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How to Define Certain Answers∗

Leonid Libkin

University of Edinburgh

Abstract

The standard way of answering queries over incom-
plete databases is to compute certain answers, de-
fined as the intersection of query answers on all
complete databases that the incomplete database
represents. But is this universally accepted defi-
nition correct? We argue that this “one-size-fits-
all” definition can often lead to counterintuitive or
just plain wrong results, and propose an alternative
framework for defining certain answers.

We combine three previously used approaches,
based on the semantics and representation sys-
tems, on ordering incomplete databases in terms of
their informativeness, and on viewing databases as
knowledge expressed in a logical language, to come
up with a well justified and principled notion of cer-
tain answers. Using it, we show that for queries
satisfying some natural conditions (like not losing
information if a more informative input is given),
computing certain answers is surprisingly easy, and
avoids the complexity issues that have been associ-
ated with the classical definition.

1 Introduction

Handling incomplete information is one of the oldest topics in
database research. It has been tackled both from the database
perspective, resulting in classical notions of the semantics
and complexity of query evaluation [Abiteboul et al., 1991;
Imielinski and Lipski, 1984], and from the AI perspective,
providing an alternative view of the problem, see, e.g., [Re-
iter, 1982; Lenzerini, 1991]. With applications increasingly
focusing on large amounts of heterogeneous data, the prob-
lem of incomplete information is becoming much more pro-
nounced. It appears in many important application areas such
as data integration [Lenzerini, 2002], data exchange [Arenas
et al., 2014], inconsistent databases [Bertossi, 2011], proba-
bilistic data [Suciu et al., 2011], query answering using on-
tologies [Kontchakov et al., 2011], etc.

∗This paper was invited for submission to the Best Papers From
Sister Conferences Track, based on a paper that appeared in KR
2014.

To answer queries in the presence of incompleteness, one
looks for certain answers: those that do not depend on the in-
terpretation of unknown data. The concept was defined over
35 years ago [Grant, 1977; Lipski, 1979] as follows. Assume
that the semantics [[D]] of an incomplete database D is given
as the set of all complete databases (or possible worlds) D′

which D can represent. If a query Q returns a set of objects
(e.g., a set of tuples for relational databases), the certain an-
swer to Q on D is defined as

cert∩(Q,D) =
⋂

{Q(D′) | D′ ∈ [[D]]}. (1)

This definition has been universally applied to all the seman-
tics of incompleteness, and in all the application scenarios:

• in incomplete relational, or XML, or graph data, D is an
incomplete database, and [[D]] contains all databases D
obtained by interpreting the incomplete features of D,
e.g., replacing nulls with constant values [Abiteboul et
al., 1995; Barceló et al., 2010; Barceló et al., 2014];

• in data integration or data exchange, D is a set of data
sources available to us, and [[D]] contains all databases
D′ that, together with D, satisfy the conditions of a
schema mapping that guides the integration/exchange
process [Lenzerini, 2002; Arenas et al., 2014];

• in consistent query answering, D is an inconsistent
database, and [[D]] contains all the minimal repairs that
restore the integrity of the database [Bertossi, 2011];

• in query answering over ontologies,D is a database, and
[[D]] contains all D′ that expand D and satisfy all ontol-
ogy constraints [Kontchakov et al., 2011].

In all the cases, one then uses (1) to define certain answers.
The intuition is that this gives us the set of tuples indepen-
dent of the interpretation of the missing information in D.
Such a universal adoption of this basic definition has another
consequence: certain answers themselves contain no missing
information. In fact many algorithms for computing certain
answers have, as the last step, elimination of any objects (say,
rows in relational databases) with missing data.

The question that we address here is the following: Is this
standard “one-size-fits-all” definition really the right one to
use for all the semantics, and all the applications? The an-
swer, as we shall argue, is negative: the standard intersection



semantics, as well as the assumption that no missing infor-
mation is present in the answers, leads to many problems,
and crucially to producing meaningless query answers.

