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Androgens such as testosterone are steroid hormones essential for
normal male reproductive development and function. Mutations of
androgen receptors (AR) are often found in patients with disorders
of male reproductive development, and milder mutations may be
responsible for some cases of male infertility. Androgens exert
their action through AR and its signalling in the testis is essential
for spermatogenesis. AR is not expressed in the developing germ
cell lineage so is thought to exert its effects through testicular
Sertoli and peri-tubular myoid (PTM) cells. AR signalling in sper-
matogenesis has been investigated in rodent models where
testosterone levels are chemically supressed or models with
transgenic disruption of AR. These models have pinpointed the
steps of spermatogenesis that require AR signalling, specifically
maintenance of spermatogonial numbers, blood-testis barrier
integrity, completion of meiosis, adhesion of spermatids and
spermiation, together these studies detail the essential nature of
androgens in the promotion of male fertility.

© 2015 The Authors. Published by Elsevier Ltd. This is an open
access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The mammalian testis has two functions: spermatogenesis (the production of haploid germ cells)
and steroidogenesis (the production of the steroid hormones that support male reproductive
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development and function). Disruption of testosterone production by hypophysectomy [1], Leydig cell
ablation [2] or knockout of luteinising hormone receptor [3] demonstrate that spermatogenesis cannot
proceed to completion without testosterone.

The receptor for testosterone is the steroid nuclear hormone receptor androgen receptor (AR, OMIM
entry: 313700). Ar is a single copy gene on the X chromosome [4]. The classical genomic mechanism of
testosterone signalling occurs when testosterone diffuses into the cell and binds to AR, then the
ligandereceptor complex translocates to the nucleus and where it binds to androgen response ele-
ments (AREs) in the regulatory regions of genes to modify their translation. Non-classical signalling
occurs when the ligandereceptor complex or testosterone itself activates non-genomic cytoplasmic
signalling pathways, or when in certain circumstances the AR binds to AREs in the absence of
testosterone [reviewed in [5,6]].

Despite requiring androgens for their survival and maturation, germ cells do not express androgen
receptors and germ cell-specific androgen receptor expression is not required for their normal
maturation [7e9]. However, the somatic Sertoli, PTM, Leydig, vascular endothelial and vascular smooth
muscle cells of the mature testis express androgen receptor [10], and it is widely accepted that the
requirement of testosterone for spermatogenesis is mediated by these cell types.

Rodent models of androgen signalling disruption

Global androgen receptor knockout models

The first animal model of androgen insensitivity was described in 1970 by Lyon and Hawkes, who
reported an X-linked gene for ‘testicular feminisation’ (Tfm) in the mouse [11]. It was subsequently
discovered thatmale Tfmmice carry a single nucleotide deletion in exon 1 of their Ar gene, the resulting
frameshift introduces a premature termination codon [12]. With the advent of Cre-loxP technology
[reviewed in [13]], mice with a total androgen receptor knock-out (ARKO) genotype have been pro-
duced by four groups. By mating a mouse line with floxed region of the Ar gene to one expressing Cre
recombinase under the control of a constitutively active gene, genetic ablation of part of the AR
resulting in loss of functional protein was achieved in all cells of the resulting offspring [14e17]. Both
ARKO and Tfm mice have small, inguinal testes, lack of Wolffian duct structures and feminisation of
external genitalia. When examined histologically, some tubules in the testis lack germ cells completely
and the others contain a few spermatogonia, but no post-meiotic germ cells. Normal spermatogenesis
does not occur. This is analogous to testicular histology seen in CAIS patients [17,18].

Cell specific androgen receptor ablation models

Models of testosterone or androgen receptor disruption can demonstrate what processes in the
testis rely on AR signalling, but they cannot determine which cell type(s) mediate these processes.
Recent studies of cell-specific ablation or overexpression of AR in the testis using the Cre-loxP system
have elucidated both the cell and AR-specific actions of androgens in the testis [19]. Mouse lines with
cell-specific knock-outs of AR in the male reproductive system are detailed in Table 1. Through these
studies it has become apparent that AR signalling in the PTM and Sertoli cells exerts the most sig-
nificant effects on spermatogenesis.

