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1 School of Informatics, University of Edinburgh
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Abstract. We give polynomial time algorithms for quantitative (and
qualitative) reachability analysis for Branching Markov Decision Pro-
cesses (BMDPs). Speci�cally, given a BMDP, and given an initial pop-
ulation, where the objective of the controller is to maximize (or mini-
mize) the probability of eventually reaching a population that contains
an object of a desired (or undesired) type, we give algorithms for ap-
proximating the supremum (in�mum) reachability probability, within
desired precision ε > 0, in time polynomial in the encoding size of the
BMDP and in log(1/ε). We furthermore give P-time algorithms for com-
puting ε-optimal strategies for both maximization and minimization of
reachability probabilities. We also give P-time algorithms for all associ-
ated qualitative analysis problems, namely: deciding whether the optimal
(supremum or in�mum) reachability probabilities are 0 or 1. Prior to this
paper, approximation of optimal reachability probabilities for BMDPs
was not even known to be decidable.
Our algorithms exploit the following basic fact: we show that for any
BMDP, its maximum (minimum) non-reachability probabilities are given
by the greatest �xed point (GFP) solution g∗ ∈ [0, 1]n of a correspond-
ing monotone max (min) Probabilistic Polynomial System of equations
(max/min-PPS), x = P (x), which are the Bellman optimality equations
for a BMDP with non-reachability objectives. We show how to compute
the GFP of max/min PPSs to desired precision in P-time.

1 Introduction

Multi-type branching processes (BPs) are in�nite-state purely stochastic pro-
cesses that model the stochastic evolution of a population of entities of distinct
types. The BP speci�es for every type a probability distribution for the o�-
spring of entities of this type. Starting from an initial population, the process
evolves from each generation to the next according to the probabilistic o�spring

? The full version of this paper is available at arxiv.org/abs/1502.05533. Research
partially supported by the Royal Society and by NSF Grant CCF-1320654. Alistair
Stewart's research supported by I. Diakonikolas's EPSRC grant EP/L021749/1.



rules. Branching processes are a fundamental stochastic model with applications
in many areas: physics, biology, population genetics, medicine etc. Branching
Markov Decision Processes (BMDPs) provide a natural extension of BPs where
the evolution is not purely stochastic but can be partially in�uenced or con-
trolled: a controller can take actions which a�ect the probability distribution for
the set of o�spring of the entities of each type. The goal is to design a policy for
choosing the actions in order to optimize a desired objective.

In recent years there has been great progress in resolving algorithmic prob-
lems for BMDPs with the objective of maximizing or minimizing the extinction
probability, i.e., the probability that the population eventually becomes extinct.
Polynomial time algorithms were developed for both maximizing and minimizing
BMDPs for qualitative analysis, i.e. to determine whether the optimal extinction
probability is 0, 1 or in-between [12], and for quantitative analysis, to compute op-
timal extinction probabilities to any desired precision [9]. However, key problems
for optimizing BMDP reachability probability (probability that the population
eventually includes an entity with a target type) have remained open.

Reachability objectives are very natural. Some types may be undesirable,
in which case we want to avoid them to the extent possible. Or conversely, we
may want to guide the process to reach certain desirable types. For example,
branching processes have been used recently to model cancer tumor progression
and multiple drug resistance of tumors due to multiple mutations ([1, 15]). It
could be fruitful to model the introduction of multiple drugs (each of which
controls/in�uences cells with a di�erent type of mutation) via a �controller� that
controls the o�spring of di�erent types, thus extending the current models (and
associated software tools) which are based on BPs only, to controlled models
based on BMDPs. A natural question one could ask then is to compute the
minimum probability of reaching a bad (malignant) cell type, and compute a
drug introduction strategy that achieves (approximately) minimum probability.
Doing this e�ciently (in P-time) would avoid the combinatorial explosion of
trying all possible combinations of drug therapies.

In this paper we provide the �rst polynomial time algorithms for quantitative
(and also qualitative) reachability analysis for BMDPs. Speci�cally, we provide
algorithms for ε-approximating the supremum probability, as well as the in�mum
probability, of reaching a given type (or a set of types) starting from an initial
type (or an initial population of types), up to any desired additive error ε > 0.
We also give algorithms for computing ε-optimal strategies which achieve such
ε-optimal values. The running time of these algorithms (in the standard Turing
model of computation) is polynomial in both the encoding size of the BMDP
and in log( 1

ε ). We also give P-time algorithms for the qualitative problems: we
determine whether the supremum or in�mum probability is 1 (or 0), and if so
we actually compute an optimal strategy that achieves 1 (0, respectively).

