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Understanding aging-related cognitive decline is of growing importance in aging societies, but relatively little is known about its neural
substrates. Measures of white matter microstructure are known to correlate cross-sectionally with cognitive ability measures, but only a
few small studies have tested for longitudinal relations among these variables. We tested whether there were coupled changes in brain
white matter microstructure indexed by fractional anisotropy (FA) and three broad cognitive domains (fluid intelligence, processing
speed, and memory) in a large cohort of human participants with longitudinal diffusion tensor MRI and detailed cognitive data taken at
ages 73 years (n � 731) and 76 years (n � 488). Longitudinal changes in white matter microstructure were coupled with changes in fluid
intelligence, but not with processing speed or memory. Individuals with higher baseline white matter FA showed less subsequent decline
in processing speed. Our results provide evidence for a longitudinal link between changes in white matter microstructure and aging-
related cognitive decline during the eighth decade of life. They are consistent with theoretical perspectives positing that a corticocortical
“disconnection” partly explains cognitive aging.

Key words: cognitive aging; diffusion tensor imaging; fluid intelligence; fractional anisotropy; processing speed; white matter
microstructure

Introduction
Aging-related cognitive decline is a growing psychiatric, eco-
nomic, and social burden for countries with aging populations.

Gaining a more complete understanding of normal cognitive ag-
ing is of great importance for future efforts to predict and treat
dementia and other related pathologies (Boyle et al., 2013). De-
spite the increasing importance of cognitive decline, a recent re-
view (Salthouse, 2011) concluded that little is known about its
neurobiological substrates. It is rare for studies to examine lon-
gitudinal trends in both cognitive ability and in neuroimaging
measurements, and even rarer for them to include large samples
with a narrow age range (Charlton et al., 2010; Lövdén et al.,
2014). Here, we report a study that analyzed longitudinal cogni-
tive and brain imaging data in a large sample, using structural
equation modeling to test the hypothesis that the disconnection
of brain regions is among the causes of cognitive decline in older
age (Geschwind, 1965; Bennett and Madden, 2014). We tested
whether changes in the white matter microstructure of the brain
during the eighth decade of life are associated with changes in the
key cognitive domains of general fluid intelligence (gf), cognitive
processing speed, and memory.

We measured the white matter microstructure of the brain
using diffusion tensor magnetic resonance imaging (DT-MRI;
Chanraud et al., 2010) and probabilistic neighborhood tractog-
raphy (Clayden et al., 2011), which provided tract-averaged
measures of fractional anisotropy (FA) for a range of major asso-
ciation, projection, and commissural fibers. FA measures the di-
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rectional coherence of water molecule diffusion in the white
matter of the brain. Higher directional coherence (higher FA)
indicates a greater constraint on water molecule diffusion along
the principal fiber direction by axonal membranes and sur-
rounding myelin, and, potentially, more efficient transfer of
information. It thus provides a biomarker for white matter
microstructure (Le Behan, 2003).

Higher FA in specific white matter tracts, and across broader
regions of white matter, has been linked cross-sectionally to bet-
ter scores on various cognitive tests (Grieve et al., 2007; Turken et
al., 2008; Penke et al., 2010, 2012). Researchers have therefore
concluded that white matter microstructure plays a part in the
neural basis of cognitive ability. Like cognitive ability, FA begins
to decline with age at or around the beginning of the third decade
of life, with steeper declines observed later in the life course (Salat
et al., 2005; Sullivan et al., 2010; Kochunov et al., 2012; Lebel et al.,
2012). This raises the important question of whether declines in
white matter microstructure share any of their variance with de-
clines in cognitive ability. Cross-sectional studies have begun to
answer this question, showing that measures of white matter mi-
crostructure mediate associations of age with cognitive abilities
(Madden et al., 2009; Voineskos et al., 2012; Borghesani et al.,
2013; Kievit et al., 2014). However, longitudinal studies are cru-
cial for directly testing whether changes in brain structure are
associated with changes in cognitive ability (Raz and Linden-
berger, 2011).

