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Mobile Resource Guarantees and Policies

David Aspinall and Kenneth MacKenzie

LFCS, School of Informatics, The University of Edinburgh, U.K.

Abstract. This paper introduces notions of resource policy for mobile
code to be run on smart devices, to integrate with the proof-carrying
code architecture of the Mobile Resource Guarantees (MRG) project.
Two forms of policy are used: guaranteed policies which come with proofs
and target policies which describe limits of the device. A guaranteed pol-
icy is expressed as a function of a methods input sizes, which determines
a bound on consumption of some resource. A target policy is defined by a
constant bound and input constraints for a method. A recipient of mobile
code chooses whether to run methods by comparing between a guaran-
teed policy and the target policy. Since delivered code may use methods
implemented on the target machine, guaranteed policies may also be
provided by the platform; they appear symbolically as assumptions in
delivered proofs. Guaranteed policies entail proof obligations that must
be established from the proof certificate. Before proof, a policy checker
ensures that the guaranteed policy refines the target policy; our policy
format ensures that this step is tractable and does not require proof.
Delivering policies thus mediates between arbitrary target requirements
and the desirability to package code and certificate only once.

1 Introduction

The Mobile Resource Guarantees project has built a proof-carrying code (PCC)
infrastructure for ensuring resource bounds on mobile code (for an overview,
see [AGH+05]). The infrastructure uses a certifying compiler from a high-level
functional language called Camelot to a low-level language Grail, which is a
functional presentation of a sub-language of the Java Virtual Machine Language
(JVML). Thus, Grail programs are executed on a JVM but transmitted as stan-
dard class files, packaged together with PCC certificates. The architecture (with
our extension) is shown below:

JVML

Grail

Camelot Type system

NetworkExpansion

Certifying Compiler

Certificate+Policy

Resource Policy

Certificate+Policy

JVML

Grail
Contraction

JVM

Certificate Checker

switches



This is a fairly usual picture for proof-carrying code, except that we highlight the
role of a guaranteed resource policy which is delivered as part of the certificate
and a target resource policy which is the instance of the safety policy for code
to meet resource usage restrictions imposed by the target machine.

The guaranteed resource policy is a specification, ultimately generated by
the certifying compiler. It contains concrete bounds on the resource usage of
the compiled Camelot program, in a standard format; it is guaranteed because
it comes with a proof. The idea of the standard format is to allow mediation
with an arbitrary target policy. In a general setting where the code delivery
to a smart device takes place off-line (i.e. without communication back to the
code producer), the recipient cannot communicate its target policy; it is therefore
unrealistic to hope that the delivered code comes with a certificate stating exactly
the required behaviour.

The certificate checker has responsibility (1) to check that the delivered policy
would meet or exceed the target policy, and then (2) to check that the code
indeed meets its guaranteed policy. Our design is to use the proof evidence in the
certificate to establish (2), but allow the target certificate checker to use its own
mechanism to establish (1), ideally as an efficient operation not involving proof
checking or running a VCG. In more advanced scenarios, the certificate checker
might use claimed policies to select between several possible implementations of
a method supplied, for example, selecting the more favourable alternative in a
time-space trade-off according to local conditions.

The target resource policy is an input both to the certificate checker and
to the modified JVM. Usually in a PCC scenario, the safety check is entirely
static. The certificate checker immediately denies execution to code which does
not satisfy the target resource policy, switching off execution in the JVM. But
the resource policy is also shown in the diagram as an input to the modified
JVM: this is to allow, in principle, the possible run-time monitoring of resource
usage to check conformance with the policy. A checker may decide to defer some
resource bounds to dynamic checks if they cannot be ensured by the delivered
policy, or, indeed, if the delivered proof certificate lacks static evidence that a
particular claimed policy is met.

Contributions. Until now in our work on MRG and the closely related work,
resource policies have not been considered explicitly. In MRG, we have used a
fixed type system technology to express schematic constraints on Grail functions
and methods which impose a single space bound on the overall program (linear
on input size). This paper designs a significant extension, introducing:

– the extension of certificates with resource policies that can express complex
bounds on several resources for individual methods;

– a language describing resource policies and its formal semantics;
– the specification of target resource policies on the target device;
– extended certificate checking to relate target resource policies to claimed

guarantees, as well as the check that claimed guarantees are indeed satisfied.
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As a simple example of a guaranteed policy, we are able to express statements
such as:

“for positive integer inputs n and m, the method call calc(int m,int
n) requires at most 16+42∗m+9∗m∗n JVM instructions to be executed.”

More complex concrete bounds statements constructed with polynomials, log-
arithms, and exponentials, are allowed, providing they satisfy some reasonable
restrictions described later. As well as time costs, we consider heap space con-
sumption, maximum stack depth, and costs related to specific method calls. The
latter is useful, for example, to bound the number of calls to expensive or secu-
rity critical library methods made by client code: e.g., a program to be run on a
mobile phone may be allowed to send two text messages but no more. Formally,
we consider cost metrics, such as heap space consumption, to be supplied with
an ordering. This allows us to relate different policies in the checking process.

Guaranteed policies are checked against target policies which express limits
of constrained devices. An example is:

“for all inputs n < 10 and m < 10, executing the calc(int m,int n)
method must take no more than 2000 instructions.”

Here the client of the delivered code provides a promise about the way the code
will be invoked, and asks for a hard limit on resource consumption in turn. Fixing
the format of both forms of policy allows us to use a simple checking process.