In prior work [12], we studied optimization of extinction (a.k.a. termination)
probabilities for BMDPs, and showed that optimal extinction probabilities are
captured by the least �xed point (LFP) solution q∗ ∈ [0, 1]n of a correspond-
ing system of monotone probabilistic max (min) polynomial equations called



maxPPSs (respectively minPPSs), which form the Bellman optimality equations
for termination of a BMDP. A maxPPS is a system of equations x = P (x) over
a vector x of variables, where the right-hand-side of each equation is of the form
maxj{pj(x)}, where each pj(x) is a polynomial with non-negative coe�cients
(including the constant term) that sum to at most 1 (such a polynomial is called
probabilistic). A minPPS is de�ned similarly. In [9], we introduced an algorithm,
called Generalized Newton's Method (GNM), for the solution of maxPPSs and
minPPSs, and showed that it computes the LFP of maxPPSs and minPPSs (and
hence also the optimal termination probabilities for BMDPs) to desired precision
in P-time. GNM is an iterative algorithm (like Newton's) which in each iteration
solves a suitable linear program (a di�erent one for the max and min versions).

In this paper we �rst model the reachability problem for a BMDP by an
appropriate system of equations: We show that the optimal non-reachability
probabilities for a given BMDP are captured by the greatest �xed point (GFP),
g∗ ∈ [0, 1]n of a corresponding maxPPS (or minPPS) system of Bellman equa-
tions. We then show that one can approximate the GFP solution g∗ ∈ [0, 1]n of
a maxPPS (or minPPS), x = P (x), in time polynomial in both the encoding size
|P | of the system of equations and in log(1/ε), where ε > 0 is the desired additive
error bound of the solution. (The model of computation is the standard Turing
machine model.) We also show that the qualitative analysis of determining the
coordinates of the GFP that are 0 and 1, can be done in P-time (and hence the
same holds for the optimal reachability probabilities of BMDPs).

Our algorithms for computing the GFP of minPPS and maxPPS make use of
(a variant of) Generalized Newton Method adapted for the computation of GFP,
with a key important di�erence in the preprocessing step before applying GNM.
We �rst identify and remove only the variables that have value 1 in the GFP g∗

(we do not remove the variables with value 0, unlike the LFP case). We show
that for maxPPSs, once these variables are removed, the remaining system with
GFP g∗ < 1 has a unique �xed point in [0, 1]n, hence the GFP is equal to the
LFP; applying GNM from the 0 initial vector converges quickly (in P-time, with
suitable rounding) to the GFP (by [9]). For minPPSs, even after the removal
of the variables xi with g

∗
i = 1, the remaining system may have multiple �xed

points, and we can have LFP < GFP. Nevertheless, we show that with the subtle
change in the preprocessing step, GNM, starting at the all-0 vector, remarkably
�skips over� the LFP and converges to the GFP solution g∗, in P-time.

Comparing the properties of the LFP and GFP of max/minPPS, we note
that one di�erence for the qualitative problems is that for the GFP, both the
value=0 and the value=1 question depend only on the structure of the model
and not on its probabilities (the values of the coe�cients), whereas in the LFP
case the value=1 question depends on the probabilities (see [13, 12]).

We also note some important di�erences regarding existence of optimal strate-
gies between extinction (termination) and reachability objectives for BMDPs.
We observe that, unlike optimization of termination probabilities for BMDPs,
for which there always exists a static deterministic optimal strategy ([12]), there
need not exist any optimal strategy at all for maximizing reachability probability



in a BMDP, i.e. the supremum probability may not be attainable. If the supre-
mum probability is 1 however, we show that there exists a strategy that achieves
it (albeit, not necessarily a static one). For the min reachability objective there
always exists an optimal deterministic and static strategy. In all cases, we show
that we can compute in P-time an ε-optimal static (possibly randomized) policy,
for both maximizing and minimizing reachability probability in a BMDP.

