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Abstract

The field of stem cell therapeutics is moving ever closer to widespread application in the clinic.
However, despite the undoubted potential held by these therapies, the balance between risk and
benefit remains difficult to predict. As in any new field, a lack of previous application in man and
gaps in the underlying science mean that regulators and investigators continue to look for a balance
between minimizing potential risk and ensuring therapies are not needlessly kept from patients.
Here, we attempt to identify the important safety issues, assessing the current advances in scientific
knowledge and how these may translate to clinical therapeutic strategies in the identification and
management of these risks. We also investigate the tools and techniques currently available to
researchers during pre-clinical and clinical development of stem cell products, their utility and
limitations and how these tools may be strategically used in the development of these therapies.
We conclude that ensuring safety through cutting-edge science and robust assays, coupled with
regular and open discussions between regulators and academic/industrial investigators are likely to
prove the most fruitful route to ensuring the safest possible development of new products.

Abbreviations: (human/murine) induced pluripotent stem cell, (h/m)iPSC; (human/murine)
embryonic stem cell, (h/m)ESC; mesenchymal stem cell, MSC; hematopoietic stem cells, HSCs; adult
stem cell, ASC; graft versus host disease, GVHD; major histocompatibility complex; MHC; minor
histocompatibility complex, mHC; Oct4, Sox2, KIf4, c-Myc, OSKM; human leukocyte antigen, HLA;
Magnetic Resonance imaging, MRI; computed tomography, CT; positron emission tomography, PET;
single photon emission computed tomography, SPECT; superparamagnetic iron oxide particles, SPIO;
9-[4-[18F]Fluoro-3-(hydroxymethyl)butyl]guanine, [18F]FHBG; perfuorcarbon, PFC; fluorine-19, 19 F;
single nucleotide polymorphism, SNP; Food and drug administration, FDA; Medicines and healthcare
products regulatory agency, MHRA. QD, quantum dots; G/RFP, green or red fluorescent protein



l. Introduction

Stem cell therapies are moving rapidly into clinical application. While it is important that these
therapies are advanced into the clinic, their safety must be continually evaluated. Here we outline the
known risks of stem-cell therapeutics (Figure S1) and discuss how they can be assessed and managed
through preclinical and clinical trials. This review is the output of an IMI SafeSciMET workshop held at
the University of Liverpool.

A key issue in the understanding of the safety concerns is the breadth of the human stem cell field,
with several cell types falling under the umbrella term of ‘stem cell’:

- Human embryonic stem cells ((h)ESCs) are pluripotent cells, first isolated from human
embryos in 1998 by James Thompson?.

- Induced pluripotent stem cells ((h)iPSCs) were first reported in 2006. Somatic cells were
reprogrammed using the transcription factors Oct4, Sox2, KIf4 and c-Myc (OSKM), to a
pluripotent stem cell state® 3.

- Adult stem cell (ASCs) covers several cell types including mesenchymal and
hematopoietic stem cells and tissue-specific progenitors which reside in the human body
throughout an individual’s life and in comparison to pluripotent stem cells, generally have
a more limited expansion and differentiation capacity®°.

Some adult stem cell-based therapies are clinically available, such as bone marrow or cord blood
transplants containing hematopoietic stem cells® 7, skin grafts for burns®, and mesenchymal stem cells
for graft vs host disease (GVHD) in children (Canada and New Zealand)®.

Additionally, over 3000 trials associated with stem cells are currently collated in the international
clinical trial registry platform (www.who.int/trialsearch). The majority of these are adult stem cell-

based therapies, likely attributable to the longer established use of these cells.

The registry also includes the first pluripotent-based therapies to be subjected to clinical trials; table
1 highlights the narrow scope of these hESC/hiPSC-derived therapeutics, with 9 of the 10 treatments
associated with macular dystrophy or degeneration, including the recently approved first human trial
using hiPSCs'°. Use of the eye as a first application of these cells is ideal: the graft size required is small,
retinal pigment epithelial cells are easily differentiated to high purity, and the grafts can be visualized
non-invasively, all contributing to a lower risk profile than hESC/hiPSC grafts in less accessible organs®
12 Other iPSC-related trials listed on the registry are related to the generation of genotype or disease-
specific iPSC lines for use as disease/genotype models and stem cell banks, highlighting the broad
appeal of hiPSCs.

Despite the basic technology being in place to produce a wider range of therapies, many aspects of
the field, including safety, remain incompletely understood, contributing to the cautious translation
from theoretical benefits to clinical application.