Only two previous studies, to our knowledge, have addressed
coupled longitudinal change in white matter microstructure and
cognitive abilities during aging. The first (Charlton et al., 2010)
found a significant correlation of r � 0.329 between decline over
2 years in white matter mean diffusivity (MD; an alternative mea-
sure of white matter microstructure) and contemporaneous de-
cline in working memory. The second (Lövdén et al., 2014)
showed strong correlations between the decline in white matter
FA and MD in the corticospinal tract across 2.3 years and a mea-
sure of perceptual speed. However, both studies had relatively
small longitudinally imaged samples (n � 84 and 40, respec-
tively), and their wide age ranges (55–90 years and 81–103 years,
respectively) risk confounding in between-person and within-
person age differences (Hofer and Sliwinski, 2001). Large-
sample, narrow age range cohort designs, as in the present study,
minimize these potential sources of error.

In the present study, we modeled relations between white
matter FA and cognitive abilities in a large, narrow age range
birth cohort sample, with a follow-up period of 3 years (from a
mean age of 73 to 76 years). We used latent variable modeling to
reduce measurement error, and assessed the relationship of
change in broad general factors of fluid intelligence, processing
speed, and memory with change in general white matter tract FA.

Materials and Methods
Participants
The Lothian Birth Cohort 1936 is a longitudinally studied sample of
individuals, most of whom took part in the Scottish Mental Survey 1947,
when they were �11 years of age (Scottish Council for Research in Edu-
cation, 1949). The sample has repeatedly been tested in later life. The first
testing wave took place at a mean age of 69.53 years (SD, 0.83 years) in
2004 –2007 (n � 1091, 543 females); the second testing wave took place at
a mean age of 72.49 years (SD, 0.71 years) in 2007–2010 (n � 866, 418
females); and the third testing wave took place at a mean age of 76.25
years (SD, 0.68 years) in 2011–2014 (n � 697, 337 females). Full details
on the cohort are available elsewhere (Deary et al., 2007, 2012). All par-
ticipants provided written informed consent before testing. The Lothian
Birth Cohort 1936 study was approved by the Multi-Centre Research

Ethics Committee for Scotland (MREC/01/0/56) and the Lothian Re-
search Ethics Committee (LREC/2003/2/29).

The data in the present study come from the second and third waves, at
which points structural brain imaging was also undertaken (see below for
neuroimaging procedures). Imaging took place at a different session to
the cognitive testing, with an average of 65.04 d between sessions at the
second wave (SD, 39.57 d) and 40.29 d at the third wave (SD, 31.89 d). A
total of 731 participants (343 females) underwent brain imaging at a
mean age of 72.68 years (SD, 0.72 years), and 488 (228 females) at a mean
age of 76.38 years (SD, 0.65 years). Not all participants provided usable
data; valid sample sizes for each individual brain measure are shown in
Table 1.

Measures
Cognitive ability. A wide range of cognitive ability measures was com-
pleted by the cohort members at each of the waves. The tests described
here, grouped by the cognitive domain to which they contributed, were
administered identically at the second and third waves of the study. All
have been described in detail previously (Deary et al., 2007). gf consisted
of the following four tests, all from the Wechsler Adult Intelligence Scale,
third UK Edition (WAIS-III-UK; Wechsler, 1998): Matrix Reasoning
and Block Design (which mainly assess nonverbal and spatial reasoning);
and Digit Span Backward and Letter-Number Sequencing (mainly tests
of working memory). Processing speed consisted of the following five
tests: WAIS Digit-Symbol Substitution and Symbol Search (both
speeded pencil-and-paper tasks), Simple Reaction Time, and 4-Choice
Reaction Time (tested using a dedicated measurement instrument;
Deary et al., 2001; Simple Reaction Time was log transformed before
inclusion in the analyses), and Inspection Time (a computerized test of
visual discrimination speed; Deary et al., 2004). Finally, memory con-
sisted of the following three tests from the WMS-III-UK (Wechsler,
1998): Logical Memory (indexing verbal declarative memory; total score
from immediate and delayed); Spatial Span (total from forward and
backward tests); and Verbal Paired Associates (total from immediate and
delayed tests). Valid sample sizes for each individual cognitive variable
are shown in Table 2.