Related work: BMDPs have been previously studied in both operations
research (e.g., [14, 16]) and computer science (e.g., [12, 6, 11]). We have al-
ready mentioned the results in [12, 9] concerning the computation of the extinc-
tion probabilities of BMDPs and the computation of the LFP of max/minPPS.
BPs are closely connected to stochastic context-free grammars, 1-exit Recur-
sive Markov chains (1-RMC) [13], and the corresponding stateless probabilistic
pushdown processes, pBPA [7]; their extinction or termination probabilities are
interreducible, and they are all captured by the LFP of PPSs. The same is true
for their controlled extensions, for example the extinction probability of BMDPs
and the termination probabilities of 1-exit Recursive Markov Decision processes
(1-RMDP) [12], are both captured by the LFP of maxPPS or minPPS. A di�er-
ent type of objective of optimizing the total expected reward for 1-RMDPs (and
equivalently BMDPs) in a setting with positive rewards was studied in [11]; in
this case the optimal values are rational and can be computed exactly in P-time.

The equivalence between BMDPs and 1-RMDPs however does not carry
over to the reachability objective. The qualitative reachability problem for 1-
RMDPs (equivalently BPA MDPs) and the extension to simple 2-person games
1-RSSGs (BPA games) were studied in [4] and [3] by Brazdil et al. It is shown in
[4] that qualitative almost-sure reachability for 1-RMDPs can be decided in P-
time (both for maximizing and minimizing 1-RMDPs). However, for maximizing
reachability probability, almost-sure and limit-sure reachability are not the same:
in other words, the supremum reachability probability can be 1, but it may not
be achieved by any strategy for the 1-RMDP. By contrast, for BMDPs we show
that if the supremum reachability probability is 1, then there is a strategy that
achieves it. This is one illustration of the fact that the equivalence between
1-RMDP and BMDP does not hold for the reachability objective. The papers
[4, 3] do not address the limit-sure reachability problem, and in fact even the
decidability of limit-sure reachability for 1-RMDPs remains open.

Chen et. al. [5] studied model checking of branching processes with respect
to properties expressed by deterministic parity tree automata and showed that
the qualitative problem is in P (hence this holds in particular for reachability
probability in BPs), and that the quantitative problem of comparing the prob-
ability with a rational is in PSPACE. Although not explicitly stated there, one
can use Lemma 20 of [5] and our algorithm from [8] to show that the reachability
probabilities of BPs can be approximated in P-time. Bonnet et. al. [2] studied a
model of �probabilistic Basic Parallel Processes�, which are syntactically close to
Branching processes, except reproduction is asynchronous and the entity that re-
produces in each step is chosen randomly (or by a scheduler/controller). None of
the previous results have direct bearing on the reachability problems for BMDPs.

Due to space limits, most proofs are omitted. See the full version [10].



2 De�nitions and Background

We provide uni�ed de�nitions of multi-type Branching processes (BPs), Branch-
ing MDPs (BMDPs), and Branching Simple Stochastic Games (BSSGs), by �rst
de�ning BSSGs, and then specializing them to obtain BMDPs and BPs.

A Branching Simple Stochastic Game (BSSG), consists of a �nite set V =
{T1, . . . , Tn} of types, a �nite non-empty set Ai ⊆ Σ of actions for each type
(Σ is some �nite action alphabet), and a �nite set R(Ti, a) of probabilistic rules
associated with each pair (Ti, a), i ∈ [n], where a ∈ Ai. Each rule r ∈ R(Ti, a) is
a triple (Ti, pr, αr), which we denote by Ti

pr→ αr, where αr ⊆ Nn is a n-vector
of natural numbers that denotes a �nite multi-set over the set V , and where
pr ∈ (0, 1] is the probability of the rule r, where

∑
r∈R(Ti,a)

pr = 1 for all i ∈ [n]
and a ∈ Ai. For BSSGs, the types are partitioned into two sets: V = Vmax∪Vmin,
Vmax∩Vmin = ∅, where Vmax contains those types �belonging� to player max, and
Vmin containing those belonging to player min. A Branching Markov Decision
Process (BMDP) is a BSSG where one of the two sets Vmax or Vmin is empty.
Intuitively, a BMDP (BSSG) describes the stochastic evolution of a population
of entities of di�erent types in the presence of a controller (or two players) that
can in�uence the evolution. A multi-type Branching Process (BP), is a BSSG
where all action sets Ai are singleton sets; hence in a BP players have no choices
and thus don't exist: a BP de�nes a purely stochastic process.