Il. Stem cell risk factors
II.I Tumorigenic potential

A major concern over the use of stem cell therapies is the perceived risk of tumorigenicity. This is
exemplified by the investigation of a tumor which developed four years after fetal neural stem cell
transplantation for ataxia telangiectasia®®. Subsequent analysis found that the tumor was derived from
the transplanted material. Similar cases have also been reported in the treatment of spinal injury with
olfactory mucosal cell transplantation; following presentation with back pain 8 years after the
treatment, the patient was found to have developed a mucosal-like mass at the transplant location®*.
This study is particularly pertinent given that the treatment used adult stem cells, which are often
considered to be less tumorigenic than fetal or pluripotent stem cells, and the recent ground-breaking
treatment of spinal injury with olfactory ensheathing cells’. In this study, the authors report no
adverse effects after 19 months; however, tumors from stem cell grafts can arise many years after
transplantation, highlighting the need for extensive follow-up programmes to reduce patient risk.

The capacity for undifferentiated pluripotent stem cells to form teratomas in vivo is of particular
concern®®. Therefore, these cells will be differentiated before transplantation. However, the risk
remains that not all cells will be fully differentiated. One study showed that despite functional liver
engraftment, hESC-derived hepatocyte-like cells transplanted into immunocompromised mice
developed splenic and liver tumors containing endodermal and mesodermal cell types?’. Teratomas
have also been shown to be able to form from as little as 0.2% SSEA-1-positive pluripotent cells,
demonstrating that, even at high levels of purity, teratoma formation potential remains®®.

It is therefore vital to prevent undifferentiated cells passing through to the differentiated cell
population. Techniques to address this problem include small molecules targeting stearoyl-CoA
desaturase-1, which selectively causes cell death in undifferentiated iPSC/ESCs'®. However, current
analytical techniques are not reliably sensitive enough to detect the removal of all pluripotent cells?.
Therefore, it is important to take other factors, such as the disease and the number of cells
transplanted into account, as these will likely alter the chances of subsequent teratoma formation?Z.
Recent work has alleviated some concerns, a non-human primate model for autologous transplants
showed that iPSC-derived mesodermal stromal-like cells went on to form functional tissue, without
teratoma formation?.

Human studies are the only true way to ascertain the teratoma risk in man. The first human studies
were conducted by Geron in 2009, using hESC-derived oligodendrocyte progenitor cells for spinal
injury treatment?®. The trials were halted for financial reasons, but in the few patients treated, no
tumors have been reported?. Clinical trials investigating the use of hESC- and iPSC-derived retinal
pigmented epithelial cells in macular degeneration are currently ongoing!! and just starting®,
respectively, with no tumor formation reported as yet. If successful, these trials are likely to alleviate
some of the concerns surrounding tumorigenesis from pluripotent stem cells.

Pluripotent cells can be cultured indefinitely in vitro, making scale-up relatively straightforward.
However, during expansion the cells are susceptible to chromosomal aberrations and karyotype

abnormalities®>-3?

, potentially due to the artificial conditions in which the cells are cultured, increasing
the potential for post-transplant malignancy. Pioneering work has investigated these aberrations,

commonly found at chromosomes 1, 12, 17 and 20, at higher resolution; however, it remains to be
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seen if the ‘culprit’ genes can be identified for screening?2 3036 |t is clear that smaller genomic
changes also occur, often at a level not readily detected by standard G-banding?®; the significance of
these changes to safety is unclear. Much work has been focused on the removal of pluripotent stem
cells from the transplanted material; however techniques which allow for the removal for
genotypically compromised cells would be of equal benefit to the therapeutic safety profile®.
Karyotypical changes are not limited to pluripotent cells, with ASCs also thought to develop
abnormalities during in vitro culture®*; however, these findings have been debated, as demonstrated
by the correspondence between Sensebe et al.,>® and Ben-David et al.,*.

iPSCs have additional safety concerns. The development of non-integrative reprogramming
techniques, utilizing direct transfection of proteins or mRNAs, Sendai viruses or episomal plasmids,
has reduced concerns regarding incomplete promoter silencing and genomic disruptions of traditional
techniques*®*3. Some have also replaced the potentially oncogenic OSKM reprogramming factors with
Sall4, Nanog, Esrrb, and Lin28%; these factors are thought to be less efficient, but derive higher quality
iPSCs with reduced aberrations in histone variant 2A.X, which has been shown to be a key determinant
of iPSC/ESC quality and developmental potential*. Others have utilized microRNAs and small
molecules to reprogram somatic cells**4’; however, at the time of writing, these reports are yet to be
repeated.

