enough. These calculations
are ideally suited to computer clusters as they contain large chunks of embarrassingly-parallel
code. These methods have been shown to perform well on toy problems, and are now been
developed for much larger-scale problems. The original result for these developments was [64],
with extensions and more thorough theoretical treatment in [65] and [66].

2.7 Earth-Systems data in real-time applications: low-latency,
metadata, and preservation

Beth Plale, Indiana University
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4443.

Beth and Keith’s write up provide a simple effective model
sj

Geoinformatics is having a growing impact on the sustainability of our planet as the amount of
data available from environmental sensors, instruments, and satellites continues to increase, and
tools become available that allow the integration of social data and field studies with observation
sources. Our research advances geosciences through tools for accessing integrated atmospheric
data, and for cyberinfrastructure that lowers the barriers to running complex weather-forecast
scenarios.

The application space in which we have worked for many years is mesoscale meteorology [67],
where weather forecasting requires the assimilation of large amounts of data from dozens of
sources with as low a latency as possible between the time at which an observation is taken and
the time at which it is used ingested for assimilation. We have explored alternate programming
models that allow a researcher to plug real-time data sources into a workflow. In recent work,
we preserve the graph abstraction that workflow systems support often through a graphical user
interface from which a user can edit an existing workflow graph or construct a completely new
workflow. The abstraction we introduce is that of new workflow node types that support input
and output edges having time-bounded event streams instead of a single input [68].

Our second area of study is based around the belief of ours that full reproducibility of a com-
plex investigation, such as a workflow execution, is impractical and quickly becomes impossible.
Further, the workflows we have studied [69] are complicated graphs that yield a result or set
of results that can only be understood after-the-fact by gathering information including: prior
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actions (lineage or provenance), input files, intermediate files, and configuration parameters. It
is not practical to expect a scientist will carefully annotate a result with this information. Thus
if we are to achieve a level of sharing of these research objects we must have tools that collect
provenance and metadata automatically [70].

A research object, or set of objects, resulting from a workflow run may or may not have value,
but if it is determined it does, the research object is used to generate a preservation object
that can then be published to a long-term archive. We argue that the preservation object
needs to include the information in levels 1–3 in Table 2.11 prior to being handed off to a
long-term repository. This includes the information in the column entitled “What it means for
e-Science”, including attribution and distribution metadata, data products themselves, semantic
information, provenance information, service descriptions, and perhaps even source code. This
is explored in more detail in [72].

2.8 Challenges in Large-Scale GeoSpatial Data Analysis:
Mapping, 3D and the GeoSpatial Web

Michael Batty, Centre for Advanced Spatial Analysis (CASA), University College London
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4444.

Traditionally, scientists dealing with social and built environments have worked with compara-
tively small data sets, largely because our ability to collect data at the individual level has been
confined to censuses that have been expensive to mount and whose data is personal in nature,
relevant to the public task as set by government. Such data have been generally available at
the level of its collection for research; in short, data sets based on individual data have only
been available at aggregate level. This situation is changing for many reasons. More automated
techniques of collection are in the vanguard of this change, but many more agencies in the public
and private sectors are engaged in collection, as much for marketing purposes as for the public
task. The web has clearly established a medium through which such data might be collected,
while the advent of personal devices with locational awareness are generating very different kinds
of data sets of a social nature which have different implications for privacy and confidentiality
from those traditionally collected by government.

We are in fact poised at a threshold when massive data sets are likely to become available akin
to those which we take for granted in the physical and biological sciences. We need dramatically
improved tools for dealing with these, through statistical analysis, visualisation, data storage and
access and so on. The talk presented some of the key challenges in this area with respect to two
developments in geospatial data: the emergence of visualisation techniques for online mapping
and multimedia for analytical and dissemination purposes, and second the importance of using
contemporary ICT to enable the very collection of social data using techniques ranging from data
mining of social networks to tracking mobile devices and crowd sourcing. The MapTube project
(www.maptube.org), which is part of NCeSS and NeISS, illustrates the need for such techniques
to truly open up data to wider constituencies of scientists. These have to fit in the evolving
context of the geospatial web and initiatives in the UK such as the Making Public Data Public.
These developments are providing new and rich data resources for social science and the built
environment.

1The metadata categories (under “Name”) are taken from [71]
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2.9 Providing an environment where every data-driven re-
searcher will thrive

Carole Goble, University of Manchester
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4467.

I haven’t found an abstract for this, and I think it might move to Dave De Roure’s Chapter. mpa

2.10 Summary and Conclusions

The main outcome of the day’s talks is that there is no “one-size fits all” approach to dealing
with data volume, and, as expected, the architecture of a data-intensive system depends largely
on the application domain.

The first possibility is to build massively distributed systems where each node is responsible
for collecting and managing its own data; then, a well-defined format dictates the exchange
of information between the various system’s nodes so data can be shared and computation over
larger data volumes can take place in a collaborative fashion. The per-node storage infrastructure
is not dictated in any way, provided that data exchange is possible.

A potentially radically different approach is to have a centrally located data store. The term
centrally might be misleading in this instance: it may well be distributed for performance and
fault-tolerance reasons, but it presents a single unified view to the user. The problem then is
one of identifying the interesting bits in the data. If it is a question of knowing the properties
of the data one is interested in, there is standard (relational) database technology that can be
leveraged and the data can be retrieved and through SQL. However, it may well be the case that
the user is not looking for something specific, or cannot come up with a declarative specification
of what s/he is looking for. In those case, there need to be mechanisms in place for a “higher-
order” processing, perhaps through visualisation and simultaneous processing of multiple data
sources.

The situation changes again if we are not interested in off-line analyses, but on-line ones. In those
cases the definition of system response time radically changes: it is not how fast the data can
be processed in some complex computation; rather, it is how fast the data is readily available to
be processed. Moreover, it is not only the data itself that is important; the computation over it,
or rather, the workflow of computation on it is equally —if not more— importance. Therefore,
provenance of computation as well as data becomes a first-class citizen.

A different perspective is to accept the volume of data as intractable for certain types of compu-
tation, and then focus on processing summarisations of the data in order to identify interesting
bits of information or test certain hypotheses. Then, it becomes an issue of throwing sufficient
computing power to the problem as a small sample of the data can provide adequate approxima-
tions of certain patterns. Naturally, the larger the sample and the more the computing power,
the better the approximation; so, scaling these methods to larger computing clusters and larger
volumes of data can only yield better results.

As is evident from the previous discussion, the problem of dealing with large volumes of data does
not have a simple solution. Various parameters apply: whether the data store is to be central
or distributed; whether the type of processing is to be done remotely or in a cluster; whether
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computation takes place over off-line or on-line data; whether one processes the actual data or
samples of data. Depending on the application at hand there are readily available approaches
from multiple domains that might be the best options.
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Chapter 3

Data-Complexity’s Challenge

3.1 Preamble

It’s not just the scale and volume of data that characterises data-intensive research, but also
the complexity within and across datasets. Many of today’s research challenges involve deep
analysis of individual datasets and also analysis across multiple data sources. The nature of data
collection — and perhaps the nature of how research is organised and conducted — involves
increasing specialism in particular areas, which risks creating data silos. Hence our themes
today could be described as “data-busting” and “silo busting”.

One of the topics that arises today is the government initiatives to open up public data, and we
will see examples of data being used for ‘digital social research’ and the mechanisms for linkage
across space and time. The technological solutions to linkage — such as linked data, databases,
workflows or mashups, was a particular focus in the breakouts as we aim to cut across technology
silos too.

3.2 Big Data Bioinformatics

Mario Caccamo, The Genome Analysis Centre, Norwich, UK
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4457.

Obtaining the sequence of the three-billion letters human genome [73, 11, 74] was hailed as one
of the biggest enterprises in the history of science. And rightly so, it involved a remarkable
organisation of scientists, policy-makers and funding agencies from across the globe. This feat
has captured the imagination of many but beyond the scientific achievement it marked the
beginning of a new era in molecular biology characterised by a revolution in data generation. As in
other areas of science technological advances combined with the availability of high-performance
computers have made possible to collect, process and analyse biological data at a rate that have
transformed the life sciences. The advent of the next generation sequencing technologies five
years ago has completely transformed the landscape of genomics. These technologies introduced
massive parallel platforms that supported by advanced software systems generate in the order of
billions of nucleotides (i.e. letters) per run of the instruments. Today, any laboratory equipped
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with the latest sequencing technologies can produce in few days as much sequence data as the
Human Genome Project did and at a fraction of the cost.

More excitingly these new technologies have opened up the possibilities for novel applications
that traditionally were outside the scope of sequencing. One example is the study of environ-
mental samples such as microbiomes and soil; or the use of deep sequencing for the analysis
of transcriptome. As sequencing becomes cheaper and more accurate we will soon be able to
explore genetic information in real-time and at a single-cell level. The so-called third generation
technologies will implement single-molecule sequencing directly reducing the operation time and
increasing the accuracy of the instruments output. This unprecedented wealth of data, however,
has come with new challenges. There is a growing gap between the capacity to generate genomic
sequences and the ability to process and interpret the resulting data in what John McPherson
has recently described as the “Next-Generation Gap” [75]. The sheer volume of genomic data
requires a new level of software sophistication both to cope with the load, and to analyse it
effectively.

Another important legacy from the Human Genome Project is the recognition that sharing and
making the data available prior to publication can speed science and promote collaborations
(Toronto Statement [23]). The time and resources required to distribute and store the volume
of the genomic data generated by the current technologies, however, could be a barrier to the
implementation of these principles. Novel compute hardware and software architectures are
emerging to cope with the demands of big data. One of the leading concepts is that we should
bring the analyses closer to the data and focus on the development of hardware architectures
designed to support peta-scale data-intensive computations that are accessible to the scientific
community. The prospects of a sustained increase in sequencing capacity combined with a well-
established model for data sharing places genomics at the forefront of the data-driven science
revolution.

3.3 The Open Microscopy Environment: Informatics and
Quantitative Analysis for Biological Microscopy, HCAs,
and Image Data Repositories

Jason Swedlow, University of Dundee, Wellcome Trust Centre for Gene Regulation and Expres-
sion
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4455.

The Open Microscopy Environment (OME) is a multi-site collaborative effort among academic
laboratories and a number of commercial entities that produces open tools to support data visu-
alisation, management, and analysis for biological light microscopy and high content screening
(HCS). Designed to interact with existing commercial software, all OME formats and software are
free, and all OME source code is available under GNU public ‘copyleft’ licenses. With a strong
foundation for biological light microscopy in place, OME has begun extending its coverage to
other fields of biological imaging. We have successfully developed a data model for HCS data,
and are currently releasing preview versions of software for HCS data management and analysis,
with full releases scheduled for June 2010. In collaboration with Rockefeller University Press, the
American society for Cell Biology, and the EBI, we have begun developing customised versions
of OME technology to deliver scientific image repositories for distribution of multi-dimensional
image data to the worldwide community.
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OME develops and releases three different components:

1. The OME Data Model (http://ome-xml.org) provides a specification for saving metadata
and exchanging metadata in microscopy and HCAs.

2. The OME-TIFF file format (http://ome-xml.org/wiki/OmeTiff) and the Bio-Formats file
format library (http://openmicroscopy.org/site/products/bio-formats) provide an easy-to-use
set of tools for converting data from proprietary file formats. These resources enable access
to data by different processing and visualisation applications, and sharing of data between
scientific collaborators. Extensive support for 3 major HCS formats has been added (InCell
1000, Opera, & MIAS).

3. The OMERO platform (http://openmicroscopy.org/site/products/omero) is a Java-based server
and client application suite that combines an image metadata database, a binary image
data repository and high performance visualisation and analysis. The current release of
OMERO (Beta4.1) includes interfaces for Java, C/C++ and Python to support a wide va-
riety of client applications and support for Matlab-based applications like Cellprofiler. For
computational analysis of microscopy or HCS images, this standardised interface provides
a single mechanism for accessing image data of all types – regardless of the original file for-
mat. Most recently, a new facility, OMEROTables, supports the management and analysis
of tabular and region-of-interest data, using an HDF5-based file store. OMERO is used
in the ColumbusTM data management system from PerkinElmer, Inc., the softWoRx R©
DMS system from Applied Precision, Inc. and is the engine that runs the JCB DataViewer
(http://jcb-dataviewer.rupress.org), the first publication system for original image data in the
life sciences. More information is available at http://openmicroscopy.org.

3.4 Handling social science data: Challenges and responses

Paul Lambert, Stirling University
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4454.

Social science data comes in many different varieties, but researchers across domains share similar
challenges associated with organising, coordinating and adequately exploiting their data. These
challenges do not ordinarily concern the sheer scale of the data, but rather involve navigating
between, and adequately documenting, alternative permutations of related data and its analysis.
Focusing on the example of complex social survey datasets, this talk will highlight well known
challenges in working with social science data, and compare responses to those challenges which
involve varying degrees of technological input. This paragraph needs some attention

sj

3.5 The complexity dimension in data analysis

Chris Williams, School of Informatics, University of Edinburgh
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4471.