To argue that this is the case, and to explain some basic
ideas behind the alternative approach we propose, note that
in the database field, one tends to operate with objects (i.e.,
relations, XML documents, graph databases, etc.); in partic-
ular, queries take objects and return objects. Thus, the idea
behind certain answers is to find an object A representing the
set of objects Q([[D]]) = {Q(D′) | D′ ∈ [[D]]}. Such an
object must contain information common to all the objects in
Q([[D]]): that is, it must be no more informative than any of
the objects in Q([[D]]).

Now take a simple example: we have a relation R =
{(1, 2), (3,⊥)} in a database, where ⊥ represents a null,
or a missing value. The query Q returns R itself. Then
cert∩(Q,D)= {(1, 2)} under every reasonable semantics of
incompleteness. But is it less informative than all of Q(D′)
for D′ ∈ [[D]]? Not necessarily. Consider the very common
closed-world semantics of incompleteness. Then (1, 2) is not
less informative than any of the answersQ(D′) forD′ ∈ [[D]]
which are of the form {(1, 2), (3, n)} for different values n.
Indeed, under the closed world semantics, the answer {(1, 2)}
contains additional information that no tuple except (1, 2) is
present. Thus, returning just (1, 2) in this case makes no sense
at all. In fact, deleting a tuple, as cert∩ forces us to do, elim-
inates data, but not information, from certain answers.

The problem with (1) is even more visible under the ap-
proach, pioneered by [Reiter, 1982], that views databases as
logical theories and query answering as logical implication.
The fact R(1, 2) is certainly implied by the database. But
it is not the only fact that is implied; we can also deduce
∃x R(1, 2) ∧ R(3, x) with certainty, as well as ∃x∀y (y =
1 ∨ y = 2 ∨ y = 3 ∨ y = x) under the closed-world seman-
tics, since we cannot expand the database.

There are a few lessons we learn from this simple exam-
ple. First, certain answers can be presented as both objects
and logical formulae. Second, they depend on both logical
languages and semantics used, and third, taking intersection
and removing missing values from the answers is not always
the right way to compute them.

Our goal is to develop an alternative framework for han-
dling certain answers to queries. For that, we combine the
approaches to viewing databases as objects [Imielinski and
Lipski, 1984] and as logical theories [Reiter, 1982], with the
idea of ordering incomplete databases based on their infor-
mativeness [Buneman et al., 1991]. Specifically, the key ele-
ments of our framework are as follows.

• Certain answers can be viewed as either objects or the-
ories, depending on the semantics, and the logical for-
malism used. The former is in line with the stan-
dard database approach, while the latter defines cer-
tain knowledge about query answers over incomplete
databases.

• Both ways are based on extracting certain information
from a set of objects. Each way defines certainty as a
greatest lower bound: either of a set of objects, or the
theory of that set of objects, with the ordering meaning

“being more informative”.

• Proper query answering is based on the notion of rep-
resentation systems: these are a natural relaxation of a
rather restrictive concept of what database people call
strong representation systems. Representation systems
let one define important sets of objects by logical for-
mulae, in the spirit of [Reiter, 1982].

• Under the choice of the right semantics for both query
inputs and query answers, certain answers – as both ob-
jects and knowledge – can be found by straightforward
database query evaluation. Thus, with the correct choice
of semantics and representation system, we can use ex-
isting query evaluation techniques for obtaining correct
answers in the presence of incomplete information.

Most of the results are shown in an abstract setting, for two
reasons. First, it makes them applicable to other data models,
beyond relational databases. Second, it helps us see the es-
sential conditions that need to be imposed on queries and the
semantics of incompleteness, without being too “clouded” by
details of a particular data model. At the same time we use
two common relational semantics – open and closed world –
to translate general results into concrete examples.

The goal of this paper is to explain the main idea of the
new approach to defining certain answers. It omits some of
the technical development (in particular, proofs of results, and
additional examples) that can be found in [Libkin, 2014a] and
also in [Libkin, 2014b].

2 Incompleteness in relational databases

We recall some basic definitions and facts about incomplete
information in relational databases. Such databases are pop-
ulated by two types of values: constants (e.g., 1, 2, . . .) and
nulls. We thus assume countably infinite sets of constants,
denoted by Const, and of nulls, denoted by Null. Nulls them-
selves are denoted by ⊥, sometimes with sub- or superscripts.