Code that is run on a target machine is often a combination of delivered
methods and methods supplied by the platform. In this case, the resource con-
sumption of the delivered methods may depend on the precise behaviour of the
platform library functions, which is unknown at the time that the mobile code is
certified. To deal with this scenario, we allow delivered policies to refer symboli-
cally to provided functional bounds on platform functions whose implementation
is unknown. We may express statements such as:

“for a positive integer input m, the method throwdice(m) takes at
most m ∗ F (6) JVM instructions to execute, where F (x) is the number
of instructions taken by the platform function rand(int x).”

In this case, the delivered certificate will contain a proof of the guaranteed bound
under the assumption that the symbolic bound is satisfied. To (soundly) compute
an overall worst case bound the platform must supply a (guaranteed and proven)
bound which can be used during certificate checking.

Resource usage statements such as the above may not always hold unless
particular safety conditions are met; or the resource usage may depend on non-
functional (intensional) factors, such as the layout of data in memory. Consider,
for example, the different space behaviour between deep and shallow copying of
objects in memory, or a method whose complexity depends on the length of a list
represented as a linked list sequence of objects. To deal with (and in particular,
to prove) such cases, our preferred approach is to combine resource statements
with high-level typing invariants which are maintained by our compiled methods.
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This has been done for heap space usage bounds in the existing fixed policy
scheme of MRG [BHMS05] based on the specialised type system of Hofmann
and Jost [HJ03] for inferring space usage. In this paper we focus instead on new
forms of resource statement not previously considered in the implementation
of MRG, and how such statements can be expressed and related in our PCC
architecture. The generation and proof of resource statements is beyond the
scope of what is considered here, although in certain cases automatic generation
of bounds for resources other than heap usage is feasible by extending existing
techniques (for example, inferring stack depth by an extension of Hofmann-Jost
is considered by Campbell [Cam05]).

Outline. In the next section we introduce Grail and the semantic notions for
resource policies expressed on the Grail operational semantics, which is a sim-
plified abstraction of the JVML semantics. Resource policies are statements in
the Grail program logic, which is also introduced in Sect. 2. In Sect. 3 we in-
troduce a simple language for describing two forms of resource policies, one for
guaranteed policies delivered with code and the other for the target policy of a
smart device. We use the standard format of Java security policy files augmented
with dedicated forms of permission. In Sect. 4 we describe some mechanisms for
checking policies and how this interacts with the usual proof checking process.
Finally, Sect. 5 concludes with a summary of the status of our work on policies
and a comparison with related work.

2 Resource policies for Grail

We want to make our resource policies precise and formalise their meaning. To
do this, we first recall the Grail syntax, semantics and program logic, before
considering the semantics of policies in Sect. 2.3.

2.1 Grail syntax and semantics

Grail is a functional language for writing imperative low-level code; we sketch a
simplified version here. Together with intuition based on knowledge of the JVM,
this sketch should suffice for an understanding of this paper; full details of Grail
and its compilation scheme appear elsewhere [BMS03,MW04].

The simplified abstract syntax of Grail is as follows:

v ::= null | i
a ::= v | x
e ::= a | op a a | new C | x.t | x.t:=a
| let val x= e in e | let val ()= e in e | if e then e else e
| call f | C.m(a)

op ::= add | sub | mul | div | = | <= | < | <=
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A Grail program consists of a sequence of class definitions for class names C.
Each class definition may contain declarations for fields t and for methods m.
Each method m in turn declares a number of mutually recursive functions f
together with an overall expression body.

Expressions e include arguments, which may be values v (the null reference
and integer literals) or variables x. Integers 1 (or any non-zero value) and 0 are
also used to represent boolean values true and false as on the JVM. The
remaining expressions are formed from: binary operations, object construction,
field selection and field update, binding and sequential composition (written as
in SML, by binding to the unit value), function and method invocations. Strong
syntactic restrictions ensure that all functions are tail recursive, so a function
in Grail can be compiled directly into a branch instruction in the underlying
virtual machine: this is reflected in the abstract syntax above by using the call
expression which does not pass any arguments. Method invocation is different,
and a method may have a number of arguments a which can be variables or
literal values. To keep the presentation brief, we will only consider class (static)
methods, although the full language includes instance methods, as well as many
other features of JVML.

An example Grail program is shown in Fig. 1. This program defines a class
List to represent linked lists, and a method List.emptylist which con-
structs a list of a given length whose hd fields all contain zero. The method
is defined using two tail recursive functions emptylist and emptylist aux.
Programs in concrete Grail syntax are more verbose than the simplified abstract
syntax shown above: we use the extra keywords putfield, getfield and
invokestatic and some additional typing information is included, for exam-
ple, on the null value and the putfield instruction. We will return to extend
this example later.

Semantics. The semantics of Grail is given in terms of a resource algebra R,
extending a big-step evaluation relation based on the functional interpretation:

E ` h, e ⇓ h′, v, r

where E is an environment, h and h′ are heaps (partial maps from locations to
values), v is the result value (or () indicating the absence of a value) and r is
a resource value from R. The semantics is deterministic: whenever e evaluates
in some E, h then v, h′ and r are uniquely determined. Moreover, the resources
r are a purely non-invasive annotation on the ordinary operational semantics;
evaluation of an expression is not affected by the resources consumed in subex-
pressions (this is reminiscent of effects [TJ94]).