This talk is concerned with complex models for the analysis of data, based on probabilistic
graphical models. We consider two examples concerning (i) the reconstruction of gene regulatory
networks, and (ii) condition monitoring of premature babies.
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The first example is based on the paper entitled Reconstructing Gene Regulatory Networks with
Bayesian Networks by Combining Expression Data with Multiple Sources of Prior Knowledge, by
Adriano V. Werhli, Dirk Husmeier, Statistical Applications in Genetics and Molecular Biology
6(1), 2007. Here the goal is to learn the underlying structure of a regulatory network based
on data from flow cytometry experiments (Sachs et al, Science 2005), and prior knowledge
extracted from the KEGG pathways database. This can be expressed as wishing to sample
from p(G|D,B) ∝ p(D|G)p(G|B) where G is the graph structure of the regulatory network, D
is the data, and B is the background knowledge. Experiments by Werhli and Husmeier show
that the incorporation of prior knowledge for the reconstruction of the Raf signalling network
leads to improved performance compared to using either just the data term or prior expectations
separately.

The second example concerns the application of a factorial switching linear dynamical model
to monitoring the condition of a premature baby receiving intensive care (Quinn, Williams and
McIntosh, IEEE PAMI 31(9) pp 1537-1551, 2009). This serves as an example for the wider use
of graphical models for condition monitoring tasks.

The setup is that data drawn from an observed system is often usefully described by a number
of hidden (or latent) factors. Given a sequence of observations, the task is to infer which latent
factors are active at each time frame. For a premature baby receiving intensive care the observa-
tions are of heart rate, blood pressure and temperature etc, and the latent factors are the state
of health of the baby, along with factors that describe particular patterns of artifact (e.g. taking
a blood sample, probe recalibrations etc).

We demonstrate how to exploit knowledge of the structure of how the various latent factors
interact so as to reduce the amount of training data needed for the system. A combination of
domain knowledge engineering and learning is used to produce an effective solution. We use the
model to infer the presence of two different types of factors: common, recognisable regimes (e.g.
certain artifacts or common physiological phenomena), and novel patterns which are clinically
significant but have unknown cause. Experimental results show the developed methods to be
effective on real intensive care unit monitoring data.

3.6 Spatial microsimulation for city modelling, social fore-
casting and urban policy analysis

Mark Birkin, School of Geography, University of Leeds
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4458.

The Moses project [76] is an exercise in social simulation which aims to produce data-intensive
models of urban growth and dynamics, with special reference to social and demographic vari-
ations in space and time. The models are of interest to a wide constituency of ‘users’, from
academics to policy-makers. In addition to baseline dynamic projections [77], the impact of
scenarios in relation to planning options such as the provision of health-care facilities, new trans-
portation infrastructure, or controls over housing and land use may all be explored through this
technology.

Related developments in simulation modelling are emerging rapidly across the social sciences,
many of them with an explicit focus on either microsimulation [78] or agent-based modelling
[79, 80]. Examples are widespread in economics, health sciences, transportation research, sociol-
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ogy and geography. For instance, simulation of the diffusion of epidemics through a population
is emerging as a litmus challenge to this community, which is intensive of both data and compu-
tational resources [81, 82, 83].

Researchers in social simulation are trying to mash up data across a tremendous wide vari-
ety of domains, providers, and scales. Thus Moses itself combines spatial data (Google maps,
Ordnance Survey, OpenStreetMap), government local area statistics (Census Small Area Data,
Special Migration Statistics, Special Workplace Statistics, ONS Vital Statistics), syndicated mi-
crodata (Census Anonymised Records – SAR; British Household Panel Survey; General House-
hold Survey), vertical data (Hospital Episode Statistics, Health Survey for England, National
Travel Survey), and specialised end-user data (e.g. East and South-East Leeds Housing Needs
Study). This list is indicative and by no means exhaustive. Social scientists have a particular
current interest in the exploitation of both commercial datasets and crowd-sourced data [84]
which threatens to overwhelm existing capabilities for analysis, processing and storage.

The Digital Social Research community in the UK is responding to these challenges with an
effort to begin construction of a National e-Infrastructure for Social Simulation [85]. NeISS
aims to provide a framework for the seamless combination of multiple data sources together
with appropriate mechanisms for analysis and visualisation, within a workflow-enabled portal
architecture. The project combines computer scientists with social scientists from a variety of
disciplinary backgrounds.

3.7 Linked Data: Making things more accessible

Hugh Glaser, Seme4 Ltd
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4451.

In recent times the requirement to publish data and link it with other resources has become
more acute. There are societal reasons for this, such as Freedom of Information and generating
confidence in the accuracy of scientific predictions. There are also very practical reasons, as
many scientific advances depend on being able to combine the data from multiple datasets to
gain insights that could not be achieved by individual research groups.

The Linked Data Initiative (http://linkeddata.org/) addresses some of these issues, as it aims to
provide a framework for linking datasets and other resources; this presentation looked at how
researchers can begin to join the Linked Data world.

It began by considering the principles for Linked Data:

1. Use URIs as names for things.
2. Use HTTP URIs so that people can look up those names.
3. When someone looks up a URI, provide useful information, using the standards (RDF,

SPARQL).
4. Include links to other URIs. so that they can discover more things.

Following this, the issue of co-reference was discussed, and the http:/sameas.org/ site that provides
much of the glue was presented. Finally the RKBExplorer and other applications that have been
built on top of the Linked Data were demonstrated.

Some references:
Hypertext Style: Cool URIs don’t change – http://www.w3.org/Provider/Style/URI
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Cool URIs for the Semantic Web – http://www.w3.org/TR/cooluris/

Linked Data – Design Issues – http://www.w3.org/DesignIssues/LinkedData.html

How to publish Linked Data on the Web – http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/

Linked Data – http://linkeddata.org/

This presentation – http://eprints.ecs.soton.ac.uk/18691/

3.8 Using search for engineering diagnostics and prognos-
tics

Jim Austin, Department of Computing Science, University of York
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4456.

This work has brought out a number of challenges for the development and use of system that
deal with large complex data. For some time Austin, his group and their collaborators have been
developing scalable systems that tackle large data problems where the data is complex (difficult
to analyse), large (100’s Gb) and incomplete (data missing, added or changed). Examples of
this are given in the DAME (http://www.cs.york.ac.uk/DAME) in the engineering domain and
CARMEN (http://www.carmen.org.uk) in the scientific domain. The evidence from these projects
and others is that data in both science and industry is growing, and there is a desperate need to
develop methods to handle it. A major challenge is now the design of systems. We have a rapidly
growing base of methods (note, methods do remain a challenge, in particular the development
of methods that can provably scale to large data), but systems that tie the methods together
are complex, difficult and thus expensive to build. We are now in a position to understand some
of the principles that need to be followed. For example, it is vital to understand what will be
done to the data before the systems and data repositories are built. If this is not done then
the systems will be inefficient at best or just unusable at worst. We are at risk of copying the
problems in industry where large complex IT systems often do not work. It is vital to make
the systems flexible, as users always change their minds. Methods to develop large data systems
must address these and other issues.

Many of the systems and technologies that Austin has developed have been commercialised. For
example the Signal Data Explorer system (http://www.cybula.com) from the DAME project. The
lessons just as well apply to the transfer of methods to everyday widespread academic use. A
central issue is sustainability. There are many things that can be done in projects to help this.
For example the design of systems that can be maintained, a challenge in academic research
as itUs more about development than research. Another issue is understanding that systems
support users and donUt replace them. Approaching systems that can help a user will be far
more successful that one that replaces them! To ensure good transfer, working closely with users
from the start with an expectation of widespread use is vital. This was exemplified by the UK
eScience programme, but should be encouraged in new projects.

3.9 Summary and Conclusions

To be written by Dave De Roure mpa
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Chapter 4

Data-Interaction’s Challenge

4.1 Overview

Should we say Data Interaction’s Challenge or the Challenge of Data Interaction
sj

Volume and even complexity are tangible concepts in that we can envisage measuring how much
data needs to be processed, how complex the analysis patterns are or how complex the links
between several data sets are. Interaction with data and analysis are much harder to pin down;
analysing the sequence of interactions with a system will not necessarily reveal the intricacies
of how humans and other systems interact with data and analysis. Nor will it suggest what
technology is required to effectively and efficiently operate within a specific data-intensive envi-
ronment.

The theme of this day is to identify the challenges that arise when solving problems that are
data-intensive taking into account interaction. Interaction includes the ways in which researchers
interact with running analyses and visualisations, and the longer-term succession of operations
that researchers perform to progressively find, understand and use data. Many problems will
involve geographically distributed teams. Collaboration across institutions and disciplines is
becoming the norm, to gather skills and knowledge and to access sufficient information for
statistical significance. This leads to privacy and ownership issues, especially where sensitive
personal data is involved.

Challenges are not restricted to interaction with large data or even complex data. It is important
to understand users have different skill sets and objectives, which lead to different patterns of
interaction. To ensure an inclusive community, users should be able to access technology at
different levels of intuitiveness. This calls for “learning ramps” to help everyone to progress as
far as they wish towards expert usage modes.

Data-intensive environments are often highly dynamic. It is important to understand how in
this context researchers build up their portfolio of data and analysis providers, and how they
react as new data and tools become available. The social behaviour and networks involved in
making and influencing choices will have their impact on what data and which tools become an
established standard.

The following talks were given.
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• Research communities are competitive, Joel Saltz (Emory University) talked about how
enable distributed data access and tool provision in one such community—see §4.2.

• In data-intensive environment, how do we publish data? Bill Michener (University of
New Mexico) talked about how to facilitate the full cycle of data acquisition in such
environments—see §4.4.

• Peter Buneman (University of Edinburgh) provided an alternative viewpoint by drawing
on his theoretical knowledge of databases to suggest strategies for thinking about and
understanding data—see §4.5.

• Much data and knowledge is represented by unstructured text, Andrew McCallum (Uni-
versity of Massachusetts, Amherst) showed how machine-learning methods can provide us
with actionable knowledge from such data—see §4.6.

• Sensor networks can include monitoring of human behaviour, Paul Watson (Newcastle
University) introduced several projects where data of this kind is gathered and analysed –
see §4.7.

The following topics motivated breakout sessions during the afternoon.

• Interacting via visualisations of large and complex data, e.g. large-image viewers, reducing
complexity to find relevant patterns and structuring of data.

• Interacting via collaborative systems, e.g. scientific gateways, data and tool sharing, data
repositories, ontologies, trust and peer-reviewing.

• Interacting with analysis: workflow systems, learning ramps, portals and service-based
provisions.

4.1.1 Turing Award Lecture

Profesor Chris Bishop, Deputy Director, Microsoft Research, Cambridge
The talk is available at: http://tv.theiet.org/technology/infopro/turing-2010.cfm.

Professor Chris Bishop gave the Turing Lecture entitled “Embracing Uncertainty: The new
machine intelligence”. This prestigious lecture complemented our workshop and took place in a
venue which was a short walk from the e-Science Institute.

Abstract: Computers are traditionally viewed as logical machines that follow precise,
deterministic instructions. The real world in which they operate, however, is full
of complexity, ambiguity, and uncertainty. In this year’s Turing Lecture, Professor
Chris Bishop discusses the field of machine learning, and shows how uncertainty
can be modelled and quantified using probabilities. Professor Bishop will look at the
recent developments in probabilistic modelling that have greatly expanded the variety
and scale of machine learning applications, and he explores the future potential for
this technology.

4.2 Integrative Analysis of Pathology, Radiology and High
Throughput Molecular Data

Joel Saltz, Center for Comprehensive Informatics, Emory University
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4459.
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Integrative analysis of multiple complementary types of information is playing an increasingly
essential role in biomedical research. The Emory led caBIGTM In Silico Brain Tumor Research
Center is an excellent example of this. The effort is designed to leverage complementary molec-
ular, pathology, radiology and outcome data, obtained by several large scale National Cancer
Institute studies including the Cancer Genome Atlas (TCGA) study. This group is developing
workflows consisting of novel image analysis algorithms and bioinformatics analyses to correlate
imaging characteristics defined by Pathology and Radiology derived feature sets with underly-
ing “omic” characteristics and with patient outcome. This effort is explicitly designed both to
motivate advances in informatics and to generate useful brain tumour research results.

A major technical focus of the In Silico Brain Tumor research Center is high throughput digital
microscopy, which combines image acquisition with generation of semantically annotated feature
sets that describe tissue characteristics of disease at a cellular scale. This is a data intensive
process; a high-power microscope can easily generate several terabytes of data each day. Tissue
characterisation involves workflows that employ a sequence of steps: image segmentation, feature
construction, feature selection, feature extraction, classification of features, and annotation of
images and image regions. The sheer size of image datasets makes gleaning information from
digital microscopy slides a data-intensive process requiring efficient system support. The large
number of potentially useful micro-anatomic features and the large number of image prepro-
cessing algorithms makes it essential to develop effective semantically oriented mechanisms to
manage, query and curate features and to track provenance associated with the generation of
each collection of features.

More information about the work is in [86, 87, 88, 89].

4.3 Text mining, computational biology and human dis-
ease

Andrey Rzhetsky, Department of Medicine, Department of Human Genetics, Computation In-
stitute, Institute for Genomics and Systems Biology, University of Chicago
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4472.