A play (or trajectory) of a BSSG operates as follows: starting from an initial
population (i.e., set of entities of given types) X0 at time (generation) 0, a
sequence of populations X1, X2, . . . is generated, where Xk+1 is obtained from
Xk as follows. Player max (min) selects for each entity e in set Xk that belongs
to max (to min, respectively) an available action a ∈ Ai for the type Ti of entity
e; then for each such entity e in Xk a rule r ∈ R(Ti, a) is chosen randomly
and independently according to the rule probabilities pr, where a ∈ Ai is the
action selected for that particular entity e. Every entity is then replaced by a
set of entities with the types speci�ed by the right-hand side multiset αr of that
chosen rule r. The process is repeated as long as the current population Xk is
nonempty, and it is said to terminate (or become extinct) if there is some k ≥ 0
such that Xk = ∅. When there are n types, we can view a population Xi as a
vector Xi ∈ Nn, specifying the number of objects of each type. We say that the
process reaches a type Tj , if there is some k ≥ 0 such that (Xk)j > 0.

A player can base her decisions at each stage k on the entire past history,
and may choose di�erent actions for entities of the same type.3 The decision
may be randomized (i.e. a probability distribution on the tuples of actions for
the entities of the types controlled by the player) or deterministic (see the full
version [10] for the formal de�nitions). Let Ψ1, Ψ2 be the set of all (randomized)
strategies of the two players. We say that a strategy is static if for each type Ti

3 We remark that, for optimizing termination and reachability probability, we could
alternatively de�ne the players' strategic role in BSSGs in various other ways, includ-
ing asynchronous choice of (randomized) actions, as long as actions must eventually
be chosen for all objects, without altering any of our results.



controlled by that player the strategy always chooses the same action ai, or the
same probability distribution on actions, for all entities of type Ti in all histories.

We can consider di�erent objectives by the players. Here we consider the
reachability objective, where the goal of the two players, starting from a given
population, is to maximize/minimize the probability of reaching a population
which contains at least one entity of a given special type, Tf∗ . It will follow from
our results that a BSSG game with a reachability objective has a value.

Suppose that player 1 wants to maximize the probability of not reaching
Tf∗ and player 2 wants to minimize it. For strategies σ ∈ Ψ1, τ ∈ Ψ2, and
a given initial population µ ∈ Nn, with (µ)f∗ = 0, we denote by g∗,σ,τ (µ) the
probability that (Xd)f∗ = 0 for all d ≥ 0. The value of the non-reachability game
for the initial population µ is g∗(µ) = supσ∈Ψ1

infτ∈Ψ2 g
∗,σ,τ (µ). We will show

that determinacy holds for these games, i.e., g∗(µ) = supσ∈Ψ1
infτ∈Ψ2 g

∗,σ,τ (µ) =
infτ∈Ψ2 sup∗,σ∈Ψ1

g∗,σ,τ (µ). However, unlike the case for extinction probabilities
([12]), it does not hold that both players have optimal static strategies.

If µ has a single entity of type Ti, we will write g∗i instead of g∗(µ). Given
a BMDP (or BSSG), the goal is to compute the vector g∗ of the g∗i 's, i.e. the
vector of non-reachability values of the di�erent types. From the g∗i 's, we can
compute the value g∗(µ) for any initial population µ: g∗(µ) = Πi(g∗i )

µi .

We will associate a system of min/max probabilistic polynomial Bellman
equations, x = P (x), to each given BMDP or BSSG. A polynomial p(x) is
called probabilistic if all coe�cients are nonnegative and sum to at most 1. A
probabilistic polynomial system (PPS) is a system x = P (x) where all Pi(x) are
probabilistic polynomials. A max-min PPS is a system x = P (x) where each
Pi(x) is either: a Max-polynomial: Pi(x) = max{qi,j(x) : j ∈ {1, ...,mi}}, or a
Min-polynomial: Pi(x) = min{qi,j(x) : j ∈ {1, ...,mi}} , where each qi,j(x) is a
probabilistic polynomial, for every j ∈ {1, . . . ,mi}. We shall call such a system
a maxPPS (respectively, a minPPS) if for every i ∈ {1, . . . , n}, Pi(x) is a Max-
polynomial (respectively, a Min-polynomial). We use max/minPPS to refer to a
system of equations, x = P (x), that is either a maxPPS or a minPPS.

For computational purposes we assume that all coe�cients are rational, and
that the polynomials are given in sparse form, i.e., by listing only the nonzero
terms, with the coe�cient and the nonzero exponents of each term given in
binary. We let |P | denote the total bit encoding length of a system x = P (x)
under this representation.