Diffusion tensor MRI. The neuroimaging protocol for the study was
fully described previously (Wardlaw et al., 2011). The second and third
waves of the study had an identical imaging protocol, using the exact
same scanner, maintained to operate as consistently as possible across
time. Subjects were scanned using a Signa HDxt 1.5 T scanner (GE
Healthcare) with a self-shielding gradient set (maximum gradient
strength, 33 mT/m) and an eight-channel phased-array head coil. The
whole-brain DT-MRI examination consisted of seven T2-weighted (b �
0 s/mm 2) and sets of diffusion-weighted (b � 1000 s/mm 2) single-shot
spin echo echoplanar imaging (EPI) volumes acquired with diffusion
gradients applied in 64 noncollinear directions (Jones et al., 2002). These
data were acquired in the axial plane, with a field of view of 256 � 256
mm, 72 contiguous slice locations, and an imaging matrix (128 � 128)
and slice thickness (2 mm) designed to give 2 mm isotropic voxels. The
repetition and echo times for the EPI sequence were 16.5 s and 98.3 ms,
respectively.

Tractography. All MRI data were converted from DICOM (http://di-
com.nema.org/) to NIfTI-1 (http://nifti.nimh.nih.gov/nifti-1/) format,
and preprocessed with FSL tools (http://www.fmrib.ox.ac.uk/fsl/) to ex-
tract the brain, eliminate bulk patient motion and eddy current-induced
artifacts, and estimate FA in each brain voxel (Pierpaoli et al., 1996). The
underlying connectivity data were generated using BedpostX/Prob-
TrackX (Behrens et al., 2007), with a two-fiber model and 5000 stream-
lines to reconstruct tracts of interest.

Probabilistic neighborhood tractography (Clayden et al., 2011), an
automatic tract segmentation method with good reproducibility, was
implemented in the TractoR package for R (http://www.tractor-mri.org.
uk); this method provides intrasubject coefficients of variation across
multiple measurements of typically �10% for tract-averaged FA
(Clayden et al., 2009). We identified 12 tracts of interest in each partici-
pant based on tract topology models: the genu and splenium of the
corpus callosum, the bilateral rostral cingulum cingulate gyri, the bilat-
eral arcuate, uncinate, and inferior longitudinal fasciculi, and the bilat-
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eral anterior thalamic radiations (Fig. 1). This method selects the optimal
choice of tractography seed point by estimating the best-matching tract,
in terms of length and shape relative to a previously defined reference
tract, from a large number of candidates generated from a neighborhood
of seed points (typically 7 � 7 � 7 voxels) placed around a central seed
transferred from standard space. These topological tract models also
allow for rejection of false-positive connections (Clayden et al., 2011),
thereby significantly improving the tract segmentation (Bastin et al.,
2010). The seed point best matching each tract to the reference was
determined in this manner, with the resulting tractography mask applied
to the FA volumes of each participant. This permitted tract-specific mean
values of this biomarker, weighted by the connection probability, to be
determined for each tract in each subject. Finally, segmented tracts were
excluded if there was evidence of aberrant or truncated pathways that did

not appear to be anatomically plausible representations of tracts. Note
that the image analysts using TractoR were blind to the characteristics
(including, at the second wave, the previous DT-MRI biomarker values)
of each participant.

Statistical analysis
The analyses were based on the universal finding of positive manifolds of
correlations between scores on cognitive tests (Carroll, 1993), and our
finding of positive correlations among tract-averaged FA values for indi-
vidual white matter tracts (Penke et al., 2010). That is, variables from
within each set of measures of cognitive ability (fluid intelligence, pro-
cessing speed, and memory) were positively intercorrelated, as were
tract-averaged FA values for all 12 major tracts. This allowed four common,
latent factors reflecting fluid intelligence, memory, processing speed, and

Figure 1. Examples of major white matter tracts segmented using probabilistic neighborhood tractography overlaid on fractional anisotropy maps for a representative subject; segmented white
matter tracts are shown in orange, with seed points indicated with a green cross. Top row (left to right), Genu of corpus callosum, splenium of corpus callosum, and anterior thalamic radiation. Middle
row (left to right), rostral cingulum and inferior longitudinal fasciculus. Bottom row (left to right), Arcuate fasciculus and uncinate fasciculus. The latter five tracts were measured for both the left and
right hemispheres, giving a total of 12 tracts. Tracts were measured and processed in an identical fashion at both the age �73 years and age �76 years measurement waves.
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white matter FA to be modeled, and their fit to the data tested, at each of the
two measurement waves. Each individual test or tract has a loading that
indexes how strongly it relates to the relevant latent general factor.