A resource algebra R has a carrier set R consisting of resource values r ∈ R,
together with:

– A cost ordering ≤ ⊆ R×R
– For the atomic expressions, families of constants Rnull ∈ R, Rint ∈ R, etc.
– For compound expressions, families of operations, e.g. Rlet ∈ R×R → R.
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class List {
field int hd
field List tl

method static List emptylist(int n) =
let
val l = null[List]

fun emptylist(int n,List l) =
if n>0 then empty_aux(n,l) else l

fun empty_aux(int n,List l) =
let val cell = new <List()>()

val () = putfield cell <int List.hd> 0
val () = putfield cell <List List.tl> l
val n = sub n 1
val l = cell

in
emptylist(n,l)

end
in

emptylist(n,l)
end

}

Fig. 1. Grail List class

The cost ordering expresses when one resource value is considered cheaper or
better than another. The resource constants and operators are used to calculate
costs by annotating the operational semantics; there is a constant or operator
for each component of the syntax. An example rule is the rule for let-bindings
(sequential composition with assignment):

E ` h, e1 ⇓ h1, v1, r1 E[x := v1] ` h1, e2 ⇓ h2, v, r2

E ` h, let val x= e1 in e2 ⇓ h2, v, Rlet(r1, r2)

For this paper we do not require additional properties of the resource algebra,
although it is natural to impose further structure. For quantitative costs, for
example, we may define the compound resource operators such as Rlet in terms
of an associative and commutative addition operator corresponding to sequential
composition, as in the standard resource algebra described in Sect. 2.2.

The full definition of the semantics is in Table 2 at the end of the paper.

Program logic. Grail has a program logic which is formulated to take advantage
of the functional semantics. Statements in the Grail Logic are written:

G B e : P [E, h, h′, v, r]
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where e is a program expression and P is a predicate over the components of the
operational semantics; G is a collection of assumptions of statements of the form
e′ : P ′. This statement has a partial correctness reading: it states that whenever
e evaluates in input environment E and heap h, then P holds for E, h, and the
resulting heap h′, value v, and resources consumed r.

Here is the rule in the logic for let-bindings:

G B e1 : P1 G B e2 : P2

G B let x e1 e2 : {∃ h1 v1, r1 r2. P1[E, h, h1, v1, r1]∧
P2[E[x := v1], h1, h

′, v, r2] ∧
r = Rlet(r1, r2)}

This rule says that a let expression satisfies the assertion which is formed by
combining two assertions P1 and P2 for the subexpressions, whenever there is an
intermediate result state and result h1, v1, r1 and the overall resource r consumed
is given by the let operator applied to the component costs r1 and r2.

The full definition of the logic is shown in Table 3 at the end of the paper.
Predicates in the logic are like post-assertions in VDM: they range over both
input and output without needing auxiliary variables as would be necessary in
Hoare logic. This allows powerful but comparatively simple rules for adaptation,
derived from the second consequence rule shown in Table 3. The main power
of the logic comes with the last two rules for recursive function and procedure
calls; these allow one to establish the correctness of a function or method body
under the assumption that recursive calls are already correct.

The program logic enjoys good meta-theoretic properties; in particular, it is
sound and relative complete. Grail’s syntax, semantics, program logic and meta-
theory have been all formalised in the theorem prover Isabelle; the formalisation
serves both to provide strong confidence in the meta-theoretical results and to
provide an experimental PCC environment. The program logic does not define
a notation for predicates: these are written in the ambient higher-order logic of
the theorem prover; this allows powerful specifications which can directly use
the available library functions for arithmetic, etc. Our work here extends the
Isabelle formalisation which is presented elsewhere [ABH+05,ABH+04]. In the
overview here we elide some of the technicalities of the Isabelle encoding (for
further details see loc. cit.).

2.2 A standard resource algebra

We will suppose that a standard resource algebra is fixed by the application
framework, which implies that the producer and consumer of mobile code have
some agreement over which costs are of interest and how they are calculated.

As an example resource algebra which collects four costs of interest, we con-
sider resource quadruples:

r = (clock , space, depth, methcnts)

7



Rnull = Rint = Rvar = (1, 0, 0, {})
Rprim(r1, r2) = r1 + r2 + (1, 0, 0, {})

Rnew
C = (3, size(C), 0, {})

Rgetf = (2, 0, 0, {})
Rputf(r) = r + (2, 0, 0, {})

Rlet(r1, r2) = r1 + r2 + (1, 0, 0, {})
Rcomp(r1, r2) = r1 + r2

Rif(r1, r2) = r1 + r2

Rcall(r) = r + (1, 0, 0, {})
Rmeth

C.m,,ai
(r) = r + (2 + |ai|, 0, 1 + |ai|, {C.m})

(t1, s1, d1,ms1) + (t2, s2, d2,ms2) = (t1 + t2, s1 + s2,max (d1, d2),ms1 ∪+ ms2)

(t1, s1, d1,ms1) ≤ (t2, s2, d2,ms2) = t1 ≤ t2 ∧ s1 ≤ s2 ∧ d1 ≤ d2 ∧ms1 ⊆ ms2

Note: resource values rk have the form rk = (tk, sk,msk, dk) for k = 1, 2.
A tuple (t, s, d,ms) stands for (clock , space, depth,methcnts).
The notation |ai| denotes the length of the list a1 . . . an and ∪+ is multiset union.

Table 1. Standard resource algebra

where the first three components range over natural numbers, and the last over
multisets of method names.