Sertoli cells are mesoepithelial somatic cells that coordinate and structurally support the maturing
germ cells. Each Sertoli cells spans the seminiferous tubule from the basementmembrane to the tubule
lumen, and is tightly linked to a set of germ cells at specific stages by different types of junction protein
complexes [20]. Sertoli cells have a large surface areawith awell-developed cytoskeleton that assists in
maintaining their shape as well as providing a scaffold for the movement of germ cells [21,22]. Since
germ cells do not express AR it is likely that the action of androgens on spermatogenesis is potentiated
through their binding to Sertoli cell AR. Androgen receptors are not present in the Sertoli cells of the
mouse until postnatal day 4 when faint staining of occasional Sertoli cells is seen. Staining of all nuclei
and a progressive increase in staining intensity is noted from day 5 [23]. After maturation, the
expression of AR in Sertoli cells fluctuates in a seminiferous tubule stage-specific manner [10],
appearing strongest at stages VIeVII. In humans, Sertoli cell AR has been reported as either weakly



Table 1
Summary of Cre lines used for cell specific ablation of AR action in the male reproductive system.

Cell type Promoter Effect on mouse fertility Reference

Sertoli Amh-Cre Infertile. No post-meiotic germ cells. [14,29,34]
Peri-tubular myoid Myh6-Cre Infertile. Reduction in germ cells at all stages. [41]
Leydig Fabp4-Cre Fertile, but degeneration of seminiferous

epithelium occurs with ageing. Leydig
cells do not mature correctly.

[76]

Spermatocytes Sycp1-Cre Fertile [7]
Vascular smooth muscle Tagln-Cre Fertile but testicular vasomotion impaired [77]
Vascular endothelial Tie2-Cre Fertile [78]
Prostate epithelium Arrpb2-Cre Fertile [79]
Prostate, vas deferens and
epididymal epithelium,
SV smooth muscle

Arrpb2-Cre Subfertile, defects in epididymal transit of sperm [80]

Prostate smooth muscle Myh6-Cre Phenotype complicated by loss of AR in PTM. [81]
SV smooth muscle Myh6-Cre Phenotype complicated by loss of AR in PTM. [82]
Neuronal Nes-Cre Subfertile, variable phenotype with fewer litters

and pups per litter. Altered mating behaviour.
[83,84]

Epididymal epithelium Foxg1-Cre; Rnase10-Cre Infertile due to obstructive azoospermia. [85,86]
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detected or not present up to 5 years, but is detected from 8 years onwards and is strongly expressed in
adulthood [24e26]. Expression is also cyclical in men, appearing strongest at stage III [27]. A model of
androgen receptor overexpression in Sertoli cells (tgSCAR) from day 2 onwards results in premature
maturation of Sertoli cells, reduced final Sertoli cell number and therefore a reduced final germ cell
number [28], suggesting it has a key role in Sertoli cell maturation. Development of tgSCAR germ cells
was accelerated corresponding to premature maturation of the Sertoli cells, illustrating the intimate
dependence of germ cells on Sertoli cell androgen receptor signalling for their coordinated
development.

Sertoli-cell specific AR knockout (SCARKO) mouse lines have been created by two groups using an
inserted Cre recombinase coding sequence driven by an anti-Müllerian hormone promoter [14,29]. The
testes of SCARKO mice develop normally with an external phenotype similar to their control male
littermates, with fully descended testes and intact Wolffian duct-derived structures, unlike the ARKO
model where they are absent [17]. However at post-natal day 50 their testes are approximately a third
of the weight of their wild type littermates' and contain few post-meiotic germ cells more advanced
than pachytene primary spermatocytes, indicating a meiotic block. SCARKO seminiferous tubule di-
ameters are decreased and the tubules do not develop a normal lumen. It is important to note thatmice
with a Sertoli cell-specific ablation of the second zinc finger domain (vital for DNA binding) display a
similar post-meiotic block phenotype, indicating that progression of spermatocytes through meiosis is
an event dependent on classical genomic signalling of androgens [30]. The two groups differed in
analysis of the levels of testosterone and LH in their SCARKO models; where De Gendt and colleagues
found these two hormones to be normal in adult mice, the Chang group found LH to be high and
testosterone to be low. Spermatogonia [14] and Sertoli cell numbers do not differ between SCARKOs
and controls [31]. There is controversy as to whether Leydig cell numbers in the SCARKO are main-
tained [32] or are decreased [33] which would imply that Sertoli cell AR activates a paracrine signalling
pathway that affects Leydig cell division. Another study created a ‘hypomorphic’ SCARKO with Sertoli
cell-specific reduction of AR action, but also a general reduction in levels of AR protein throughout the
whole body due to a phenotypic effect of the placing of the loxP sites in the transgenic AR [34].

