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Effective Topology from Spacetime Tomography
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Imperial College, Theoretical Physics Group
Blackett Laboratory, London SW7 2BZ, UK
on leave for: Raman Research Institute, Theoretical Physics Group
C. V. Raman Avenue, Bangalore - 560 080, India

E-mail: petros.wallden@imperial.ac.uk

Abstract.
We recover the effective topology of spacetime using the notion of record from the

decoherent histories approach to Quantum Theory. From a series of (gedanken) experiments,
we obtain the set of possible events, grouped into sub-sets that corresponds to histories, but
with no other information such as (causal) order or any notion of proximity. This corresponds
to tomography of the “effective” spacetime, that is done in an operational way. Making
certain assumptions about these records, and using the existence of upper bound in the speed
of transfer of matter and information, we recover the full partial (causal) order up to certain
ambiguities. The partially ordered set of events corresponds to an “effective” causal set which
is a discretized version of spacetime with the causal relation as defining feature. We conclude
with a derivation of the topology of this effective discretized spacetime.

1. Motivation
Allowing the matter to be quantum, implies that we cannot have a direct (operational) way
to speak about the metric or the topology of spacetime. We can do this approximately
due to the phenomenon of decoherence, but this arises only in a sufficiently coarse-grained
description. We may therefore claim that the only spacetime we may speak of is the “effective-
spacetime” corresponding to the discretized spacetime that has as points equivalence classes
of operationally indistinguishable “real” points, i.e., we do not prescribe ontological status to
anything that is finer grained than the scale of decoherence. We would like to use a set of
data (records) in one (final) time to reconstruct an “arena” for a particular subsystem that
we are interested in. This “arena” is the effective spacetime. The use of “final-time” records
has a twofold motivation. First, in this way we are truly operational, since we can make
statements about, say, the early universe, where clearly no observers were around. The second
reason, relates with the “frozen-time” picture (e.g., Ref.[1]). According to this, time is not
something fundamental and arises only as a better way of organizing some “present” data.
This philosophical belief is reinforced by the problem of time in quantum gravity where time
disappear from any observable (e.g., Ref.[2]).
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In quantum theory, there is already a framework to speak of records, in the context of the
decoherent histories approach. This is an alternative formulation of Quantum Theory developed
by Griffiths [3], Omnès [4], and Gell-Mann and Hartle [5], design to deal with closed systems,
and having as fundamental ingredients whole histories of the system, rather than single time
propositions. For all the cases that we can assign probabilities to histories of closed systems,
it can be shown that there exist a set of records in the final time, perfectly correlated with
the corresponding history [6]. In our operational approach we will use exactly this property as
starting point and do the inverse, i.e., deduce the topology of the underlying spacetime given
a set of records and certain assumptions about them [7, 8].

2. This paper
This contribution is largely based on Refs.[7, 8] done in collaboration with Raptis and Zapatrin.
We will first state what assumption we will make about the records that we have, in Section
3. Then in section 4 we will revise some properties of the causal sets, that will be the effective
spacetime that we will recover in Section 5. Finally we will derive the topology of the causal
set in Section 6.

3. Records and Sub-Records
The records that we will get, are physically obtained, i.e.,measured in Copenhagen sense. In
particular, we need to make certain assumptions about those records, in order to reconstruct the
effective spacetime. We assume that the records (Ci ∈ C) capture the spatiotemporal properties
of our system, i.e., correspond to (coarse-grained) trajectories. Furthermore, we assume that
each of those records consists of sub-records (p ∈ Ci) that correspond to each (coarse-grained)
event and the union of all these points is the totality of events (P) in our effective spacetime.
An important thing to note, is that the order the events of one trajectory is unknown in our
set up. This bears a resemblance with a photograph of a trajectory (“frozen-picture”), where
we do not know which way the particle crossed first1. The construction below will recover this
order. Since our effective spacetime is discrete, it is natural to consider it as an effective causal
set.

4. Causal Sets
Causal set is a version of discretized spacetime. It has been proposed as a more fundamental
entity than the continuous spacetime manifold [9] and for that reason has been used as the basis
for a quantum theory of gravity by its advocators. Here we are not going to make any statement
about the ontology of this spacetime, and we will only use the fact that is a discrete version of
spacetime since the effective spacetime we derive from our records is discrete. Another reason
for this choice, is that we will claim that all the necessary information for deriving the effective
spacetime is encoded in the causal relations.

A causal set, abbreviated as causet is a locally finite, partially ordered set (POSET). The
points of the poset physically correspond to events and the order relation is the causal relation
between the events. The reason it is believed that this corresponds to discrete version of
spacetime stems from the following property that continuous Lorentzian manifolds have [10].
If we consider two different Lorentzian manifolds with a bijection that preserve the causal
order, then we can recover 9 out of the 10 degrees of freedom of the metric. The remaining
factor is a scale factor and the claim is that in a locally finite poset we can recover this factor
by counting. Let us now proceed with some definitions.