A relational vocabulary (often called schema in database
literature) is a set of relation names with associated arities.
An incomplete relational instance D assigns to each k-ary
relation symbol R from the vocabulary a k-ary relation RD

over Const ∪ Null, i.e., a finite subset of (Const ∪ Null)k.
If the instance D is clear from the context, we may write R
instead of RD. Sets of constants and nulls that occur in D are
denoted by Const(D) and Null(D). The active domain of D
is adom(D) = Const(D)∪Null(D). A complete database D
has no nulls, i.e., adom(D) ⊆ Const.

A valuation of nulls on an incomplete database D is a map
v : Null(D) → Const assigning a constant value to each null.
It naturally extends to databases, so we can write v(D) as
well. The standard semantics of incompleteness in relational
databases are defined in terms of valuations, see [Abiteboul et
al., 1995; Imielinski and Lipski, 1984]. These are the closed
world assumption, or CWA semantics:

[[D]]
CWA

= {v(D) | v is a valuation},

and the open-world assumption, or OWA semantics:

[[D]]
OWA

=

{

D′

∣

∣

∣

∣

D′ is complete and
v(D) ⊆ D′ for some valuation v

}

.



That is, under CWA, we simply instantiate nulls by constants;
under OWA, we can also add arbitrary tuples.

Given an incomplete database D, a semantics of incom-
pleteness [[ ]], and a query Q, the standard notion of certain
answers under [[ ]] is defined by (1), i.e., cert∩(Q,D) =
⋂

{Q(R) | R ∈ [[D]]}.
Most of database query languages are based on first-order

predicate logic, or FO, whose formulae are built from rela-
tional atoms R(x̄), where R is a vocabulary symbol, equa-
tional atoms x = y, and are closed under Boolean connec-
tives ∧,∨,¬ and quantifiers ∃ and ∀.

The fragment that disallows ¬ and ∀ (i.e., has ∧,∨, ∃) is
referred to as existential positive formulae, denoted by ∃Pos.
In terms of their expressiveness, they correspond precisely to
unions of conjunctive queries (although ∃Pos formulae can
be more compact).

The fragment without negation (i.e., the ∧,∨, ∃, ∀ frag-
ment) is referred to as positive formulae, denoted by Pos.

Finding certain answers to FO queries ranges from CONP-
complete for CWA to undecidable under OWA, see [Abiteboul
et al., 1991]. However, sometimes cert∩(Q,D) can be ob-
tained by almost straightforward query evaluation, namely
by evaluating Q(D) and then throwing away the tuples with
nulls. We shall denote this by QC(D). For instance, if the
query Q just returns a relation R, and RD = {(1, 2), (1,⊥)},
then both QC(D) and cert∩(Q,D) are {(1, 2)}. In fact,
cert∩(Q,D) and QC(D) coincide for ∃Pos queries under
both OWA and CWA [Imielinski and Lipski, 1984].

3 Objects and knowledge

The key idea is to decouple objects and knowledge about
them, expressed as their description in terms of some logi-
cal formalism. We want to do this at the highest level of ab-
straction, so that the framework would not be limited to just
relational databases, but instead would be applicable across
multiple data models. For this, we use a very minimalist
setting inspired by abstract model theory [Barwise and Fe-
ferman, 1985] or information systems [Gunter, 1992], with
some specific features tailored to handle incompleteness, as
also used in [Libkin, 2011; Gheerbrant et al., 2014].

We have two basic entities: (database) objects, and formu-
lae they satisfy. Objects themselves are either incomplete or
complete, and each object has its semantics defined as the set
of more informative complete objects.

To formalize this, we define a database pre-domain as a
triple D

◦ = 〈D, C, [[ ]]〉, where

• D is a set of database objects (e.g., relational databases
over the same schema),

• C is the set of complete objects (e.g., databases without
nulls);

• [[ ]] is a function from D to subsets of C; the set [[x]] ⊆ C
is the semantics of an object x.