Additional studies investigating the genomic integrity of iPSCs have shown that DNA damage sustained
during reprogramming may not be fully repaired in the resulting cells*®. Furthermore, reprogramming
cord blood cells reduced the number of DNA mutations when compared to dermal fibroblasts®,
suggesting that reprogramming from neonatal or more stem-like cells may be theoretically safer,
albeit more challenging to obtain.

.1 Immunogenic potential

Maintaining functional immunologic tolerance of stem cells and their derivatives is crucial. Rejection
is considered to be due to a mismatch in expression of human leukocyte antigens (HLA), minor
histocompatibility complex (mHC) antigens and ABO blood group antigens following allogeneic
transplant (Figure S2). Generally, allogeneic matching for both HLA and mHC is not feasible due to
extensive polymorphisms.

Undifferentiated ASC immunogenicity studies are particularly important, as, unlike pluripotent cells,
they can be administered without differentiation. Mesenchymal stem cells (MSCs) have a unique
capacity amongst ASCs to modulate the immune response through a HLA-independent>® dampening
of inflammatory cytokine release®>3. Additional low HLA-l and no extracellular HLA-I>! alongside little

54, 55

or no expression of B- and T-cell co-stimulatory molecules on MSCs, suggest a potential to both

modulate and avoid immune surveillance.

Other ASCs, such as hematopoietic stem cells (HSCs) have also demonstrated some immune avoidance
capabilities®® >, but allogeneic transplants are still susceptible to rejection®®. Moreover, the vast
experience with the use of allogeneic HSC transplants for the treatment of haematological
malignancies and other conditions has shown the potential for GVHD as a result of allogeneic T-cell
infiltration from the graft. This represents a major risk factor and cause of patient morbidity and
mortality, with ~15% of allogeneic HSC transplants resulting in fatalities®. This is a large and important
topic which is well-reviewed by Blazar et al.,?°. Interestingly, MSCs have been used for the treatment



of GVHD (Prochymal®)® %162 This has led some to suggest that MSCs could be used as part of the stem
cell transplant to reduce the potential for both GVHD and graft rejection®.

Due to tumorigenic risk, clinical administration of pluripotent stem cells is likely to be in the form of a
differentiated population, thus any immunogenic assessment should focus on the differentiated
product®®. It is generally accepted that there is little to no rejection in autologous cells, even following
in vitro culture. Therefore, research has focused on developing stem cells which are genetically
identical to the recipient. Recently, somatic cell nuclear transfer was achieved in humans, allowing for
the isolation of hESCs expressing the donor genotype®> ¢

iPSC-based therapy remains the most promising technique to realizing pluripotent autologous
therapy. Whilst initial reports suggested immunogenicity in syngeneic transplants®’, two subsequent
studies found no evidence of acute or chronic immunogenicity towards differentiated iPSCs (both
spontaneous and directed)®® %, Further, de Almeida et al., reported that, in contrast to rejected iPSCs,
syngeneic iPSC-derived endothelial cells were accepted in mice, demonstrating a comparable
tolerogenic response to syngeneic primary endothelial cells’. Direct comparison of autologous and
allogeneic transplanted iPSC-derived neurons in non-human primates also revealed minimal immune
response in autologous transplants; whereas allogeneic transplants were immunogenic’t. Therefore,
current evidence points towards immunological tolerance of autologous terminally differentiated
transplanted stem cells.

The timescale and costs associated with personalized therapies may mean that they are used as an
alternative option when HLA matching cannot be achieved from stem cell banks containing carefully
selected donor cell-lines’>’*. A second consideration is for disorders in which their etiology is
genetically-linked, and whether patient-derived transplanted material containing the diseased
genotype would have therapeutic efficacy; autologous cells in such cases may require gene therapy.

One method of dealing with the immune response to cell grafts is encapsulation’> ’®. Encapsulation
reduces interaction with immune cells and consequently reduces the risk of rejection, whilst
maintaining efficacy through the movement of factors (e.g. cytokines) across a semi-permeable
membrane. Furthermore, encapsulation may also prevent tumors from reaching tissues outside the
capsule. Such techniques are currently being developed for use in diseases such as diabetes and may

represent an elegant solution to a complex problem?’”0,

Notwithstanding the clear potential, the
development of such a system is not trivial, and despite sustained efforts and sequential

developments, the translation to a clinically effective technology has yet to be achieved®..