1 In the photograph only the overall direction is unknown, while in our case the events are completely unordered.
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Partially ordered sets. A (weak) partially ordered set, is a set P endowed with a relation ¹
having the following properties:

• Transitivity: ∀ p, q, r ∈ P p ¹ q, q ¹ r ⇒ p ¹ r.
• Reflexivity: ∀ p ∈ P p ¹ p.
• Antisymmetry: ∀ p, q ∈ P p ¹ q, q ¹ p ⇒ p = q.

We define future J+(p) and past J−(p) cones for each of the elements of the poset (p ∈ P):

J+(p) = {q ∈ P | p ¹ q}

J−(p) = {r ∈ P | r ¹ p}
(1)

A poset is defined to be locally finite if

|J−(p) ∩ J+(q)| < ∞, ∀ p, q ∈ P (2)

where |A| denotes set-cardinality.
We will now review certain properties of locally finite posets (i.e., causets). A subset C ⊂ P

is called a chain (also known as a linearly ordered subset) if any pair of its points is ordered:

∀ p, q ∈ C, p ¹ q or q ¹ p (3)

In the sequel, we shall consider maximal (that is, inextensible) chains in P and we will denote
the set of all maximal chains by C = { maximal chains of P }.

In a similar way, we define an antichain to be a subset S of P such that no pair of its
points is ordered:

6 ∃ p, q ∈ S | p ¹ q (4)

We shall need maximal antichains in P, and denote the appropriate set by S =
{ maximal antichains of P }. An element of a P is said to be minimal if J−(p) = {p}, and
maximal when J+(p) = {p}. The notions of future and past cones can be extended to subsets
of P. For A ⊆ P

J+(A) = {q ∈ P | ∃ a ∈ A, a ¹ q}

J−(A) = {r ∈ P | ∃ a ∈ A, r ¹ a}
(5)

In terms of posets, the chains stand for causal curves, while the antichains are reticular
analogues spatial (hyper)surfaces. A foliation F is a partition of a causet P into spatial
surfaces (i.e., antichains) which respects the partial order ¹ in P.

A linear foliation, is a foliation that all the antichains are linearly (as opposed to partially)
ordered. It can be shown that any past finite causet (and this is the case we consider) admits
a linear foliation. The following construction proves this statement:

• A0 := {minimal elements of P}
• A1 := {minimal elements of P \A0}

• Ak :=

{
minimal elements of P \

(
k−1⋃
j=0

Aj

)}

We will later use the existence of this “preferred” foliation. The rôle of spacelike surfaces in
our approach is played by antichains in P that belong to F .
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5. Reconstruction of Casual Set
Let us remember what we have from our measurements. We have a set of records that
correspond to coarse grained trajectories, i.e., in the causal set vocabulary, the set of possible
chains Ci ∈ C. In particular in each of these records, we have assumed that we have sub-records
corresponding to the effective events. By considering the union of the sub-records of all the
records we get the set P of all the possible events. To summarize, we have the set of events
P and a cover of this set by (unordered) subsets Ci. In this section we will recover the order
of the events in each chain, in order to reconstruct the effective causal set. While we do not
know the order between any two points, we do know whether they are causally related (exists
a chain that they both belong) or not. Using this we can define an antichain Si the following
way:

Si ⊂ P | ∀ p, q ∈ Si @ Ci ∈ C | p and q ∈ Ci (6)

In order to recover the full partial order, we give the following algorithm:

Step 1. Pick a maximal collection of points S0 ∈ P such that no pair of points p, q ∈ S0 belong
to a chain Ci, i.e., a maximal antichain in the set P. This S0 will be the set of minimal
elements. Assign i := 1.

Step 2. Consider the set P i = P \ Si−1.
Step 3. Pick a maximal collection of points Si ∈ P i such that no pair of points p, q ∈ Si belongs

to a chain Ci, i.e., a maximal antichain in the set P i. This Si will be the ith layer, if it
exists, and is assigned i := i + 1. Then go to Step 2. If such Si does not exist, the branch
fails and one should restart from Step 1.

Step 4. Check for non-appearance of extra chains. If it turns out that the foliation involved gives
rise to a new chain, the branch is rejected. Then return to Step 1, restarting with a
different maximal antichain. To see an example of the appearance of an “new chain”, see
below.

Step 5. If the set P is exhausted and all the causal chains can be reproduced without emergence
of a new one (see an example below), then the collection S = {Si} forms the foliation of
P, the latter regarded as a causet proper.

This algorithm is guaranteed to reach to an end, since all past finite causets can be linearly
foliated. What we have effectively done in the foregoing is the following. We picked a partition
of P into antichains. To define the antichains we used the set of causal chains—histories. We
then chose randomly an order on these antichains. After that, we checked that our construction
did not produce any new histories (extra chains, in other words). If it did, we restarted the
procedure.