We next introduce information ordering:

x � y ⇔ [[y]] ⊆ [[x]].

The idea is simple: the more we know about an object, the
fewer objects it can denote. For instance, if we know nothing

about it, it can denote any object whatsoever; getting addi-
tional information reduces the set of possible worlds.

We assume that every pre-domain satisfies two conditions,
which in fact are immediate in the standard semantics of in-
completeness:

• a complete object denotes at least itself: if c ∈ C, then
c ∈ [[c]];

• if c is a possible world for x, then we know at least as
much about c as we know about x: if c ∈ [[x]], then
x � c.

Next, we add knowledge about objects. A pre-representation
system is a triple RS

◦ = 〈D◦,F, |=〉, where

• D
◦ is a pre-domain;

• F is a set of formulae, and

• |= is the satisfaction relation, i.e., a subset of D×F such
that x � y and x |= ϕ imply y |= ϕ.

The intuition is that formulae in F express knowledge we
possess about objects in D, and if we know something about
an object, we also know it about a more informative object.

We shall write Th(x) for the theory of x, i.e., {ϕ | x |= ϕ}
and Mod(ϕ) for models of ϕ, i.e., {x | x |= ϕ}. These are
extended to sets in the usual way: Th(X) =

⋂

x∈X Th(x)
and Mod(Φ) =

⋂

ϕ∈Φ Mod(ϕ).

3.1 Certain information

Computing certain answers boils down to finding certain in-
formation contained in a set of objects; in the case of query
answering, in Q([[D]]) = {Q(D′) | D′ ∈ [[D]]}. Thus, we
need to know how to define certain information contained in
a set of objects X ⊆ D. The usual database approach is to
represent this information as another object, but of course we
argue that it can be viewed as both object and knowledge.

Certain information as object If we want to represent what
we know about X with certainty by an object y, this object
must be less informative than any object x ∈ X (as it reflects
knowledge contained in all other objects in X as well). If we
have two such objects y and y′, and y′ � y, then of course
we prefer y as giving us more information.

Thus, the object that we seek must be less informative than
all objects in X , and at the same time the most informa-
tive among such objects. This is precisely the greatest lower
bound of X , with respect to � (or

∧

X , using the standard
order-theoretic notation). If it is exists, we denote it by ✷OX .
This is illustrated by the picture below.

X

✷O(X )



Certain information as knowledge We want to describe X
by a single formula summarizing what we know about it with
certainty. If X = Mod(ϕ), then ϕ is such a formula, but
generally, X need not be of the form Mod(ϕ).

So we go for the next best thing: we want a formula that
is equivalent to the theory of X . Indeed, Th(X) is what we
know about X with certainty, and we want to capture this by
a formula. Two sets of formulae are equivalent when they
have the same models, so a formula equivalent to the theory
of X is a formula ϕ such that Mod(ϕ) = Mod(Th(X)). If it
exists, we denote it by ✷KX .

Thus, certain information contained in X is described as:

• At the object level as ✷OX =
∧

X; and

• At the knowledge level as a formula ✷KX so that
Mod(✷KX) = Mod(Th(X)).

Note that neither ✷OX nor ✷KX need exist in general (in
fact it is easy to come up with examples of preorders with-
out greatest lower bounds). Even if they exist, they need
not be unique. This is not an issue, however, as they are
equivalent. Since � is a preorder, the greatest lower bound
is, technically speaking, a set of objects, but every two such
objects y, y′ are equivalent: y � y′ and y′ � y, and thus
[[y]] = [[y′]]. If we have multiple formulae ϕ for which
Mod(ϕ) = Mod(Th(X)), then every two such formulae
ϕ,ϕ′ are equivalent: Mod(ϕ) = Mod(ϕ′). So we shall write
y = ✷OX or ϕ = ✷KX , meaning y or ϕ is one of the equiv-
alent objects or formulae.

Example Consider the example from the introduction, of a
database D containing (1, 2) and (3,⊥) in a relation R. if
X = [[D]]

OWA
, then ✷OX is just D itself, as expected. If

F = ∃Pos, then ✷KX = ∃z R(1, 2)∧R(3, z). If F is the set
of ground facts and their conjunctions, then ✷KX = R(1, 2).