Another immunological consideration is the culture conditions. Cell culture and manufacturing
conditions may introduce immunogenic alterations. For example, fetal bovine serum and sialic acid
derivative Neu5G from mouse feeder layers, have both been shown to alter the immunogenicity of
stem cells® 8. Therefore, certified animal component-free products should be used wherever
possible.

111l Biodistribution



Biodistribution encompasses the risks associated with the migration, distribution, engraftment and
long-term survival of the transplanted material.

Different routes of administration result in differential dissemination patterns and risks. Systemic
administration can lead to cells becoming entrapped in the lung or microvasculature, causing
dangerous side-effects, such as the pulmonary emboli reported following intravenous administration
of adipose-tissue derived stem cells®*. Administration in a feeding artery of the target tissue has been
proposed to reduce these risks®>; however, the risk of microvascular occlusions remain. Direct
transplant to the targeted organ/area may reduce these risks 8 8; however, this is likely to be
location-dependent and may require invasive surgery, e.g. the liver. Therefore, the chosen method
must consider the target pathology, therapeutic objectives and the patient risk-benefit profile®® 8,

Once administered, up to 90% of transplanted cells are lost due to physical stress, inflammation,
hypoxia, anoikis or immunogenic rejection®> %, To achieve therapeutic efficacy, large numbers of cells
may therefore be required, increasing the risk of teratoma formation?! or ectopic engraftment. Thus,
the minimum number of cells required for effective treatment should be ascertained as part of
product development.

A recent study of neural stem cells in a model of spinal cord injury reported ectopic cell growth 9-10
weeks post-transplant at various points along the spinal cord and brainstem®l. These were
hypothesised to have travelled via the cerebral spinal fluid, colonized and further proliferated,
highlighting the need to understand the biodistributary properties of the treatment before clinical
application.

The half-life of the transplanted material is another factor which can alter the level of risk. If short, the
risk associated with the transplanted material is reduced accordingly. However, if therapeutic efficacy
is limited to the short-to-medium term, chronic diseases may require repeated administration and
thus an understanding of the likely dosing regime is another key consideration for risk assessment.

Ill. Regulation of stem cell therapeutics

One of the major limitations of stem cell therapeutics is the heterogeneous character and limited
experience of their development. Consequently, no specific European (European Medicines Agency,
EMA) or UK (Medicines and Healthcare Products Regulatory Agency, MHRA) regulatory guidance®?
addresses technical aspects of the drug development program in detail, e.g. type, size and duration of
non-clinical studies.

Regulators have attempted to address these problems by drafting guidelines and reflection papers.
The “Guideline on human cell-based medicinal products (EMEA/CHMP/410869/2006)” was adopted
in 2008, before the unifying regulation on advanced therapy and medicinal products came into force®,
and gives a generic overview on the requirements for the licensing of cell-based medicinal products;
however, the information provided is not very detailed. A subsequent reflection paper on stem cell-
based medicinal products (CAT/571134/09) was adopted in 2011, focusing more specifically on stem-
cell based medicinal products and also discusses the experiences gained with cell-based products,
including a summary of the challenges associated with biodistribution and immunogenicity studies.



However, since no detailed requirements are defined, the applicant is still required to implement an
appropriate development program that addresses the product-specific risks.

It is highly advisable to engage in discussions with the regulatory bodies early in the development of
the product. Most regulatory agencies develop structures to facilitate the interaction with developers
(e.g. the MHRA innovation office and the EMA innovation task force) and may provide scientific advice
to assist product development.

For the development of advanced therapy medicinal products, a risk-based approach can be used as
a matrix to decide which non-clinical data are needed. The (optional) risk-based approach
encompasses intrinsic (cell-related) and extrinsic (manufacture-related) risks associated with the
medicinal product and the subsequent development and implementation of the appropriate assays
to assess these risks.

Further help with risk assessment is available in the “Guideline on the risk-based approach according
to annex |, part IV of Directive 2001/83/EC applied to advanced therapy medicinal products”
(EMA/CAT/CPWP/686637/2011). This document provides examples illustrating the risk-based
approach. Likewise, (non-binding) guidance documents are also provided by the Food and Drug
Administration (FDA) in the USA%,

As a regulatory pre-requisite, good manufacturing practice must also be followed, as well as the use
of clinical grade stem cell products and procedures, free of microbiological and non-microbiological
contaminants. Similar practices should be applied to pre-clinical research in order to allow predictable
translation of therapies to the clinic.