The way to derive the chains from our construction (in order to see if any new chains appear)
is the following. We pick a point in S0 and see which points are causally connected with it in
S1. Then, we continue with the point we chose from S1 and do the same with S2. Note that
had we chosen the correct foliation we would not have any new chains, due to the transitivity
of causal relations.

An example of “new” chain. Here we show how new chains, not existing in the initial set of
chains C, may emerge during the reconstruction procedure described above in step 4. Consider
the poset P
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and try to restore the order starting from {5, 6, 7, 8} as the set of minimal elements. So, if 5
is a minimal element, then J+(5) = C(5) = {1, 4, 5, 9, 10}. Then take the element 1 (for which
we deduced 5 < 1). In the set P \ {5, 6, 7, 8}, consider J+(1) = {1, 9, 10, 11}, hence 1 < 11.
Thus, the chain {5, 1, 11} must exist, but actually it does not(!), therefore we reject the initial
supposition that the antichain {5, 6, 7, 8} is minimal.

Here we should stress that the above procedure does not give a unique result. For example
two causal sets with reversed all their causal links would give the same result which naturally
follows from our operational and “timeless”2 assumptions. It can been shown [8] that all the
ambiguities are essentially of this type.

6. Topology on a Causal Set
In order to speak about the topology of a spacelike surface of a causal set (i.e., a maximal
antichain) we need first to define neighborhoods on the surface that encode spatial proximity
and then proceed to derive a topology on this finite (or countable) set that captures the topology
of the underlying continuous one.

6.1. Proximity on an antichain
We could try to define some notion of distance on an antichain and then use this distance to
get proximity.

We are given the set of points of the spacetime and their causal relations (causet). From
this we can easily define a distance function for any two time-like separated events. For events
p, q with p ¹ q

dt(p, q) := max |Ci ∩ J−(q) ∩ J+(p)|, p, q ∈ Ci (7)

where |A| denotes the set-cardinality. In words this means that the timelike distance between
two points is the maximum number of steps to go from the one to the other. This corresponds
to the proper time between this two events. Things are different for points spacelike separated.
The only way for an “inertial” observer in one point to know about its distance to another that
is spacelike separated is by considering standard clocks and light beams. We would be therefore
interested in the distance of a point from a geodesic corresponding to a chain following [11].
We consider a point p and a geodesic Ci such that w and z are points of C such that w ¹ p ¹ z.
For point p, let l(p) be the highest point in C which is below p, and u(p) the lowest point of
Ci that is above p. We then have

ds(p, Ci) = dt(l(p), u(p))/2 (8)

Finally we would like to define the distance between points on the same antichain. We would
like to consider the distance of point p from q by considering the cain that contains q and
minimizes the distance ds(p, Ci) i.e.,

2 Here we refer to the frozen-time

12th Conference on Recent Developments in Gravity (NEB XII) IOP Publishing
Journal of Physics: Conference Series 68 (2007) 012028 doi:10.1088/1742-6596/68/1/012028

5



ds(p, q) := min (ds(p, Ci)) | q ∈ Ci (9)

Note that this definition is positive definite and zero3 when p = q. It is easily shown to
be symmetric as well. Unfortunately, for a general causet, this definition fails to satisfy the
triangular inequality and therefore it is not a real distance function. It can been shown though,
that for a causet that can be embedded in a manifold, the triangular inequality is satisfied by
this function on average. If one takes the point of view that causet is the fundamental reality,
maybe the notion of distance of points on a spacelike surface need to be adjusted. On the other
hand, the above definition, even if it fails to be a distance function, still captures some notion
of proximity. This is exactly the ingredient we need in order to group the events into spatial
neighborhoods and be able to derive the topology.

We would therefore form the neighborhoods in the following way. We pick sufficiently tuned
(see below) length b. For each point p in the antichain S we make a neighborhood:

Np = {q | ds(p, q) < b} (10)

We will define the set of all neighborhoods of the surface Si as:

N := {Np ∀ p ∈ Si} (11)

Major et al. in Ref.[13] followed a different method to get the neighborhoods, by considering
a “thickened” antichain. In both approaches, we need to tune a parameter. This arises because
our spacetime is discrete. Had we taken the finest description we would get neighborhoods with
single points and that would lead to the discrete topology. On the other hand if we consider
very large neighborhoods we will get the trivial topology (empty set and the total set). With
the right tuning we avoid these two extremes.

6.2. Derivation of Topology
Sorkin in Ref.[12] dealt with the following question. If we have a continuous topological space,
but we have access to only a particular finite open cover of this space, what can we say about
the underlying continuous topology. The situation here is similar.