Any max-minPPS, x = P (x), has a least �xed point (LFP) solution, q∗ ∈
[0, 1]n, i.e., q∗ = P (q∗) and if q = P (q) for some q ∈ [0, 1]n then q∗ ≤ q
(coordinate-wise inequality). As observed in [13, 12], q∗ may in general contain
irrational values, even in the case of pure PPSs. In this paper, we exploit the
fact that every max-minPPS, x = P (x), also has a greatest �xed point (GFP)
solution, g∗ ∈ [0, 1]n, i.e., such that g∗ = P (g∗) and if q = P (q) for some
q ∈ [0, 1]n then q ≤ g∗. Again, g∗ may contain irrational coordinates, so we in
general want to approximate its coordinates.

We can consider a max-minPPS as a game between two players that con-
trol respectively the variables xi where Pi is a max or a min polynomial. A



(possibly randomized) policy σ for a player maps each of its variables xi to
a probability distribution σ(i) over the indices {1, . . . ,mi} of the polynomi-
als in Pi. A policy σ of the max player induces a minPPS x = Pσ(x), where
(Pσ)i(x) =

∑
a∈Ai

σ(i)(a) · qi,a. Let q∗σ and g∗σ denote the LFP and GFP of the
min-PPS x = Pσ(x). We say that σ is an optimal policy for the max player for
the LFP (resp., the GFP) if q∗σ∗ = q∗ (resp., g∗σ∗ = g∗). The policy σ is ε-optimal
for the LFP (resp. GFP) , if ||q∗σ′ − q∗||∞ ≤ ε (resp., ||g∗σ′ − g∗||∞ ≤ ε). These
concepts can be de�ned similarly for the min player and its policies.

It is convenient to put max-minPPSs in the following simple form.
De�nition 1. A max-minPPS, x = P (x) in n variables is in simple normal
form (SNF) if each Pi(x), for all i ∈ [n], is in one of the following three forms:

Form L: P (x)i = ai,0+
∑n
j=1 ai,jxj, where ai,j ≥ 0 for all j, &

∑n
j=0 ai,j ≤ 1.

Form Q: P (x)i = xjxk for some j, k.
Form M: P (x)i = max{xj , xk} or P (x)i = min{xj , xk}, for some j, k.

We de�ne SNF form for max/minPPSs analogously. Every max-minPPS, x =
P (x), can be transformed in P-time (as in [8, 13]) to a suitably �equivalent�
max-minPPS in SNF form (see the full version [10] for a formal statement and
proof), where in particular both the LFP and GFP of the original system are
projections of the LFP and GFP of the transformed systems. Thus we may (and
do) assume, wlog, that all max/minPPSs are in SNF normal form.

The dependency graph of a max-minPPS x = P (x) is a directed graph with
one node for each variable xi, and contains edge (xi, xj) i� xj appears in Pi(x).

For a max/minPPS, x = P (x), with n variables (in SNF form), the lin-
earization of P (x) at a point y ∈ Rn, is a system of max/min linear functions
denoted by P y(x), which has the following form: if P (x)i has form L or M, then
P yi (x) = Pi(x), and if P (x)i has form Q, i.e., P (x)i = xjxk for some j, k, then
P yi (x) = yjxk + xjyk − yjyk. We now recall and adapt from [9] the de�nition of
distinct iteration operators for maxPPSs and minPPSs, both of which we shall
refer to with the overloaded notation I(x). These operators serve as the basis for
Generalized Newton's Method (GNM) to be applied to maxPPSs and minPPSs,
respectively. We need to slightly adapt the de�nition of operator I(x), specifying
the conditions on the GFP g∗ under which the operator is well-de�ned:

De�nition 2. For a maxPPS, x = P (x), with GFP g∗, with 0 ≤ g∗ < 1, and for
0 ≤ y ≤ g∗, de�ne the operator I(y) to be the unique optimal solution, a ∈ Rn, to
the following mathematical program: Minimize:

∑
i ai ; Subject to: P y(a) ≤ a.

For a minPPS, x = P (x), with GFP g∗, with 0 ≤ g∗ < 1, and for 0 ≤ y ≤ g∗,
de�ne the operator I(y) to be the unique optimal solution a ∈ Rn to the following
mathematical program: Maximize:

∑
i ai ; Subject to: P y(a) ≥ a.

These mathematical programs can be solved using Linear Programming. A pri-
ori, it is unclear whether the programs have a unique solution, i.e., whether the
�de�nitions� of I(x) for maxPPSs and minPPSs are well-de�ned. We show they
are. We require rounded GNM, de�ned as follows ([9]).
GNM, with rounding parameter h: Starting at x(0) := 0, For k ≥ 0, com-
pute x(k+1) from x(k) as follows: �rst calculate I(x(k)), then for every coordinate

i, set x
(k+1)
i to be the maximum multiple of 2−h which is ≤ max{0, I(x(k))i}.