Seminiferous tubules are surrounded by a layer of peri-tubular myoid (PTM) cells. PTM cells are
contractile and produce peristaltic waves in the seminiferous tubules that propel mature spermatozoa
towards the rete testis [35]. PTM cells synthesise the basement membrane components laminin,
collagen and fibronectin in co-operationwith Sertoli cells [36,37]. Like other tissues in the reproductive
system a reciprocal relationship exists between the mesenchymal (PTM) and epithelial (Sertoli) cells of
the testis, which is vital for the maintenance and function of both cell types. The mesenchymal PTM
cells are the first cell in the testis to express AR: at or before e16.5 in the mouse [38] and at e18.5 in the
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rat [39,40]. Cell-specific ablation of AR in the PTM cells has been achieved using Cre/loxP transgenic
mice (PTM-ARKO) [41]. PTM-ARKO testes are 70% smaller than controls because of a reduction in
numbers of all germ cell stages.

Even though these two particular cell types appear to be the most important for transmission of
androgen signalling to developing germ cells, AR is present in many different cell types in the male
reproductive system thatmay not have an immediate impact on spermatogenesis but still contribute to
fertility and normal testicular function, as well as is in other non-reproductive organs throughout the
body. Conditional AR ablation lines have been created and investigated to elucidate its role in these cell
types [42]. Table 1 summarises conditional ablation of AR in several different cell types of the male
reproductive system and whether this ablation has any impact on spermatogenesis, testicular function
or wider fertility. The results of these cell ablation experiments draws attention to the absolute
requirement for AR signalling to maintain overall synergy and function of the male reproductive
system, which contributes to overall male fertility.

Models with decreased testosterone production

Before the Cre-loxP system was widely used to interrogate cell specific AR action, changes in
spermatogenesis were identified in rodent models with reduced testosterone production. Mice with a
luteinising hormone receptor knockout (LuRKO) produce levels of testosterone 10 to 20 times lower
thanwild-type [3]. Another model is the ‘TE’ rat that carries implants containing low-dose testosterone
and estradiol to suppress LH production at the pituitary and therefore reduce testicular T levels to 3% of
control [43]. Although reduction in AR signalling in these models occurs in all cell types that express
the receptor and therefore the resulting phenotype cannot be assigned to lack of AR action in a specific
cell type, they have provided a number of novel observations that add to the complete picture of AR
signalling in spermatogenesis.

Control of spermatogenesis by androgens

Experimental perturbation of testosterone and/or androgen receptor has highlighted specific steps
in spermatogenesis that require AR signalling, summarised in Fig. 1 and described here.

Maintenance of spermatogonia numbers

PTM-ARKOmice have a reduction of germ cell numbers at all stages, (including spermatogonia) that
is not seen in any other conditional ARKO model [41], suggesting that maintenance of spermatogonia
numbers is controlled by PTM cell AR. Since spermatogonia are juxtaposed to the basement membrane
they are in intimate contact with the PTM cells. It is possible that this affect is due to direct signalling
between PTM cells and spermatogonia. Since PTM cells in the PTM-ARKO also demonstrate a pro-
gressive loss of desmin and smoothmuscle actin (SMA) it is likely that loss of AR is affecting the smooth
muscle phenotype in PTM cells, and a disruption of laminin indicates problems with the basement
membrane of the seminiferous tubules. These disruptions may impair attachment and signalling be-
tween PTM cells and spermatogonia and thus disrupt their niche [44]. It is also possible that the
decrease in spermatogonia in the PTM-ARKO is mediated through changes in Sertoli cells. The decrease
in germ cells is not due to a decrease in Sertoli cell number, as this is not reduced in PTM-ARKO mice.
However, levels of Sertoli cell-specific gene products including Rhox5, Epp and Tubb3 are reduced in
PTM-ARKO testes, implying that AR signalling in PTM cells has an effect on the transcriptome and
function of their neighbouring Sertoli cells. In vitro evidence has demonstrated that androgens can
stimulate PTM cells to secrete a factor or factors dubbed “P-mod-S” [45] that modulates Sertoli cell
function, but it remains as yet unidentified, and its role is disputed by some investigators [46].