Imagine that a graduate student enters the Library of Congress with an assignment: she is to
find and pull all texts relevant to protein glycosylation. Her problem is straightforward, known
among text-miners as information retrieval (IR). If the student must not only find the books, but
also to flag the most important concepts she encounters in each, she must perform named entity
recognition (NER). Undaunted by her workload, imagine she decides to identify relations between
concepts, such as protein BAD binds protein BAX, text-mining researchers call this information
extraction (IE). Along with a group of additional tasks, such as question answering and text
summarisation (QA and TS, respectively) which we outline below, problems of computational
IR, NER and IE belong to a larger field of natural language processing (NLP)—human language
understanding and generation by a computer. NLP is an integral part of artificial intelligence
(AI), with its larger goal of recreating or surpassing the computational ability of the human brain.
The graduate student in our example has a distinct advantage over the computer, of course—she
is naturally gifted, as we all are, with the ability to parse and quickly extract meaning from
language. Text mining, a new field that applies computational techniques to the problems faced
by our graduate student above, can be thought of as a sub-field of both AI and NLP—but it also
stakes a claim for “intellectual independence” with its emphasis on gaining new knowledge. Thus,
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while multiple definitions exist, text mining is typically associated with information retrieval,
extraction, and synthesis, with a special stress on gaining new knowledge.

Moving beyond information retrieval and extraction, some proportion of published assertions can
be repackaged to form synthetic ideas, that is, new compound concepts that are significantly more
valuable to the scientific community than the sum of their original assertions. In 1986, researcher
Don R. Swanson read a collection of scientific articles that spanned different fields of inquiry.
Each of these disconnected communities had information valuable to the other, but due to the
lack of crosstalk, did not appear to know it. Swanson noticed, in papers produced by researchers
interested in Raynaud’s disease, that its symptoms often included increased blood viscosity and
rigidity of erythrocytes. Meanwhile, in the nutrition biology community several publications
proposed that dietary fish oil could reduce blood viscosity, without explicitly connecting this
finding to Raynaud’s disease. In this early real-world example of synthetic idea generation,
Swanson merged these findings to suggest that fish oil can be beneficial for Raynaud’s patients
and published his suggestion as a medical hypothesis. The hypothesis was confirmed some years
later in an independent randomised clinical trial.

Even with current text mining capabilities, such synthetic ideas can be discovered automatically.
A more distant but nonetheless realistic aim of the field is to trace and map more sophisticated
ideas (idea isomorphisms) that are expressed differently in different scientific fields, yet represent
identical problems or their solutions. Were such idea mappings made instantly available through
an Internet interface, the result could be truly impressive. The diffusion of innovations across
science could be markedly increased by making solutions developed in one area visible to special-
ists still desperately searching for them in a different field. Computationally pairing problems
and solutions generated by different fields is a type of automated creativity (systematic search
for synthetic ideas) that computers almost certainly will do for us in the not too distant future.
Further information may be found in [90, 91, 92, 93, 94, 95]

4.4 Building a virtual data centre for the biological, eco-
logical and environmental sciences

Bill Michener, University of New Mexico, Albuquerque
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4466.

Addressing the Earth’s environmental problems requires that we change the ways that we do
science; harness the enormity of existing data; develop new methods to combine, analyse, and vi-
sualise diverse data resources; create new, long-lasting cyberinfrastructure; and re-envision many
of our longstanding institutions. DataONE (Observation Network for Earth) represents a new
virtual organisation whose goal is to enable new science and knowledge creation through universal
access to data about life on earth and the environment that sustains it. DataONE is designed to
be the foundation for new innovative environmental science through a distributed framework and
sustainable cyberinfrastructure that meets the needs of science and society for open, persistent,
robust, and secure access to well-described and easily discovered Earth observational data.

Supported by the U.S. National Science Foundation, DataONE will ensure the preservation and
access to multi-scale, multi-discipline, and multi-national science data. DataONE is transdis-
ciplinary, making biological data available from the genome to the ecosystem; making environ-
mental data available from atmospheric, ecological, hydrological, and oceanographic sources;
providing secure and long-term preservation and access; and engaging scientists, land-managers,
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policy makers, students, educators, and the public through logical access and intuitive visualisa-
tions. Most importantly, DataONE will serve a broader range of science domains both directly
and through the interoperability with the DataONE distributed network. DataONE is a five-year
project that began in 2009.

I identify key environmental scientific, cyberinfrastructure, and sociocultural challenges and pro-
vides a road map for how DataONE is addressing these challenges. Specific examples are based
on a DataONE EVA (Exploration, Visualisation and Analysis) Working Group effort to create
an integrated database that can be used for better understanding the ecology of bird migra-
tions.

The important message is that to succeed in international preservation and access to data we need
to recognise the importance of data from the perspective of the scientists to understand the re-
quirements. Scientists want fast access in terms of data and tool discovery, automated/automatic
metadata annotation and rapid analysis via appropriate visualisation. They want easy access in
terms of data and metadata upload; integrated, linked, and synthesised databases and interoper-
able and intuitive scientific workflow systems. They want cheap solutions for data preservation
that are free and open source, but also demand ‘support’ for tools they already routinely use,
such as Excel.

The “elephant in the room” challenge is handling metadata as this needs tools and approaches
that are fast, easy and cheap at the same time. Further information may be found in [96].

4.5 Curated databases

Peter Buneman, School of Informatics, University of Edinburgh
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4464.

Curated databases are databases—or knowledge bases if you want to make a distinction—that
are populated and updated with a great deal of human effort. Most reference works that one
traditionally found on the reference shelves of libraries—dictionaries, encyclopaedias, gazetteers,
etc.—are now curated databases. Since it is now easy to publish databases on the web, there has
been an explosion in the number curated databases designed to support scientific research. The
value of these databases lies in the organisation and the quality of the data they contain. Like
the paper reference works they have replaced, they usually represent the efforts of a dedicated
group of people to produce a definitive description of some subject area.

Curated databases present a number of challenges for database research. The topics of annota-
tion, provenance, and citation are central, because curated databases are heavily cross-referenced
with, and include data from, other databases, and much of the work of a curator is annotating
existing data. Evolution of structure is important because these databases often evolve from
semistructured representations, and because they have to accommodate new scientific discov-
eries. Much of the work in these areas is in its infancy, but it is beginning to have practical
consequences and to suggest new areas of research for both theory and practice.

Many of the issues surrounding curated database are non technical. We need a good economic
model for sustainability of such database. Open Access is a recent and successful model for
journal papers. Is this model appropriate for curated databases that require long-term support?
Moreover, people who write reference manuals sometimes expect to make money out of them.
Furthermore, intellectual property in curated databases is a nightmare with legislation still largely
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based on the notion of copying. We need to bring curated databases into the scope of libraries
and other archival institutions and organisations to identify and bring into practice sustainable
models for curated databases.

4.6 Discovering Patterns in Text and Relational Data with
Bayesian Latent-Variable Models

Andrew McCallum, University of Massachusetts
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4480.

One way to make sense of large collections of data is to find a digestible number of latent
components that summarise the original data. This talk presented recent advances in mixed-
membership Bayesian networks (topic models) that provide presentable, interpretable views of
various data, including text (in multiple languages), relations (of several types), time stamps
and other attributes. It emphasises work in social network analysis. For example, the Author-
Recipient-Topic model discovers role-similarity between entities by examining not only network
connectivity, but also the words communicated on those edges; This method is demonstrated on
a large corpus of email data subpoenaed as part of the Enron investigation. The “Group-Topic”
model discovers groups of entities and the topical conditions under which different groupings
arise; this is demonstrated on coalition discovery from many years worth of voting records in the
U.S. Senate and the U.N. Further examples show Bayesian networks being successfully applied
to various large text collections and relational data, leading to a discussion of their applicability
to trend analysis, expert-finding and bibliometrics.

The challenge is to scale up the amount of beneficial interaction between humans. By mining
data sets that capture human interaction, we can identify potentially beneficial relationships
between two or more people. This first step to match making is important in areas where we
need to form groups of mixed expertise or bring together people with the same expertise.

This is joint work with colleagues at UMass and Google: Xuerui Wang, Natasha Mohanty, Andres
Corrada, Wei Li, David Mimno, Gideon Mann and Hanna Wallach.

4.7 Using Real-Time data to Understand and support Hu-
man Behaviour

Paul Watson, University of Newcastle
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4465.

There has been a huge increase in the availability of real-time data. Examples of data sources
include sensors, and also, “Software as a Service” applications which can capture every detail
of users on-line behaviour. A key challenge is to extract value from this data by understanding
the real-world behaviour it represents. The grand challenge is then to use this information to
influence behaviour for the good.

This talk will examine issues in extracting value from this data, using examples from current
projects within the “Social Inclusion through the Digital Economy” (SIDE) project: intelligent
transport systems for older drivers, ambient kitchens for people suffering from dementia, as well
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as software as a service for scientists. A general architecture for processing this data will be
described. We will argue that the key challenge is to find ways to use this growing body of
real-time data to influence human behaviour.

4.8 Summary and Conclusions

From the talks and the breakouts it is evident, interaction can take several forms. Joel Saltz
focusses on systems interacting with systems. These include computers communicating with
other computers, methods and model integrating with other methods and models and data
linking with other data. Bill Michener and Peter Buneman focussed more on humans interaction
with systems. Buneman highlights the economic challenges around sustaining databases and
Michener emphasises the importance of handling metadata as humans are inherently bad at
providing detailed metadata when generating new data. Andrew McCallum’s main contribution
revolves around scaling human-human interaction by extracting better relationships between
groups of people and using these relationships to form new ones or improve existing ones. Joel
Saltz also touches on human-human interaction by explaining the difficulty of designing ontologies
by committee in order integrate data. Paul Watson cuts across all these types of interaction where
his main quest is to make good use of the data obtained by monitoring interactions, where these
interactions can be between humans, humans interaction or systems communicating.

Irrespective of what form of interaction, one important aspect is about scaling up the interaction.
In the context of above, how do we scale up useful human relationships in the light of more data
about their interactions? How do we scale up the creation and use of metadata in the light
of more and more different data? How do we scale up the usage of new and existing scientific
methods? A vital instrument to achieve scaling will be in the form of “intellectual learning
ramps”. These ramps must be provided such that they facilitate people with different levels of
experience to start using new methods in the form of tools running on ICT infrastructure. They
must also allow anyone to increase their competence of using the methods as far as need to. As
highlighted in the breakout groups, the key then is to deliver these ramps while ensuring the
methods they facilitate are used correctly.

Another vital aspect of building intellectual learning ramps is the use a model of development
that itself scales. It is unlikely we can afford or even train an army of software developers skilled
in the provision of intellectual learning ramps for data-intensive research. Moreover, if we want
to reach the researchers in the “long tail” of data-intensive research—the large set of researchers
that do not have the largest data sets, but still cannot deal with their data—we need to provide
methods and tools in the form of intellectual learning ramps that representative members of a
community can utilise to build learning ramps appropriate for their own communities.

An example of how this can work is described in [97, 98]. Here, a intellectual learning ramp is
developed to learn the next generation of chemists about computational chemistry. The ramp
consists of a web portal to shield students from technical details and from the complexity of
the chemistry tools. The web portal was developed by chemists, not by people from ICT, e-
Science or computer science. This was made possible because they themselves used another
intellectual learning ramp, Rapid [99, 100], that allows domain specialists to develop web portals
without having to learn all the technology involved (Grid/Cloud/Cluster/HPC computing, web
portal frameworks, security models, etc.). This model allows scaling the number of portals to be
developed and the number of tools exposed through these portals even further.
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Chapter 5

Themes Emerging in
Data-Intensive Research

5.1 Overview

The overall goals of the workshop are:

1. To increase our understanding of what data-intensive research is already underway.
2. To develop a vision of the potential of data-intensive research in the next ten years.
3. To identify the challenges to achieving that data-intensive research potential.
4. To plan a strategy for achieving that vision by addressing those challenges.

The first seven talks summarised the primary outcomes of each day and each cross-cutting
theme.

John Wood, of Imperial College, London, will give his vision of the future of data-intensive
research. This has been developed through his long experience of scientific data, including the
data challenges at the Rutherford-Appleton and Daresbury Laboratories when he was Chief
Executive Council for the Central Laboratory of the Research Councils and his time as chair of
the European Strategy Forum for Research Infrastructure. He is currently chair a body to advise
on data for the European Union’s Framework Programme 8. See §5.3.

5.2 Multifaceted views of DIR

As each day and theme organiser drew together the whole week’s discussions, including the many
energetic breakout sessions, many views of data-intensive research were emerging. It remains a
challenge as to whether these were the result of different intellectual viewpoints observing a
common DIR scene or views of different clusters of DIR activity in a larger space. More work is
needed, studying DIR applications in detail, to characterise more precisely the applications, the
methods and the challenges.
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5.2.1 Highlights from Monday’s programme

Malcolm Atkinson, School of Informatics, University of Edinburgh
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4469.

Three talks on Monday delivered impetus to the week’s agenda, demonstrating the power of
data-intensive methods and challenging the community to do more with the growing wealth of
data.