4 Representation systems

To make pre-representation systems capture realistic scenar-
ios of dealing with incomplete information, we must impose
conditions saying, essentially, that the sets of objects and for-
mulae are not too “thin”: there are enough complete objects,
and there are formulae defining some basic sets of objects.

There are enough objects To motivate this condition, con-
sider a database D with a single tuple (⊥,⊥). In its seman-
tics, we are allowed to replace this tuple by an arbitrary tuple
(c, c) with c ∈ Const. Moreover, the resulting database is
isomorphic to the original one: for instance, they agree on
logical formulae not mentioning constants. Even if we have a
logical formula mentioning constants from a finite set C, we
can replace ⊥ by constants outside this set C: this is what we
mean by the existence of enough complete objects. Then D
and the result of the replacement will still agree on formulae
that only refer to constants in C.

To formalize this, define a database domain D as a tuple
〈D, C, [[ ]], Iso〉 where 〈D, C, [[ ]]〉 is a pre-domain, and Iso is a
family {≈j}j∈J of equivalence relations on D so that:

• The set [[x]]
≈j

= {c ∈ [[x]] | x ≈j c} is nonempty for

each x ∈ D and j ∈ J ;

• for every j, j′ ∈ J , there is k ∈ J so that x ≈k y implies
x ≈j y and x ≈j′ y.

For relational databases, j ∈ J enumerate finite sets of
constants Cj , and D ≈j D

′ means that there is an isomor-
phism between D and D′ preserving constants in Cj . The
first condition says that we can replace nulls by constants out-
sideCj (since Const−Cj is infinite), and the second one says
that Ck = Cj ∪ Cj′ preserves constants in both Cj and Cj′ .

There are enough formulae We assume that formulae are
closed under conjunction. We also assume that [[x]] can be
described by a formula. That is, for each object x, there is a
formula δx in F, such that Mod(δx) = ↑x (this is equivalent
to Mod(δx) ∩ C = [[x]]).

When all these conditions are satisfied, we say that the
triple RS = 〈D,F, |=〉 is a representation system if for each
ϕ ∈ F, there is j ∈ J so that x |= ϕ ⇔ y |= ϕ whenever
x ≈j y. This is the analog of the condition that each formula
can only refer to finitely many constants, and thus cannot dis-
tinguish objects equivalent with respect to ≈j for some j.

Representation systems for relational databases We give
them for the OWA and CWA semantics. Let D(σ) be the set of
all relational databases of vocabulary σ over Const∪Null, and
C(σ) the set of all such databases without nulls. The database
domains will be of the form D∗(σ) = 〈D(σ), C(σ), [[ ]]

∗
, Iso〉,

where ∗ is OWA or CWA. The equivalence relations Iso are as
explained earlier: they are given by isomorphisms that are the
identity on finite sets of constants.

To describe formulae expressing knowledge, we need the
notation PosDiag(D) for the positive diagram of D in the vo-
cabulary including constants for each a ∈ Const, where with
each null ⊥i in D we associate a variable xi. For instance, if
D contains a relation R with tuples (1, 2), (2,⊥1), (⊥1,⊥2),
then PosDiag(D) = R(1, 2) ∧R(2, x1) ∧R(x1, x2).

Then the OWA representation system is RSOWA(σ) =
〈DOWA(σ), ∃Pos, |=〉. For each D with Null(D) =
{⊥1, . . . ,⊥n}, we have δD = ∃x1, . . . , xn PosDiag(D).