3 Greatest Fixed Points capture non-reachability values

For any given BSSG, G, with a speci�ed special type Tf∗ , we will construct a
max-minPPS, x = P (x), and show that the vector g∗ of non-reachability values
for (G, Tf∗) is precisely the greatest �xed point g∗ ∈ [0, 1]n of x = P (x).

The system x = P (x) has one variable xi and one equation xi = Pi(x), for
each type Ti 6= Tf∗ . For each i 6= f∗, the min/max probabilistic polynomial Pi(x)
is constructed as follows. For all j ∈ Ai, let R′(Ti, j) := {r ∈ R(Ti, j) : (αr)f∗ =
0} denote the set of rules for type Ti and action j that generate a multiset
αr not containing any element of type Tf∗ . Pi(x) contains one probabilistic
polynomial qi,j(x) for each action j ∈ Ai, with qi,j(x) =

∑
r∈R′(Ti,j)

prx
αr .

Note that we do not include, in the sum de�ning qi,j(x), any monomial pr′x
αr′

associated with a rule r′ which generates an object of the special type Tf∗ . Then,
if type Ti belongs to player max, who aims to minimize the probability of not
reaching an object of type Tf∗ , we de�ne Pi(x) ≡ minj∈Ai

qi,j(x). Likewise, if Ti
belongs to min, whose aim is to maximize the probability of not reaching Tf∗ , we
de�ne Pi(x) ≡ maxj∈Ai

qi,j(x). Note the swapped roles of max and min in the
equations, versus the corresponding player's goal for the reachability objective.
The following theorem is analogous to one in [12] for LFPs of max-minPPSs.

Theorem 1. The value vector g∗ ∈ [0, 1]n of a BSSG is the GFP of the cor-
responding operator P (·) in [0, 1]n. Thus, g∗ = P (g∗), and ∀g′ ∈ [0, 1]n, g′ =
P (g′) implies g′ ≤ g∗. Also, for any initial population µ, the non-reachability
values satisfy g∗(µ) = supσ∈Ψ1

infτ∈Ψ2 g
∗,σ,τ (µ) = infτ∈Ψ2 supσ∈Ψ1

g∗,σ,τ (µ) =
Πi(g∗i )

µi . So, such games are determined.

A direct corollary of the proof of Theorem 1 (see the full version [10]) is that
the player maximizing non-reachability probability in a BSSG always has an
optimal deterministic static strategy. The same is not true for the player trying
to minimize this non-reachability probability (i.e. the player trying to maximize
the reachability probability). We give two examples illustrating this (see [10]
for details). The �rst example has types A, B, and C, start type A and target
type B, only A is controlled; B is purely probabilistic. The rules are: A→ AA,

A → B, B
1/2→ C, B

1/2→ ∅. There is no randomized static optimal strategy for
maximizing the reachability probability in this BMDP, although the supremum
probability is 1. We show later however that for any BMDP, if the supremum
reachability value is 1, then the player maximizing the reachability probability
has a, not necessarily static, optimal strategy that achieves value 1. The second
example shows that this is not the case if the value is strictly between 0 and 1.
Consider the BMDP with types A, B, C, and D, start type A and target type

D, with rules: A
2/3→ BB, A

1/3→ ∅, B → A, B → C, C
1/3→ D, C

2/3→ ∅. There is
no optimal strategy for maximizing the reachability probability in this BMDP
(i.e., the supremum, which is 1/2, is not achievable by any strategy), see [10].

Qualitative = 1 non-reachability analysis for BSSGs & max-minPPSs.

There are (easy) P-time algorithms to compute for a given max-minPPS the



variables that have value 1 in the GFP, and thus also for deciding, for a given
BSSG (or BMDP), whether g∗i = 1 (i.e., whether the non-reachability value is
1). The easy algorithm boils down to AND-OR graph reachability.

Proposition 1. There is a P-time algorithm that given a max-min-PPS, x =
P (x), with n variables, and with GFP g∗ ∈ [0, 1]n, and given i ∈ [n], decides
whether g∗i = 1, or g∗i < 1; Moreover, when g∗i = 1 the algorithm outputs a
deterministic policy (i.e., deterministic static strategy for the BSSG) σ, for the
max player which forces g∗i = 1, Likewise, if g∗i < 1, it outputs a deterministic
static policy τ for the min player which forces g∗i < 1.