The costs have the following meaning:

– clock is a JVM instruction counter, counting bytecodes executed;
– space is the cumulative size of allocated objects on the heap;
– depth is an approximation of the maximum frame stack depth;
– methcnts counts how many times each method is invoked.

The resource operators for this standard algebra are given in Table 1.
The time and space resources measured here have a standard meaning. For

clock , we count JVM instructions under the Grail to JVML translation.1 For
space we measure memory usage based on the sizes of instance fields in a Java
class (the function size(C)). For depth we approximate frame stack space based
on the number of method parameters. The stack space calculation could easily
be made more precise by incorporating the size needed for the local variables
of each method. Finally, the method invocation counter methcnts accumulates
method names invoked.

For a particular JVM implementation, these measures could be used to cal-
culate approximate real time and space bounds, for example, based on empirical
measurements of timings and knowledge of object overhead used in heap layout.

Notice that values in this resource algebra are composed of four independent
components that could each be calculated separately within separate resource
1 The details of this translation explain why if expressions are apparently free: the

guard in the conditional is compiled into a test-and-branch instruction which is al-
ready accounted for by Rprim; similarly, sequential composition is just juxtaposition.
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algebras. Each kind of resource has different properties, and will be expressed
separately in our policy language described in Sect. 3.

This example algebra is similar to the one considered in the main MRG pro-
totype described in [ABH+04], although there the heap size and method count
components were not included. Many other interesting resource algebras can
be given in this general scheme; see [ABH+05] for some particular examples
and [ABM05] for an application of a more constrained form of resource alge-
bra than that considered here. The important fact is that the soundness and
completeness of the Grail Logic hold for any resource algebra.

2.3 Formal notions of resource policy

Given a notion of resource consumption and a way to calculate it, we can go on
to define a formal notion of resource policy. With respect to the Grail semantics,
a resource policy RP for expressions is a predicate on environments E, heaps h
and resource values r, written as:

RP [E, h, r]

Intuitively, the policy determines acceptable resource limits for expressions ex-
ecuted in the given environment and heap. This is simply a restricted form of
assertion in the program logic: a policy for an expression is a specification of
its resource consumption in terms of its input taken from the environment E
and heap h. In the mechanised Isabelle implementation we again express these
predicates in Isabelle HOL, the meta-logic used to formalise the Grail syntax,
semantics and logic rules.

Note that in general the policy may rely on a type safety invariant (or more
generally, some invariant involving object containment and separation), as men-
tioned on page 4. In this case we must use specifications in the program logic
which are conditional on type safety before evaluating expressions, and ensure
type safety of the output afterwards. A resource policy would be embedded as:

PRP [E, h, h′, v, r] , TS [E, h] =⇒ TS ′[E, h, h′, v] ∧ RP [E, h, r]

where TS and TS ′ are domain-specific safety invariants supplied by the certifying
compiler. If the input environment and heap do not satisfy the safety invariant
the policy is satisfied vacuously. For Camelot and its space-aware type system,
the type safety invariant refers to the integrity of heap representations of high-
level Camelot datatypes and the free list used for space reuse; the translation of
this into derived assertions [BHMS05] in the Grail Logic may be understood as
a special case of the above where the resource policy states that no heap space
is consumed.

Definition 1. An expression e conforms to a policy RP, written e |= RP, just
in case:

∀E h r. E ` h, e ⇓ h′, v, r =⇒ RP [E, h, r].
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Notice that this is a partial correctness interpretation, in that conformance is
only considered for terminating expressions. Termination may be treated as an
orthogonal issue, using a related logic as proposed in [ABH+05], or we may
impose run-time monitoring to ensure that programs do not diverge and violate
their resource bounds.

Policy conformance is a special case of validity of assertions in the program
logic, which means that we have a sound and complete logic for establishing
conformance of resource policies.

Theorem 1 (cf. [ABH+05]). {}B e : RP [E, h, r] if and only if e |= RP.

Of course, we are ultimately interested in resource policies for method bodies;
the environment declares the parameters of the method.

Example. The resource policy for the standard resource algebra given by

RPcalc [E, h, (t, s, d,ms)] = t ≤ 16 + 42 ∗ E(m) + 9 ∗ E(m) ∗ E(n)

formalises the example policy described in words for the calc method in Sect. 1.
We claim that it is satisfied by the implementation of the calc method shown
in Fig. 2, which shows a Grail program to count the results of m throws of an
n-sided dice. The result of throwing a dice is represented by a call to a platform
function Platform.Random.rand(n). To establish the bound above we must
assume additionally that the platform function satisfies a policy:

RPPlatform.Random.rand [E, h, (t, s, d,ms)] = t ≤ 20

i.e., that the number of instructions executed in the random method is at
most 20.

For a given resource algebra, we can relate different policies in a refinement
ordering.

Definition 2. A resource policy RP1 refines another policy RP2, if

∀e.e |= RP1 =⇒ e |= RP2

If RP1 refines RP2, then by definition any expression which conforms to the first
policy also conforms to the second (more permissive) policy.

Example. A refinement for RPcalc is the policy given by:

RP ′
calc [E, h, (t, s, d,ms)] = t ≤ 16 + 42 ∗ E(m) + 9 ∗ E(m) ∗ E(n) ∧ s ≤ 2 ∗ E(n)

which requires additionally that the calc method allocates no more than 2 ∗ n
words of heap space during its execution, which is also satisfied by the example
program in Fig. 2, which allocates a list of length n.