For CWA, we need an extension of the class of positive for-
mulae, introduced by [Compton, 1983]. The class, denoted

by Pos
∀G

, extends Pos with a special type of guarded for-
mulae. It is defined as the closure of positive atoms of the
form R(x̄) and x = y under ∧,∨, ∀, ∃ and the following

rule: if ϕ(x̄, ȳ) is a Pos
∀G

formula in which all variables in
x̄ are distinct, and R is a relation symbol of the arity |x̄|, then

∀x̄ (R(x̄) → ϕ(x̄, ȳ)) is a Pos
∀G

formula.
With this, the CWA representation system is defined as

RSOWA(σ) = 〈DCWA(σ),Pos
∀G
, |=〉. For each D with

Null(D) = {⊥1, . . . ,⊥n}, the formula δD is

∃x1, . . . , xn

(

PosDiag(D)∧
∧

R∈σ

∀ȳ
(

R(ȳ) →
∨

t̄∈RD

ȳ = t̄
)

)

.

Properties of representation systems We now list some
of the basic properties of representation systems. For every
object x, we have

• ✷O[[x]] = x;



• ✷K[[x]] = δx;

• Mod(δx) = Mod(Th(x)).

Let ≈=
⋃

j∈J ≈j , and let [[x]]
≈

= {c ∈ [[x]] | c ≈ x}. In

case of relational databases, D ≈ D′ if D,D′ are isomorphic
objects; for instance, D = {(⊥,⊥)} and D′ = {(1, 1)} are
isomorphic. Then Th([[x]]) = Th([[x]]

≈
) = Th(x) for every

object x.

✷K✷K✷K as a greatest lower bound There is a well-known pre-
order on sets of formulae, namely implication: Φ ⊢ Ψ iff
Mod(Φ) ⊆ Mod(Ψ). Thus, for any set of formulae Φ, we
can look at its greatest lower bound in this preorder, i.e., a
formula ϕ so that ϕ ⊢ Φ, and whenever ψ ⊢ Φ, we have
ψ ⊢ ϕ. If such a formula exists, it is denoted by

∧

Φ. Then:

Theorem 1 In a representation system, ✷KX =
∧

Th(X)
for every set X of objects.

5 Defining certain answers to queries

Now we move to answering queries. A query is a mapping Q
that takes an object and returns another object. For instance,
relational queries take relational databases and return rela-
tional databases (most commonly, single relations: queries in
FO, or in commercial languages such as SQL, are such).

Thus, for two database domains D = 〈D, C, [[ ]], Iso〉 and

D
′ = 〈D′, C′, [[ ]]

′
, Iso′〉, a query Q : D → D

′ is a mapping
associating with an object x ∈ D its answer, Q(x) ∈ D′.

The key requirement to queries is the following:

if we know more about the input, then we know
more about the output.

By “knowing more”, we mean the information orderings �
and �′, given by the semantics. Indeed, if we have x � y
and we want to find Q(y), then as a start, we could have used
a less informative object x to compute Q(x). Thus, Q(y)
should give us at least the information contained in Q(x). If

it does not, it simply means that the semantics [[ ]]
′

of query
answers was chosen incorrectly.

Formally, preserving informativeness means that if x � y
then Q(x) �′ Q(y). That is, the query Q must be mono-
tone with respect to the information orderings given by the
semantics of query inputs and query answers. Note that using
blindly some fixed semantics for query results – as in fact is
often done – does not necessarily make sense.

Certain answers to Q on an object x represent certain in-
formation in the set Q([[x]]) = {Q(c) | c ∈ [[x]]}. We have
seen that there are two ways to define it: as object, and as
knowledge. For the letter, we need to have a representation
system RS = 〈D′,F, |=〉 over the target domain D

′. If we
have it, we can either extract the most general object repre-
senting Q([[x]]), or the most general knowledge representing
Th(Q([[x]])). That is, we have two certain answers notions,
as objects and as knowledge:

• As objects: certO(Q, x) = ✷OQ([[x]]);

• As knowledge: certK(Q, x) = ✷KQ([[x]]).

Comparing with relational theory Let us now review the
standard approach to query answering in relational databases.

Ideally, one tries to find a query answer A so that [[A]]
′
=

Q([[D]]). This is often impossible, in fact even for very simple
queries [Imielinski and Lipski, 1984]. So the next attempt is
to find a formula ϕQ,D in some logical formalism so that

Mod(ϕQ,D) = Q([[D]]) (2)

When this happens, one refers to such a logical formalism as
a strong representation system (see [Abiteboul et al., 1995;
Imielinski and Lipski, 1984]), which explains why we used
the name ‘representation system’.