The importance of regulation is highlighted by the report on the unregulated use of fetal brain-derived
olfactory ensheathing cells for the treatment for spinal cord injuries. The authors found little-to-no
benefit from the treatment, but complications including meningitis and death®. Whilst this is an
extreme example, many unregulated stem cell treatments are now available across the world (well
reviewed by Zarzeczny et al.,*®). In 2011, Celltex® began offering ASC-based therapies in Texas, USA
without FDA approval, igniting debate about the regulation of stem cell therapeutics®. Subsequently,
the FDA won a recent court battle to regulate proliferated stem cells as biological drugs and
documents encapsulating these new regulatory powers are in preparation® %,

IV. Pre-clinical and clinical assessment
IV.I Tumorigenic and immunogenic pre-clinical and clinical trials/assays

In terms of both tumor- and immunogenicity, risk cannot be reliably assessed when the model is not
predictive, so it is important to match the targeted disease phenotype to the animal or in vitro assay.
Traditional medicinal product development routes may be appropriate (i.e. going from simple to
complex, in vitro to in vivo and animal to human). However, some therapies may require multi-model
studies to provide the fullest understanding of both efficacy and safety, whilst other therapies may
not require an animal model as there may be little relevance. Future pre-clinical assessments may also
use iPSC-derived cells as a source of a diseased phenotype as the most clinically relevant assay of
therapeutic safety and efficacy.

Assays for the assessment of tumorigenic potential



The tumorigenic potential of cell-based therapies needs to be assessed throughout product
development.

In vitro techniques, such as karyotyping, can be used to assess genomic integrity. More in-depth
investigation may be required to detect smaller changes; however, without known associated
changes, attributing risk is difficult. Q-PCR and flow cytometry can be used to determine the purity of
the differentiated population and soft agar colony formation assays may also be used to assess the
tumorigenic potential of the cell population!®. However, all these indirect methods do not guarantee
absence of tumors in the clinical setting.

Immune-deficient rodent models may be used to assess the direct tumorigenic potential of the
transplanted material, with tumorigenic growth reported from as little as two undifferentiated
ESCs, Initial investigations may take place in an easily accessible and observable location with cell
number determined by the planned assessment method. Once initial investigations are complete,
tumorigenicity in the clinically relevant microenvironment should then be assessed with cell numbers
equivalent to and higher than the predicted clinical dose. Deep tissue assessment by g-PCR or
histopathological analysis is usually required to confirm ectopic tumor formation'®% 1%, but future
investigations may utilize improvements in real-time cell tracking for greater information with regard
to tumor location/development. Currently available imaging techniques suitable for clinical
tumorigenic analysis include MRI for tumors >0.3cm and FDG-PET for tumors >lcm, with
bioluminescent and photoacoustic imaging currently limited to pre-clinical studies® 1%, The use of
biomarkers in clinical trials may also provide useful information, with raised blood alpha-fetoprotein
(AFP) levels found in many teratomas!®. Commonly used techniques for assessing tumorigenic
potential in vitro and after clinical transplantation are presented in table 2.

Immune-deficient models lack the immune response to tumor formation. Previous reports have
demonstrated a reduced capacity for tumor formation inimmune-competent models when compared
to immune-deficient models’® 1°1, Consequently, a tumor which forms in an immune-deficient model
may not always form in an immune-competent model or in clinical studies.

Pre-clinical non-xenogeneic studies using animal transplant models, as shown by Hong et al.,?? (e.g.
transplanting equivalent mouse iPSC-derived cells into genetically identical/non-identical mice) used
in combination with in vitro assays before the development of human equivalents, may therefore be
the most relevant method of assessing tumorigenicity.

Assays for the assessment of immunogenic potential

Developing relevant immunogenicity assays remains challenging. Immune-competent and immune-
deficient in vivo models lack immunogenic clinical relevance for human cells in most situations;
however, in some cases they can provide useful information:

- Immune-competent models may be used to investigate the use of stem cells in immune-
privileged locations, such as the eye!? or as a model of allogeneic transplants.

- Immune-deficient animals varying in the extent of immune-depletion(i.e. loss of specific
immune cell types) may be useful in investigating specific mechanisms of rejection?’.

- Humanized models, such as the trimera mouse, have human immune cells, improving
relevance!®, especially for examining allogeneic grafts.