10



method static void addthrow(List l, int n) =
let

fun update_pos(List l) =
let val i = getfield l <int List.hd>

val i = add i 1
val () = putfield l <int List.hd> i

in () end

fun addthrow(int n,List l) =
if n=0 then update_pos(l) else addthrow_aux(l,n)

fun addthrow_aux(List l, int n) =
let val l = getfield l <List List.tl>

val n = sub n 1
in addthrow(n,l) end

in addthrow(n,l) end

// Throw n-sided dice m times and count results in a list
method static List calc(int n, int m) =
let

val l = invokestatic <List List.emptylist (int)> (n)

fun make_throws (List l, int n, int m) =
if m=0 then l

else next_throw(l,n,m)

fun next_throw (List l, int n, int m) =
let val r = invokestatic <int Platform.Random.rand(int)> (n)

val () = invokestatic <void List.addthrow(List,int)> (l, r)
val m = sub m 1

in make_throws(l,n,m) end
in make_throws(l,n,m) end

Fig. 2. Grail program to count dice throws

Apart from adding requirements for further kinds of resource, one policy re-
fines another of the form of RPcalc if it places a tighter bound on the resource
consumption. We are interested in policies which place bounds on resource con-
sumption in the manner of RPcalc above, but the form of resource policy allowed
so far is much more general. For the framework here we at least want policies to
respect the ordering of resources (downward closure):

Definition 3. A resource policy RP respects ≤ for R, if for all E and h,

∀r, r′ ∈ R. r ≤ r′ ∧ RP [E, h, r′] =⇒ RP [E, h, r].

Clearly our example policies respect the resource ordering of the standard re-
source algebra. From now on we restrict to policies which respect resource order-
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ing on the resource algebra of interest. This ensures that alternative implemen-
tations of methods with better resource behaviour may be selected to implement
any policy. It rules out, for example, policies which describe a minimum resource
usage.

Based on these definitions we can define a simple theory of policy refinement
and its implementation in Isabelle. But this semantic notion of policy is still too
general: we introduce further restrictions in the next section, by introducing our
two specific forms of policy liable to be useful in practice on constrained devices.

3 Expressing resource policies

Resource policies can be written in our formal logic in the same way as program
logic assertions, but this is an internal format and it is too rich: it is more useful
to consider a way of expressing policies that is meaningful for the user. For
this we need to investigate a policy language. Since we have an infrastructure
for the Java platform, we will extend Java’s existing notion of permissions and
security policy. Security policies in Java are specified in files created with the
policytool program or otherwise. For example, the trivial policy file:

grant {
permission java.security.AllPermission;

};

describes a policy which grants all permissions. More interestingly, the policy
file:

grant codeBase "file:${user.dir}/" {
permission java.io.FilePermission "/etc/passwd", "read";

};

gives special permissions to code executed from the user’s home directory, to
read the contents of the password file.

To express resource policies for our application, we will introduce new forms
of permission for the guaranteed policy and for the target policy. Permissions
in Java are usually associated with running code: the security manager will
raise an exception if some method does not possess appropriate permissions.
However, our overloading of the concept will be useful: we can extend the built-
in mechanisms for loading policy files and comparing between them, as well as
allow a mechanism for run-time instrumentation.

The starting point is the Permission class, which defines an abstract
method implies that compares two permissions. If permission p1 implies p2,
then code which is granted permission p1 also has permission p2. If we can im-
plement this method in a way which is consistent with our formal interpretation
of resource permissions, we can integrate some parts of our policy refinement
checking into the Java security model.

Guaranteed policies. Guaranteed policies deliver a parametrised bound on re-
source consumption, expressed as a nondecreasing function of a measure on
each of the inputs. For integer inputs, the measure takes the input parameter
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unchanged; for other types we define a type-dependent coercion into the integers,
in a standard way. For example:

permission ClockGuarantee "List.calc(int m, int n)"
"16 + 42*m + 9*m*n"

permission SpaceGuarantee "List.calc(int m, int n)" "2*n"

expresses the time and space bounds of the earlier example. Several permis-
sions together define a resource policy for a method; resource policies for several
methods define an overall guaranteed policy for a delivered program.

Target policies. The second form of policy is simpler and expresses some fixed
hard limits of the particular target machine. For example:

permission ClockTarget "List.calc(int m, int n)"
"500, m<=3, n<=4"

permission SpaceTarget "List.calc(int m, int n)" "100"

Here, the absolute maximum execution time allowed for the calc method is
500 steps, and the target environment is providing a promise that the input
parameters will satisfy the constraints shown. For heap space, the maximum
new space consumed when evaluating the method is 100 words, irrespective of
the input parameters to the method.

3.1 Permissions language

Formally, Java methods are selected by a method descriptor. Method descriptors
are described by the following grammar:

mdesc ::= mspec(type x, . . . , type x)
mspec ::= C#m | C.m

A method descriptor can disambiguate overloaded methods. A static method
has its usual Java name (e.g., java.lang.Integer.parseInt), whereas an
instance method has a name of the form java.lang.Integer#toString.