The problem is that the structure of Q([[D]]) may be too
“irregular” to be described by a nice formalism. One known
example for FO queries under CWA involves very ad hoc for-
mulae that do not correspond to nice syntactic subclasses of
FO, see [Imielinski and Lipski, 1984]. If the setQ([[D]]) does
not happen to be of the form Mod(ϕ) for some nice formula
ϕ, the approach adopted in the database literature is to con-
sider the object

⋂

Q([[D]]) as the answer. This is completely
ad hoc, however.

It seems much better to ask then, in place of (2), for an an-
swer ϕQ,D that is equivalent to the theory of Q([[D]]), rather
than defining Q([[D]]) precisely. That is, we replace (2) with

Mod(ϕQ,D) = Mod(Th(Q([[D]]))) (3)

which is, of course, our definition of certain answers ex-
pressed as knowledge.

It is easy to see that (2) implies (3). Thus, the notion of
certain answers as knowledge in a representation system is a
weakening of the notion of the strong representation system,
but much less ad hoc that replacing Q([[D]]) with

⋂

Q([[D]]).

Example: when representation system makes a differ-
ence We can easily construct examples of relational queries
Q and representation systems so that (2) fails while (3) is
easily achieved. Suppose we have a schema with two rela-
tions R,S (for simplicity, just sets), and the query R − S
(in FO, R(x) ∧ ¬S(x)), and assume closed-world seman-
tics. Consider D in which R = {1, 2} and S = {⊥}.
Then Q([[D]]

CWA
) = {{1}, {2}, {1, 2}}. Suppose the rep-

resentation system is 〈D(σ), ∃Pos, |=〉. Then there is no
α with Mod(α) = Q([[D]]

CWA
) but there is one such that

Mod(α) = Mod(Th(Q([[D]]
CWA

))); in fact, the obvious an-
swer α = A(1) ∨A(2) does the job.

6 Certain answers: correctness for free

The intersection-based definition of certain answers (1) led to
many complexity issues: lower bounds such as CONP-hard
or even undecidable are common for certain answer compu-
tation. In the ideal world, we would like to apply a given
query Q itself and be sure its result is correct. That is, we
would like to have

certO(Q, x) = Q(x). (4)

If (4) holds, it is natural to expect that certK(Q, x) = δQ(x).
While for actual query answering (4) is the important condi-
tion, it turns out that we need certK(Q, x) = δQ(x) to obtain
it.



When certO(Q, x) = Q(x) holds for every x, we say that
Q provides certainty guarantees. Essentially, the basic query
evaluation computes certain answers.

To ensure this, we need an additional condition of generic-
ity, standard in the database context [Abiteboul et al., 1995].
In our abstract framework it is expressed as follows: for ev-
ery j, there is k so that x ≈k y implies Q(x) ≈′

j Q(y).
Essentially, this condition says that queries applied to iso-
morphic objects return isomorphic objects. For instance, for
FO queries that do not refer to constants, it is usually formu-
lated as D ≈ D′ ⇒ Q(D) ≈ Q(D′). We use a slightly
more refined version that, in the case of logically expressed
queries, accounts for constants by using multiple equivalence
relations. All queries expressed in FO and other logics over
the vocabulary of relation symbols and constants are generic
in the standard database domains for relational databases.

Theorem 2 Let Q : D → D
′ be a generic query that pre-

serves informativeness, and let RS = 〈D′,F, |=〉 be a repre-
sentation system over the domain of query answers. Then Q
provides certainty guarantees.

Discussion The result says that the new disciplined defini-
tion of certain answers provides correctness guarantees for all
queries that are generic and preserve informativeness, as long
as we have a representation system for query answers. Let us
now discuss the importance of these requirements, and how
much do they actually impose on the setting.

The existence of a representation system This condition is
essential: one can easily find examples where, in the ab-
sence of a representation system, correctness guarantees do
not hold. On the positive side, for common semantics (e.g.,
OWA and CWA), representation systems can easily be con-
structed.