Alex Szalay (see §1.3) was the first to explain the origins of data growth, reminding us that
this was growth in numbers of data collections as well as growth in size of collections, and
hence presenting the challenge of reaching the ‘long tail’ of researchers who could now bene-
fit from data-intensive methods and tools. Alex recounted his work with Jim Gray in their
epic struggle to publish the Sloan Digital Sky Survey so that astronomers around the world
could use it—more than 930,000 do! Their propagation of the methods to The National Vir-
tual Observatory (http://www.us-vo.org/), to PanSTARRS (http://pan-starrs.ifa.hawaii.edu), to
Immersive Turbulence simulation data (http://turbulence.pha.jhu.edu) and to Sensor Networks
(http://lifeunderyourfeet.org most data comes from digital sensors – see §4.7 & §3.8); emphatically
demonstrates that once data-intensive methods are mastered they quickly benefit many lines of
research—a strong indicator of underlying principles. Alex went on to describe the new hardware
architectures that they had built, first GrayWulf to balance IO performance with CPU capac-
ity and then Amdahl Blades to reduce energy use. He emphasised the importance of software
as the new instrument, but we also saw the impact of sustained intellectual investment in the
data-intensive campaign.

Douglas Kell introduced us to the new biology, where data-driven hypothesis formation takes
an increasingly significant role. He demonstrated, through a series of examples, how biological
and ecological insights had been derived by combinations of machine learning and text mining
over assembled collections of data from multiple sources. This new modus operandi for biologists
involved large teams brought together by the complexity of the biological systems and to assemble
the relevant data-intensive skills – as evidenced by the long lists of authors on the papers –
the shared data being a means as well as a reason for woking together. Here again we heard
how the techniques developed in one systems biology challenge could be quickly redeployed in
many new ones. The opportunities were growing rapidly and new technology, such as faster
sequencing machines (see §3.2), was delivering an increasing deluge of new data. So we were
left with a fourfold challenge: a) to help the long tail of biologists to capitalise on the data-
intensive opportunities for their research; b) to devise data-intensive technology that can handle
the growing volumes of data; c) to deal with demand as more biologists use more data-intensive
methods on more data sources; and d) to deal with the complexity and uncertainty of the full
spectrum of biological data so that data-intensive methods are trusted.

Thore Graepel showed us many sources of complex and large volume data available within the
Enterprise (Microsoft), ranging across: user clicks, traffic on services, game-playing records,
fault reports and software production. The challenge is to use this data, within the constraints
of privacy laws, to improve user experiences and profitability. The rates of data gathering were
prodigious and sustained, which provides a key resource and challenge for the researchers. The
goal of mining latent relationships from the data was addressed by a succession of steps: formulate
a Baysian model using a factor-graph notation; transform this into a form suitable for distributed
algorithms and evaluate the result on the Cosmos architecture – a data-streaming map-reduce
system. A language PQL is used to declaratively describe the problem and transform it to run
on Cosmos. This was demonstrated with three applications – all in production! a) TrueSkillTM
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analysed records of interactive games (106 matches/day, 6 ∗ 106 players) to generate a global
leader board and offer players matches with people of similar skill; b) AdPredictorTM analysed
user clicks in all of the Microsoft’s BingTM search-engine requests to place the advertisements
most likely to be clicked on the results page and to set advertising prices; c) MatchboxTM which
estimates similarity between users’ preferences in a 20–100 dimensional space and recognises
affinities which are then used to make recommendations, e.g. for content download or virtual
friendships. Once again we see data-analysis methods being pioneered for one application and
then being quickly transferred to new applications. We also saw the construction of ‘intellectual
ramps’ to make it much easier to adopt and deploy the methods.

Nine groups displayed their working data-intensive tools and research progress in the Research
Village (see §1.6). As intended, this stimulated many good discussions and throughout the week
participants were seen trying the technologies they had discovered there.

Three of the cross-cutting themes were introduced: data analysis (see §1.7), programming
paradigms (see §1.9) and data-structuring paradigms (see §1.8). The work of each of these
is reviewed below.

The day concluded with a talk by Xavier Llorà and Bernie A’cs (see §1.10) on Meandre, their
workflow language and on their use of cloud and map-reduce technology for its enactment. As
they also had a high-level language, ZigZag, and drove their transformations from high-level
semantic descriptions, this was an opening salvo in the programming paradigms theme.

5.2.2 Highlights from Tuesday’s programme: Data-volume challenges

Stratis Viglas, School of Informatics, University of Edinburgh
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4475.

An easy way to define data intensity is to define it as data volume and keep it at that: we only
need more efficient ways of storing and manipulating data. But that is nothing new. Perhaps
the most important aspect of the day’s programme was the fact that this substituting intensity
for volume does not even begin to describe the problem, let alone define it.

A pattern that has emerged throughout the day’s programme is the need for data, rather than
specific cross-cutting architectures of dealing with data volume. This need has been recurring in
all talks, where, depending on the application domain and its needs, different system architectures
were employed. The main decision parameters for dealing with the volume of data can be
highlighted as follows:

Filtering vs large-scale analytics. In some cases, the type of processing we need to do is
isolating parts of the input —potentially through a declarative interface. This is tailored
for systems built on database technology, which are optimised to do just that: quickly
identify the relevant parts of the input and manipulate them to generate the result. On
the other hand, we might want to run a large-scale analysis of the input, in which case
setting up the system for fast filtering does not make much sense. In such cases, one is
better off employing an architecture that is tailored towards the use of algorithms like
MapReduce, which uniformly process the entire data set to perform a complex analysis on
all its attributes.

Exhaustive vs sample-based methods. This represents a potential trade-off between data
intensity and computational intensity. It is a well-known fact that certain algorithms,
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though efficient, will not scale well on large volumes of data, hence the exhaustive explo-
ration of the data set becomes problematic. In those cases, we might be able to trade
accuracy for speed by focusing on a sample of the data that will allow us to generelise the
result of processing of that sample to the entire data set.

Stand-alone vs collaborative processing. The need for collaboration is dictated by the sheer
volume of data research (and not only) organisations need to process. In some cases, one
needs to either “outsource” the computation to the owner of the data and retrieve the re-
sults, or exchange data so that the same computation can be carried out over different data
sets. Both these types of processing have been identified during the day’s talks. Moreover,
whenever one is dealing with a feedback loop in data generation, i.e., the results of pro-
cessing become new data than can be processed in the future, the problem of provenance
becomes important: we need to explicitly record the transformations of the data to allow
for reproducability of our inputs.

5.2.3 Highlights from Wednesday’s programme: Data-complexity chal-
lenges

Dave De Roure, University of Southampton
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4476.

To be Drafted by Dave mpa

5.2.4 Highlights from Thursday’s programme: Data-interaction chal-
lenges

Jano van Hemert, School of Informatics, University of Edinburgh
The talk is available at: No-Talk-Found.

As expected, Thursday’s programme covered a broad range of types of interaction, including
human-human, human-system and system-system interaction. Besides the obvious theme of how
to scale up these interactions in an economically viable way the following themes were strongly
present throughout talks and discussions.

Small data in the long tail is hard to get. All data is growing, not just the size of huge data
sets, but also the number of sets both small and large. For the average scientists, small data sets
are now getting large enough to break the technology to operate on them. This is a message
that adds to the much easier to identify problem of huge data sets from very large projects that
are breaking world-leading ICT infrastructures. However, small data sets are everywhere and
are inherently difficult to share because of many reasons including privacy issues, misaligned
standards and formats, competitiveness and lack of procedures that ensure the data is captured,
maintained and curated.

If we assume we are able to effectively work with data both small and large, we then have to
act in socially responsible ways. This is not new as the era of data mining already brought
many discussions around data, but as electronically held data is now prevalent in every corner of
science and indeed society and business it is more pressing as a single data set or a combination
of several data sets can lead to events unacceptable to society.
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One particular aspect of working with data in a responsible way is to ensure an understanding of
the methods in use. ICT solutions enable the uptake of methods by making them more accessible,
but can be harmful when they are then used in ways that lead to unreliable or even incorrect
results. For instance, the use of statistical software packages requires knowledge of the methods
they contain to understand whether these can be correctly applied to a given data set.

Making methods available to researchers in a way meaningful to them was highlighted as a critical
component of data-intensive research. Here methods cover a broad spectrum of data access,
analysis, modelling and processing steps. Methods are provided in the form of software. To
allow meaningful access to these software researchers agree features unnecessary for a particular
task must be hidden as well as any technological barriers should be removed. However, as users
make more regular use of methods they are likely to want to explore more advanced features.
It is therefore necessary to provide interfaces to methods that adapt to the users’ needs and
abilities. These learning ramps are an important way to scaling interaction with methods and
the data they operate on.

Building learning ramps is a time consuming and expensive operation. To successfully develop
a learning ramp it is important that researchers walk a path together with computer scientists
to ensure they understand each other’s domain well enough. Also, they must first agree about
expectations before starting interdisciplinary projects as it takes long to understands each others
jargon. Furthermore, people in different disciplines likely require particular achievements to
ensure career progression that are not directly contributing to the path. Moreover, one discipline
is often the enabler, while the other will be the user. The user often wants a solution as early as
possible to maintain a competitive edge.

It is therefore important that the enabler has access to cost-effective and time-efficient tools to
deliver an adequate solution. It is likely such a solution evolves into a more and more elabo-
rate solution. In other words, the enabler uses tools that themselves can be seen as learning
ramps.

If we assume such paths to data-intensive research environments can be successfully delivered,
we then have to make sure the results produced in these environments are captured, shared and
curated in a manner that is useful to the corresponding discipline. These results will include
statistics about data, annotations of images, outcomes of scientific models, etc. If we want to
prevent a knowledge deluge in five years we must make sure knowledge is kept in a context that
allows integration with other knowledge and collaboration with the wider community.

5.2.5 Data-analysis theme review

Chris Williams, School of Informatics, University of Edinburgh
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4477.
See §5.4.

5.2.6 Data-structuring theme review

James Cheney, School of Informatics, University of Edinburgh
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4479.
See also Section §5.5.
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Clearly, research on computer systems (databases, distributed/grid/cloud computing) and arti-
ficial intelligence (machine learning, text mining) already has found great applications to data-
intensive research and there is potential for many more. These applications contribute directly to
“primary” data-intensive research. However, a great deal of computer science research, particu-
larly in areas such as programming languages, security, or theory could be considered “secondary”
data-intensive research in that it is not immediately applicable to data-intensive researchers’ day-
to-day problems, but may have significant benefits further down the road.

What use, if any, can ideas or techniques from these areas be to data-intensive research? The
title of my talk was a homage to an essay by Donald Good, “The Foundations of Computer
Security: We Need Some”1. That essay identified the lack of clear definitions as a culprit in the
widespread confusion and disagreement about research in computer security twenty years ago. I
believe many of the problems with data-intensive research display this same lack of clarity and
ensuing confusion.

One might expect computer scientists to help with this, and many of us are trying. But the goals
of computer science researchers often diverge from those of data-intensive researchers. It appears
that data-intensive research involves many problems that computer scientists could work on, but
choose not to. Why not? A few possibilities include:

• Computer scientists don’t know about the problems
• Computer scientists don’t understand the problems
• The problems are too domain-specific to be marketable as computer science research
• It’s not in their interest – the effort and opportunity cost of working on the problem might

be disproportionate to the potential rewards
• The problem may sound too similar to an already-solved problem, or may actually already

be solved in principle

Data-intensive research is largely being conducted by researchers whose primary training is not
in computer science or software engineering, but are now responsible for developing and using
seriously complicated computer systems in their daily work. It is easy for computer scientists
to dismiss these efforts as lacking technical or conceptual sophistication, but this is a pointless
exercise in reinforcing discipline boundaries. However, such efforts do often suffer from the fact
that project managers (and supervisory funding agencies) do not know the “folklore” of computer
science and software development: the basic sensibilities and principles that help guide good
developers, programmers, system designers and researchers to do work of general and lasting
value.

Hamming, an early pioneer of scientific computation, gave a widely-disseminated talk on how to
do excellent research2. One of many great suggestions he gives is the following:

I went home one Friday after finishing a problem, and curiously enough I wasn’t
happy; I was depressed. I could see life being a long sequence of one problem after
another after another. After quite a while of thinking I decided, “No, I should be in
the mass production of a variable product. I should be concerned with all of next
year’s problems, not just the one in front of my face.”

Another significant obstacle is the lack of clarity about just what problem, or problems, data-
intensive researchers need computer scientists to solve. This is exacerbated by discipline bound-
aries and communication gaps, the thanklessness of building bridges to cross such gaps, and the

1http://www.ieee-security.org/CSFWweb/goodessay.html
2http://www.cs.virginia.edu/r̃obins/YouAndYourResearch.html
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absence of a clear conceptual foundation for data-intensive research.

Since giving the talk, I have run across a related rule for presenting research due to Lamport,
called “state the problem before describing the solution”3. Quoting further:

[Stating the problem in terms of the solution] makes the comparison of two different
solutions rather difficult. With the second approach, one is forced to specify the
precise problem to be solved independently of the method used in the solution. This
can be a surprisingly difficult and enlightening task. It has on several occasions led
me to discover that a “correct” algorithm did not really accomplish what I wanted it
to.