The latent general factors were used in a multivariate Latent Difference
Score structural equation model (McArdle, 2009), shown in full in Figure
2). Mplus version 7.11 was used for all modeling (Muthén and Muthén,
1998 –2014). As is standard in longitudinal data analysis with latent vari-
ables, we used full information maximum likelihood estimation to deal
with missing data under the “missing at random” assumption. This as-
sumes that any systematic associations between patterns of missingness
and the missing scores themselves can be statistically accounted for by the
data present in the model. In the model, latent difference scores were
calculated from changes in the latent factor scores between the measure-
ment waves. These latent difference scores are free of measurement er-
rors associated with specific tests and tracts, since they index only the
shared variance between the multiple indicators.

Correlations among the cognitive and FA factors, between the factors
and the difference scores, and among the difference scores were simulta-
neously estimated within the model. We also allowed cross-loadings be-
tween cognitive factors: Digit-Symbol Substitution and Symbol Search
loaded on both the gf and speed factors. This cross-loading improved
model fit but did not appreciably alter the results reported below. Since
there was some age variance at the two measurement waves, and there

may also have been confounding effects of sex, each measurement was
residualized for age (in days) and sex before including it in the model. We
tested whether there were significant differences between the effect sizes
of key correlations by constraining them to equality in a new model, then
comparing it to the original model using a � 2 test. If the fit of the new
model was significantly poorer, this indicated that the correlations were
significantly different in size.

We assumed that each factor measured the same trait across time (i.e.,
we assumed strong factorial invariance; Widaman et al., 2010) and im-
plemented this in the model by setting the loadings of each of the factor
indicators and their intercepts equal across waves. For all three cognitive
factors, tests supported invariance of both loadings and intercepts. For the
white matter FA factor, tests supported invariance of the loadings, but a
model with freely estimated intercepts was superior to one with invariance.
Relaxing the invariance assumption for the FA intercepts produced results
that were very similar to those in the main analysis for change in FA and
change in gf, and for baseline FA and change in speed.

Results
The cognitive factors and the general FA values showed high
reliability: the cross-wave correlation for general FA was r � 0.65;
for gf, speed, and memory, the correlations were r � 0.85, 0.86,

Figure 2. Full path diagram for the four-way multivariate latent difference score model. For each variable, two latent factors (circles; age 73 and 76 years) are estimated from the manifest
indicators (squares, 1a-k and 2a-k), and a latent change factor is calculated from the change between age 73 and 76 years (circles, �). Bolded paths indicate change– change correlations, the main
paths of interest in the present study. For space reasons, only three manifest variables are shown for each latent factor; in the model: FA, gf, and processing speed were all estimated using more than
three indicators (12, 4, and 4, respectively). Paths labeled “1” were fixed to 1 to identify the model and estimate the latent change factor. For clarity, the model mean structure is not shown. Mem,
Memory; Spd, processing speed.
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and 0.76, respectively. For the 12 individual tracts, the cross-wave
FA correlations ranged from r � 0.36 to r � 0.62 (mean r � 0.47;
Table 1). For the individual cognitive tests in the gf, speed, and
memory domains, the mean cross-wave correlations were r �
0.69, 0.69, and 0.67, respectively (Table 2). Loadings for each of
the factors (from the measurement model) are provided in Table
3. Factor loadings were all statistically significant and substantial:
most had moderate-to-large effect sizes (around or above r �
0.60), indicating that these factors were good indices of the com-
mon variance within each cognitive domain and within white
matter tract FA values. For gf, the two speed tests that were cross-
loaded on this factor and on the speed factor had lower gf loadings
than the four nonspeeded tests. For speed, the highest loading
was that of Choice Reaction Time, with each of the other tests
loading similarly strongly. For memory, the three tests had simi-
lar loadings. FA in the splenium of the corpus callosum had the
lowest loading on the general factor of FA, while all the other
tracts had similar loadings.