Progression through meiosis

Very few post-meiotic cells are noted in the SCARKO mouse. Morphological analysis of SCARKO
testes established that germ cell entry into meiosis appeared normal, but a progressive loss of



Fig. 1. The anatomy of the testis and control of spermatogenesis by androgens. The testis consists of seminiferous tubules sur-
rounded by an interstitial stroma. The stroma contains steroidogenic Leydig cells and blood vessels that are lined by vascular
endothelial (VE) and vascular smooth muscle (VSM) cells. Peritubular myoid (PTM) cells line the outside of the seminiferous tubule.
Sertoli cells extend from the PTM cells to the lumen and support and contact the developing germ cells. Junctions between Sertoli
cells form the blood testis barrier (BTB). Maturation of germ cells in spermatogenesis progresses toward the lumen starting with the
undifferentiated diploid spermatogonia on the basement membrane to spermatozoa that are released from the apical surface of the
Sertoli cell. During meiosis, spermatocytes transit the BTB. Testosterone produced by the Leydig cells has autocrine effects on the
Leydig cells themselves, which express AR, as well as paracrine effects on VE, VSM, PTM and Sertoli cells of the testis. It also diffuses
into the interstital blood vessels to be transported to the circulatory system. There are five critical processes in spermatogenesis that
are regulated by testosterone labelled 1e5 on the figure. (1) Maintenance of spermatogonial numbers, (2) maintenance of the BTB,
(3) completion of meiosis by spermatocytes, (4) adherence of elongated spermatids to Sertoli cells, (5) the release of mature
spermatozoa and (6) the formation of the seminiferous tubule lumen.
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pachytene primary spermatocytes between stages VI and XII was noted. Round spermatid number was
3% of controls and no elongating spermatids were seen [14]. In rodent models that have reduced
testosterone production such as the LuRKO mouse and TE implanted rats, meiosis completes and
spermatogenesis proceeds to the round spermatid stage implying that meiosis itself is not sensitive to
low testosterone levels, even though subsequent stages may be. Ablation of any residual androgen
action in the LuRKOmousewith flutamide (an AR antagonist) results in the reversion of the phenotype
to a meiotic block which adds to the evidence that at least a low level of AR signalling is required for
completion of meiosis [3].

BTB integrity

Tight junctions between adjacent Sertoli cells above the level of leptotene spermatocytes form the
blood-testis barrier (BTB), a structure that partitions the adluminal compartment of the seminiferous
tubule from the basal compartment so haploid germ cells canmature in an immunologically privileged
site with a specialised microenvironment [47]. During maturation, sperm move along the Sertoli cell,
traversing the BTB during meiosis. It is accepted that androgen signalling contributes to the mainte-
nance of the BTB, but some studies suggest that it is essential and that the BTB is not present [48,49],
whereas others suggest that tight junctions in the SCARKO can form, but BTB formation is delayed and
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incomplete [50]. A number of genes encoding BTB proteins are down-regulated or incorrectly
expressed in SCARKO mice [49,51,52]. Because of the intimate association between barrier formation
and meiotic progression, it has been postulated that the two processes are co-dependent, but more
studies on barrier formation in other mouse models with a meiotic block is required to confirm this
hypothesis [50].

Seminiferous tubule lumen formation

Sertoli cells secrete the seminiferous tubule fluid that forms the tubule lumen and acts as a vehicle
to transport mature spermatozoa from the testis. It contains appropriate nutritional and hormonal
factors necessary to support spermatogenesis that are unavailable from the circulation due to the
presence of the BTB. The formation of the seminiferous tubule lumen depends on Sertoli cell
androgen receptor as SCARKO testes do not have functional tubal lumens [14]. When efferent ducts
are ligated, control testes increase in weight but SCARKO testes do not, implying that Sertoli cell fluid
secretion is affected when AR is ablated [50]. It has been suggested that meiosis can only be
completed after Sertoli cell fluid secretion has been established [reviewed in [53]], and also that a
lumen cannot be formed when the BTB is disrupted [54]. There appears to be a functional link be-
tween the BTB, progression of meiosis and secretion of seminiferous tubule fluid by Sertoli cells that
requires further elucidation.