Genericity This is an almost “free” condition: genericity
applies to most of the logical formalisms used for query-
ing databases. Among exceptions are formalisms capable
of referring to infinitely many constants (e.g., those oc-
curring in data exchange, where it is sometimes necessary
to distinguish constants from nulls [Arenas et al., 2009;
Fagin, 2007]). But then another condition can be used in
place of genericity, namely a substitution property saying that
for every formula ϕ over query answers and every query Q,
there is a formula ϕQ over query inputs so that x |= ϕQ iff
Q(x) |= ϕ. Other exceptions arise in formalisms that treat
comparisons of nulls differently from comparisons of con-
stants, e.g., those modeling SQL’s nulls [Libkin, 2015]. But
then it can be shown that Q(x) �′ certO(Q, x); in other
words, Q(x) provides an efficiently computable approxima-
tion of certain answers.

Preserving informativeness This is the crucial condition.
However natural it is, it was ignored by most of the work
on incompleteness which also ignored the task of choosing
the right semantics of query answers. In fact most often one
just blindly uses some fixed semantics for query inputs and
outputs, which is not justified at all. So to get correctness
“for free”, one has to work after all, and the important work
is to understand the right semantics of query answers which
ensures the basic principle of preserving informativeness.

When the output semantics is fixed The case considered
most often in the database literature is when one assumes the
OWA semantics for query answers, since it corresponds to the
ordering false � true for Boolean values. More generally,
the orderings �OWA and �CWA, i.e., the information orderings
given by [[ ]]

OWA
and [[ ]]

CWA
are defined as follows: D �OWA D

′

iff there is a homomorphism h : D → D′ that preserves
constants, and D �CWA D′ iff there is a homomorphism h :
D → D′ that preserves constants such that D′ = h(D), see
[Gheerbrant et al., 2014]. Since false is usually modeled as
the empty set and true as the set containing the empty tuple,
we do have false �OWA true.

The proposition below provides correctness guarantees for
classes of FO queries over databases interpreted under OWA

and CWA, assuming the �OWA ordering on query answers.

Proposition 1 Let query answers be ordered by �OWA. Then
every ∃Pos query is monotone under the �OWA ordering on

inputs, and every Pos
∀G

query is monotone under �CWA.

Consequently, certO(Q,D) = Q(D) holds for every ∃Pos

query under [[ ]]
OWA

and for every Pos
∀G

query under [[ ]]
CWA

.

7 Conclusions

We have argued that the standard definition of certain answers
in the database literature has a number of deficiencies, and
proposed a new approach to handling queries over incomplete
databases. Its key features are as follows.

• Certain answers can be defined at two different levels:
as (database) objects, or as knowledge we possess about
query answers with certainty.

• The proposed framework, that applies to multiple data
models, defines both types of certain answers as great-
est lower bounds in orderings that capture the level of
informativeness. It also leads to a proper definition of
representation systems for query answers.

• If the semantics of query answering is chosen properly,
then finding certain answers is reduced to query evalu-
ation, at both object and knowledge level. This tells us
that with the right choice of semantics, no new tools are
needed for computing query answers and one can rely
on the standard database query evaluation engine.

Future work. There are several directions to consider.
Commercial languages such as SQL use multi-valued logic
for reasoning. Evaluation algorithms of similar nature have
been explored in the knowledgebase literature [Levesque,
1998], and in fact recently similar procedures have been de-
signed to address the shortcomings of SQL’s three-valued
logic [Libkin, 2015]. We would like to pursue this direction,
also perhaps in connection with finding very efficient approx-
imations for certain answers, as suggested by [Reiter, 1986]

and explored for basic features of SQL in [Libkin, 2015].

We also want to apply the framework to non-relational
models, particularly semi-structured and XML, for which in-
completeness has been studied extensively [Abiteboul et al.,
2006; Barceló et al., 2010; Calvanese et al., 1998; David et



al., 2010], and beyond, to graph data, where only prelimi-
nary results have been established so far [Barceló et al., 2014;
Nikolaou and Koubarakis, 2013].
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