Guaranteed policies delivered with the code are described by the following
grammar (for clarity we elide the quotation marks required for Java policy files):

G ::= permission gdesc bound
gdesc ::= ClockGuarantee mdesc

| SpaceGuarantee mdesc
| DepthGuarantee mdesc
| MethcntGuarantee mdesc,mdesc

bound ::= f
f ::= K | x | f + f | f * f | fˆf

| log(f) | min(f, f) | max(f, f)
| gdesc(v, . . . , v)

v ::= K | x

13



while target policies are given by the grammar:

T ::= permission tdesc limit , constraints
tdesc ::= ClockTarget mdesc

| SpaceTarget mdesc
| DepthTarget mdesc
| MethcntTarget mdesc,mdesc

limit ::= K
constraints ::= x <= K, . . . , x <= K

where K denotes a non-negative integer constant and x denotes a variable oc-
curring in the method descriptor or (in the case of instance methods only) the
keyword this.

The permissions defined above mirror the four classes of cost defined in
Sect. 2.2 and describe guaranteed and target bounds for these costs. The Clock,
Space and Depth permissions take a single method descriptor, specifying the
method to which the bounds apply. In contrast the Methcnt permissions take
two method descriptors m1 and m2 say; the meaning is that when m1 is invoked,
it will cause no more than the specified number of invocations of m2 to occur.

In the final expression former for f , we allow the bounds in guaranteed poli-
cies to refer to other guaranteed policies. For example, we may have a policy
such as:

permission ClockGuarantee C.m(int n)
4*n + 3*(ClockGuarantee D.rand(int k) (n))

which states that the execution time of the method C.m depends on that of
D.rand.

Note that we do not allow arbitrary bounding functions in guaranteed poli-
cies, but only ones of the form f above. It is not hard to see that functions
which are generated by the grammar above are all nondecreasing. This will be
important in our policy-checking procedure.

3.2 Semantics of resource policies

So far, resource policies are purely symbolic; we now give their semantic inter-
pretation. Recall that a guaranteed policy for a resource R consists of a method
signature (for the method m say) followed by a bound f . The intention is that
f describes a function which is an upper bound on the amount of R which is
consumed by any invocation of m, the bound being given as a function of the
inputs to m. To this end, we require that the variables appearing in f are a
subset of the variables appearing in the signature of m (with the addition of
this if m is an instance method). Since not all of the arguments of m may
influence its resource consumption we do not insist that all arguments appear in
f . For example, if we have a method pow(int p,int q) which calculates pq

by repeated multiplication then it is probable that the execution time of pow
would only depend on q.
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In order to interpret the bounding expressions appearing in policies, we as-
sume that every Java type t has an associated measure ‖ · ‖ : t → N. For x of
type int or long, ‖x‖ = |x|, the absolute value of x. For floating-point types,
we put ‖x‖ = d|x|e. For heap-allocated objects o, we define ‖o‖ to be the size of
the object allocated in memory (size(C) when o is of class C).2

We will sometimes wish to deal with unbounded quantities: to facilitate this
we consider values lying in the set N̂ = N ∪ {∞}. Arithmetic operators are
extended from N to N̂ in the obvious way: for example, x + ∞ = ∞ and
min(x,∞) = x for all x ∈ N̂. Given a bounding expression f and an environment
E mapping identifiers to values (in N̂), we define an interpretation JfKE ∈ N̂ as
follows:

JKKE = K
JxKE = ‖E(x)‖

Jf1 + f2KE = Jf1KE + Jf2KE

Jf1 ∗ f2KE = Jf1KEJf2KE

Jf1ˆf2KE = Jf1K
Jf2KE

E

JlogfKE =
{

0 if JfKE = 0
max{k : 2k ≤ JfKE} otherwise

Jmin(f1, f2)KE = min(Jf1KE , Jf2KE)
Jmax(f1, f2)KE = max(Jf1KE , Jf2KE)
Jg(v1, . . . , vn)K = JTgK[ xi 7→JviKE ]

where, in the last line, the xi are the variables appearing in the first method de-
scriptor inside g, and Tg stands for the bounding expression for the permission
g. To interpret expressions involving other permissions, we first collect together
all guaranteed policies from the delivered code and platform. We must disal-
low circular references between guarantee policies, as this could lead to infinite
recursion while evaluating bounding expressions.

Note that if f is a bounding expression in the variables {x1, . . . , xn} then
there is an induced function f̄ : N̂n → N̂ defined by

f̄(u1, . . . , un) = JfK{x1 7→u1,...,xn 7→un}.

Every such f̄ is a nondecreasing function on N̂n.
Given this semantic interpretation for new forms of permission, it is straight-

forward to convert Java policies to their formal equivalents in the Isabelle pro-
gram logic, so that policy conformance and refinement can be checked formally.
However, we have designed the format of policies so that refinement can be
checked simply, without needing arbitrary proof. This means that we must trust
an implementation of the checking procedure, described next.

2 This size function is not flexible enough for richer forms of resource specification
such as those expressed by the Camelot type system; for such cases we would want
to allow additional user-defined size functions as part of a proof certificate.

15



4 Checking policies

Suppose that we have been supplied with a guaranteed policy G for a static
method m stating that a resource R is bounded by the function f .

Let the variables occurring in the expression f be x1, . . . , xn, which are a
subset of the set of formal arguments appearing in the signature for m.

Now suppose that we have a target policy T for the method m and the
resource R. Recall that T consists of a signature for m (without loss of generality
we assume that the formal arguments appearing in the signatures for m in G
and T are identical) followed by a constant b and a sequence of constraints for
the formal arguments of m. The interpretation of T is that the code consumer
requires that no more than b units of R are consumed, provided that the inputs
to m do not exceed the given bounds.

By eliminating redundant constraints and adding vacuous constraints xj ≤
∞ for variables not explicitly constrained in T we form a set of constraints
{x1 ≤ b1, . . . xn ≤ bn} (with bi ∈ N̂) where each xi appears precisely once.