Spermatid adhesion

Because of the presence of the post-meiotic block in SCARKOmice it is impossible to use this model
to pinpoint the contribution of Sertoli cell AR signalling to subsequent stages of spermatogenesis, so
systemic models of androgen or androgen receptor disruption have been used instead. ‘TE implanted’
rats and a hypomorphic AR mouse model have both been used to determine that both Sertoli-
spermatid adhesion and spermiation are dependent on androgens. A reduction in testosterone re-
sults in premature detachment of spermatids from Sertoli cells at the round to elongating transition
stage. Large numbers of round spermatids accumulate in cauda epididymis in both TE implanted [55]
and hypomorphic AR mice [34]. The round to elongating spermatid transition stage is also when
desmosome-based connections that attach spermatids to their supporting Sertoli cell are replaced by
ectoplasmic specialisations (ES), a type of adherens junction unique to the testis, promoting the theory
that ES may be disrupted in models with low testosterone signalling. However, normal ES were noted
in TE rats when testes were examined by electron microscopy [56].

Spermiation

Both the TE rat and hypomorphic mouse models also note spermiation failure characterised by
elongating spermatid retention with subsequent phagocytosis by Sertoli cells [34,57]. Release of the
sperm from the seminiferous epithelium during spermiation involves the replacement of the apical ES
by tubulobulbar complexes (TBC), structures thought to internalise disassembled apical ES junctions in
preparation for the release of spermatids [58]. TBC formation and removal of ES are not affected by
hormone withdrawal, but final disengagement of the spermatid from the Sertoli cell is affected [59].
Further investigation revealed that androgen action is necessary for the disengagement of a Sertoli cell
complex containing a6b1-integrin and phosphorylated focal adhesion kinase (FAK) [60] from laminin
a3b3g3 on spermatids [61].

Control of both of spermatid adhesion and spermiation has been shown to be through the non-
classical AR signalling pathway via action of Src kinase. Sertoli cells in culture expressing a mutated
form of AR that can't activate Src bind fewer germ cells, and explants treatedwith a Src inhibitor release
fewer sperm [62]. Three days after in vivo injection of a Src inhibitor, spermatocytes and round sper-
matids were absent but elongating spermatids remained [63]. It is interesting to note that AR action
appears to be required for both the attachment and disengagement of maturing germ cells at different
stages of spermatogenesis. Since the nature of the junctions that hold germ cells to Sertoli cells is in flux
throughout spermatogenesis, it may be that Src has different roles in each of these different junction
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complexes that are yet to be fully characterised. Although defects in spermatid adhesion and sper-
miation cannot be definitively assigned to AR signalling in the Sertoli cell (because AR signalling is
reduced in all testicular cell types in these models), it is likely that the Sertoli cell is responsible rather
than another testicular cell type due to the isolated environment in which post-meiotic germ cells
develop behind the BTB. Studying BTB remodelling, spermatid adhesion and spermiation as a coor-
dinated process rather than isolated events may help further elucidate the androgen dependent co-
ordination of spermatogenesis. There is already evidence that fragments of laminin chains produced
during spermiation induce remodelling of the BTB, thus intimately coordinating these two androgen-
dependent steps in the processes of spermatogenesis [64].

Clinically relevant mutations of androgen receptor

Mutations that result in AIS

As of October 2014, more than 1100 mutations in human AR have been identified [65]. Although
some AR mutations are associated with non-testicular phenotypes such as prostate cancer, premature
ovarian failure and Kennedy's disease, approximately 90% result in androgen insensitivity syndrome
(AIS). AIS presents as a spectrum of masculinisation disorders in XY individuals from a fully female
external phenotype present in complete androgen insensitivity syndrome (CAIS) through under-
virilised male phenotype in partial androgen insensitivity syndrome (PAIS) to normal male genitals but
infertility seen in mild androgen insensitivity syndrome (MAIS). PAIS and CAIS are discussed further in
the chapter on androgen insensitivity syndrome by Mongan et al., in this issue of Best Practice and
Research Clinical Endocrinology and Metabolism.