Since it has been suggested that a single, general factor may not
be an adequate representation of FA variance in brain-wide white
matter tracts (Lövdén et al., 2013), we tested the fit of the one-
factor solution at each wave. This general factor model initially
showed poor fit to the data (at age 73 years: � 2(54) � 368.60, p �
0.001; root mean square error of approximation (RMSEA) �
0.093, comparative fit index (CFI) � 0.86; Tucker-Lewis index
(TLI) � 0.83; at age 76 years: � 2(54) � 238.10, p � 0.001; RM-
SEA � 0.086; CFI � 0.86; TLI � 0.82), but after the inclusion of
five residual correlations between the left and right hemisphere
measurements of the bilateral white matter tracts, the fit was
excellent at age 73 years (� 2(49) � 100.12, p � 0.001; RMSEA �
0.040, CFI � 0.98; TLI � 0.97) and at age 76 years (� 2(49) �

80.75, p � 0.001; RMSEA � 0.037; CFI � 0.98; TLI � 0.97). That
is, the initially poor fit occurred because bilateral similarities were
not taken into account. We included these cross-hemisphere cor-
relations in the final model.

A latent difference score model including only the three cog-
nitive variables had acceptable fit to the data: � 2(49) � 874.15,
p � 0.001; RMSEA � 0.055, CFI � 0.94, TLI � 0.93. The latent
difference score model for FA alone had a slightly poorer fit:
� 2(252) � 626.18, p � 0.001; RMSEA � 0.046, CFI � 0.92,
TLI � 0.91. The full, multivariate model (including the three
cognitive domains along with FA) showed acceptable fit by all
indices, as follows: � 2(1056) � 2096.182, p � 0.001; RMSEA �
0.034; CFI � 0.927; TLI � 0.922. The results from this latter, final
model are shown in Table 4 and Figure 3.

At baseline, the cognitive latent factors were strongly related
to each other (all r values �0.59, p values � 0.001; Fig. 3a). The
brain white matter FA factor was significantly associated with all
three cognitive domains at baseline (FA with processing speed:
r � 0.24, p � 0.001; with gf: r � 0.19, p � 0.001; and with
memory: r � 0.11, p � 0.045). FA had a significantly stronger
baseline relation with speed than with memory (� 2(1) � 4.01,
p � 0.045), but there were no significant differences in the size of
the FA–speed correlation and the FA–gf correlation (� 2(1) �
1.11, p � 0.29), or between the FA–gf correlation and the FA–
memory correlation (� 2(1) � 0.48, p � 0.49).

There was significant decline in the three cognitive and white
matter FA factors between age 73 years and age 76 years, as fol-
lows: FA (�0.09 SDs/year; z � �5.50, p � 0.001), gf (�0.07

Table 3. Factor loadings from the measurement model of the multivariate latent
change model of white matter FA, gf, memory, and processing speed (reaction
times are recalculated so that higher values indicate better scores)

Factor Variable Estimate SE p value

FA Genu of the corpus callosum 0.597 0.027 �0.001
Splenium of the corpus callosum 0.344 0.033 �0.001
Left arcuate fasciculus 0.653 0.024 �0.001
Right arcuate fasciculus 0.613 0.028 �0.001
Left anterior thalamic radiation 0.645 0.026 �0.001
Right anterior thalamic radiation 0.661 0.025 �0.001
Left rostral cingulum 0.600 0.027 �0.001
Right rostral cingulum 0.552 0.028 �0.001
Left uncinate fasciculus 0.679 0.025 �0.001
Right uncinate fasciculus 0.669 0.025 �0.001
Left inferior longitudinal fasciculus 0.523 0.030 �0.001
Right inferior longitudinal fasciculus 0.488 0.030 �0.001

gf Matrix reasoning 0.648 0.022 �0.001
Block design 0.669 0.022 �0.001
Digit span backward 0.586 0.025 �0.001
Letter-number sequencing 0.658 0.023 �0.001
Digit-symbol substitution 0.306 0.052 �0.001
Symbol search 0.378 0.047 �0.001

Speed Digit-symbol substitution 0.527 0.049 �0.001
Symbol search 0.429 0.045 �0.001
Simple reaction time 0.496 0.028 �0.001
Choice reaction time 0.795 0.023 �0.001
Inspection time 0.522 0.026 �0.001

Memory Logical memory 0.614 0.033 �0.001
Spatial span 0.546 0.029 �0.001
Verbal paired associates 0.560 0.034 �0.001

Due to the invariance assumption, factor loadings and indicator intercepts were identical at waves 1 and 2. Digit-
symbol substitution and Symbol search loaded on both gf and speed. The full model diagram is shown in Figure 2.
Results taken from the model are adjusted for age at testing and sex. All estimates are standardized.