We consider detection of g∗i = 0 for maxPPS and minPPS later; the minPPS
case in particular is substantially more complicated.

4 maxPPSs

We �rst determine and remove the variables with value 1 in the GFP, after which
we know g∗ < 1. To analyze maxPPSs, we �rst perform a thorough structural
analysis of PPSs (without max) and derive several properties that are useful in
handling maxPPSs (and minPPSs). Building on these properties, we show:

Lemma 1. For any maxPPS, x = P (x), if GFP g∗ < 1 then g∗ is the unique
�xed point of x = P (x) in [0, 1]n. So g∗ = q∗, where q∗ is the LFP of x = P (x).

Thus, applying the algorithms from [9] for LFP computation of maxPPSs, yields:

Theorem 2. Given a maxPPS, x = P (x), with GFP g∗,

1. There is a P-time algorithm that determines, for i ∈ [n], whether g∗i = 0,
and if g∗i > 0 computes a deterministic static policy that achieves this.

2. Given any integer j > 0, there is an algorithm that computes a rational
vector v with ‖g∗ − v‖∞ ≤ 2−j, and also computes a deterministic static
policy σ, such that ‖g∗ − g∗σ‖ ≤ 2−j, both in time polynomial in |P | and j.

Similar results follow for the maximization of nonreachability in BMDPs.

5 minPPSs

Theorem 3. Given a minPPS, x = P (x) with g∗ < 1. If we use GNM with
rounding parameter h = j + 2 + 4|P |, then after h iterations, we have ‖g∗ −
x(h)‖∞ ≤ 2−j. This ε-approximates g∗ in time polynomial in |P | and log( 1

ε ).

The minPPS case is much more involved. In order to prove this theorem, we
need some structural lemmas about GFPs of minPPSs, and their relationship
to static policies. There need not exist any policies σ with g∗σ = g∗, so we need
policies that can, in some sense, act as �surrogates� for it. We say that a PPS
x = P (x) is linear degenerate (LD) if every Pi(x) is a convex combination of
variables: Pi(x) ≡

∑n
j=1 pijxj where

∑
j pij = 1. A PPS is linear degenerate free

(LDF) if there is no bottom strongly connected component S of its dependency



graph, whose induced subsystem xS = PS(xS) is linear degenerate. A policy
σ for a max/minPPS, x = P (x), is called linear degenerate free (LDF) if its
associated PPS x = Pσ(x) is an LDF PPS. It turns out there is an LDF policy
σ∗ whose associated LFP is the GFP of the minPPS, and we can get an ε-optimal
policy by following σ∗ with high probability and with low probability following
some policy that can reach the target from anywhere.

Lemma 2. If a minPPS x = P (x) has g∗ < 1 then:

1. There is an LDF policy σ with g∗σ < 1,
2. g∗ ≤ q∗τ , for any LDF policy τ , and
3. There is an LDF policy σ∗ whose associated LFP, q∗σ∗ , has g

∗ = q∗σ∗ .

Note that the policy σ∗ is not necessarily optimal because even though g∗ =
q∗σ∗ , there may be an i with g∗i = (q∗σ∗)i < (g∗σ∗)i = 1. Next we show that
Generalised Newton's Method (GNM) is well-de�ned. We useNσ below to denote
the standard Newton iteration operator applied to the PPS x = Pσ(x) (see [10]).

Lemma 3. Given a minPPS, x = P (x), with GFP g∗ < 1, and given y with
0 ≤ y ≤ g∗, there exists an LDF policy σ with P y(Nσ(y)) = Nσ(y), the GNM
operator I(x) is de�ned at y, and for this policy σ, I(y) = Nσ(y).

Using this, we can show a result for GFPs similar to one in [9] for LFPs:

Lemma 4. Let x = P (x) be a minPPS with GFP g∗ < 1. For any 0 ≤ x ≤ g∗

and λ > 0, I(x) ≤ g∗, and if g∗ − x ≤ λ(1− g∗) then g∗ − I(x) ≤ λ
2 (1− g∗).

Theorem 3 follows by using Lemma 4 and Lemma 2(3.), and applying a
similar inductive argument as in ([9], Section 3.5).

P-time detection of zeros in the GFP of a minPPS: g∗i
?= 0.

We give a P-time algorithm for deciding whether the supremum reachability
probability in a BMDP equals 1, in which case we show the supremum probability
is achieved by a (memoryful but deterministic) strategy which we can compute
in P-time (thus limit-sure and almost-sure reachability are the same). Let X be
the set of all variables xi in minPPS x = P (x) in SNF form, with GFP g∗ < 1.