Recognizing that xenotransplation cannot capture the human allo-immune response!®, in vitro assays
such as mixed lymphocyte reactions, may be more informative of graft immunogenicity. Moreover,
using the equivalent therapy in a species suitable for modelling immunogenicity, such as the non-
human primate iPSC-derived transplant models reported by Morizane et al’*, may provide the most
informative results, if technically and financially viable.

IV.1l Biodistribution in pre-clinical and clinical trial/assays

Biodistribution assays inform both safety and efficacy evaluations. Whilst histopathology and PCR
remain the gold standard for assessing deep tissues, here we focus on cell labelling due to its ability
to monitor cell distribution/migration in real-time!'°. Such techniques are important for ascertaining
the migratory/distribution patterns and are also informative in a tumorigenic (ectopic tumor
formation) and immune (loss of cells through immune rejection) context.

Cellular imaging strategies are composed of the imaging technique and the labelling agent (figure S3).
The imaging technique is usually chosen in conjunction with the labelling agent, which can be classified
in two main categories: direct and indirect labelling!'!, summarized in table 3.

Direct Labelling

Direct labelling requires the introduction of the labelling agents into the cells before transplantation.
The relative intensity of the detected signal from the introduced molecules is then used as a surrogate
for cell number.

Radionuclides used for cell imaging have different half-lives, which therefore determines the length
of time cells can be monitored non-invasively'’’; these are mainly detected using single photon
emission computed tomography (SPECT) and/or positron emission tomography (PET; table 3). Studies
have shown as little as 6.2x10%-2.5x10* cells can be detected using these methods!!2. However, short
radionuclide half-lives mean that cell-tracking is limited to hours rather than weeks. Indium-111 oxine

has a relatively long half-life (~2.8 days)'*?

and has been shown to successfully track MSCs in preclinical
models for up to 7 days''®; however, signal leakage and alteration of cell phenotype limits
translatability’**. Clinically, hematopoietic stem cells labelled with ¥F-FDG for acute and chronic

myocardial infarction treatment were successfully tracked by PET after 20 hours!?®.

The use of iron oxide-labelling for MRI makes it possible to trace the cells over longer periods of
time!!®. The most common labelling agent in pre-clinical/clinical trials is superparamagnetic iron oxide
particles (SP10), which offers the highest sensitivity and has been used to track neural stem cells in a
patient for up to 3 weeks!'’. Generally, MRI has lower sensitivity than SPECT/PET. The number of cells

118

used for SPIO tracking in man ranges from 3.71.x10° to 17.4x10° cells'*® whilst de Vries et al., were

able to detect 1.5x10° dendritic cells in melanoma patients'?°.

Alternatively, Perfluorcarbons (PFC) and Fluorine-19 (19 F) MRI can be used to track cells'?°. Cells are
labelled with PFC emulsions before transplantation and subsequently detected as hotspots by 19 F
MRI. The main advantage of this system is the low signal-to-noise ratio, due to the low endogenous
19 F concentration, allowing for the quantification of cells at an estimated minimum sensitivity of 10%-
10° cells per voxel'?°, This system has been successfully exploited to monitor stem cells therapies'?"
123 and is promising for clinical applications with some PFCs approved by the FDA?*, This system has
been applied clinically in dendritic cells, with a reported minimum sensitivity of 1x10° cells/voxel*?*.
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Indirect Labelling

Indirect labeling is the introduction of a gene encoding for a reporter recognized by a reporter probe
or imaging system?®. This system is highly controllable because only viable cells are able to transcribe
the reporter gene!?®,

In MRI-based gene reporter systems, the transduced gene is typically an intracellular metalloprotein
(e.g. transferrin, ferritin, tyrosinase), that traps large quantities of iron in the cytoplasm for non-
invasive detection!® 126, However, the trapped iron produces long-term background which masks the
viability of the cell'*2, Some have therefore suggested that the only transduced gene currently suitable
for MRI cell tracking is Lysine-rich protein!?’.

In the SPECT and PET reporter gene imaging systems, a gene reporter (enzyme or receptor) requires
an exogenously administered probe (tracer) to localize and quantify the stem cell product.