In contrast to more severe forms of AIS, patients with MAIS have normal genitalia and may present
with infertility as the first or only symptom. Investigation into Armutations should be prompted when
a high androgen sensitivity index (ASI, the LH to testosterone ratio) is seen as there is a positive cor-
relation between the two [66]. The location of the mutation in the AR gene and the type of the mu-
tation correlates with the resulting severity of the AIS phenotype. Most premature termination
mutations result in a truncated AR protein and complete AIS. Single base substitutions can results in all
grades of AIS, depending on what effect the substitution has on the amino acid sequence and three
dimensional structure of the protein and therefore how much of the function is retained. Exon 1 of AR
encodes the N-terminal domain which codes for more than half the AR protein, but only about 25% of
total loss of function mutations occur in this domain. While mutations in exon 1 such as premature
termination mutations or deletions generally result in CAIS due to a truncation of the protein, 22 of 39
of the single-base substitutionmutations in exon 1 that result in a form of AIS results in MAIS, implying
that missense mutations in this domain have a mild effect on AR function. Since the main role of the N-
terminal domain is as a binding site for other transactivation proteins, mutations may impair the
binding or activity of these factors and result in a protein that may have reduced efficiency in specific
cell types only. For example, in one patient, the mutation prevented interaction of the AR with a TIF2,
Sertoli-cell specific co-activator, thus impeding the genomic actions of AR only in Sertoli cells [67]. The
frequency of AR mutations in patients with oligospermia or azoospermia under investigation for
infertility has been shown to be 2e3%, a relatively small proportion of infertile men [66]. However
mutations of genes up or downstream of AR in its signalling pathwaymay also be contributing to cases
of infertility.

Association of AR trinucleotide repeats with infertility

Longer variants of a CAG polyglutamine (Q tract) and a GGN polyglycine (G tract) trinucleotide
repeat in exon 1 of AR have been suggested to have an association with infertility. AR transactivation
[68] and levels of AR protein and mRNA [69] have been shown to be reduced in vitro by increasing CAG
repeat number and longer polyglutamine tracts are associatedwith impaired sperm production inmen
[70]. Despite this, subsequent studies have been conflicting about the association [reviewed in [71]].
Further downstream of the polyglutamine tract is a polyglycine GGN tract (G tract) which varies in
length from 10 to 30 repeats. Deletion of the polyglycine tract resulted in a 30% reduction in
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transactivation potential in vitro [68]. However, there is also conflicting evidence about whether the
number of GGN repeats has an association with male infertility.

Summary

Testosterone signalling through AR is vital for complete spermatogenesis and this is mediated by
the somatic cell types of the testis that express specifically the Sertoli and PTM cells that have intimate
connections with the maturing germ cells (summarised in Fig. 1). Although the points at which
androgen signalling affects spermatogenesis via PTM cells and Sertoli cells are well characterised, the
effectors of this paracrine signalling network are not yet fully elucidated. Array studies on the SCARKO
model have produced data on gene expression changes [reviewed in [63]], but have identified sur-
prisingly few for a model with such a complex phenotype. More recently, immuno-precipitation of
actively translated mRNAs has identified novel androgen-regulated Sertoli cell transcripts [72] and a
population of microRNAs have also been shown to change testosterone deprivation model [73] and
these data will be useful as starting points for future studies. Unravelling the combination of classical
AR signalling, non-classical AR signalling and microRNA regulation in both Sertoli and PTM cells is a
significant task for future research that must now focus on downstream targets of testosterone sig-
nalling if we are to fully understand and clinically support spermatogenesis in patients, an increasing
number of whom are presenting with low sperm count [74,75].
Research agenda

� The advent of next generation sequencing will contribute to the need for personalised

genomic medicine.

� Further research into the fundamental mechanisms of AR signalling and the genes and

signalling pathways that it controls must occur in tandem with this so the molecular events

are fully characterised.

� These two research points will combine to produce tailored drug therapy for individual cases

of infertility and may also contribute to the development of novel male contraceptives.
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