Table 4. Results from the structural model of the multivariate latent change model
of white matter FA, gf , memory, and processing speed (for speed, higher values
indicate better scores)

Path type
(correlation) Path Estimate SE p value

Level–level FA–gf 0.192 0.047 �0.001
FA–speed 0.240 0.046 �0.001
FA–memory 0.106 0.053 0.045
gf–speed 0.603 0.039 �0.001
gf–memory 0.875 0.037 �0.001
Speed–memory 0.593 0.045 �0.001

Level– change (�) FA–�FA �0.414 0.053 �0.001
FA–�gf �0.072 0.093 0.444
FA–�speed 0.153 0.070 0.029
FA–�memory �0.078 0.067 0.246
gf–�gf �0.041 0.096 0.670
gf–�FA �0.076 0.066 0.252
gf–�speed 0.189 0.067 0.005
gf–�memory 0.073 0.066 0.267
Speed–�speed �0.091 0.077 0.238
Speed–�FA 0.036 0.072 0.614
Speed–�gf 0.155 0.097 0.108
Speed–�memory 0.095 0.069 0.166
Memory–�memory �0.114 0.081 0.159
Memory–�FA 0.007 0.077 0.928
Memory–�gf 0.026 0.109 0.813
Memory–�speed 0.129 0.079 0.104

Change (�)–
change (�) �FA–�gf 0.312 0.123 0.011

�FA–�speed �0.061 0.094 0.512
�FA–�memory 0.034 0.090 0.701
�gf–�speed 0.645 0.159 �0.001
�gf–�memory 0.637 0.128 �0.001
�Speed–�memory 0.561 0.086 �0.001

Full model diagram shown in Figure 2. Results taken from the model are adjusted for age at testing and sex.
Estimates are standardized.
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SDs/year; z � �5.72, p � 0.001); memory (�0.06 SDs/year; z �
�4.66, p � 0.001); and speed (�0.15 SDs/year; z � �10.39, p �
0.001). The declines in the cognitive factors were all correlated
together (all r values � 0.55, p values � 0.001). That is, those who

declined more in one cognitive domain also tended to decline
more in the other two cognitive domains.

Those with higher FA at age 73 years tended to decline less in
speed between ages 73 and 76 years (r � 0.15, p � 0.03; Fig. 3b).
There were no significant correlations between baseline FA and
change in gf (r � �0.07, p � 0.44) or memory (r � �0.08, p �
0.25). The correlation between baseline FA and speed change was
significantly larger than that between baseline FA and memory
change (� 2(1) � 5.16, p � 0.02), but did not differ from that
between baseline FA and gf change (� 2(1) � 1.76, p � 0.19).

There was a significant association between the change in
brain white matter FA and the change in gf (r � 0.31, p � 0.01)
from 73 to 76 years of age; decrements in brain white matter
microstructure were thus coupled with decrements in fluid intel-
ligence over this period (Fig. 3c). The correlations between the
change in FA and the change in memory (r � 0.03, p � 0.70), and
in processing speed (r � �0.06, p � 0.51), were very small and
nonsignificant; both of these correlations were significantly
smaller than the correlation between FA change and gf change
(test for differences from the FA change correlation with memory
change: � 2(1) � 4.13, p � 0.04; and with speed change: � 2(1) �
5.97, p � 0.02).

As a robustness check, we removed all the participants who
scored below 24 at either of the waves at age 73 years or age 76
years on the Mini-Mental State Examination (Folstein et al.,
1975), a commonly used screening instrument for possible
dementia that was administered at both waves. After exclusion
of these 13 participants, the model fit was still acceptable
(RMSEA � 0.034, TLI � 0.924, CFI � 0.919), and the main
associations between the latent variables, as well as the factor
loadings, were very similar to those in the original model (all
significant associations from the original model remained so; e.g.,
FA change–gf change correlation: r � 0.32, p � 0.01; baseline
FA–speed change correlation, r � 0.20, p � 0.01).