Following Hamming’s and Lamport’s rules requires careful thought about what problem is actu-
ally being solved, not simply getting a numerical answer, or developing a solution and showing
that it has some nice theoretical or performance properties. Lack of this clarity makes it in-
credibly frustrating for others to work on the same problem, since they first must try to intuit
what the problem really was in the first place from extant (and often heavily discipline-specific)
solutions. Lack of clarity about problems also makes it very difficult to compare solutions to
similar problems.

In my talk I also wanted to critique some of the discussion that took place during the workshop
concerning the challenges of scale. Menaces such as “big data” or “data deluges” or “data
tsunamis” are often invoked as scare tactics for obtaining funding for data-intensive research.
While these tactics have proved effective (and this is generally a good thing), they have also
promulgated a myth that the problem is just a matter of building ever larger systems and and
smarter algorithms to do relatively boring things with large amounts of uniform data. Data-
intensive research, as illustrated by the range of talks in the workshop, is not just this. It also
demands doing interesting things with large numbers of small, heterogeneous data sets, as in
social science and bioinformatics curation settings. It would be a serious mistake for funding
agencies to support only the former kind of data-intensive research.

Having argued that principles are needed to enable more computer scientists to contribute sig-
nificantly to data-intensive research, what exactly do I mean by principles? There is plenty of
scope for confusion here. I don’t mean simply developing more high-level guidelines or bromides
such as “one person’s data is another’s metadata”. I think “Gray’s Laws” and Hamming’s and
Lamport’s rules are examples of useful guidelines, but not necessarily principles in the sense I
mean. In fact I do not have a clear idea what a principle of data-intensive research should looks
like.

Rather, what I am advocating is a principled approach, by analogy with settings where such
approaches have already been fruitful, such as computational complexity theory, database theory,
verification, programming languages, and security. Although such theoretical work in these
areas does not always have immediate real-world applications, it contributes immensely to our
understanding of what is possible.

A principled approach also opens the problems in these areas to scrutiny from people not working
directly on a given system, encouraging research that may have unanticipated long-term impact.
For example, models of concurrent processes originally developed by Hoare, Milner and many
others to understand computer systems are now finding applications in systems biology.

Finally, a principled approach can help us separate the wheat from the chaff, that is, identify
which aspects of data-intensive research are really new and which are old problems in a new

3http://research.microsoft.com/en-us/um/people/lamport/pubs/state-the-problem.pdf
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disguise. Without doing this it is easy for computer scientists not working in this area to get the
impression that it is all chaff, and dismiss it.

In a panel discussion, it was asked whether existing theoretical frameworks such as computational
complexity (or data complexity in database query languages) could provide such a foundation.
Such theories play an important role in understanding computer systems which data-intensive
research will use. But I think we also need to develop a clearer understanding of what the
key research problems arising in data-intensive research really are, particularly those that in-
volve the interaction of data, computer systems and our scientific understanding of the natural
world.

Echoing the last paragraph of Good’s essay, I hope I have now said something to offend nearly
everyone involved in data-intensive research. But the point of this was not merely to offend
but to provoke discussion of how computer science could contribute more meaningfully to data-
intensive research and what steps computer scientists and “primary” data-intensive researchers
can take to make this more likely.

5.2.7 Data-intensive programming theme review

Shantenu Jha, Louisiana State University
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4478.
See §5.6.

5.3 A Vision for Research in 2030

John Wood, Imperial College, London
The talk is available at: http://www.nesc.ac.uk/action/esi/download.cfm?index=4470.

I dread the school holidays. Why? Because getting to Imperial College front entrance in South
Kensington, London is a nightmare. It is on the same street of several museums including the
Science Museum that is invaded by the hordes each vacation. The nearby underground station is
packed with parents and grandparents herding their youngsters together. Even if I go out onto
the street I have to barge through crowds of people, all apparently happy to loiter around with
time to spare. What is it that is so fascinating about the history of science that attracts them?
Playing with magnets, seeing laser light shows, seeing how drugs are developed and marvelling
at the ingenuity of engineers who built steam engines in the 19th century are all part of the
experience that most British children look back on fondly even in adult years. As we have just
celebrated the 400th anniversary of the telescope have all the major discoveries of science been
found; what will the museum of the future record of the present? Are we at the limit of what
we can observe both in the space-time domain and in energy? Just what is ahead of these young
people as they are wowed by the discoveries of yesteryear? What will research be like for them as
they start their independent research careers in 2030 and how can those of us making decisions
now affect them? This is one of the roles of the newly created European Research Area Board
(ERAB). Our prime objective is to ensure that the research environment in Europe remains as
fertile as in the recent past.

The concept of Europe developing a unified science policy is an ambitious goal. The rich diversity
of cultures and languages combined with very different approaches to education and the financing
of research should not be jettisoned in favour of dumbing everything down to the lowest common
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denominator. We need to build on this diversity and let the different cultures contribute together
to build the future. We need to learn from history rather than just starting with a blank sheet
of paper. How can we really create a gourmet dish out of the mix of disciplines and approaches
– this is the challenge for us all.

As a young research fellow in Cambridge I was free to conduct my own experiments and I would
often decide on what to do while walking to the laboratory. I might discuss it with colleagues but
generally I had an idea that I wished to pursue. The experiments and the analysis were difficult
but I had mastered them during my Ph.D. and had read most of the major papers in my field. I
was being invited to give reviews and keynote talks at international meetings. Will this freedom
still remain in the future? While I am a great believer in the role and inspiration of the individual,
much research in the future is going to be conducted in large international teams with many of
the experiments and simulations being undertaken remotely. The research environment of the
future will be much more like that which particle physicists and astronomers have created already.
Yet there will be a difference since this scenario will involve a mix of disciplines including social
scientists and philosophers, with little common overlap in their knowledge base initially. Indeed
will we still train university students in single disciplines? While I detect little enthusiasm for
moving away from investigating one area in depth, much more attention will be required to ensure
that, for example, a mechanical engineer will be able to work together with an environmental
biologist, an expert on standards and a legislator. Only in this more holistic way will the
challenges that face us now be resolved. Today there are few enough teams of critical mass that
look to the challenges as a whole body problem. In fact as the debate on climate change has
shown, there are even segments of society that do not even acknowledge the problem and some
of them are in charge of finance. Today, more than ever, we need to have firm evidence based
research that informs political decision making in an objective way. Ill informed media, looking
for a popular campaign to boost sales, can make a logical political decision be a vote looser in
no time at all.

If I am to think of the environment for a researcher at the beginning of their independent career,
what things will be different from my own experience? Indeed, has the day of the Ph.D. passed
or will it be transformed? Just how will I become a member of a dispersed community yet retain
my own identity. What will some of the issues I will have to face and how can the decision
makers in Europe assist?

The first question ERAB has asked itself is whether universities and publicly funded research
organisations are best suited for exploiting this new environment. The question for politicians
is how best to fund whatever is needed without jeopardising their commitment to mass higher
education. There is a tension between the support of excellence and the need for a cohesive
European society. As the researcher will be using resources all around the world, does it make
sense to be identified with a single institution? One can conceive of molecular structural data
being undertaken remotely using NMRs in Japan, a neutron source in the USA and an X-ray
source in France. All these will be accessible and possibly controlled using dedicated electronic
infrastructure. Indeed today, Imperial College has a dedicated link to Georgia Tech. allowing
researchers in London to operate equipment in real time in Atlanta.

As the research infrastructures become more complex so does the volume of data that will be
produced. For example the European X-ray Free Electron Laser being built at DESY in Hamburg
is estimated to producing 100 times more data onto the Grid than the LHC at CERN will release.
At a recent users meeting at the European XFEL it was stated that the reason so little data is
released onto the Grid by CERN is the fact that the scientists know what they are looking for
and can remove the vast majority of data that is not needed at source. This is not possible at
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the XFEL because of the wide range of disciplines and experiments that will be undertaken from
mechanisms of drug delivery to fundamental investigations of superconductors.

The whole problem of data storage, curation and authentication is a hot discussion topic at the
moment. Just who do we trust to keep the data safe and who decides on the way in which
metadata is chosen? With threats such as terrorism, protection of data from misuse is a high
priority and the problem will become more severe in the future.

The young researcher in 2030 therefore will have to rely heavily on the work done by peers in
different disciplines in various organisations around the world. However, in contrast to today,
he or she might not even have to leave their own house to do this, being constantly connected
with labs in all corners of the planet through the virtual world. As today the general public can
marvel at the results from the Hubble Space Telescope from their home PC so this new world will
enable the general public more access to living science. There is a great opportunity to engage
the whole population in experiments and analysis.

Coupled with the data explosion will be the ever increasing power of super computers. In
Europe there is a policy for a unified approach known as PRACE. As we proceed into the 100s of
petaflops and beyond, the simulations that are being undertaken will become ever more complex
and difficult to verify by reviewers. The mix of capacity alongside capability will be challenging.
However as the large research infrastructures (both those which are large physical ones and
also large complex networks) will be spewing out data at enormous speed so the simulations
will be informing the experiment in a real time feed back situation. Just how will this all be
controlled?

The European project “Lifewatch” (www.lifewatch.eu) is an excellent example of the e merging
scenario. This infrastructure links together structural biology with environmental sensing from
both land based and space detectors coordinated by the European Space Agency. The data
are processed at CERN enabling biodiversity to be monitored and the models developed for a
sustainable environment in order to inform policy and decision makers. This is an ambitious
programme and the way it is conducted in the future may well be a model of the research
environment of the future.

The challenges before us are well known and include climate change, health in an ageing popu-
lation, and the long-term effects of the current economic crisis. The biggest challenge is likely
to be how to achieve a good quality of life for all people around the globe, and to do this in a
sustainable manner. If we want to have even a remote chance to tackle these problems, we need
creative scientists, working together in networks of excellence.

What is the role which the European Research Area will play in this global, interconnected
world, i n which researchers meet virtually just as often as, if not more frequently than face to
face?

Research will be as global as the challenges it tries to address. Purely national research will
continue but is currently ill prepared for tackling the global challenges. Initiatives such as the
proposed Joint Programming which seeks to encourage funding bodies in different Member States
to pool resources, are to be encouraged. Europe has the opportunity to draw together a critical
mass of research infrastructure and human capital. To achieve its full potential, the ERA of 2030
has to be characterised by excellence, openness and innovation, interconnected with the rest of
the world. In addition to this, science has to become a core part of European society and be
owned by all citizens who will celebrate its achievements but who know how to sift out reliable
evidence for policy decisions.
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To counter the challenges we face in the world we have to concentrate on quality of research and
allow excellence to flourish. The Europe of the future should not be afraid of supporting and
demanding excellence. However, the way this excellence is identified and defined will change de-
pending on the sector and geography. A clear distinction is necessary to delineate between world
class excellent research and achieving European cohesion. The current European programmes
do not make this distinction clear enough such that politicians can claim the concentration on
excellence to be unfair. If the whole of European society has sufficient broadband access then
the requirement for a more equitable distribution of facilities becomes less tenable. Indeed there
is a good argument for co-location of facilities in a few well serviced hot spots. The creation of
the ‘Medicon’ valley in Sweden is one such example.

The Internet gives everybody the chance to become a publisher. This is not only true for life
style blogs but has an increasing impact on the scientific world. It is now possible for science
to easily reach large audiences, with the potential to eliminate the role of established filters and
gatekeepers, such as the traditional scientific journal. This also means that science can be easily
reviewed, assessed, rated and commented upon by anybody, reinforcing scientific democracy.
Poor research might thus be identified more quickly and taken off the market. The challenge
here is how to create these open access systems and how to ensure that old gatekeepers are not
simply replaced by new ones.

The public access to assessment criteria will mean that individual reputation will become central
and new ways to assess excellence will be developed. To state that “I am a scientist and I
know best” will be unacceptable. A Ph.D. from an internationally respectable university will
be a hallmark for some. However, as access becomes easier for all how will we give a kite mark
to people with non conventional backgrounds? There will be more room for cranks to fill the
networks with crazy ideas. Over the years I have received my own fair share of letters accusing
me or wasting public money on large international research projects. They are normally typed
on thin paper with a list of those copied that normally include the Prime Minister. I was once
discussing these epistles with the head of the Cavendish Laboratory in Cambridge. We both
took the same approach to ignore the letters but he then laughed and said he was always afraid
that one of the crazy theories might turn out to be true and he would have gone down in history
as ignoring it. This problem will grow.

New approaches, to assess and validate research in the public eye which are open, flexible and
transparent are emerging, based on implicit and explicit data (such as incoming links, page views
and ratings). These developments will lead to the evolution of a new model of assessment, based
on qualitative and quantitative data, which will contrast with the existing G”impact factorG•
model. Yet this does not mean that an organic, bottom-up and peer-to-peer approach is the only
scenario: it is quite possible that some third-party system could be developed, which assesses
and rates researchers in a dynamic way, including qualitative and quantitative input, emphasis
on network analysis, implicit and explicit data – call it the Google of reputation.