A number of groups successfully monitored ESCs'?® and MSCs*?® 30 in animal models, using gene
reporter systems. These studies reported a reliable correlation in terms of localization, magnitude and
duration of the cells in vivo when compared to conventional methods (immunohistochemistry and
PCR). The short half-life of the probes allows a defined continuous imaging period of no more than a
few hours!?®. However, being non-invasive, monitoring of the stem cells at regular intervals was
possible for up to 4 weeks'?130, Quantitative information can be extrapolated from the percentage of
injected radioisotope/gram of tissue, allowing for the quantification of the area(s) covered by the cells,
but not the exact cell number!?.

The use of indirect labelling is rare in a clinical setting as genetic manipulation is required*®. However,
the FDA has approved the PET reporter probe 9-[4-[18F] Fluoro-3-(hydroxymethyl) butyllguanine
([18F]FHBG; IND #61,880)'%2 for the treatment of glioblastoma multiforme. Successful tracking of T-
cells was reported with no significant adverse effects!*3. Guidelines on how to administer and safely

monitor 8F-FHBG in humans have been made available3.

Optical imaging techniques are limited by exponential signal loss as depth increases, caused by

110, 126 phptoacoustic

scattering phenomena that occur when photons pass through the tissue
tomography overcomes this problem. A short laser pulse irradiates the target tissue, causing a partial
absorption of the pulse energy and conversion into heat. This increases local pressure through
thermo-elastic waves and is subsequently detected by ultrasonic transducers placed outside the
tissue. The image is generated by collecting all thermo-elastic waves from the arrival time!3> 3¢, Such
technology has been used to track human MSCs labeled with gold nanocages in a rodent model for 7

days'®.
IV.1Il Other risks associated with the translation to the clinic

Despite highly-controlled conditions in both cell preparations and clinical settings, infections remain

a risk for patients who have received allogeneic stem cell transplants which require immune-

137 Moreover, long-term immunosuppression has well-documented side-effects

138

suppression therapy
including end-organ toxicity and increased risk of cancers

Viral status must also be assessed in donors of allogeneic grafts. Donors of HSCs are routinely screened

for hepatitis viruses, human immunodeficiency virus, cytomegalovirus and (bacterial) syphilis*3® 14,
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Further screening for herpes simplex virus, Epstein-Barr virus and adenoviruses may also be required
in addition to screening for cell type- and location-specific viruses'*°. Genotype screening for donor

d141

cells has also been suggested**, with some reports of specific genetic polymorphisms associated with

differential GVHD severity and outcome in allogeneic HSC transplants'*? 143,

Scaffolds, aiding engraftment or delivery of cells, should also be considered for immunological
potential. Such devices have been used to improve the survival of MSCs in brain injury models'#* 14>
and some groups are attempting to use decellularized organs!*® as 3D scaffolds for stem cell-derived
repopulation'¥1%9, Biological scaffolds offer greater similarity to the host extracellular matrix than
those of synthetic origin, improving engraftment; however, they are usually xenogeneic/allogeneic!*°
and thus have immunogenic potential. Various techniques have been used to remove antigenic
epitopes, DNA and damage-associated molecular pattern signals®®'1>% however, immunogenic
potential remains. A comparative study of 5 commercially-available biological scaffolds demonstrated
significantly elevated immune responses, including chronic inflammation and fibrosis, versus an

autologous control>.

Scaffolds derived from synthetic origin are generally considered to be less immunogenic. Several

156-158’ and

synthetic biodegradable polymers have been approved by the FDA for medical applications
consequently may be used without further safety assessment. However, novel materials/uses are
required to undergo safety testing in compliance with the I1SO 10993 International Standard (ISO

10993: Biological evaluation of medical devices).
V. Conclusions

Stem cell therapies have immense potential to alleviate, or even cure, a range of acute, chronic and
debilitating diseases. However, we must ensure that these therapies are safe as well as effective, and
a lot of work still remains to be done to understand and reduce any risk associated with their use.

Huge improvements in our in vitro techniques are needed, such as ensuring gene aberration-free
expansion and improved differentiation purity, alongside the better identification of risk factors which
can be routinely screened before transplantation. Furthermore, the development of models which
can better predict immunological responses and cell tracking techniques with increased duration and
depth capabilities would represent great improvements to the current status quo.

However, the top priority is that this work must remain focused on the clinical outcome. The most
important consideration is the risk-benefit assessment for the patient. Whilst a stem cell therapy, like
many drugs, may not be perfectly safe, the benefit to the patient may far outweigh the potential risks.
Therefore, each treatment should be determined on a case-by-case basis with regulatory input,
ensuring that the risk of the therapy is appropriate for the given condition and patient.
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Table figures

Table 1: Pluripotent stem cells clinical trials (phase I-111) listed in the International Clinical Trial
Registry Platform (ICTRP) by the World Health Organization.