Finally, because approximately one-third of the participants
who had an MRI scan at age 73 years did not return for a scan at
age 76 years (a loss of 241 participants), we tested whether their
cognitive or FA measurements differed significantly at baseline
from those who remained in the study. To do this, we compared
the fit of multigroup models of the baseline (age 73 years) data
where the means were constrained to equality between those who
returned at age 76 years and those who did not, to models where
the means were estimated freely across the groups. For cognitive
abilities, a model where the means were constrained had signifi-
cantly poorer fit (� 2(12) � 28.96, p � 0.003); those participants
who did not return at age 76 years had significantly lower cogni-
tive ability. The participants who went on to drop out also had
lower FA values, but this difference was not significant (� 2(12) �
18.58, p � 0.10).

Discussion
The present results show that aging-related deterioration in the
microstructure of brain white matter connections is coupled with
a decline in general fluid intelligence, which reflects the impor-
tant skills of reasoning, problem solving, and working memory.
White matter connections allow rapid information transfer between
gray matter regions that are critical for high-level cognitive opera-
tions (Filley, 2012). This result is thus among the strongest evidence
to date that is consistent with the theory that corticocortical “discon-
nection” is a cause of aging-related cognitive decline (Geschwind,
1965, O’Sullivan et al., 2001; Chanraud et al., 2010).

The cognitive trait of processing speed had numerically the
strongest baseline correlation with white matter FA, and showed

Figure 3. Results from key parts of the latent difference score model. The full model is shown
in Figure 2. Full results with significance levels are shown in Table 3 (measurement models; i.e.,
loadings of each test/tract on its general factor) and Table 4 (structural model; i.e., associations
among the baseline and change latent traits). Correlations among latent variables (circles) of
brain-wide white matter FA, gf, processing speed (Spd), and memory (Mem) are shown as
values on each path (line), with SE in parentheses. Dashed paths are not statistically significant.
a, All four latent variables were correlated significantly and positively at baseline. b, Baseline FA
was correlated with the change in processing speed between ages�73 and�76 years, but not
with the change in gf or memory. c, Change (�) in FA and gf were positively correlated. Changes
in gf, Spd, and Mem were all significantly and strongly correlated.
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the most pronounced decline with age. There was no significant
association between change in FA and change in speed. However,
there was a significant association between higher baseline white
matter FA and a less steep decline in processing speed. This latter
result has implications for the “brain reserve” hypothesis (Chris-
tensen et al., 2007), since it suggests that those with initially
higher brain white matter FA maintain their processing speed
more effectively as they age.

White matter FA may be reduced in older age via a number of
neurobiological processes, including microvascular damage, de-
generation of myelin sheaths around axons, decreasing axonal
density, and breakdown of the cytoskeleton (Sullivan and Pfef-
ferbaum, 2006; Madden et al., 2012), all of which may be impor-
tant for more efficient complex cognition. Alternatively, FA
declines may be secondary effects caused by white matter atrophy
(Vernooij et al., 2008; Aribisala et al., 2013) or by aging-related
changes in the extracellular matrix (Syková, 2005). Analyzing the
change in other MRI biomarkers—such as axial and radial diffu-
sivity, T1 for water content, and magnetization transfer ratio
(Penke et al., 2010, 2012)—may reveal more about the relation
between white matter deterioration and cognitive decline, al-
though it should be noted that equating specific DT-MRI mea-
surements with precise cellular mechanisms is inadvisable
(Wheeler-Kingshott and Cercignani, 2009; Jones et al., 2013).

The data examined here are unusual in that they are longitu-
dinal and that they contain a wide range of cognitive tests taken
alongside detailed neuroimaging measures in a very large sample.
The narrow age range at each measurement wave is also impor-
tant, since it rules out the confounder of chronological age (Hofer
and Sliwinski, 2001). Our use of the Latent Difference Score
model (McArdle, 2009) also allowed error-free estimates of the
longitudinal changes in the brain and cognitive abilities. Our
results are thus likely to be highly robust, but the study also has
some limitations. First, since the power to detect a correlated
change in longitudinal studies increases dramatically with greater
study durations (Rast and Hofer, 2014), we might expect studies
across even longer time periods than the 3 years covered here,
with a greater number of testing waves at older ages, to uncover
other possible effects that are of interest. There may also be non-
linear changes in white matter microstructure across aging (Koc-
hunov et al., 2012); it would be possible to test for these using
three or more waves of data, but we could not do so with the
two-wave data in the present study. Tests of these hypotheses will
become viable in this sample as new waves of Lothian Birth Co-
hort 1936 data are collected.