In this networked world, an informal collaboration of scientists (even amateur scientists) may well
produce better results than well established bureaucracies of research. Some research organisa-
tions could become irrelevant and be replaced by flexible networks. This would be accompanied
by a labour market for researchers which will become more fluid, with greater mobility and
differences in salaries. The European Research Area will profit from initiatives like the Euro-
pean Researcher Pass, which will allow researchers to move freely between all member states,
carrying health care and social security with them where ever they go without long-term disad-
vantage.
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However, all of this does not mean that research institutions will disappear. In a world overloaded
by information, institutions can guarantee standards of quality.

Where will these institutions be located? Could they simply be in Second Life in many cases?
All this begs the question of how these communities will interact socially. In many physical in-
stitutions the coffee room is where ideas are formulated and debated. In the virtual research en-
vironment will the same passion be developed or will the e-generation evolve accordingly?

Openness does not only mean that research will be conducted by networks of excellent researchers
moving according to opportunities. Scientific research also has to be more transparent and ac-
countable. There is significant pressure to make scientific data available to the public, especially
data collected with public funding or owned by the government (within the scope of Reuse of Pub-
lic Sector Information). The mood is changing and there is stronger recognition of the immense
value which could be generated from reusing such data, overcoming resistances from commercial
interests and traditional gatekeeper positions. Initiatives such as Google Research Datasets will
become a reality. In particular beta research material and rough data will increasingly be avail-
able and provide invaluable sources for research. Crucially, this can include digital versions of
live meetings, such as audio/video recordings of physical meetings and conversations between re-
searchers. These resources can be extremely valuable in blurring the boundaries between formal
and informal knowledge exchange. While informational technology will not substitute physical
contact, it will enhance its meaning.

This new approach to ownership of data, which is already discussed in the context of the open
access movement, will have to lead to a totally new business models for research as proprietary
data would change the fundamentals of revenue generation. It also signifies a new emphasis on
the research process itself rather than the single, perfect new invention. Innovation, new ideas,
key scientific findings increasingly come in unpredictable ways, through continuous exchanges
of view between high-level researchers with similar interests, and between relevant people at
different levels of the innovation cycle. Increasingly, in the new open innovation model, innovative
products are made public before being finalised, through the so-called permanent beta approach,
because large-scale deployment brings insights which could not realistically be replicated in a
protected environment. A parallel change is likely to happen in science: results are no l onger
solely delivered as a finalised product (the publication of an important journal; the book) but
as draft products, i n order to enable wider feedback mechanisms, and continuous improvement,
enabled by the sharing of rough data, facilitating serendipitous innovation. This also helps
meeting the challenge for improved knowledge transfer.

This process approach to science means that we will have to move towards a “science-as-a-service
mentality” (comparable to software development), where research is not only funded because it
may be able to obtain a specific result, but as an on-going process that enables not only the
achievement of great inventions ex-ante, but also the unplanned emergence of new ideas.

A key question is how will privately funded research interact with this more open and transparent
approach to research. The current emphasis on “Open Innovation” will come under immense
strain in the current economic climate. Likewise there is a need for a fundamental overhaul of
the rules relating to State Aid and to Intellectual Property Protection in order to avoid the desire
for protectionism. This will be the true test of European resolve in the coming months.

In this new interconnected, globalised world, why should there be a “European Research Area”?
Europe’s strength has always also been its weakness: its diversity. Research lives of the diversity
of points of view. The European Union has already created an inner market which allows people
from all member states to interact and trade with each other more easily. If it fully realises the
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Fifth Freedom – the freedom of knowledge, it has the huge potential to create a space where
cultural diversity can unleash creativity and innovation.

In addition to diversity, Europe also has a strong common tradition of scientific and philosophical
discovery. This European tradition has an holistic approach to education and research. It does
not see education merely as knowledge transfer, but rather as the formation of a human being
as a member of society, expressed in words such as Bildung or formation. The German word
Wissenschaft describes research in natural sciences as well as the arts, humanities and social
sciences and the early modern period has seen the continuous development of all these areas.
The European approach to scientific research, therefore, should build on the strength of this
tradition. At the moment, arts, humanities and social science often see themselves as being in
contrast to the natural sciences and there is very little cross-fertilisation. The early years of the
21st century have shown how fruitful the interchange of ideas between these disciplines can be
and we should aim for a stronger dialogue between them, this could help to identify new areas of
research, as well as the communication and acceptance of natural sciences in the society. Trying
to understand how other disciplines work, particularly if those disciplines are somewhat alien
to one’s own specialisation can also promote thinking outside the box and unleash creativity.
To enable this, students of the different disciplines will have to be educated so that they can
communicate with each other more effectively. This has to be started long before students enter
university and perhaps a greater emphasis on being a European Citizen should be included in
schools’ curricula. Building on the tradition of early modern renaissance people could be one of
the great benefits Europe can bring to the globalised world of science.

I’m wondering about a new chapter here mpa

5.4 Analysis Paradigms

Over the week we saw a very interesting range of talks on a wide variety of topics. It was easy
to be reminded of the story of the blind men and the elephant, in that DIR seemed to look very
different to different people. However, there were many talks that described different kinds of
data analysis, including those by Thore Graepel (Microsoft Research) on analyzing large-scale
complex data streams from online services; Alan Heavens (University of Edinburgh) on mod-
elling large datasets in astronomy and medical imaging; Jonty Rougier (University of Bristol) on
incorporating parameter uncertainty into the data assimilation process for climate science; Mike
Batty (University College London) on large scale geospatial data analysis; Paul Lambert (Stir-
ling University) on e-Social Science data challenges; Chris Williams (University of Edinburgh)
on the use of probabilistic graphical models in data analysis; Jim Austin, (University of York) on
prognostics and diagnostics in engineering systems; Andrey Rzhetsky (University of Chicago) on
biomedical text mining methods; and Andrew McCallum (University of Massachusetts Amherst)
on discovering patterns in text and relational data with Bayesian latent-variable models.

The above talks covered the topics of exploratory data analysis, descriptive data analysis and
predictive data analysis. The need for data cleaning and quality control was also highlighted.
The talks also addressed the different dimensions of data scale, data complexity and model
complexity.

Some notable issues that came up in the week were: Alex Szalay’s observation on the power
law for data set sizes, i.e. that there are far more small and medium sized datasets than large
ones; that simulation data can also require data analysis (Szalay); the hard problem around
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inferring the structure of networks/circuits from observational and interventional data; the need
to incorporate domain knowledge into models (e.g. using structured probabilistic graphical mod-
els).

Some take-home messages from the week are that

• There is considerable need for and opportunities for data analysis.
• This will require collaboration between domain and data experts.
• One useful way to facilitate this collaboration is via training for young (and not-so-young)

researchers in data-centric thinking (e.g. around the organization and analysis of data).
• Examples of how this might be achieved are through courses in MSc or doctoral training

programmes, or via summer schools.

5.5 Paradigms to structure data

The problem of data structure has gone through extensive approaches and transformations in the
past. One thing has become even clearer from the workshop: when dealing with data structure,
we are not referring to a data model or a data format. Rather, we desire mechanisms to define,
describe, represent, process, and transform data; moreover any of those mechanisms needs to be
explicitly recorded as well. Therefore, “structure” comes in many flavours and paradigms are
necessary for structuring and manipulating any —or, better, all— aspects:

Data. The richness of the application domains is the main driver for increasing the complexity
of data structuring paradigms. It is not as simple as for, say, organisational data, which
tend to be easily describable in one of the existing data models like the relational or the
XML one. Rather, there is a need for even richer data models that deal with specific
domains and allow for the easier exchange of information. There needs to be a way of
standardised representation of data, most likely per domain. This will allow both exchange
and collaboration towards problem solving. In a way, it will establish a common language
that all participating entitities speak.

Metadata. It is not always the case that metadata can simply be regarded as data and revert
to one of the data structuring paradigms. Especially in experimental observations, one
missing link that is crucial is the procedure by which an observation was captured. The
instrument that produced it, different parameters of its operation, even worse enviromental
parameters that might have influenced the observation and have made it non-reproducable.
There is also an inherent “importance” of the observation that is hidden in this discussion:
the less frequent, or the harder to capture an observation the more important it becomes.

Complexity. Computer scientists have well-defined and established ways of dealing with com-
plexity, for instance in terms of data complexity or computational complexity. A formal
model for experimental complexity, or observational complexity, or even interactive com-
plexity of the data becomes a key player in data-intensive research. A principled approach
towards developing notions of understanding the above is important in structuring the data
in a way that lowers the corresponding complexity. To date, no such approach exists.

Provenance. This is perhaps the most important need that has emerged from the workshop
and encompasses all the above notions of structure. It is often the case that data-intensive
research deals with second-level data: data that has not emerged from primary observations,
but rather data that has emerged from transformations of those primary observations. As
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such, a provenance model that tracks these transformations and can readily answer queries
regarding their origin, or allow a researcher to “play back” the transformation or use one
of its mid-points for further processing is crucial.

All of the issues touched upon above are merely the main axes of the data structuring paradigms
that need to emerge if one aims to take data-intensive research at the next level and make it
applicable across disciplines.

5.6 Programming Paradigms

When motivating the Programing Paradigms cross-cutting theme, the organisers framed the
following motivational questions:

• Advantage and applicability of programmatic approaches over others.
• A mapping between existing approaches and application requirements. What is missing?

How can these be met?
• Many approaches are tied to a specific infrastructure (e.g. Hadoop on HDFS). Is this lack

of interoperability and extensibility a limitation and can it be overcome? Or does it reflect
how applications are developed?

• How does the way we store and manage data (distributed versus local, structured versus
table) influence our ability to process it?

Over the course of the workshop, many interesting talks referenced and reinforced challenges
arising from the large-volumes of data. The aim was not to arrive at a comprehensive answer or
solution to the above, we believe we gained insight into several of the questions above.

The primary focus however was on the data-management, integration and complexity of the
data. The recurrence of linked data and analysis using linked data highlighted the need for
‘data analytics’ and scripting approaches to facilitate such analytics. In general however, both
interestingly and surprisingly, limited emphasis was placed on the programmatically controlling
and analysing large-volumes of data. We believe this was just a curious coincidence reflecting
the talks that participants chose to present, as well as partially reflecting the fact that most
talks focussed on “successes” and not “failures”. Additionally, it can be suggested that a large
number of research problems that the community was addressing was more data-oriented, rather
than data-intensive.

As the scale of data increases along several dimensions (volume, distributedness, complexity,
etc.) a we need to rethink the way we programmatically handle different data at different
stages (management, production and analysis). There have been several recent advances towards
programmatically addressing these challenges, e.g., Sawzall [101], Pig [102], Dryad [103], not to
ignore the many variants of MapReduce. Many of these approaches re-establish the primacy of
data parallelism. Programming approaches will not be applicable in all cases, but where the
rate of increase of ε with data size is greater than one, programming approaches will become
critical.

As a specific contribution to the first point, we identified a classification scheme for data-intensive
application – based upon (ε) defined as the ratio of compute requirements and data-processing
(to have units of ops per byte [36]. In passing, we observed that there wasn’t a well defined or
broadly agreed upon definition of ‘data-intensive’. As a corollary we also observed that there
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do not exist data-intensive benchmarks, and an explicit aim of a future DIR theme would be to
identify and propose such a suite of benchmarks.

Additionally, our experience over the week long workshop led us to suggest:

• Related to the fact that there was limited discussion of the abstractions and programming
paradigms for data-intensive, there was limited discussion of the challenges associated with
the systems to support them. However, there was universal acknowledgment of the fact
that as soon as the interoperability-integration-management aspects were resolved, the
data-processing challenges would dominate.

• Much of the focus was on databases. But not surprisingly as data sizes get larger, both the
CI (used as in contrast to Relational data-stores http://en.wikipedia.org/wiki/NoSQL) and
programming requirements to process the data will emerge.

• The programming-paradigms breakout groups identified Clouds as part of the cyber-infrastructure
that would be used and that Map-Reduce provided a good starting point to understand and
analyse the role of data-intensive programming paradigms. (see sub-section on “Research
Areas for Scientific Computing with MapReduce and Clouds”).

Another summary statement, reflecting the boundary conditions of the participants and their
interest, a large number of science applications that received extensive discussion were from
the life-sciences, e.g. genomic and pathway data for example. The role of data-analytics in the
life-science domain was well established.

5.6.1 Research areas for Scientific Computing with MapReduce and
Clouds

There are multiple reasons to believe that clouds (see §1.9.1) will form an increasingly important
component in the cyber-infrastructure used for data-intensive. This is in spite of well known
deficiencies in the current cloud paradigm and offerings, namely, a) the centralised computing
model for clouds runs counter to the concept of “bringing the computing to the data” and
bringing the “data to a commercial cloud facility” may be slow and expensive, b) the virtualised
networking currently used in the virtual machines in today’s commercial clouds and jitter from
complex operating system functions increases synchronisation/communication costs. This is
especially serious in large-scale parallel computing and leads to significant overheads in many
MPI applications. Indeed the usual (and attractive) fault tolerance model for clouds runs counter
to the tight synchronisation needed in most MPI applications. There are other barriers to the
whole-sale adoption of clouds, such as issues raised by security, legal and privacy, but we will
not discuss them here as they are not typically determinants of performance for scientific data-
intensive applications.