Table 2: Available assays to assess the tumorigenic risk of stem cell therapeutics, describing the
main uses of each technique along with advantages and disadvantage.

Table 3: Comparison of technologies for stem cell graft tracking in vivo. Further reviewed by James and
Gambhir®®. QD quantum dots; G/RFP, green or red fluorescent protein.

Supplementary figure legends

Figure S1: Therapeutic risks of stem cells. Risk of stem cell therapeutics can be divided into 3 main
categories: biodistribution: cell migration, distribution, engraftment and long-term survival;
immunogenicity: graft-vs-host disease and other inflammatory/fibrotic conditions; tumorigenicity:
genomic aberrations or insertions, cell purity (i.e. transplanted population containing iPSCs/ESCs with

inherent teratoma potential) and cell of origin (i.e. the reduced risk of tumorigenicity with ASCs
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compared to iPSCs/ESCs, ESCs compared to iPSCs, and neonatal compared with adult cell-derived

iPSCs).

Figure S2: Schematic demonstrating the described potential mechanisms of immune recognition
and rejection of stem cell grafts. (1) HLA-I incompatibility. CD8+ cytotoxic T-cells recognize non-self
HLA (and co-stimulatory molecules) and initiate an immune response that can lead to rejection. (2)
HLA-II incompatibility. HLA-ll-expressing antigen-presenting cells, present to CD4+ T helper cells
resulting in cytokine-induced inflammation and/or activation of B or T cell responses. (3) Minor
histocompatibility complex (mHC) incompatibility. A selection of proteins expressed in the cell,
including mitochondria derived proteins, may bind to and be presented by HLA-l. These can be
recognized as mHC antigens, and lead to immune-rejection. (4) ABO blood group antigen
incompatibility. ABO blood group antigens can be detected by antibodies and activate the

complement system. (5) Natural killer (NK) cells can also contribute to immune rejection?®°.

Figure S3: Stem cell imaging/tracking. Direct labelling of cells requires exposure to labels such as
quantum dots, which enter the cytoplasm and can be detected via MRI, PET, SPECT or fluorescent
imaging depending on the technique. Indirect labelling requires genetic modification of the cell to
insert a reporter gene, which is then detected by the appropriate imaging technique. Details of each

technique are listed in table 3. SPIONs: Superparamagnetic iron oxide nanoparticles.
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Figure S1: Therapeutic risks of stem cells. Risk of stem cell therapeutics can be divided into 3 main
categories: biodistribution: cell migration, distribution, engraftment and long-term survival;
immunogenicity: graft-vs-host disease and other inflammatory/fibrotic conditions; tumorigenicity:
genomic aberrations or insertions, cell purity (i.e. transplanted population containing iPSCs/ESCs
with inherent teratoma potential) and cell of origin (i.e. the reduced risk of tumorigenicity with ASCs
compared to iPSCs/ESCs, ESCs compared to iPSCs, and neonatal compared with adult cell-derived

iPSCs).
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Figure S2: Schematic demonstrating the described potential mechanisms of immune recognition
and rejection of stem cell grafts. (1) HLA-I incompatibility. CD8+ cytotoxic T-cells recognize non-self
HLA (and co-stimulatory molecules) and initiate an immune response that can lead to rejection. (2)
HLA-II incompatibility. HLA-II-expressing antigen-presenting cells, present to CD4+ T helper cells
resulting in cytokine-induced inflammation and/or activation of B or T cell responses. (3) Minor
histocompatibility complex (mHC) incompatibility. A selection of proteins expressed in the cell,
including mitochondria derived proteins, may bind to and be presented by HLA-I. These can be
recognized as mHC antigens, and lead to immune-rejection. (4) ABO blood group antigen
incompatibility. ABO blood group antigens can be detected by antibodies and activate the

complement system. (5) Natural killer (NK) cells can also contribute to immune rejection.
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Figure S3: Stem cell imaging/tracking. Direct labelling of cells requires exposure to labels such as
guantum dots, which enter the cytoplasm and can be detected via MRI, PET, SPECT or fluorescent
imaging depending on the technique. Indirect labelling requires genetic modification of the cell to
insert a reporter gene, which is then detected by the appropriate imaging technique. Details of each

technique are listed in table 3. SPIONs: Superparamagnetic iron oxide nanoparticles.
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