Recall that f induces a function f̄ : N̂n → N̂. The code producer has supplied
a proof that the resource usage of m when applied to a given set of arguments
is bounded above by the value of f̄ applied to the appropriate subset of the
arguments of m. Since f̄ is nondecreasing it follows that the maximum resource
usage of m subject to {xi ≤ bi} is

sup {f̄(u1, . . . , un) : ui ∈ N̂, ui ≤ bi} = f̄(b1, . . . , bn) = JfKE

where E is the environment {x1 7→ b1, . . . , xn 7→ bn} (the resource usage is un-
bounded if JfKE = ∞). Thus to check the validity of T we need merely check
whether JfKE ≤ b.

For instance methods we follow the same procedure, but one must also con-
sider the variable this.

4.1 Remarks

The policy-checking strategy described above depends crucially on the fact that
the bounding functions given in guaranteed policies are nondecreasing. Note
that the grammar for bounding functions makes this property manifest; a simple
syntactic check suffices to show that a purported bound is nondecreasing, and
so no extra overhead of proof-checking is required to establish this. This is a
particular advantage in the scenario mentioned in the introduction, where we
may ship several possible implementations of library functions with different
resource behaviour which are used by the target device; it would be possible
try to optimise resource usage by rearranging its choice of methods within given
target policies. More importantly, this step can be done more quickly than VCG
and proof checking, avoiding the need to check proofs when a policy cannot be
met.

We have considered policy-checking with more general policy formats. For
example, the code producer might supply code with some certified bounding
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function f and the consumer may require to know that some other bounding
function g is satisfied for some set of inputs (the case we consider above is when
g is constant). In this case, the consumer has to check that g − f is positive for
some set of inputs, and since g − f could essentially be any function, this is a
difficult problem. Furthermore, it is not possible for the code producer to provide
any help (in the form of proof, for instance) since it has no a priori knowledge
of the bounds that the consumer will require to be satisfied. Policy-checking in
this general situation thus appears to be infeasible.

5 Conclusions

We have described a way of generalising the present proof-carrying code infras-
tructure of the MRG project to include resource policies based on assertions on
bytecode expressed in the Grail program logic. Policies are naturally treated as
special cases of assertions in the logic, but we want to express them in a sim-
pler and more uniform way, in particular, to allow an efficient check of whether
mobile code supplied with a guaranteed policy implements the target policy of
particular device. To this end, we introduced syntax and semantics for two forms
of policy embedded as Java permissions in Java security policy files. Using the
Java file format and permissions mechanism allows us to implement a sound test
for policy refinement inside Java. Then checking policy conformance is reduced
to checking that the code satisfies the guaranteed policy claimed for it (delivered
with the certificate) and that the guaranteed policy implies the policy desired
by the client.

The security model here is quite analogous to the present security mecha-
nisms in Java, where code is implicitly supplied with its “code base” (origin)
which may be checked against permitted code bases, and where code may be
supplied with cryptographic signatures and these signatures may be accepted
according to the policy.

More work is required to implement our policies inside the full MRG architec-
ture and try full-sized examples. So far we have constructed necessary extensions
to the Grail Logic, conducted experimental verifications and implemented a pro-
totype parser and a checker for resource policies. It remains to integrate with
the Java platform (perhaps following the technique described in [GP05]), and to
embed guaranteed policies in certificates — ultimately with automation extend-
ing that provided for the current fixed policy derived from the Camelot type
system.

Related Work. Other researchers have worked on inferring and proving static
bounds on different kinds of resources both for high-level languages and low-level
ones, using type-based and logical techniques e.g., [CW00,VH04,HP99,BPS05].
Recent work [CEI05] has explored combinations of static and dynamic methods,
which would also be useful in our setting. In this paper we concentrated on the
mechanism of describing policies rather than the mechanism of inferring, proving
or dynamically checking them; our approach would still be applicable if we used
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other techniques for those steps. Moreover, the basic ideas for the PCC archi-
tecture based on delivering policies with code are not specific to resource usage
policies. Although important for general adoption, there seems to be relatively
little published work on how policies are described and delivered in other PCC
settings. One of the original PCC architectures described by Necula [Nec98] pro-
posed the negotiation of policy between code producer and code consumer, in
principle allowing the certificate to be specially adapted to the target require-
ments. In later work this was simplified to a fixed type-safety policy which would
also work for a store-and-forward network.

Away from PCC, there is other related work on specification of resource
behaviour for compiled Java programs. Most developments focus on dynamic
checking. The Java Resource Management API (RM API)[CHS+03] (a devel-
opment of the JRes interface [CvE98]) is a flexible mechanism which allows
Java-based platforms to manage and monitor resource consumption. Resource
policies are implemented via resource domains, which supply units of a given
resource to applications (more precisely, to Java isolates) and also allow client
applications to query availability of resources. To expose a resource through the
RM API, the implementation of the resource includes code which records con-
sumption and destruction, requiring modification of system classes. CPU time is
monitored by a separate thread which periodically polls the operating system.
Another resource accounting system for Java is J-SEAL2 [BHV01,J-S], which
performs its resource accounting via bytecode instrumentation to insert calls to
record resource allocations; CPU time again requires special handling, but in
this case an estimate is calculated from the number of bytecode instructions
executed. In both Java RM API and J-SEAL2, resource monitoring is dynamic;
this can result in more accurate tracking and allocation of resources than static
prediction as in our approach, but it requires runtime overhead and the need for
recovery mechanisms in the case of resource exhaustion.