Some of these issues can be addressed with customised (private) clouds, however it seems likely
that clouds will not supplant traditional approaches for very large scale parallel (MPI) jobs in
the near future. It is natural to consider a hybrid model with jobs running on either classic HPC
systems or clouds or in fact both as a given workflow could well have individual jobs suitable for
different parts of this hybrid system.

Commercial clouds support “massively parallel” applications but only those that are loosely
coupled and so insensitive to higher synchronisation costs. Let us focus on “massively parallel”
or “many task” cloud applications as these most interestingly ‘compete’ with possible TeraGrid
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implementations. In this case, the programming model MapReduce describes problems suitable
for clouds. One can compare MPI, MapReduce (with or without virtual machines) and different
native cloud implementations and find comparable (within a range of 30%) performance on
applications suitable for these paradigms [104]. However, MapReduce and its extensions offer
the most user friendly environment.

One can describe the difference between MPI and MapReduce as follows. In MapReduce multiple
map processes are formed – typically by a domain(data) decomposition familiar from MPI –
these run asynchronously typically writing results to a file system that is consumed by a set
of reduce tasks that merge parallel results in some fashion. This programming model implies
straightforward and efficient fault tolerance by re-running failed map or reduce tasks. MPI
addresses a more complicated problem architecture with iterative compute–communicate stages
with synchronisation at the communication phase. This synchronisation means for example that
all processes wait if one is delayed or failed. This inefficiency is not present in MapReduce
where resources are released when individual map or reduce tasks complete. MPI of course
supports general (built-in and user-defined) reductions so MPI could be used for applications
of the MapReduce style. However the latter offers greater fault tolerance and a user-friendly,
higher-level environment largely stemming from the coarse grain functional programming model
implemented as side-effect free tasks. Over simplifying, MPI supports multiple Map-Reduce
stages but MapReduce just one. Correspondingly clouds support applications that have the loose
coupling supported by MapReduce, while classic HPC supports more tightly coupled applications.
Research into extensions of MapReduce attempt to bridge these differences.

MapReduce covers many high throughput computing applications including “parameter searches”.
Many data analysis applications, including information retrieval, fit the MapReduce paradigm.
In LHC or similar accelerator data, map functions consist of Monte Carlo generation or analysis
of events while the reduction function is the construction of histograms by merging distributions
from different maps. In the SAR 4 data analysis of ice sheet observations, map functions consist
of independent Matlab invocations on different data samples. Life Sciences have many natu-
ral candidates for MapReduce including sequence assembly and the use of BLAST and similar
programs. On the other hand, partial differential equation solvers, particle dynamics and linear
algebra require the full MPI model for high performance parallel implementation.

MapReduce and Clouds can be used for some of the applications that are most rapidly growing
in importance. Their approach seems essential if one is to support large-scale, data-intensive
applications. More generally a more careful analysis of clouds versus traditional environments is
needed to quantify the simplistic analysis given above.

There is a clear algorithmic challenge to design more loosely coupled algorithms that are compat-
ible with the map followed by reduce model of MapReduce or more generally with the structure
of clouds. This could lead to generalisations of MapReduce which are still compatible with the
cloud virtualisation and provide fault tolerance.

There are many software challenges including MapReduce itself; its extensions (both in function-
ality and higher-level abstractions); and improved workflow systems supporting MapReduce and
the linking of clients, clouds and MPI engines. We note there is also active work in the prepa-
ration, management and deployment of program images (appliances) to be loaded into virtual
machines. The intrinsic conflict between virtualisation and the issues around locality or affinity
(between nodes in MPI or between computation and data) needs more research.

On the infrastructure side, we have already discussed the importance of high-quality networking

4http://www.asf.alaska.edu/sardatacenter
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between MPI and cloud systems. Another critical area is file systems where clouds and MapRe-
duce use new approaches that are not clearly compatible with traditional production Grid in-
frastructures. Support of novel databases such as Big Table across clouds and MPI clusters is
probably important.

5.7 Dynamic Distributed Data Issues

There has been a lot of effort in managing & distributing tasks where computational loads are
dominant. Such applications have after all, been historically the drivers of “grid” computing.
There has however, been relatively less effort on tasks where the computational load is matched by
the data-load, or even dominated by the data-load. For such tasks to be able to operate at scale,
there are conceptually simple run-time trade-offs that need to be made, such as: a) determining
whether to move data to computational nodes, versus b) keeping data localised and moving
computational tasks to operate on the data in situ, or c) possibly neither, and just regenerate
data on the fly. Due to fluctuating resource operating-points, it is essentially not possible to make
such decisions upfront; currently, it is also very difficult to implement these dynamic decisions
in a general-purpose and scalable fashion.

Although the increasing volumes and complexity of data, will make many problems dominated
by the data-load, the computational-requirements will still be high. In practise, data-intensive
applications will encompass data-driven applications — which are the basis for much of the Fourth
Paradigm of science [25]. For example, many data-driven applications will involve computational
activities triggered as a consequence of independent data creation; thus it is imperative for an
application to be able to respond to unplanned changes in data load or content. Therefore,
understanding how to support dynamic computations, is a fundamental, but currently a crucial
missing element in data-intensive computing.

Data-intensive research must herefore operate at the triple point of data-intensive, dynamic and
distributed (3D) attributes. More often than not, the focus will be on applications that represent
the merger of the Big-Data problem AND with the need for supporting Dynamic-Data AND
which may either be fundamentally distributed or need to be distributed.

5.7.1 Establishing the Fundamental Role of Dynamic-Data

We outline three simple, yet representative 3D applications that will help to highlight the fun-
damental role of Dynamic-Data in data-intensive computing:

Application 1: Sensor Data-driven Computation: For large-scale applications such as
LEAD 5 the data-stream from the sensors drives the computational execution. Often in response
to a predicted, or phenomenologically interesting event, the data-source and stream itself needs to
be adapted, e.g. sampling rates (step-up/down), changing resolution, etc. Additional elements of
dynamic adaptation – compute and data, arise from spatio-temporal variations in data generation
(sensors).

Application 2: Dynamical Source and Analysis: A very nice example of dynamic dis-
tributed data-intensive applications is provided by http://ClimatePrediction.net [105], which has
two intrinsic computational models, one for generating the data, and one for analysing the data.

5https://portal.leadproject.org/
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Associated with the former is the concept of phases, where a client run will return a usable
piece of the result part way through the computation of its work unit. The use of distributed
computing in the data generation phase allows a collaborative processing, where the ClimatePre-
diction.net team can run a large set of models without having to own all of the computing and
storage resources.

The model for the analysis of the data is less well known. Here there are a variable number
of highly distributed computing resources and data stores. The data is distributed across the
data stores in a regular way, with complete results from individual models always residing on the
same server. The data is typically too big to transfer to a single location, so analysis must be
performed in situ. It is necessary to provide some form of abstraction from the changing number
of distributed resources. This was provided through a data parallel workflow language, Mart-
let [106], that contains a set of abstract constructs with which to build analysis functions. Other
solutions, such as Parallel Haskell, are able to handle the changing numbers of computational
resources, but a unique feature of this model of computing is that the number of data sources is
also changing. There is definitely a gap here to be filled by further abstractions, as the current
constructs (including Martlet) are just simple prototypes and their is a need for extensions with
more powerful and useful ones.

Application 3: In-transit Adaptation: In many dynamic applications processing of data
often needs to take place “in-flight” (e.g. via streaming) to meet boundary conditions, and/or
data-volume reduction may be required to effectively store/manage data. An application example
is provided by the coupled-fusion simulations that aim to provide integrated predictive plasma
edge simulation to support next-generation plasma experiments, such as International Thermonu-
clear Experimental Reactor (ITER). Here data has to be transformed while it is being streamed
using a mesh interpolation module to satisfy the different formulations – domain configurations
and decompositions. Similar to the LEAD example, depending upon the specific components
being connected (which is time dependent), the in-flight processing has to change.

The first application makes the case for agile execution and control of computing and data;
the third reinforces the need to couple dynamic activity to data streams. As 3D applications
become pervasive, the importance of dynamic placement, management and scheduling of data
and data-sources/sinks will increase, as illustrated by all three examples. But there are several
limitations in the current understanding and handling of Dynamic-Data, some of which carry-
over from constraints in the way we handle the Big-Data challenge. For example, to address
the challenge of Big-Data, several programming models, such as MapReduce & variants, have
been developed. And even though the solution-space for Big-Data is not complete, most existing
programming models (and associated tools and services) typically assume that the underlying
data-set is “static”, i.e. the work-load assigned to a worker does not change during execution.
Thus, performance, deployment and execution decisions, once made, are typically assumed to
be valid throughout the life-cycle/execution of the application. This situation is analogous and
reminiscent of the first-generation of distributed applications that inherited the static execution
models of legacy cluster applications. It is only with the right tools, abstractions and run-time
support that a subsequent class of distributed applications have been able to break-free of the
static (resource) usage model. For traditional distributed applications, the ability for dynamic
resource utilisation and optimisation has lead to a concomitant performance enhancement. Thus,
any vision and plan for managing a data-intensive future should include a strategy for supporting
such dynamic and distributed aspects of data-intensive computing.
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5.8 Social and Ethical Issues

5.8.1 Use of personal data in DIR

The growing power of data and the new methods raise social and ethical questions about the
delivery of benefits and the protection of individuals. The use of personal data in DIR was
discussed in the breakout session ‘sensors everywhere’. As citizens in modern industrial societies
go about their daily lives, they leave digital data trails behind them. These real-time data are
captured from sensors, digital communications and transactions with online software services.
They can be used to model and predict behavioural patterns, detect anomalies, and prompt
interventions. They can be used in applications of which the data ‘donors’ are unaware, and
which do not necessarily benefit them personally, whilst being beneficial — profitable even —
for others. Moreover, when data from separate databases are integrated, measures to anonymise
the data ‘donors’ can be undermined.

The collection and use of personal data in DIR challenges conventional understandings of pri-
vacy, autonomy, consent and confidentiality. However, that fact that people volunteer personal
data through Web 2.0 could indicate that norms of privacy are changing. Moreover, some DIR
applications offer benefits for which privacy and autonomy may be considered worth sacrific-
ing. Indeed, not maximising the potential of DIR to optimise social interventions could itself be
considered unethical.

The Connected Home (see §4.7) could be a case in point. This project is developing sensors to
monitor domestic activities as part of a system of care that prompts intervention when abnormal
behaviour is detected. The motivation for the project is to enable frail and elderly people to live
in their own homes for longer.

However, whether or not this project will have its intended impact is not just a matter of
technological design. It also depends on the answers to questions like: Who will provide and
pay for these services? How will vulnerable users / consumers be protected from unscrupulous
and untrustworthy equipment, service providers and hackers? Who will monitor the signals and
respond to the alerts? Who will be liable for faulty systems? Who guards the guardians?

As the Connected-Home project illustrates, the positive and negative impacts of the applications
of DIR will not be determined solely by the design and operation of the technological systems,
but will also crucially depend upon the configuration of the socio-economic and legal systems of
which they are an integral part. Moreover, it is likely that what counts as privacy, confidentiality,
reliability, trust and security, for example, will change depending on the setting. What is needed
to explore these dynamics are detailed descriptions of the imagined future worlds envisaged
for the operation of these new technological systems. These realistic scenarios — including
worst case scenarios — could then be used for discussion and to inform policy decisions and
legislation.

5.8.2 Changing practices in scientific research

As its name suggests, DIR is data intensive. Gathering the necessary volumes of data and
analysing them means that DIR depends upon collaborations across borders and disciplines and
amongst strangers, in some cases, including citizens (see for example, §1.3 & §4.4; . . . ). The
transition to DIR requires changes in research practices, in particular, the sharing and reuse
of data and workflows. Infrastructures, software and standards are being designed to support
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and facilitate these changes. However, even the most marvellous technological or computational
solution will not be adopted unless it is useable, and without their close co-operation upstream,
what is designed and developed may not align with the needs and preferences of laboratory
practitioners.

The SysMO project (see §2.9) illustrates what it means to integrate user preferences and needs,
and their existing practices into the design and development of a web-based system to exchange,
search, and disseminate data. DataONE (see §4.4) is another example where the socio-cultural
challenges were recognised as ranking alongside the scientific and cyberinfrastructure challenges
of building a virtual data centre.

SysMO illustrates another important lesson which is that technical and computational fixes
alone will not suffice to overcome barriers to changing research practices. Changing practices
will also depend upon social innovations, for example, systems of recognition and reward for data
curation, sharing and reuse. The lesson here is that the socio-economic changes necessary for the
implementation of DIR should be evaluated and co-developed alongside the computational and
technological ones. Importantly for collaboration with strangers and potential competitors is the
need to devise novel socio-technical ways of building trust. Moreover, one size is unlikely to fit
all; there are likely to be differences in the factors that influence practices in different disciplines
and international settings.

5.8.3 DIR and the sociology and philosophy of science and scientific
knowledge

For the social sciences and humanities, DIR is not only a way of doing research (see §3.1), the
very concept of DIR poses questions for research in the sociology and philosophy of science and
scientific knowledge.