To review, we have an antichain Si corresponding to the spacelike surface in question.
Furthermore, we have a collection of subsets N of this surface corresponding to neighborhoods.
If two points p, q belong to identically the same neighborhoods we will identify them as
equivalent.

p ≡ q if p ∈ Nr ⇔ q ∈ Nr ∀ Nr ∈ N (12)

We will consider the set of points in the spatial surface Si modulo this equivalence4. To get
the topology that captures the underlying continuous topology we do the following:

• We extend the set N to N c to make it closed under intersection. This means that we will
consider the set of all neighborhoods and their intersections. We will denote the elements
of N c as Np as well.

3 Provided that we used a “strict” poset, where the reflexive condition is replaced by irreflexive and thus
p 6∈ J+(p).
4 For notation simplicity we will use the same notation for the quotient space, but from now on we will be
speaking of the latter.
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• We construct a poset with elements the elements of N c and order relation the set inclusion,
i.e., Np ¹ Nq if Np ⊂ Nq.

• We take the Alexandrov topology of this poset. The Alexandrov topology of a poset is the
topology where the open sets are future (with respect to the order relation) sets. A future
set A of a partial order P is a set that contains its future, i.e.,

A ⊂ P | J+(A) ⊂ A (13)

• The topology that we get, captures the underlying continuous topology.

The first thing we should point out is what we do not do. We do not take the topology that is
generated from considering intersections and unions of the neighborhoods Np and take them
as the open sets. The reason is that since we have a finite set, the above procedure would lead
us to the discrete topology and thus it would not capture the continuous topology.

To compute topological invariants we could follow Major et al. in Ref.[13]. They considered
the nerve simplicial complex in order to compute the homology. The nerve simplicial complex
NSC(Si) of Si is constructed by mapping the elements of N to a vertex, every non-vanishing
intersection Np0 ∩ Np1 6= ∅ to a 1-simplex, and in general every non-vanishing intersection
Np0 ∩Np1 · · ·Npk

6= ∅ to a k-simplex.
An important thing to point out here, is that the nerve simplicial complex is not going to

give in general a topology homeomorphic to the underlying continuous. We expect though that
for suitably tuned neighborhoods (and sufficiently big antichain) it would essentially capture
the main topological features, such as the homotopy and homology groups.

Consider the following example. Given an antichain Si = {a, b, c, d} and neighborhoods N :
Na = {d, a, b}, Nb = {a, b, c}, Nc = {b, c, d}, Nd = {c, d, a}. This intuitively is a circle. The
nerve simplicial complex, gives us a hollow tetrahedron which is homeomorphic to the two
sphere S2. It does not give a circle and moreover it gives different homotopy group (trivial,
while π1(S1) = Z) as well as homology groups.

We could say that one of the following two things went wrong. We had too large
neighborhoods, or too small antichain. For the first, we could have considered smaller
neighborhoods, that each of those contained only two points. The topology we would recover
with the nerve simplicial complex in that case, would indeed be that of a circle. For the
second we could have considered an antichain with five (rather than four) or even more points,
keeping the size of the neighborhoods the same, i.e., containing three consecutive points. We
would then get a simplicial complex either homeomorphic to the Möbius strip (if the total
number of points in the antichain is odd) or homeomorphic to the cylinder (for the even
number case) and in both cases is not homeomorphic to the circle. Note though, that both
the Möbius strip and the cylinder have indeed the same homotopy and homology groups with
the circle since they are all homotopy equivalent. We could therefore claim that the outlined
procedure (provided the tuning of the size of the neighborhood is correct) essentially captures
the underlying topology, and in particular the homotopy and homology groups5. It is quite
possible that if we consider the causal set as the most fundamental entity (or the only one that
is operationally meaningful to speak of) we will not be able to make more precise statements
about the continuous topology6.

5 Possibly failing to identify the correct dimensionality. Note also, that the dimensionality is not a straight
forward issue for a particular causet.
6 In similar spirit with the realization that the concept of spatial distance is not in general well defined on a
causal set.
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7. Summary and Conclusions
We have derived the topology of the effective spacetime, based on a collection of final time
records. The first part was to derive the causal order. This corresponds to the mathematical
task of deducing the partial order of a set, given a collection of (unordered) subsets that
will correspond to the (causal) chains when the order is recovered. This is of interest to the
advocates of the “frozen-time” formalism, since the proposed scheme provides an example of
how to recover the causal relations from a set of “frozen-pictures” at the final time, and thus
have time “emerging” as a better way of organizing some collection of present records. The
second part dealt with recovering spatial topology on a causal set. We first had to define
some notion of proximity on an antichain and then using this to get a topology that captures
the underlying continuous topology. The discussion in the second part is independent of the
interpretation within the paper and has interest on its own right. Note though, that the
discussion followed similar paths with Refs.[12, 13].
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