Second, as noted above, a previous study found that a general
factor was a poorer fitting model of individual differences in tract
FA values from across the brain, when compared with a model
that modeled tracts individually (Lövdén et al., 2013). We found
excellent fit with a single-factor model that also accounted for
bilaterally measured tracts, but this does not preclude the possi-
bility that variance in the FA changes of specific tracts may
provide additional information about cognitive decline (for
cross-sectional analyses of specific tracts in the present cohort,
see Booth et al., 2013).

Third, given that our sample was somewhat self-selecting, and
thus likely healthier and of higher cognitive ability than similarly-
aged individuals in the general population, our results may not be
fully generalizable. Relatedly, our dropout analysis indicated that
participants who did not return for the second MRI scan had
significantly lower cognitive ability levels than those who re-
mained; there was thus some restriction of range at the second
wave. We might thus expect the true correlations to be somewhat

larger in a fully representative sample. Fourth, the broadly
healthy nature of our participants also means that our results do
not directly address the etiologies of Alzheimer’s disease and
other dementia-related neuropathologies. However, as noted
above, understanding nonpathological aging-related cognitive
decline is important (Boyle et al., 2013); since accelerated decline
in some cases predicts pathology (Mura et al., 2014), these
results may shed light on the prodromal phase of these disor-
ders. Fifth, our results are not fully comparable to the previous
two longitudinal studies of white matter and cognitive abilities
discussed above (Charlton et al., 2010; Lövdén et al., 2014),
which used different cognitive tests and participants who were
both younger and older than those in our sample. Nonethe-
less, these studies converge with ours on the finding that white
matter microstructure changes with age in tandem with cog-
nitive abilities.

It should be noted that the intrafactor correlations between
baseline and change in our model (e.g., the correlation between
baseline FA and change in FA) were negative, indicating that
those with higher baseline scores tended to decline more quickly.
These results are most likely due to the “law of initial value”
(Wilder, 1957); they reflect the fact that there are more ways for a
high baseline score than for a low baseline score to decline (these
correlations may also reflect regression to the mean caused by
measurement error, but, as noted above, measurement error was
minimized by our use of latent variables). This is not the case for
interfactor baseline– change correlations; for instance, the signif-
icant correlation between baseline FA and change in speed.

The present analysis suggests that one of the mechanisms ex-
plaining differences in aging-related decline in fluid intelligence
is indexed by deteriorating brain white matter FA, and that
poorer FA is linked to more subsequent decline in cognitive pro-
cessing speed. We found no associations of either baseline or
change in FA with the change in memory. Future models of the
association between declining white matter microstructure and
cognitive aging should take into account not only the alternative
imaging biomarkers discussed above, but also the accumulation
of white matter hyperintensities (Fazekas et al., 1993), which may
index damage to surrounding normal-appearing white matter
tracts. A complete understanding of the neural basis of cognitive
decline will not, however, be limited to these measures. Addi-
tional indicators of brain health, such as global atrophy and loss
of tissue in specific structures (Salthouse, 2011; Aribisala et al.,
2013), cortical thinning (Burzynska et al., 2012), vascular miner-
alization and small-vessel disease (Glatz et al., 2013), reduced
functional connectivity (Mandl et al., 2008; Ferreira and Busatto,
2013), and reduced structural connectivity (Lawrence et al.,
2014), as well as lower-level synaptic variation (Morrison and
Baxter, 2014) are all plausible candidates to explain portions of
variance in the aging of cognitive functions. Future studies inves-
tigating these parameters using similar samples and modeling
techniques to those used here can build on the lead of the present
study in understanding the biological basis of cognitive aging.
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Bastin ME, Deary IJ, Wardlaw JM (2013) Brain atrophy associations
with white matter lesions in the ageing brain: the Lothian Birth Cohort
1936. Eur Radiol 23:1084 –1092. CrossRef Medline
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