One manifestation of DIR is the ‘data-driven revolution’ (see §4.1.1), heralded as a new research
paradigm which derives hypotheses from the data. However, the data never speak for themselves.
What assumptions – about the data and about the world – underlie their use?

What is the relationship between DIR and hypothesis-driven research and theory? For example,
Microsoft’s ‘Matchbox’ (see §1.5) uses large-scale customer purchase databases to model taste in
films and make recommendations that are intended to influence individual purchasing behaviour.
Yet it is not clear what, if any, traditional psychology theory this modelling incorporates. What
is the discipline of this science of human behaviour? Is it a human science?

The history of science shows that adoption of new research technologies and infrastructures affects
the types of knowledge produced. What difference will the technologies and cyberinfrastructures
that are integral to DIR make to the direction of research and the kinds of questions that are
(and are not) addressed?

DIR is not just about knowing the world; it is oriented towards changing the world by making
recommendations and interventions, correcting malfunctions, optimising outcomes. Search en-
gines, for example, personalise search returns. What kinds of worlds are being promoted through
the selective interventions DIR supports? And what alternatives are being systematically ex-
cluded?

In practice, some of the data used in DIR may be incorrect and incomplete, the models imperfect,
the simulations inaccurate, and the interventions inappropriate. And some of the time this may
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not even be noticed. But what happens when DIR disagrees with small data science, or when
DIR comes into conflict with everyday experience? Who has the expertise and power to challenge
knowledge and interventions based on the power of numbers? There are lessons here from the
UK National DNA Database (NDNAD). In arguably one of earliest data-driven applications
in public policy, the NDNAD can lawfully be used to generate suspects for unsolved crimes.
The intervention for the suspect can be arrest, prosecution, trial and even conviction. However,
false positive database matches can occur, especially when the crime scene profile is partial or
mixed. The difficulty in challenging a database match with other kinds of evidence illustrates
the extraordinary power of data-intensive forensic science. Is this likely to be the case for other
DIR-based interventions? How will DIR be challenged by other forms of knowledge? What
happens when there is a difference of opinion about whether an intervention is warranted and
what that intervention should be? Are there lessons here from evidence-based medicine?
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Chapter 6

Summary, Recommendations and
Future Work

This chapter is in a preliminary state. It will (possibly in a second edition) hold a summary
and analysis (§6.1), which contains tables showing the relationship between the talks and other
activities during the workshop, with Data-Intensive challenges, methods and tools. This will
support a ‘gap analysis’ that leads to recommendations (§6.2) and to identification of future
research (§6.3).

6.1 Summary and Analysis

The week’s activities and messages are summarised in four tables:

1. the data-intensive challenges posed by each talk, e.g. coping with existing/anticipated data
volume, are shown in Table 6.1;

2. the data-intensive methods demonstrated as effective, e.g. sampling to make analyses fea-
sible, are shown in Table 6.2;

3. the data-intensive tools that are already available for others to use, e.g. parallel R, are
shown in Table 6.3; and

4. other messages that do not fit in one of the above tables, e.g. the requirement for data-
intensive education, are shown in Table 6.4.

Challenges raised during the workshop
Talk Volume Complexity Analytics Demand Interaction
Szalay §1.3 Sky-survey data:

SDSS, NVO &
PanSTARRS;
repeated analysis
of data from
simulations; and
sensor networks

SDSS schema
200 pages (§2.5)

Queries and ana-
lytic derivations
over preceding
data

930,000 dis-
tinct users of
SkyServer

continued on next page
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Challenges raised during the workshop (continued)
Talk Volume Complexity Analytics Demand Interaction
Kell §1.4 New sequencing

data, metage-
nomic and
diagnostic appli-
cations

Composing
many sources
of data from
literature plus
multiple labo-
ratory and field
sources

data-driven
hypothesis gen-
eration & model
complexity ex-
ceeding human
analytic capacity

NG sequencing
will be widely
used

Collaborative
multi-
disciplinary
knowledge build-
ing

Graepel §1.5 Streams of global
commercial data,
e.g. game-
playing records,
clicks in a search
engine & users’
choices of media
downloads

Many vari-
ables potentially
significant in
models of human
behaviour

Large Bayesian
models

Large flows of
new data plus
complex models

Iteration towards
operational deci-
sion support

Llorà & A’cs §1.10 Handling social-
science and Arts
& Humanities
applications

Table 6.1: Challenges raised during the DIR workshop

Methods introduced at the workshop
Talk Volume Complexity Analytics Demand Interaction
Szalay §1.3 IO-balanced

architectures,
RDB optimis-
ers as analysis
framework,
3D-clustering
indexes

Mapping to rela-
tional models

user-defined
functions in
SQL-server

SQL-server on
clusters & re-
peated analysis
of simulation
data

Web portals
accessing canned
queries

Kell §1.4 Investment in
TGAC & Elixir

Text-mining,
data-driven
science

Text mining &
machine learning

Cloud comput-
ing investment
at EBI

in silico biol-
ogy, data-driven
hypothesis gen-
eration & collab-
orative shared-
knowledge
building

Graepel §1.5 Approximate
inference, par-
allelised with
MPI

Factor graph
probabilistic
models

Machine-
learning in
large-scale pro-
duction systems

Cloud provision-
ing for machine-
learning

continued on next page
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Methods introduced at the workshop (continued)
Talk Volume Complexity Analytics Demand Interaction
Llorà & A’cs §1.10 Meandre seman-

tically driven
workflows &
higher-level
programming
abstraction in
Zigzag

Table 6.2: Methods introduced at the DIR workshop

Tools presented at the workshop
Talk Volume Complexity Analytics Demand Interaction
Szalay §1.3 GrayWulf &

Amdahl Blade
servers

Graepel §1.5 Cosmos PQL & graphic
tools for
Bayesian net-
works

TrueSkillTM,
AdPredictorTM

& MatchboxTM

Cosmos

Llorà & A’cs §1.10 Meandre &
Zigzag

NCSA cloud

Stall 2 §1.6 Taverna & Bio-
catalogue

myExperiment

Stall 3 §1.6 SPRINT (par-
allel R), DiGS
global data
federation &
DATAMINX
data interchange

OGSA-DAI dis-
tributed data fu-
sion

SPRINT DiGS

Stall 4 §1.6 Inforsense Discovery cloud
Stall 5 §1.6 DISPEL biomedical image

data-mining
RAPID

Stall 6 §1.6 MonetDB:
column-based
data store

MonetDB: rela-
tional, XML &
RDF models

MonetDB:
OLAP data cube

Stall 7 §1.6 MapTube Crowd-sourced
data

MapTube &
Tweetometer

Stall 8 §1.6 MOPED: sam-
pling

MOPED: fo-
cused approxi-
mation

continued on next page
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Tools presented at the workshop (continued)
Talk Volume Complexity Analytics Demand Interaction
Stall 9 §1.6 Southampton

Smart Labs

Table 6.3: Tools presented at the DIR workshop

Other ideas and issues developed at the DIR workshop
Talk Description
Szalay §1.3 Imminent power-wall addressed by low-energy balanced architectures
Kell §1.4 Challenge of tracking and recognising credit and responsibility in the collaborative

integration and assembly of data
Kell §1.4 Careers and respect for the technical experts who enable data-intensive research
Graepel §1.5 Determining the acceptable limits of machine-learning over people’s behaviour

Table 6.4: Other ideas and issues raised at the DIR workshop

6.2 Recommendations

The following are draft and preliminary recommendations, pending discussion with other editors mpa

The following recommendations are in arbitrary order, i.e. order does not imply priority or
importance; some may depend on progress against other recommendations.

Application analysis A study should be conducted of the applications identified here and
extended to cover a representative sample, in order to characterise and cluster the set of
challenges applications exhibit. These characterisations and clusters should be examined
to identify common patterns which may be addressed by similar solutions.

Benchmarks and measurement Characteristic examples, including data, workload patterns,
required queries and analyses should be defined and made publicly accessible. These should
lead to agreed methods for measuring progress. The measurements should include factors
such as: a) response time, b) throughput or rate of delivering results, c) energy used to
deliver results, d) quality of results – accuracy, stability & ease of interpretation, e) speed
of new users in gaining first useful results, and f) speed of experienced users in setting up
new/revised sophisticated analyses.

Ethical, social and legal The advent of high rates of flow of multiple sources of personal
data, coupled with widespread availability of governmental data transforms opportunities
and expectations. The ethical, social and economic issues of both using and failing to use
these sources of data are changing. Consideration should be given to understanding the
appropriate new balances to strike, at various geographical scales. These balances may
need to be reflected in revised legislation at those scales.

Education The DIR workshop recounted many new opportunities and methods, and it was
clear that we are in a time of rapid change (the ‘digital revolution’ – see §1.2) when many
more opportunities will arise. It is therefore necessary to devise educational programmes
for all ages to better equip people for life and research in a data-abundant world.

Ramps The concept of an ‘Intellectual ramp’ was introduced by Atkinson (§1.2) and examples
appeared in several talks. There is as yet not classification of ramps, no systematic approach
to deciding when ramps are appropriate, designing and implementing them and evaluating
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their efficacy. Such R&D into ramps would pay dividends in accelerating the adoption of
data-intensive methods, in facilitating the education and in reaching significant parts of
the ‘long tail’.

6.3 Future work
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Data-Intensive Research Workshop Participants (continued)
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Data-Intensive Research Workshop Participants (continued)
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Table A.1: Participants at the Data-Intensive Research Workshop
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Timetable
Time Title Speaker See

Monday 15th March 2010
10:30 Welcome Dave Robertson §1.1
10:35 Introduction Malcolm Atkinson §1.2
10:45 Strategies for exploiting large data Alex Szalay §1.3
11:30 Motivation and strategies for data-intensive biology Douglas Kell §1.4
12:15 Analysing and Modelling Large-Scale Enterprise Data Thore Graepel §1.5
13:30 Research Village §1.6
15:45 Introduction to the Data-Analysis theme Chris Williams §1.7
16:05 Introduction to the Database Paradigms theme Stratis Viglas §1.8
16:25 Introduction to the Programming Paradigms theme Geoffrey Fox §1.9
16:45 Soaring through clouds with Meandre Xavier Llorà &

Bernie A’cs
§1.10

Tuesday 16th March 2010
09:00 Dealing with large data sets in astronomy and medical imaging (by

throwing almost everything away)
Alan Heavens §2.2

09:30 Data challenges in Earthquake Seismology Torild van Eck §2.3
10:00 Making the most of Earth-system data Keith Haines §2.4
11:00 Scientific Databases: the story behind the scene Martin Kersten §2.5
11:30 Model limitations: sequential data assimilation with uncertain static

parameters
Jonty Rougier §2.6

12:00 Earth-Systems data in real time applications: low latency, meta-
data, and preservation

Beth Plale §2.7

12:30 Challenges in Large Scale GeoSpatial Data Analysis: Mapping, 3D
and the GeoSpatial Web

Michael Batty §2.8

17:00 Providing an environment where every data-driven researcher will
thrive

Carole Goble §2.9

continued on next page
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Timetable (continued)
Time Title Speaker See

Wednesday 17th March 2010
09:00 Big Data Bioinformatics Mario Caccamo §3.2
09:30 The Open Microscopy Environment: Informatics and Quantitative

Analysis for Biological Microscopy, HCAs, and Image Data Reposi-
tories

Jason Swedlow §3.3

10:00 Handling social science data: Challenges and responses Paul Lambert §3.4
11:00 The complexity dimension in data analysis Chris Williams §3.5
11:30 Spatial microsimulation for city modelling, social forecasting and

urban policy analysis
Mark Birkin §3.6

12:00 Linked Data: Making things more accessible Hugh Glaser §3.7
12:30 Using search for engineering diagnostics and prognostics Jim Austin §3.8

Thursday 18th March 2010
09:00 Medical image processing & caBIG Joel Saltz §4.2
09:30 Text mining, pathways and disease Andrey Rzhetsky §4.3
10:00 Building a virtual data center for the biological, ecological and en-

vironmental sciences
Bill Michener §4.4

11:00 Curated databases Peter Buneman §4.5
11:30 Discovering Patterns in Text and Relational Data with Bayesian

Latent-Variable Models
Andrew McCallum §4.6

12:00 Using Real Time data to Understand and support Human Behaviour Paul Watson §4.7
17:30 Turing Award Lecture: Embracing Uncertainty: The new machine

intelligence
Chris Bishop §4.1.1

Friday 19th March 2010
09:00 Highlights from Monday’s introduction Malcolm Atkinson §5.2.1
09:15 Highlights from Tuesday: A question of scale Stratis Viglas §5.2.2
09:30 Highlights from Wednesday: Complexity in the Big Data house David De Roure §5.2.3
09:45 Discussion of Data Analysis theme Chris Williams §5.2.5
10:00 Discussion of Programming Paradigms theme Shantenu Jha §5.2.7
10:45 Discussion of Database Paradigms theme James Cheney §5.2.6
11:00 Highlights from Thursday: Interacting with Data Jano van Hemert §5.2.4
11:15 A vision for Research in 2030 John Wood §5.3

Table B.1: Summary Timetable of Data-Intensive Research
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