1. Initialize S := { xi ∈ X | Pi(0) > 0, i.e., Pi(x) contains a constant term }.
2. Repeat the following until neither are applicable:

(a) If a variable xi is of form L and Pi(x) has a term whose variable is already
in S, then add xi to S.

(b) If a variable xi is of form Q or M and both variables in Pi(x) are already
in S, then add xi to S.

3. Let F := { xi ∈ X − S | Pi(1) < 1, or Pi(x) has form Q }.
4. Repeat the following until no more variables can be added:

� If a variable xi ∈ X − S is of form L or M and Pi contains a term whose
variable is in F , then add xi to F .

5. If X = S ∪ F , then terminate and output F .
6. Otherwise set S := X − F and return to step 2.



Theorem 4. Given a minPPS x = P (x) with g∗ < 1, this algorithm terminates
and outputs precisely the variables xi with g

∗
i = 0, in time polynomial in |P |.

Theorem 5. There is a non-static deterministic optimal strategy for maximiz-
ing the probability of reaching a target type in a BMDP with probability 1, if the
supremum probability of reaching the target is 1.

We outline the non-static policy. The proof of Theorem 4 constructs a LDF
policy σ with the property that g∗i = 0 i� (q∗σ)i = 0. Let Z denote the set of
variables with g∗i = 0 = (q∗σ)i. From Proposition 1, we can also compute in
P-time an LDF policy τ with g∗τ < 1. We combine σ and τ in the following
non-static policy: We designate one member of our initial population with type
in Z to be the queen. The rest of the population are workers. We use policy
σ for the queen and τ for the workers. In following generations, if we have not
reached an object of the target type, we choose one of the children in Z of the
last generation's queen (which we show must exist) to be the new queen. Again,
all other members of the population are workers.

Computing ε-optimal strategies for minPPSs in P-time:

We �rst use the following algorithm to �nd an LDF policy σ with ‖g∗ −
q∗σ‖∞ ≤ 1

2ε. We then use that policy to construct ε-optimal policies.

1. Compute, using GNM, a 0 ≤ y ≤ g∗ with ‖g∗ − y‖∞ ≤ 2−14|P |−3ε;

2. Let k := 0, and let σ0 be a policy that has Pσ0(y) = P (y) (i.e., σ0 chooses
the action with highest probability of reaching the target according to y).

3. Compute Fσk
, the set of variables that, in the dependency graph of x =

Pσk
(x), either are or depend on a variable xi which either has form Q or else

Pi(1) < 1 or Pi(0) > 0. Let Dσk
be the complement of Fσk

.

4. if Dσk
is empty, we are done, and we output σk.

5. Find a variable4 xi of type M in Dσk
, which has a choice xj in Fσk

(which
isn't its current choice) such that |yi − yj | ≤ 2−14|P |−2ε; Let policy σk+1

choose xj at xi, & otherwise agree with σk. Let k := k+ 1; return to step 3.

Lemma 5. The above algorithm terminates in P-time and outputs an LDF pol-
icy σ with ‖Pσ(y)− y‖∞ ≤ 2−14|P |−2ε.

We de�ne a randomized static policy υ as follows. With probability 2−28|P |−4ε
we follow a (necessarily LDF) deterministic policy τ that satis�es g∗τ < 1. We can
compute such a τ in P-time by Proposition 1. With the remaining probability
1− 2−28|P |−4ε, we follow the static deterministic policy σ that is output by the
algorithm above. We can then show (see [10] for the involved proof):

Theorem 6. The output policy σ of the algorithm satis�es ‖g∗ − q∗σ‖∞ ≤ 1
2ε.

Moreover, υ satis�es ‖g∗ − g∗υ‖∞ ≤ ε, i.e., it is ε-optimal.

4 We show that such a variable xi always exists whenever we reach this step.



Theorem 7. For a BMDP with minPPS x = P (x), and minimum non-reachability
probabilities given by the GFP g∗ < 1, the following deterministic non-static non-
memoryless strategy α is also ε-optimal starting with one object of any type:

Use the policy σ output by the algorithm, until the population is at least 24|P |+1

ε
for the �rst time, thereafter use a deterministic static policy τ such that g∗τ < 1.

Corollary 1. For maximizing BMDP reachability probability, we can compute
in P-time a randomized static (or deterministic non-static) ε-optimal policy.
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