We have introduced a very simple policy language here. There are connec-
tions to work on policy languages in other domains of computer security, such
as the use of Datalog, or the generation of large databases from policies, as in
SELinux [LS01]. It would be interesting to consider whether one may usefully
express our policies in languages such as these. However, the fundamental prob-
lem here is different: rather than querying some policy database to see if some
access should be granted, the central question we have considered is refinement
between policies, given that we already have guaranteed conformance for some
program and a particular given policy.

Future work. There are several directions for further work. Most importantly,
we need more automated mechanisms to provide the resource bound guaran-
tees which are delivered with mobile code, and ways to analyse and predict the
resource behaviour of existing platform library functions. We also need to under-
take practical experiments on a particular platform to calibrate our cost model,
and ensure that our resource guarantees can indeed be fulfilled on a particular
architecture. Knowledge of an architecture and in particular additional hooks
(such as provided by the Real-Time Java Specification [B+00]) could help pro-
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vide sharper guarantees, including modelling of garbage collection, for example.
Concerning the certificate checking mechanism, it would be interesting to in-
vestigate the combination of static and dynamic techniques, as outlined in the
introduction. We plan to pursue some of these activities in the recently started
EPSRC Project ReQueST, which is investigating resource bound certification
for Grid computing.
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E ` h, a ⇓ h, evalE(a), cost(a)

r1 = cost(a1) r2 = cost(a2)

E ` h, op a1 a2 ⇓ h, op(evalE(a1), evalE(a2)), Rprim(r1, r2)

l = freshloc(h)

E ` h, new c ⇓ h[l 7→ (c, {ti := initval i})], l, Rnew

E〈x〉 = l l ∈ dom(h)

E ` h, x.t ⇓ h, h(l).t, Rgetf

E〈x〉 = l l ∈ dom(h)

E ` h, x.t:=a ⇓ h[l.t 7→ evalE(a)], (), Rputf(cost(a))

E ` h, e1 ⇓ h1, v1, r1 E ` h1, e2 ⇓ h′, v, r2

E ` h, let val ()= e1 in e2 ⇓ h′, v, Rcomp(r1, r2)

E ` h, e1 ⇓ h1, v1, r1 E〈x := v1〉 ` h1, e2 ⇓ h′, v, r2

E ` h, let val x = e1 in e2 ⇓ h′, v, Rlet(r1, r2)

E ` h, e1 ⇓ h1, v1, r1 v1 6= false E ` h1, e2 ⇓ h′, v, r2

E ` h, if e1 then e2 else e3 ⇓ h′, v, Rif(r1, r2)

E ` h, e1 ⇓ h1, false, r1 E ` h1, e3 ⇓ h′, v, r2

E ` h, if e1 then e2 else e3 ⇓ h′, v, Rif(r1, r2)

E ` h, fbody ⇓ h′, v, r

E ` h, call f ⇓ h′, v, Rcall(r)

{xi := evalE(ai)} ` h, C.mbody ⇓ h′, v, r

E ` h, C.m(a) ⇓ h′, v, Rmeth(r)

Notes:

– argument evaluation is defined by evalE(x) = E(x) and evalE(v) = v;
– argument costs are defined as cost(null) = Rnull, cost(i) = Rint, cost(x) = Rvar;
– the function freshloc(h) returns a fresh location l not in the domain of h;
– initval i stands for the initial value of the field ti in class c;
– fbody and C.mbody denote the definition of function f and method C.m respectively.

Table 2. Grail operational semantics
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e : P ∈ G

G B e : P

G B e : P P =⇒ Q

G B e : Q

G B a : {h′ = h ∧ v = evalE(x) ∧ r = cost(a)}

G B op a1 a2 : {h′ = h ∧ v = op(evalE(a1), evalE(a2)) ∧
r = Rprim(cost(a1), cost(a2))}

G B new C : {v = freshloc(h) ∧ h′ = h[v 7→ (C, {ti := initval i})] ∧ r = Rnew}

G B e1 : P1 G B e2 : P2

G B let val x = e1 in e2 : {∃ h1 v1, r1 r2. P1[E, h, h1, v1, r1]∧
P2[E[x := v1], h1, h

′, v, r2] ∧
r = Rlet(r1, r2)}

G B e1 : P1 G B e2 : P2

G B let val ()= e1 in e2 : {∃ h1 r1 r2. P1[E, h, h1, (), r1]∧
P2[E, h1, h

′, v, r2] ∧
r = Rcomp(r1, r2)}

G B e1 : P1 G B e2 : P2 G B e3 : P3

G B if e1 then e2 else e3 : {∃ h1 v1 r1 r2. P1[E, h, h1, v1, r1]∧
(v1 6= false =⇒ P2[E, h1, h

′, v, r2]) ∧
(v1 = false =⇒ P3[E, h1, h

′, v, r2]) ∧ r = Rif(r1, r2)}

G, call f : P B fbody : {P [E, h, h′, v,Rcall(r)]}
G B call f : P

G, c.m(y) : P B mbody : {P [E, h, h′, v,Rmeth(r)]}
G B c.m(y) : P

Note: assertions in braces {. . .} have standard free variables E, h, h′, v, r.
The notation P [E1, h1, h

′
1, v1, r1] indicates the instantiation of a predicate.

Table 3. Grail Logic
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